
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE UNREASONABLE INEFFECTIVENESS OF THE
DEEPER LAYERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Understanding where and how knowledge is stored in LLMs is an active and
important area of research. In this work, we take a model pruning approach: if
removing certain parameters does not affect model output in question-answering
knowledge benchmarks, then those parameters are likely not useful for storing
knowledge. To find these parameters, we identify the optimal block of layers
to prune by considering similarity across layers; then, to “heal” the damage, we
perform a small amount of finetuning. In particular, we use parameter-efficient
finetuning (PEFT) methods, specifically quantization and Low Rank Adapters
(QLoRA), such that each of our experiments can be performed on a single A100
GPU. From a practical perspective, these results suggest that layer pruning methods
can complement other PEFT strategies to further reduce computational resources of
finetuning on the one hand, and can improve the memory and latency of inference
on the other hand. From a scientific perspective, the robustness of these LLMs
to the deletion of layers implies either that current pretraining methods are not
properly leveraging the parameters in the deeper layers of the network or that the
shallow layers play a critical role in storing knowledge.

1 INTRODUCTION

Over the last few years, large language models (LLMs) have evolved from mere research artifacts
Radford et al. (2019) into useful products OpenAI (2022). As language model abilities improve
OpenAI (2023); Gemini Team et al. (2023) and they are used more widely, it becomes increasingly
important to understand how language models store knowledge internally (one can imagine being able
to update incorrect knowledge in LLMs directly). This question is commonly approached through
interpretability studies, which produce post-hoc explanation of what certain parameters are doing,
for example by probing internal model representations on specific tasks Gurnee et al. (2023); Zou
et al. (2023); Clark (2019), or analyzing model activations Geva et al. (2020); Feng and Steinhardt
(2023) and finding "circuits" responsible for certain behaviors Elhage et al. (2021); Wang et al. (2022).
Ideally, one would go further than interpreting model representations, and directly intervene to control
model behavior. While some studies have attempted to use their mechanistic understanding to edit
world knowledge stored in models Meng et al. (2022), subsequent work demonstrates that these
methods and knowledge localization may be uncorrelated Hase et al. (2024).

We propose using model pruning as a framework for understanding open-weight LLMs — model
pruning emphasizes finding subsets of parameters that can be removed without affecting model
performance. This serves as a suitable intervention for understanding how a network uses its
parameters: if sections of a network can be removed with minimal effect on its performance, then
those parameters are likely not important for the specific task. Moreover, using model pruning as an
intervention for understanding leads to practical results, as at the end of the investigation the smaller
model performes better (or at least as well as the larger model) on the task at hand.

In this work we study a very simple pruning strategy using open-weight LLMs and measure perfor-
mance degradation on common question-answering benchmarks. In particular, we develop a method
that uses the similarity between the representations at different layers to identify the optimal layers to
prune for a given pruning fraction; then, after removing these layers we “heal” the pruning-induced
mismatch with a small amount of fine tuning (using QLoRA). Our main result is that we can remove
a substantial fraction of the deepest layers from models with minimal degradation in downstream

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) (b) (d)
Compute angular
distance btw input

and output of blocks

Find the block with
minimum distance

Remove the block

Heal via PEFT

Output text

Embedding

LM head

Input text

<latexit sha1_base64="xTnVU9LIIvMUIutHcVm1RgxoeJo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVvV6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfd2Mvw==</latexit>

1

<latexit sha1_base64="GQuMYZhMmwPAndQ0tTFN44pZFYg=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfFmMvg==</latexit>

0

<latexit sha1_base64="RAHAQaaxtv7beBY4S/dtBzyWvb4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgxbArvo5BLx48RDQPSJYwO+kkQ2Znl5lZISz5BC8eFPHqF3nzb5wke9DEgoaiqpvuriAWXBvX/XZyS8srq2v59cLG5tb2TnF3r66jRDGssUhEqhlQjYJLrBluBDZjhTQMBDaC4c3Ebzyh0jySj2YUox/SvuQ9zqix0sPdidcpltyyOwVZJF5GSpCh2il+tbsRS0KUhgmqdctzY+OnVBnOBI4L7URjTNmQ9rFlqaQhaj+dnjomR1bpkl6kbElDpurviZSGWo/CwHaG1Az0vDcR//Naield+SmXcWJQstmiXiKIicjkb9LlCpkRI0soU9zeStiAKsqMTadgQ/DmX14k9dOyd1E+vz8rVa6zOPJwAIdwDB5cQgVuoQo1YNCHZ3iFN0c4L8678zFrzTnZzD78gfP5A3/fjUw=</latexit>

