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ABSTRACT

Understanding where and how knowledge is stored in LLMs is an active and
important area of research. In this work, we take a model pruning approach: if
removing certain parameters does not affect model output in question-answering
knowledge benchmarks, then those parameters are likely not useful for storing
knowledge. To find these parameters, we identify the optimal block of layers
to prune by considering similarity across layers; then, to “heal” the damage, we
perform a small amount of finetuning. In particular, we use parameter-efficient
finetuning (PEFT) methods, specifically quantization and Low Rank Adapters
(QLoRA), such that each of our experiments can be performed on a single A100
GPU. From a practical perspective, these results suggest that layer pruning methods
can complement other PEFT strategies to further reduce computational resources of
finetuning on the one hand, and can improve the memory and latency of inference
on the other hand. From a scientific perspective, the robustness of these LLMs
to the deletion of layers implies either that current pretraining methods are not
properly leveraging the parameters in the deeper layers of the network or that the
shallow layers play a critical role in storing knowledge.

1 INTRODUCTION

Over the last few years, large language models (LLMs) have evolved from mere research artifacts
Radford et al. (2019) into useful products OpenAI (2022). As language model abilities improve
OpenAI (2023); Gemini Team et al. (2023) and they are used more widely, it becomes increasingly
important to understand how language models store knowledge internally (one can imagine being able
to update incorrect knowledge in LLMs directly). This question is commonly approached through
interpretability studies, which produce post-hoc explanation of what certain parameters are doing,
for example by probing internal model representations on specific tasks Gurnee et al. (2023); Zou
et al. (2023); Clark (2019), or analyzing model activations Geva et al. (2020); Feng and Steinhardt
(2023) and finding "circuits" responsible for certain behaviors Elhage et al. (2021); Wang et al. (2022).
Ideally, one would go further than interpreting model representations, and directly intervene to control
model behavior. While some studies have attempted to use their mechanistic understanding to edit
world knowledge stored in models Meng et al. (2022), subsequent work demonstrates that these
methods and knowledge localization may be uncorrelated Hase et al. (2024).

We propose using model pruning as a framework for understanding open-weight LLMs — model
pruning emphasizes finding subsets of parameters that can be removed without affecting model
performance. This serves as a suitable intervention for understanding how a network uses its
parameters: if sections of a network can be removed with minimal effect on its performance, then
those parameters are likely not important for the specific task. Moreover, using model pruning as an
intervention for understanding leads to practical results, as at the end of the investigation the smaller
model performes better (or at least as well as the larger model) on the task at hand.

In this work we study a very simple pruning strategy using open-weight LLMs and measure perfor-
mance degradation on common question-answering benchmarks. In particular, we develop a method
that uses the similarity between the representations at different layers to identify the optimal layers to
prune for a given pruning fraction; then, after removing these layers we “heal” the pruning-induced
mismatch with a small amount of fine tuning (using QLoRA). Our main result is that we can remove
a substantial fraction of the deepest layers from models with minimal degradation in downstream
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d(x(`), x(`+n))

Figure 1: Overview of our layer-pruning strategy and example results: (a) a flowchart describing
the algorithm: if removing n layers, we find the layer, ω→, that minimizes the angular distance, d,
between layers ω and ω+n; we then remove the n layers beginning with layer ω→; finally, if necessary,
we can “heal” the damage with a small amount of (parameter-efficient) finetuning. (b) a schematic
depicting the removal of n total layers, indexed from ω→ to ω→+n→1. (c) angular distance, d, between
different numbers of layers, n, vs. the layer number, ω, that indexes the beginning of the block of n;
the bottom curve (darkest purple) represents n = 1, while the top curve (lightest yellow) represents
n = 64; the black line traces ω→(n), the minimum of the angular distance across the different sized
layer blocks. (d) results of pruning Llama-2-70B with healing (light blue) and without healing (dark
blue) as a function of the fraction of layers removed: the top (middle) panel gives the accuracy on the
MMLU (BoolQ) question-answering benchmark, while the bottom panel the autoregressive loss on a
subset of the C4 validation set; here, the dashed red lines (dashed gray lines) indicate the accuracy or
loss of the original unpruned model (of random guessing); these plots illustrate that typical behavior
we find in which there are sharp transitions in performance for the accuracy of question-answering
tasks (here between 40%-50% pruning fraction), but continuity and very slow growth in the healed
loss (dark blue) up to at least to 80% pruning fraction.

question-answering benchmarks. For example, for Llama-2-70B Touvron et al. (2023a) we can
eliminate up to roughly half of the layers before the performance collapses on MMLU. An overview
of our strategy and the results of pruning Llama-2-70B are shown in Figure 1.