L � 1

<latexit sha1_base64="LG5GImVMByARuaOLjPl0iOZysy8=">AAAB83icbVBNS8NAEN3Ur1q/qh69BItQLyURv45FLx4r2A9oYtlsJ+3SzSbsToQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IBFco+N8W4WV1bX1jeJmaWt7Z3evvH/Q0nGqGDRZLGLVCagGwSU0kaOATqKARoGAdjC6nfrtJ1Cax/IBxwn4ER1IHnJG0UieB0I8elRjVZ72yhWn5sxgLxM3JxWSo9Erf3n9mKURSGSCat11nQT9jCrkTMCk5KUaEspGdABdQyWNQPvZ7OaJfWKUvh3GypREe6b+nshopPU4CkxnRHGoF72p+J/XTTG89jMukxRBsvmiMBU2xvY0ALvPFTAUY0MoU9zcarMhVZShialkQnAXX14mrbOae1m7uD+v1G/yOIrkiByTKnHJFamTO9IgTcJIQp7JK3mzUuvFerc+5q0FK585JH9gff4AfEqRVg==</latexit>

`⇤(n)

<latexit sha1_base64="ihJpmmKHF5HUkc90QbDgmMRKU2o=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBEUpiXhbFt24rGAv0MYymU7q0MkkzJwIJdSNr+LGhSJufQt3vo3TNoi2/jDw8Z9zOHN+PxZcg+N8WbmZ2bn5hfxiYWl5ZXXNXt+o6ShRlFVpJCLV8IlmgktWBQ6CNWLFSOgLVvd7l8N6/Z4pzSN5A/2YeSHpSh5wSsBYbXur2WJC3LaIhkP8gwdyv20XnZIzEp4GN4MiylRp25+tTkSTkEmggmjddJ0YvJQo4FSwQaGVaBYT2iNd1jQoSci0l44uGOBd43RwECnzJOCR+3siJaHW/dA3nSGBOz1ZG5r/1ZoJBOdeymWcAJN0vChIBIYID+PAHa4YBdE3QKji5q+Y3hFFKJjQCiYEd/LkaagdldzT0sn1cbF8kcWRR9toB+0hF52hMrpCFVRFFD2gJ/SCXq1H69l6s97HrTkrm9lEf2R9fAN23pZE</latexit>

[`⇤, `⇤ + n)

<latexit sha1_base64="Jhgzxv4jrSKEBVA949tYLid4+l0=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhA8hV3xdQx68RjBPCS7htlJbzJkZnaZmRVCyFd48aCIVz/Hm3/jJNmDJhY0FFXddHdFKWfaeN63s7S8srq2Xtgobm5t7+yW9vYbOskUxTpNeKJaEdHImcS6YYZjK1VIRMSxGQ1uJn7zCZVmibw3wxRDQXqSxYwSY6WHADl/DIg2nVLZq3hTuIvEz0kZctQ6pa+gm9BMoDSUE63bvpeacESUYZTjuBhkGlNCB6SHbUslEajD0fTgsXtsla4bJ8qWNO5U/T0xIkLroYhspyCmr+e9ifif185MfBWOmEwzg5LOFsUZd03iTr53u0whNXxoCaGK2Vtd2ieKUGMzKtoQ/PmXF0njtOJfVM7vzsrV6zyOAhzCEZyAD5dQhVuoQR0oCHiGV3hzlPPivDsfs9YlJ585gD9wPn8A4D+QeQ==</latexit>

`⇤
<latexit sha1_base64="mF9q9iLSKy4wjArBtUR8MV6p0mc=">AAAB8nicbVDLSsNAFJ34rPVVdelmsAiCUBLxtSy6cVnBPiCJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNgttPXDhcM693HtPlApuwHW/naXlldW19dJGeXNre2e3srffMirTlDWpEkp3ImKY4JI1gYNgnVQzkkSCtaPh7cRvPzFtuJIPMEpZmJC+5DGnBKzkB0yIx4AYOPW6lapbc6fAi8QrSBUVaHQrX0FP0SxhEqggxviem0KYEw2cCjYuB5lhKaFD0me+pZIkzIT59OQxPrZKD8dK25KAp+rviZwkxoySyHYmBAZm3puI/3l+BvF1mHOZZsAknS2KM4FB4cn/uMc1oyBGlhCqub0V0wHRhIJNqWxD8OZfXiSts5p3Wbu4P6/Wb4o4SugQHaET5KErVEd3qIGaiCKFntErenPAeXHenY9Z65JTzBygP3A+fwC9CZDp</latexit>

`⇤ + 1

<latexit sha1_base64="CcSSOki/AGWRuL1QclwvEGdxYFg=">AAAB8nicbVDLSsNAFJ34rPVVdelmsAiCUBLxtSy6cVnBPiCJZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o3TNgttPXDhcM693HtPlApuwHW/naXlldW19dJGeXNre2e3srffMirTlDWpEkp3ImKY4JI1gYNgnVQzkkSCtaPh7cRvPzFtuJIPMEpZmJC+5DGnBKzkB0yIx4AYOJXdStWtuVPgReIVpIoKNLqVr6CnaJYwCVQQY3zPTSHMiQZOBRuXg8ywlNAh6TPfUkkSZsJ8evIYH1ulh2OlbUnAU/X3RE4SY0ZJZDsTAgMz703E/zw/g/g6zLlMM2CSzhbFmcCg8OR/3OOaURAjSwjV3N6K6YBoQsGmVLYhePMvL5LWWc27rF3cn1frN0UcJXSIjtAJ8tAVqqM71EBNRJFCz+gVvTngvDjvzsesdckpZg7QHzifPxmMkSY=</latexit>

`⇤ + n

(c)
Increasing <latexit sha1_base64="zrAoX5WZl/tVsNb6yPWAMQONjzc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVZa9UdivuDGSZeDkpQ45ar/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE974GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZmU7QheIsvL5PmecW7qlzWL8rV2zyOAhzDCZyBB9dQhXuoQQMYIDzDK7w5j86L8+58zFtXnHzmCP7A+fwB2lGM/A==</latexit>n

Block size, <latexit sha1_base64="zrAoX5WZl/tVsNb6yPWAMQONjzc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVZa9UdivuDGSZeDkpQ45ar/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE974GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZmU7QheIsvL5PmecW7qlzWL8rV2zyOAhzDCZyBB9dQhXuoQQMYIDzDK7w5j86L8+58zFtXnHzmCP7A+fwB2lGM/A==</latexit>n

<latexit sha1_base64="MEz7XcZxz9E39LYLIjCTG6CRN1U=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFaFFKIt6WRTcuK9gLtLFMJpN26GQSZiZiCQE3voobF4q49SXc+TZO2wja+sPAx3/O4cz53YhRqSzry8jNzS8sLuWXCyura+sb5uZWQ4axwKSOQxaKloskYZSTuqKKkVYkCApcRpru4HJUb94RIWnIb9QwIk6Aepz6FCOlra6545Xub5NShzBWTg9/8ICX03LXLFoVayw4C3YGRZCp1jU/O16I44BwhRmSsm1bkXISJBTFjKSFTixJhPAA9UhbI0cBkU4yviGF+9rxoB8K/biCY/f3RIICKYeBqzsDpPpyujYy/6u1Y+WfOwnlUawIx5NFfsygCuEoEOhRQbBiQw0IC6r/CnEfCYSVjq2gQ7CnT56FxlHFPq2cXB8XqxdZHHmwC/ZACdjgDFTBFaiBOsDgATyBF/BqPBrPxpvxPmnNGdnMNvgj4+MbPsuWow==</latexit>

d(x(`), x(`+n))

Figure 1: Overview of our layer-pruning strategy and example results: (a) a flowchart describing
the algorithm: if removing n layers, we find the layer, ω→, that minimizes the angular distance, d,
between layers ω and ω+n; we then remove the n layers beginning with layer ω→; finally, if necessary,
we can “heal” the damage with a small amount of (parameter-efficient) finetuning. (b) a schematic
depicting the removal of n total layers, indexed from ω→ to ω→+n→1. (c) angular distance, d, between
different numbers of layers, n, vs. the layer number, ω, that indexes the beginning of the block of n;
the bottom curve (darkest purple) represents n = 1, while the top curve (lightest yellow) represents
n = 64; the black line traces ω→(n), the minimum of the angular distance across the different sized
layer blocks. (d) results of pruning Llama-2-70B with healing (light blue) and without healing (dark
blue) as a function of the fraction of layers removed: the top (middle) panel gives the accuracy on the
MMLU (BoolQ) question-answering benchmark, while the bottom panel the autoregressive loss on a
subset of the C4 validation set; here, the dashed red lines (dashed gray lines) indicate the accuracy or
loss of the original unpruned model (of random guessing); these plots illustrate that typical behavior
we find in which there are sharp transitions in performance for the accuracy of question-answering
tasks (here between 40%-50% pruning fraction), but continuity and very slow growth in the healed
loss (dark blue) up to at least to 80% pruning fraction.

question-answering benchmarks. For example, for Llama-2-70B Touvron et al. (2023a) we can
eliminate up to roughly half of the layers before the performance collapses on MMLU. An overview
of our strategy and the results of pruning Llama-2-70B are shown in Figure 1.

In particular, our intuition for dropping layers comes from considering the residual structure of the
transformer architecture. In more detail, the output of the final layer can be decomposed as a sum
over the outputs of all the model layers plus the embedded input. If such a sum had numerous and
independent terms, then removing a handful of them should not significantly change the output.
However, since the terms are not independent – each layer is input to the following layer – we should
expect to be able to remove terms if the residual contribution from a particular layer is small. In other
words, if the output of each layer does not change too much from layer to layer.1

1This is strongly suggested by “lens” investigations that studied the evolution of the token distribution as a
function of layer index such as the “logit lens” nostalgebraist (2020) and the “tuned lens” Belrose et al. (2023).
A separate line of reasoning along these lines previously inspired neural ODEs Chen et al. (2018), and led

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In conjunction with our layer pruning, we investigate the similarity of layer representations at different
separations and find broadly that deeper layers are qualitatively more similar to neighboring layers
than shallow layers (with the exception of the very final layer). This suggests an even simpler pruning
strategy: remove layers beginning at the penultimate layer and proceed from deep to shallow until the
desired number of layers have been removed.2 In this case, we find that, after healing the damage
with a small amount of QLoRA finetuning, we can achieve performance that nearly matches the more
involved similarity-informed layer pruning strategy. The effectiveness of this method is evidence that
LLMs might not properly leverage the parameters in the deeper layers of the network.