In particular, our intuition for dropping layers comes from considering the residual structure of the
transformer architecture. In more detail, the output of the final layer can be decomposed as a sum
over the outputs of all the model layers plus the embedded input. If such a sum had numerous and
independent terms, then removing a handful of them should not significantly change the output.
However, since the terms are not independent – each layer is input to the following layer – we should
expect to be able to remove terms if the residual contribution from a particular layer is small. In other
words, if the output of each layer does not change too much from layer to layer.1

1This is strongly suggested by “lens” investigations that studied the evolution of the token distribution as a
function of layer index such as the “logit lens” nostalgebraist (2020) and the “tuned lens” Belrose et al. (2023).
A separate line of reasoning along these lines previously inspired neural ODEs Chen et al. (2018), and led
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In conjunction with our layer pruning, we investigate the similarity of layer representations at different
separations and find broadly that deeper layers are qualitatively more similar to neighboring layers
than shallow layers (with the exception of the very final layer). This suggests an even simpler pruning
strategy: remove layers beginning at the penultimate layer and proceed from deep to shallow until the
desired number of layers have been removed.2 In this case, we find that, after healing the damage
with a small amount of QLoRA finetuning, we can achieve performance that nearly matches the more
involved similarity-informed layer pruning strategy. The effectiveness of this method is evidence that
LLMs might not properly leverage the parameters in the deeper layers of the network.

Overall, we hope you take these three bulleted points with you:

• The robustness of models to removing the deeper layers, the sharp transition in performance
on downstream knowledge tasks (e.g. MMLU and BoolQ), and the smooth behavior of
the autoregressive loss with respect to those pruning fractions, altogether suggest that the
shallow layers may play a critical role in storing knowledge.

• The model’s memory footprint and inference time decreases linearly with the number
of removed layers.3 This makes layer pruning a powerful tool, especially if the model’s
performance is robust to dropping layers.

• All the efficiency methods – pruning, PEFT and quantization – can be effectively combined
with each other. Thus, in this work each experiment was performed on a single A100 GPU
and is easily accessible to the open source and academic communities.

The structure of this paper is as follows. In §2, we first perform a literature review of both practical
post-training strategies and science-of-deep-learning investigations that motivate our work. Then,
in §3, we give intuition for our layer pruning strategy and explain our method in detail, while in §4
we iterate over all our experimental results. Finally, we conclude in §5 by highlighting directions of
future work. Specific model, finetuning, dataset, and evaluation details can be found in Appendix B,
and evaluations ablations can be found in Appendix C.

2 LITERATURE REVIEW

Pruning for neural networks has a long history (LeCun et al., 1989; Hassibi and Stork, 1992): while
initial work focused on unstructured pruning (Han et al., 2015; Chen et al., 2015; Srinivas and Babu,
2015), structured pruning techniques were developed to make sparse networks more efficient (Li
et al., 2016; Wen et al., 2016; Hu et al., 2016; He et al., 2017; Huang et al., 2018; Murray and Chiang,
2015; See et al., 2016; Kim and Rush, 2016). Recent work, of course, focused on structured pruning
of transformers (Voita et al., 2019; Michel et al., 2019; Kim and Awadalla, 2020; Fan et al., 2019;
Zhang and He, 2020; Fan et al., 2021; Jha et al., 2023; Sajjad et al., 2023; Liu et al., 2023a; Hou et al.,
2020; Sharma et al., 2023; Ashkboos et al., 2024; Xia et al., 2022; Lagunas et al., 2021). Our work
focuses on pruning the layers of decoder-only GPT style open-weight large language models after
they’ve been pretrained. For an extended literature review, please see Appendix A.

3 METHOD

In this section, we give intuition for our layer pruning method (§3.1) and then we explain our method
in detail (§3.2).

3.1 INTUITION

Our intuition for layer dropping comes from thinking about the representations as a slowly changing
function of layer index. In particular, the layer-to-layer evolution of representations for a transformer

Ref. Yang et al. (2023) to argue that ideally representation should change substantially from layer to layer in
order to most effectively make use of the parameters of a network.