Overall, we hope you take these three bulleted points with you:

• The robustness of models to removing the deeper layers, the sharp transition in performance
on downstream knowledge tasks (e.g. MMLU and BoolQ), and the smooth behavior of
the autoregressive loss with respect to those pruning fractions, altogether suggest that the
shallow layers may play a critical role in storing knowledge.

• The model’s memory footprint and inference time decreases linearly with the number
of removed layers.3 This makes layer pruning a powerful tool, especially if the model’s
performance is robust to dropping layers.

• All the efficiency methods – pruning, PEFT and quantization – can be effectively combined
with each other. Thus, in this work each experiment was performed on a single A100 GPU
and is easily accessible to the open source and academic communities.

The structure of this paper is as follows. In §2, we first perform a literature review of both practical
post-training strategies and science-of-deep-learning investigations that motivate our work. Then,
in §3, we give intuition for our layer pruning strategy and explain our method in detail, while in §4
we iterate over all our experimental results. Finally, we conclude in §5 by highlighting directions of
future work. Specific model, finetuning, dataset, and evaluation details can be found in Appendix B,
and evaluations ablations can be found in Appendix C.

2 LITERATURE REVIEW

Pruning for neural networks has a long history (LeCun et al., 1989; Hassibi and Stork, 1992): while
initial work focused on unstructured pruning (Han et al., 2015; Chen et al., 2015; Srinivas and Babu,
2015), structured pruning techniques were developed to make sparse networks more efficient (Li
et al., 2016; Wen et al., 2016; Hu et al., 2016; He et al., 2017; Huang et al., 2018; Murray and Chiang,
2015; See et al., 2016; Kim and Rush, 2016). Recent work, of course, focused on structured pruning
of transformers (Voita et al., 2019; Michel et al., 2019; Kim and Awadalla, 2020; Fan et al., 2019;
Zhang and He, 2020; Fan et al., 2021; Jha et al., 2023; Sajjad et al., 2023; Liu et al., 2023a; Hou et al.,
2020; Sharma et al., 2023; Ashkboos et al., 2024; Xia et al., 2022; Lagunas et al., 2021). Our work
focuses on pruning the layers of decoder-only GPT style open-weight large language models after
they’ve been pretrained. For an extended literature review, please see Appendix A.

3 METHOD

In this section, we give intuition for our layer pruning method (§3.1) and then we explain our method
in detail (§3.2).

3.1 INTUITION

Our intuition for layer dropping comes from thinking about the representations as a slowly changing
function of layer index. In particular, the layer-to-layer evolution of representations for a transformer

Ref. Yang et al. (2023) to argue that ideally representation should change substantially from layer to layer in
order to most effectively make use of the parameters of a network.

2This strategy is especially interesting in situations where resource constraints inhibit the full application of
the similarity-informed pruning algorithm described in Figure 2(a).

3Contrast this with quantization: the memory footprint decreases with the quantization ratio, but the inference
time remains approximately fixed since parameters are typically de-quantized before any FLOPs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

is given by a residual iteration equation

x(ω+1) = x(ω) + f(x(ω), ε(ω)) , (1)

where (x(ω), ε(ω)), respectively, are the multi-dimensional input and parameter vectors for layer ω, and
f(x, ε) describes the transformation of one multi-head self-attention and MLP layer block. As for
any residual network, if we unroll this iteration, we see that after L total layers the output is described
as a sum over the transformations of all the layers

x(L) = x(0) +
L↑1∑

ω=0

f(x(ω), ε(ω)) . (2)

If the terms in the sum were numerous, (L ↑ 1), and independent, e.g. if the block functions were
instead a function of the overall input as f(x(0), ε(ω)), then perhaps any particular contribution to the
sum (2) could be neglected.

Of course, they are not at all independent: if we delete layer ω → 1, then we must now connect the old
input to that layer, x(ω↑1), into the block function of layer ω as

x(ω+1) = x(ω↑1) + f(x(ω↑1), ε(ω)) , (3)

where, for clarity, we are not relabeling layers or inputs despite the deletion. In general, such
a mismatch between the original input and new input should be very damaging for the network.
However, if, after some number of initial layers, the representations converge to a slowly changing
function with respect to layer index,

x(ω) ↓ x(ω↑1) + ϑ , (4)

with ϑ ↔ x(ω) in some appropriate sense, then the effect of deleting a particular layer ω, e.g. making
the replacement x(ω) ↗ x(ω↑1) in going from (1) to (3), should only change the representation in the
subsequent layer, x(ω+1), by a small amount. Similarly, to successfully prune the n layers before
layer ω, i.e. those indexed from ω → n, . . . , ω → 1, we’d want that the input to the pruned block should
be very similar to the output of the pruned block:

x(ω) ↓ x(ω↑n) + ϑ . (5)

Regardless, any layer removal has a cascading effect: since post pruning x(ω+1) is computed by a
different function than before, cf. (1) vs. (3), and since then x(ω+1) is directly or indirectly input to
subsequent layers, ω + 2, . . . , L, deleting a shallow layer should have a much greater impact than
deleting a deeper layer.