2This strategy is especially interesting in situations where resource constraints inhibit the full application of
the similarity-informed pruning algorithm described in Figure 2(a).

3Contrast this with quantization: the memory footprint decreases with the quantization ratio, but the inference
time remains approximately fixed since parameters are typically de-quantized before any FLOPs.

3
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is given by a residual iteration equation

x(ω+1) = x(ω) + f(x(ω), ε(ω)) , (1)

where (x(ω), ε(ω)), respectively, are the multi-dimensional input and parameter vectors for layer ω, and
f(x, ε) describes the transformation of one multi-head self-attention and MLP layer block. As for
any residual network, if we unroll this iteration, we see that after L total layers the output is described
as a sum over the transformations of all the layers

x(L) = x(0) +
L↑1∑

ω=0

f(x(ω), ε(ω)) . (2)

If the terms in the sum were numerous, (L ↑ 1), and independent, e.g. if the block functions were
instead a function of the overall input as f(x(0), ε(ω)), then perhaps any particular contribution to the
sum (2) could be neglected.

Of course, they are not at all independent: if we delete layer ω → 1, then we must now connect the old
input to that layer, x(ω↑1), into the block function of layer ω as

x(ω+1) = x(ω↑1) + f(x(ω↑1), ε(ω)) , (3)

where, for clarity, we are not relabeling layers or inputs despite the deletion. In general, such
a mismatch between the original input and new input should be very damaging for the network.
However, if, after some number of initial layers, the representations converge to a slowly changing
function with respect to layer index,

x(ω) ↓ x(ω↑1) + ϑ , (4)

with ϑ ↔ x(ω) in some appropriate sense, then the effect of deleting a particular layer ω, e.g. making
the replacement x(ω) ↗ x(ω↑1) in going from (1) to (3), should only change the representation in the
subsequent layer, x(ω+1), by a small amount. Similarly, to successfully prune the n layers before
layer ω, i.e. those indexed from ω → n, . . . , ω → 1, we’d want that the input to the pruned block should
be very similar to the output of the pruned block:

x(ω) ↓ x(ω↑n) + ϑ . (5)

Regardless, any layer removal has a cascading effect: since post pruning x(ω+1) is computed by a
different function than before, cf. (1) vs. (3), and since then x(ω+1) is directly or indirectly input to
subsequent layers, ω + 2, . . . , L, deleting a shallow layer should have a much greater impact than
deleting a deeper layer.

From this, we have the following hypotheses that we will test experimentally:

(0) We should be able to prune layers of a residual network.
(1) We should have greater success pruning deeper layers.
(2) Blocks of layers we successfully prune should have outputs that are similar to their inputs.

In the next subsection, §3.2 we will explain the details of our pruning algorithm and in the following
section, §4, we will present experimental evidence for points (0)-(2).

3.2 LAYER-PRUNING ALGORITHM(S)

Our principal layer pruning algorithm is very simple:

0. Pick a a number of layers to prune n.
1. Compute the angular distance d(x(ω), x(ω+n)), cf. (7) below, between the input to layer ω

and the input to layer ω + n on a neutral pretraining dataset or on a dataset representative of
a downstream task of interest.

2. Find the layer, ω→, that minimizes that distance:

ωε(n) ↘ arg min
ω

d(x(ω), x(ω+n)) . (6)

4
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3. Drop layers ωε to ωε+n→1; connect the old input to layer ωε to the old (ωε+n)th layer block.4

4. (Optionally) heal the mismatch at layer ωε + n with a small amount of fine tuning on a
neutral pretraining dataset or particular dataset of interest.

If fewer words inside of a figure are more helpful to you than the text in an enumerated list, then note
that this algorithm is also depicted in panels (a)-(b) of Figure 1.

Elaborating on the first step, the angular distance on a single sequence of length T is given by

d(x(ω), x(ω+n)) ↘ 1

ϖ
arccos



 x(ω)
T · x(ω+n)

T∣∣∣
∣∣∣x(ω)

T

∣∣∣
∣∣∣
∣∣∣
∣∣∣x(ω+n)

T

∣∣∣
∣∣∣



 , (7)

where the inner product is over the hidden dimension of the model for the final token T of the
sequence, || · || denotes the L2-norm, and the factor of 1/ϖ is a convention.5 This distance should
then be summed over a number of examples that is large enough to get a low-fluctuation estimate but
overall should be quite small.