From this, we have the following hypotheses that we will test experimentally:

(0) We should be able to prune layers of a residual network.
(1) We should have greater success pruning deeper layers.
(2) Blocks of layers we successfully prune should have outputs that are similar to their inputs.

In the next subsection, §3.2 we will explain the details of our pruning algorithm and in the following
section, §4, we will present experimental evidence for points (0)-(2).

3.2 LAYER-PRUNING ALGORITHM(S)

Our principal layer pruning algorithm is very simple:

0. Pick a a number of layers to prune n.
1. Compute the angular distance d(x(ω), x(ω+n)), cf. (7) below, between the input to layer ω

and the input to layer ω + n on a neutral pretraining dataset or on a dataset representative of
a downstream task of interest.

2. Find the layer, ω→, that minimizes that distance:

ωε(n) ↘ arg min
ω

d(x(ω), x(ω+n)) . (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3. Drop layers ωε to ωε+n→1; connect the old input to layer ωε to the old (ωε+n)th layer block.4

4. (Optionally) heal the mismatch at layer ωε + n with a small amount of fine tuning on a
neutral pretraining dataset or particular dataset of interest.

If fewer words inside of a figure are more helpful to you than the text in an enumerated list, then note
that this algorithm is also depicted in panels (a)-(b) of Figure 1.

Elaborating on the first step, the angular distance on a single sequence of length T is given by

d(x(ω), x(ω+n)) ↘ 1

ϖ
arccos



 x(ω)
T · x(ω+n)

T∣∣∣
∣∣∣x(ω)

T

∣∣∣
∣∣∣
∣∣∣
∣∣∣x(ω+n)

T

∣∣∣
∣∣∣



 , (7)

where the inner product is over the hidden dimension of the model for the final token T of the
sequence, || · || denotes the L2-norm, and the factor of 1/ϖ is a convention.5 This distance should
then be summed over a number of examples that is large enough to get a low-fluctuation estimate but
overall should be quite small.

Elaborating on the “optionality” of the final step, we find that the near-lack of performance degradation
on question-answering benchmarks, cf. Figure 1(d) and others in §4.1, can be extended to greater
pruning fractions with a small amount of finetuning. Depending on resource constraints and intended
application of the pruned model, this may not be necessary. However, the healing procedure does
have a substantial impact on perplexity, cf. Figure 1(d) and others in §4.2.

For both the angular distance measuring and the healing, if the ultimate goal is to supervise finetune
(SFT) a model for a downstream task, it could be useful to evaluate the distance of a sample from that
dataset and then combine the healing process with the SFT. In contrast, for the greatest generality, it’s
most natural to measure distance and heal with a pretraining dataset that approximates the statistics
under which the model was originally pretrained.

Finally, we also investigated an even simpler pruning strategy inspired by analyzing the angular
distances across different model families: drop the deepest layers, excluding the final layer before the
LLM head, and then (non-optionally) heal the damage. For complete clarity, this means that if we are
pruning n layers from an L-layer model, then we would remove layers (L → n) to (L → 1), inclusive.

4 RESULTS

In this section, we demonstrate the effectiveness of our pruning strategy on different question-
answering (QA) benchmarks and highlight a robust pruning-driven transition in performance (§4.1),
while, in contrast, we find that the autoregressive perplexities of the healed pruned models are
continuous across their transition points (§4.2); then, after comparing the similarity statistics between
different layers across model sizes and families (§4.3), we contrast our principal similarity-informed
pruning strategy with a simpler remove-the-deepest-layers strategy (§4.4).

For our experiments, we pruned a wide variety of large-scale LLMs from 2.7B to 70B parameters
spanning 32 to 80 total unpruned layers. Specifically, we used models in the Llama-2 family Touvron
et al. (2023a), the Qwen family Bai et al. (2023), Mistral-7B Jiang et al. (2023a), and Phi-2 Javaheripi
and Bubeck (2023). For these models, we executed the “healing” step using QLoRA Dettmers et al.
(2023): our models were quantized to 4-bit precision and then finetuned, using QLoRA for efficient
training, on either 164M or 328M tokens from the Colossal Clean Crawled Corpus (C4) Raffel et al.
(2020), a common pretraining dataset. As a result, each experiment of ours was performed on a
single A100 GPU. For our QA evals, we used Massive Multitask Language Understanding (MMLU)
Hendrycks et al. (2020), a common world-knowledge and problem solving benchmark, and BoolQ
Clark et al. (2019), a common yes/no reading comprehension benchmark where the answer has to
be inferred from the text itself. The specifics of our models, healing procedure, dataset choices, and

4Layers are often contained in a data structure, such a ModuleList in PyTorch, so to drop these layers we
would simply define a new ModuleList that removes the layers from ωω to ωω + n→ 1.