Elaborating on the “optionality” of the final step, we find that the near-lack of performance degradation
on question-answering benchmarks, cf. Figure 1(d) and others in §4.1, can be extended to greater
pruning fractions with a small amount of finetuning. Depending on resource constraints and intended
application of the pruned model, this may not be necessary. However, the healing procedure does
have a substantial impact on perplexity, cf. Figure 1(d) and others in §4.2.

For both the angular distance measuring and the healing, if the ultimate goal is to supervise finetune
(SFT) a model for a downstream task, it could be useful to evaluate the distance of a sample from that
dataset and then combine the healing process with the SFT. In contrast, for the greatest generality, it’s
most natural to measure distance and heal with a pretraining dataset that approximates the statistics
under which the model was originally pretrained.

Finally, we also investigated an even simpler pruning strategy inspired by analyzing the angular
distances across different model families: drop the deepest layers, excluding the final layer before the
LLM head, and then (non-optionally) heal the damage. For complete clarity, this means that if we are
pruning n layers from an L-layer model, then we would remove layers (L → n) to (L → 1), inclusive.

4 RESULTS

In this section, we demonstrate the effectiveness of our pruning strategy on different question-
answering (QA) benchmarks and highlight a robust pruning-driven transition in performance (§4.1),
while, in contrast, we find that the autoregressive perplexities of the healed pruned models are
continuous across their transition points (§4.2); then, after comparing the similarity statistics between
different layers across model sizes and families (§4.3), we contrast our principal similarity-informed
pruning strategy with a simpler remove-the-deepest-layers strategy (§4.4).

For our experiments, we pruned a wide variety of large-scale LLMs from 2.7B to 70B parameters
spanning 32 to 80 total unpruned layers. Specifically, we used models in the Llama-2 family Touvron
et al. (2023a), the Qwen family Bai et al. (2023), Mistral-7B Jiang et al. (2023a), and Phi-2 Javaheripi
and Bubeck (2023). For these models, we executed the “healing” step using QLoRA Dettmers et al.
(2023): our models were quantized to 4-bit precision and then finetuned, using QLoRA for efficient
training, on either 164M or 328M tokens from the Colossal Clean Crawled Corpus (C4) Raffel et al.
(2020), a common pretraining dataset. As a result, each experiment of ours was performed on a
single A100 GPU. For our QA evals, we used Massive Multitask Language Understanding (MMLU)
Hendrycks et al. (2020), a common world-knowledge and problem solving benchmark, and BoolQ
Clark et al. (2019), a common yes/no reading comprehension benchmark where the answer has to
be inferred from the text itself. The specifics of our models, healing procedure, dataset choices, and

4Layers are often contained in a data structure, such a ModuleList in PyTorch, so to drop these layers we
would simply define a new ModuleList that removes the layers from ωω to ωω + n→ 1.

5Two comments: (i), we do not expect our choice of angular distance – in lieu of any other reasonable metric,
e.g., such as cosine similarity – to be particular significant; and (ii), we chose to focus on the final token since,
due to the causal attention mask, its embedding is the only one that depends on the entire sequence.
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Figure 2: MMLU accuracy (5-shot) vs. fraction of layers dropped for different model families. (Left:
Llama-2 family; Middle: Qwen family; Right: Mistral-7B and Phi-2.) The solid lines represent
performance after dropping layers and healing, dotted lines show performance after dropping layers
only (no healing), and the dashed gray line is the score for guessing randomly. For these models,
healing leads to modest improvements, and performances are quite robust until 20%-55% pruning
fractions, depending on model family and size, at which point they transitions to random guessing.

evaluation details can be found across Appendix B; ablations of different hyperparameter choices can
be found across Appendix C.

4.1 PRUNING AS A LENS INTO KNOWLEDGE LOCALIZATION: ACCURACY ON QA
BENCHMARKS

Our first set of results are shown in Figure 2, where we plot 5-shot MMLU accuracy as a function
of the fraction of layers removed: in the left panel we present the Llama-2 family, in the middle
panel we present models from the Qwen family, and in the right panel we show Mistral-7B and Phi-2.
In order to better compare models of different total number of layers, in these plots we opted to
normalize the x-axis by the fraction of layers removed (rather than the absolute number of layers
removed). Note that since MMLU contains multiple choice questions with four possible responses,
the expected accuracy of random guessing is 25%.