5Two comments: (i), we do not expect our choice of angular distance – in lieu of any other reasonable metric,
e.g., such as cosine similarity – to be particular significant; and (ii), we chose to focus on the final token since,
due to the causal attention mask, its embedding is the only one that depends on the entire sequence.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: MMLU accuracy (5-shot) vs. fraction of layers dropped for different model families. (Left:
Llama-2 family; Middle: Qwen family; Right: Mistral-7B and Phi-2.) The solid lines represent
performance after dropping layers and healing, dotted lines show performance after dropping layers
only (no healing), and the dashed gray line is the score for guessing randomly. For these models,
healing leads to modest improvements, and performances are quite robust until 20%-55% pruning
fractions, depending on model family and size, at which point they transitions to random guessing.

evaluation details can be found across Appendix B; ablations of different hyperparameter choices can
be found across Appendix C.

4.1 PRUNING AS A LENS INTO KNOWLEDGE LOCALIZATION: ACCURACY ON QA
BENCHMARKS

Our first set of results are shown in Figure 2, where we plot 5-shot MMLU accuracy as a function
of the fraction of layers removed: in the left panel we present the Llama-2 family, in the middle
panel we present models from the Qwen family, and in the right panel we show Mistral-7B and Phi-2.
In order to better compare models of different total number of layers, in these plots we opted to
normalize the x-axis by the fraction of layers removed (rather than the absolute number of layers
removed). Note that since MMLU contains multiple choice questions with four possible responses,
the expected accuracy of random guessing is 25%.

Importantly, we see a characteristic flat region of robust performance followed by a sharp transition
to random accuracy at a pruning fraction around 45%-55% for models in the Llama-2 family, 35% for
Mistral 7B, 25% for Phi-2, and 20% for models from the Qwen family. This implies that the essential
knowledge required to achieve a model’s top score isn’t removed by significant layer removal –
even though the fraction can be quite large(!) – until eventually that knowledge is lost at a critical
model-dependent threshold.6 Contrasting the curves with and without healing, we see that finetuning
offers a modest improvement by better preserving the unpruned performance and pushing the phase
transition to random guessing to slightly larger pruning fractions.

Broadly we see that layer pruning is more robust for the larger and deeper models, e.g. Llama-2-13B
and Llama-2-70B, which we hypothesize could be related to the fact that either the smaller models
are more overtrained, making parameters less redundant, or that the deeper models can afford to lose
more layers in an absolute sense. Also, the Qwen family is strange, a fact we will further elaborate
on in §4.3.

4.2 ANALYZING LOSS ON NEXT-TOKEN PREDICTIONS

In this section, we look at the effect of layer pruning on the pretraining optimization objective –
the cross-entropy loss of next-token prediction – when evaluated on a subset of the C4 validation
dataset.7 In order to have a fair comparison across models with different sized vocabularies V , we
normalize the loss by log V , which corresponds to the loss of sampling tokens randomly with uniform
probability. (See Appendix B.2 for more details.)

6This effect is rather robust to choice of QA benchmark: in Appendix Figure 7 we plot the average 0-shot
BoolQ accuracy for our model families and observe analogous behavior.

7We make sure that none of the validation data are seen during the healing stage.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Normalized C4 validation loss vs. fraction of layers dropped before healing (left) and
after healing (right); each curve is normalized by the cross-entropy loss of sampling uniformly from
the model’s vocabulary. For the experiments before healing, the loss for each model transitions
to random guessing (gray dashed line) at approximately the same pruning fractions that the QA
benchmarks transition to random guessing; after healing, there is continuity through the regions of
sharp transition on QA tasks, cf. Figure 2. Contrasting the overall scale of both plots, it’s clear that
healing significantly restores the performance on next-token prediction to near-unpruned levels.

In Figure 3 , we plot the normalized C4 validation loss for all seven of our models, after healing
(left panel) and before healing (right panel), as a function of the fraction layers removed. Without
healing, we see that there is a somewhat sharp(ish) transition to random guessing for each model
at approximately the pruning fraction that the QA benchmark accuracies also sharply transition to
random guessing, suggesting that models are hopelessly harmed at this point, cf. Figure 2. Next,
contrasting the scales of both plots, we see that healing significantly restores the next-token prediction
ability of all the models to near-unpruned levels, with the loss increasing slowly and linearly with
layer dropping. Most strikingly – from a scientific perspective – is the post-healing continuity through
the pruning fractions where we previously found sharp transitions for the QA benchmarks: this
decoupling illustrates one way of disconnecting (or creating a miscalibration) between performance
on downstream tasks – such as MMLU and BoolQ – and continuous measures of performance – such
as the cross-entropy loss. 8

Overall, the slow linear increase in cross-entropy loss suggests that deeper layers may be used for
some other ability that is learned during pre-training. In Section 4.5, we evaluate pruned models on a
wider suite of tasks and find that that one of these abilities may be higher-level reasoning.

4.3 ANGULAR DISTANCES BETWEEN REPRESENTATIONS

Given the central role the angular distance (7) plays in our pruning strategy, let’s take a subsection
to look at these distances across our seven models. For this analysis, the angular distances for each
model were averaged over 10k samples from the C4 validation set.