Importantly, we see a characteristic flat region of robust performance followed by a sharp transition
to random accuracy at a pruning fraction around 45%-55% for models in the Llama-2 family, 35% for
Mistral 7B, 25% for Phi-2, and 20% for models from the Qwen family. This implies that the essential
knowledge required to achieve a model’s top score isn’t removed by significant layer removal –
even though the fraction can be quite large(!) – until eventually that knowledge is lost at a critical
model-dependent threshold.6 Contrasting the curves with and without healing, we see that finetuning
offers a modest improvement by better preserving the unpruned performance and pushing the phase
transition to random guessing to slightly larger pruning fractions.

Broadly we see that layer pruning is more robust for the larger and deeper models, e.g. Llama-2-13B
and Llama-2-70B, which we hypothesize could be related to the fact that either the smaller models
are more overtrained, making parameters less redundant, or that the deeper models can afford to lose
more layers in an absolute sense. Also, the Qwen family is strange, a fact we will further elaborate
on in §4.3.

4.2 ANALYZING LOSS ON NEXT-TOKEN PREDICTIONS

In this section, we look at the effect of layer pruning on the pretraining optimization objective –
the cross-entropy loss of next-token prediction – when evaluated on a subset of the C4 validation
dataset.7 In order to have a fair comparison across models with different sized vocabularies V , we
normalize the loss by log V , which corresponds to the loss of sampling tokens randomly with uniform
probability. (See Appendix B.2 for more details.)

6This effect is rather robust to choice of QA benchmark: in Appendix Figure 7 we plot the average 0-shot
BoolQ accuracy for our model families and observe analogous behavior.

7We make sure that none of the validation data are seen during the healing stage.
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Figure 3: Normalized C4 validation loss vs. fraction of layers dropped before healing (left) and
after healing (right); each curve is normalized by the cross-entropy loss of sampling uniformly from
the model’s vocabulary. For the experiments before healing, the loss for each model transitions
to random guessing (gray dashed line) at approximately the same pruning fractions that the QA
benchmarks transition to random guessing; after healing, there is continuity through the regions of
sharp transition on QA tasks, cf. Figure 2. Contrasting the overall scale of both plots, it’s clear that
healing significantly restores the performance on next-token prediction to near-unpruned levels.

In Figure 3 , we plot the normalized C4 validation loss for all seven of our models, after healing
(left panel) and before healing (right panel), as a function of the fraction layers removed. Without
healing, we see that there is a somewhat sharp(ish) transition to random guessing for each model
at approximately the pruning fraction that the QA benchmark accuracies also sharply transition to
random guessing, suggesting that models are hopelessly harmed at this point, cf. Figure 2. Next,
contrasting the scales of both plots, we see that healing significantly restores the next-token prediction
ability of all the models to near-unpruned levels, with the loss increasing slowly and linearly with
layer dropping. Most strikingly – from a scientific perspective – is the post-healing continuity through
the pruning fractions where we previously found sharp transitions for the QA benchmarks: this
decoupling illustrates one way of disconnecting (or creating a miscalibration) between performance
on downstream tasks – such as MMLU and BoolQ – and continuous measures of performance – such
as the cross-entropy loss. 8

Overall, the slow linear increase in cross-entropy loss suggests that deeper layers may be used for
some other ability that is learned during pre-training. In Section 4.5, we evaluate pruned models on a
wider suite of tasks and find that that one of these abilities may be higher-level reasoning.

4.3 ANGULAR DISTANCES BETWEEN REPRESENTATIONS

Given the central role the angular distance (7) plays in our pruning strategy, let’s take a subsection
to look at these distances across our seven models. For this analysis, the angular distances for each
model were averaged over 10k samples from the C4 validation set.

Recall from earlier Figure 1(c): for Llama-2-70B this plotted the angular distance d(x(ω), x(ω+n))
that compared the ω-th layer to the (ω + n)-th layer, across all initial indexes ω for block sizes from
n = 1 to n = 64; the minimum of the curves, ωε(n), gave the optimal block to prune for a given n,
cf. (6).

A more compact way to display this same data is shown in the heat maps of Figure 4: each square is
colored to depict the row-normalized angular distance between layer ω and ω + n across all possible ω,
and n up to very large fractions of the total number of layers; the optimal layer to prune for a given
block size, ω→(n), corresponds to the minimal distance in each row.

Across models, we make two generalizations: (i) the smallest distances are found across the deeper
blocks, meaning deeper layers are typically quite similar to each other and can be more easily
dropped; (ii) the distances across the deepest blocks – the blocks that include the last layer – take
either maximal or nearly-maximal values, meaning one should never drop the final layer. While

8This is consistent with Ref. Schaeffer et al. (2023) that argued jumps in one kind of metric may not be
visible in others.
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(b) Llama-2-13B (c) Llama-2-70B(a) Llama-2-7B

(d) Qwen-7B (e) Qwen-14B

Shifted
Rescaled
Angular
Distance

(g) Phi-2-2.7B(f) Mistral-7B

Figure 4: Normalized angular distance (7) from initial layer ω (x-axis) with block size n (y-axis) for
each of the seven models we evaluated; the distance for each n is shifted and rescaled to span the
same range, [0, 1] (yellow to purple): the optimal block to prune, ω→(n), corresponds to the deepest
yellow for each row. Across models, the deeper layers tend to be very similar, though the deepest
blocks that include the final layer (squares along the outer diagonal) are (near-)maximally dissimilar.

broadly true, there are a few exceptions. For some models, e.g. Phi-2-2.7B, or for the largest blocks
in some models, e.g. Llama-2-7B, final few layers seem important. As previously noted, the Qwen
family is somewhat unusual: here we see that there are a few odd “islands” of high similarity for
shallow blocks; this likely explains the shorter region of robust performance in Figure 2.

4.4 A SIMPLER PRUNING STRATEGY

Inspired by our recent conclusions, we experiment with a very simple heuristic pruning strategy:
(1) if pruning n layers from an L-layer model, drop layers (L → n) to (L → 1) so as to remove the
deepest block that excludes the final layer; then (2) heal with a small amount of finetuning as before.
Compared with our principal similarity-informed pruning strategy, this simpler heuristic algorithm
has the advantage of never requiring practitioners to load onto a GPU or inference the unpruned
model. It also provides a meaningful ablation of the importance of optimizing the block to prune.

In Figure 5, we contrast our two pruning strategies, both before healing (left panels) and after healing
(right panels), for the QA benchmarks (MMLU/BoolQ, top/middle panels) and the autoregressive loss
(C4 validation, bottom panels). On the one hand, the simple heuristic performs quite poorly without
healing the damage incurred by pruning: accuracy on the QA benchmarks decays rapidly to (near-)
random with increased pruning fraction, and the loss begins to increase very rapidly even with small
amounts of pruning. On the other hand, the results for the two pruning strategies across evaluations
are quite comparable after healing: for the QA benchmarks, the similarity-informed algorithm slightly
better preserves the accuracy before the phase transition, though the simple algorithm perhaps pushes
the phase transition to slightly greater pruning factions; and for the loss, the curves nearly lie on top
of each other, though the similarity-informed strategy does marginally outperform for all amounts of
pruning. These experiments are strong evidence that the purpose of post-pruning finetuning is the
healing of damage at the pruning interface and not the acquisition of additional knowledge.

8
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Figure 5: Evaluation of Llama-2-70B with the simple pruning heuristic (solid red line), shown along
with scores for the similarity-informed pruning strategy (solid blue line), scores of the unpruned
Llama-2-70B (red dashed line), and scores for randomly guessing (gray dashed line). (Left: before
healing, Right: after healing; Top: MMLU, Middle: BoolQ, Bottom: C4 Validation Loss.) Without
healing, the simple heuristic performs poorly across all evals; with healing, the scores of both methods
are quite similar.