Recall from earlier Figure 1(c): for Llama-2-70B this plotted the angular distance d(x(ω), x(ω+n))
that compared the ω-th layer to the (ω + n)-th layer, across all initial indexes ω for block sizes from
n = 1 to n = 64; the minimum of the curves, ωε(n), gave the optimal block to prune for a given n,
cf. (6).

A more compact way to display this same data is shown in the heat maps of Figure 4: each square is
colored to depict the row-normalized angular distance between layer ω and ω + n across all possible ω,
and n up to very large fractions of the total number of layers; the optimal layer to prune for a given
block size, ω→(n), corresponds to the minimal distance in each row.

Across models, we make two generalizations: (i) the smallest distances are found across the deeper
blocks, meaning deeper layers are typically quite similar to each other and can be more easily
dropped; (ii) the distances across the deepest blocks – the blocks that include the last layer – take
either maximal or nearly-maximal values, meaning one should never drop the final layer. While

8This is consistent with Ref. Schaeffer et al. (2023) that argued jumps in one kind of metric may not be
visible in others.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(b) Llama-2-13B (c) Llama-2-70B(a) Llama-2-7B

(d) Qwen-7B (e) Qwen-14B

Shifted
Rescaled
Angular
Distance

(g) Phi-2-2.7B(f) Mistral-7B

Figure 4: Normalized angular distance (7) from initial layer ω (x-axis) with block size n (y-axis) for
each of the seven models we evaluated; the distance for each n is shifted and rescaled to span the
same range, [0, 1] (yellow to purple): the optimal block to prune, ω→(n), corresponds to the deepest
yellow for each row. Across models, the deeper layers tend to be very similar, though the deepest
blocks that include the final layer (squares along the outer diagonal) are (near-)maximally dissimilar.

broadly true, there are a few exceptions. For some models, e.g. Phi-2-2.7B, or for the largest blocks
in some models, e.g. Llama-2-7B, final few layers seem important. As previously noted, the Qwen
family is somewhat unusual: here we see that there are a few odd “islands” of high similarity for
shallow blocks; this likely explains the shorter region of robust performance in Figure 2.

4.4 A SIMPLER PRUNING STRATEGY

Inspired by our recent conclusions, we experiment with a very simple heuristic pruning strategy:
(1) if pruning n layers from an L-layer model, drop layers (L → n) to (L → 1) so as to remove the
deepest block that excludes the final layer; then (2) heal with a small amount of finetuning as before.
Compared with our principal similarity-informed pruning strategy, this simpler heuristic algorithm
has the advantage of never requiring practitioners to load onto a GPU or inference the unpruned
model. It also provides a meaningful ablation of the importance of optimizing the block to prune.

In Figure 5, we contrast our two pruning strategies, both before healing (left panels) and after healing
(right panels), for the QA benchmarks (MMLU/BoolQ, top/middle panels) and the autoregressive loss
(C4 validation, bottom panels). On the one hand, the simple heuristic performs quite poorly without
healing the damage incurred by pruning: accuracy on the QA benchmarks decays rapidly to (near-)
random with increased pruning fraction, and the loss begins to increase very rapidly even with small
amounts of pruning. On the other hand, the results for the two pruning strategies across evaluations
are quite comparable after healing: for the QA benchmarks, the similarity-informed algorithm slightly
better preserves the accuracy before the phase transition, though the simple algorithm perhaps pushes
the phase transition to slightly greater pruning factions; and for the loss, the curves nearly lie on top
of each other, though the similarity-informed strategy does marginally outperform for all amounts of
pruning. These experiments are strong evidence that the purpose of post-pruning finetuning is the
healing of damage at the pruning interface and not the acquisition of additional knowledge.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Evaluation of Llama-2-70B with the simple pruning heuristic (solid red line), shown along
with scores for the similarity-informed pruning strategy (solid blue line), scores of the unpruned
Llama-2-70B (red dashed line), and scores for randomly guessing (gray dashed line). (Left: before
healing, Right: after healing; Top: MMLU, Middle: BoolQ, Bottom: C4 Validation Loss.) Without
healing, the simple heuristic performs poorly across all evals; with healing, the scores of both methods
are quite similar.

4.5 WHAT ARE DEEPER LAYERS DOING?

In previous sections, we provide evidence that deeper layers do not affect performance on MMLU
(see Figure 2); however, the immediate degradation in performance in Figure 3 suggests that deeper
layers are useful for other capabilities. What are deeper layers doing? In this section, we evaluate
pruned models on a suite of different tasks to better understand what abilities model lose when
pruning deeper layers. We choose one evaluation from common subcategories for language model
evaluation9, as well as an evaluation for Chain-of-Though-MMLU (CoT-MMLU) where evaluation is
done allowing the model to produce chain-of-thought outputs. See Section C.5 for more details on the
evaluation setups. We then perform layer dropping via our cosine-similarity cutting method and the
simple baseline from Section 4.4, and evaluate performance. In Figure 6, we observe that changing
the evaluation task can significantly change the performance of layer dropping. Interestingly, moving
to generation-based tasks (summarization or CoT-MMLU) retains the same qualitative behavior (e.g.
a relatively flat region of performance followed by a sharp dropoff around 45-55% pruning fraction).
On the other hand, evaluations that require reasoning capabilities (GSM8k or HellaSwag) exhibit
immediate degradation in performance. We observe similar trends when we evaluate models at larger
scale (see Figure 12). Overall, this suggests that deeper layers are useful for higher-level reasoning
tasks, but relatively less important for summarization and knowledge-intensive QA tasks.