4.5 WHAT ARE DEEPER LAYERS DOING?

In previous sections, we provide evidence that deeper layers do not affect performance on MMLU
(see Figure 2); however, the immediate degradation in performance in Figure 3 suggests that deeper
layers are useful for other capabilities. What are deeper layers doing? In this section, we evaluate
pruned models on a suite of different tasks to better understand what abilities model lose when
pruning deeper layers. We choose one evaluation from common subcategories for language model
evaluation9, as well as an evaluation for Chain-of-Though-MMLU (CoT-MMLU) where evaluation is
done allowing the model to produce chain-of-thought outputs. See Section C.5 for more details on the
evaluation setups. We then perform layer dropping via our cosine-similarity cutting method and the
simple baseline from Section 4.4, and evaluate performance. In Figure 6, we observe that changing
the evaluation task can significantly change the performance of layer dropping. Interestingly, moving
to generation-based tasks (summarization or CoT-MMLU) retains the same qualitative behavior (e.g.
a relatively flat region of performance followed by a sharp dropoff around 45-55% pruning fraction).
On the other hand, evaluations that require reasoning capabilities (GSM8k or HellaSwag) exhibit
immediate degradation in performance. We observe similar trends when we evaluate models at larger
scale (see Figure 12). Overall, this suggests that deeper layers are useful for higher-level reasoning
tasks, but relatively less important for summarization and knowledge-intensive QA tasks.

5 DISCUSSION AND FUTURE DIRECTIONS

We leverage model pruning as a tool to understand how open-weight LLMs store knowledge, and
show that we can prune a significant portion (up to 50%) of deeper layers with minimal impact on
knowledge-QA performance. This suggests that shallow layers are important for storing knowledge.

9We use the subcategories from Section 2.3 of the Llama-2 Touvron et al. (2023b) paper

9
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Figure 6: Evaluation of Llama-2 7B using the cosine-similarity cutting method (green) and the
simple baseline from Section 4.4 (red) across different evaluation tasks. Left to Right: QMSum,
CoT-MMLU, BoolQ, GSM8k, HellaSwag. We observe that reasoning tasks (GSM 8k and HellaSwag)
show immediate performance degradation when pruning deeper layers.

While model pruning experiments may be a computationally expensive tool for scientific understand-
ing of LLMs , we leverage advancements in efficient inference and fine-tuning to lower computational
requirements: beginning with the release of the open-weight LLaMA family (Touvron et al., 2023b),
the open-source machine-learning community has rallied around the philosophy of making LLMs
accessible to everyone. This has engendered many innovations around efficiency, such as LoRA Hu
et al. (2021) and quantization (with LoRA) Dettmers et al. (2023), allowing large (near-)state-of-the-
art 70B models to be finetuned on only single 80GB A100 GPUs. As a result, all of our experiments
are performed on a single A100 GPU and are easily accessible. We hope our work motivates the
broader community to use model pruning as a tool for understanding where knowledge is stored in
open-weight LLMs.

At the conclusion of the work, we are left with the following questions:

• What are better layer-pruning strategies? What are better approaches to healing?10

• Why does healing eliminate the phase transition in the loss but not in the QA accuracies?

• With more comprehensive evals, will accuracy on different tasks degrade at different depths?

• Relatedly, is knowledge generally stored in shallow or middle layers, or is it delocalized?

• Do pretraining details affect the ability to prune, e.g., are scaling-law over-trained or distilled
models more difficult to prune?

• How can we enable LLMs to more effectively use the parameters in their deepest layers?

Some of these questions would benefit from studying both layer similarity and pruning across different
pretraining checkpoints; for instance, at what point does the sharp phase transition and critical depth
in the QA accuracies emerge, and does more training lead to better use of the prunable parameters?
Others suggest explorations with different pretraining architectures and objectives, e.g. in order better
make use of the deeper layers (for example, one can imagine applying layer dropout Fan et al. (2019)
or early exit during pre-training Elhoushi et al. (2024) to induce equal usage of layers). With more
comprehensive evaluations, if different kinds of tasks degrade at very different depths, then this might
indicate that the knowledge required to complete those tasks is stored at different depths.11 It would
be very interesting to use pruning to systematically study these kind of interpretability questions.

10At the cost of introducing another hyperparameter and requiring both pruned and unpruned models to fit in
memory during finetuning, one natural way to improve healing is by adding an auxiliary student-teacher loss
that explicitly addresses the pruning mismatch (5), such as

Laux ↑
(
x(ε→+n)(ε0)→ x(ε→)(ε)

)2
, (8)

where ε0 are the frozen parameters of the unpruned model, and ε are the parameters of the pruned model to be
healed; thus, x(ε→+n)(ε0) is the input to the (ω→+ n)-th layer in the unpruned model, x(ε→)(ε) is the input to that
same layer after pruning, and Laux minimizes their mismatch. We thank Sho Yaida for this observation.

11Alternatively, one could measure d(x(ε), x(ε+n)) or find ω→(n) as a function of different eval datasets.
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