5 DISCUSSION AND FUTURE DIRECTIONS

We leverage model pruning as a tool to understand how open-weight LLMs store knowledge, and
show that we can prune a significant portion (up to 50%) of deeper layers with minimal impact on
knowledge-QA performance. This suggests that shallow layers are important for storing knowledge.

9We use the subcategories from Section 2.3 of the Llama-2 Touvron et al. (2023b) paper

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: Evaluation of Llama-2 7B using the cosine-similarity cutting method (green) and the
simple baseline from Section 4.4 (red) across different evaluation tasks. Left to Right: QMSum,
CoT-MMLU, BoolQ, GSM8k, HellaSwag. We observe that reasoning tasks (GSM 8k and HellaSwag)
show immediate performance degradation when pruning deeper layers.

While model pruning experiments may be a computationally expensive tool for scientific understand-
ing of LLMs , we leverage advancements in efficient inference and fine-tuning to lower computational
requirements: beginning with the release of the open-weight LLaMA family (Touvron et al., 2023b),
the open-source machine-learning community has rallied around the philosophy of making LLMs
accessible to everyone. This has engendered many innovations around efficiency, such as LoRA Hu
et al. (2021) and quantization (with LoRA) Dettmers et al. (2023), allowing large (near-)state-of-the-
art 70B models to be finetuned on only single 80GB A100 GPUs. As a result, all of our experiments
are performed on a single A100 GPU and are easily accessible. We hope our work motivates the
broader community to use model pruning as a tool for understanding where knowledge is stored in
open-weight LLMs.

At the conclusion of the work, we are left with the following questions:

• What are better layer-pruning strategies? What are better approaches to healing?10

• Why does healing eliminate the phase transition in the loss but not in the QA accuracies?

• With more comprehensive evals, will accuracy on different tasks degrade at different depths?

• Relatedly, is knowledge generally stored in shallow or middle layers, or is it delocalized?

• Do pretraining details affect the ability to prune, e.g., are scaling-law over-trained or distilled
models more difficult to prune?

• How can we enable LLMs to more effectively use the parameters in their deepest layers?

Some of these questions would benefit from studying both layer similarity and pruning across different
pretraining checkpoints; for instance, at what point does the sharp phase transition and critical depth
in the QA accuracies emerge, and does more training lead to better use of the prunable parameters?
Others suggest explorations with different pretraining architectures and objectives, e.g. in order better
make use of the deeper layers (for example, one can imagine applying layer dropout Fan et al. (2019)
or early exit during pre-training Elhoushi et al. (2024) to induce equal usage of layers). With more
comprehensive evaluations, if different kinds of tasks degrade at very different depths, then this might
indicate that the knowledge required to complete those tasks is stored at different depths.11 It would
be very interesting to use pruning to systematically study these kind of interpretability questions.

10At the cost of introducing another hyperparameter and requiring both pruned and unpruned models to fit in
memory during finetuning, one natural way to improve healing is by adding an auxiliary student-teacher loss
that explicitly addresses the pruning mismatch (5), such as

Laux ↑
(
x(ε→+n)(ε0)→ x(ε→)(ε)

)2
, (8)

where ε0 are the frozen parameters of the unpruned model, and ε are the parameters of the pruned model to be
healed; thus, x(ε→+n)(ε0) is the input to the (ω→+ n)-th layer in the unpruned model, x(ε→)(ε) is the input to that
same layer after pruning, and Laux minimizes their mismatch. We thank Sho Yaida for this observation.

11Alternatively, one could measure d(x(ε), x(ε+n)) or find ω→(n) as a function of different eval datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https:
//cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf.

OpenAI. Introducing chatgpt, Nov 2022. URL https://openai.com/blog/chatgpt.

OpenAI. Gpt-4 technical report, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
Finding neurons in a haystack: Case studies with sparse probing. arXiv preprint arXiv:2305.01610,
2023.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023.

Kevin Clark. What does bert look at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341,
2019.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context? arXiv preprint
arXiv:2310.17191, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1(1):12, 2021.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
Advances in Neural Information Processing Systems, 36, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023a.

nostalgebraist. interpreting gpt: the logit lens. https://www.lesswrong.com/posts/
AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens, 2020.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned lens.
arXiv preprint arXiv:2303.08112, 2023.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning in
infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky, editor, Advances
in Neural Information Processing Systems, volume 2. Morgan-Kaufmann, 1989.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
In S. Hanson, J. Cowan, and C. Giles, editors, Advances in Neural Information Processing Systems,
volume 5. Morgan-Kaufmann, 1992.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In International conference on machine learning, pages
2285–2294. PMLR, 2015.

Suraj Srinivas and R Venkatesh Babu. Data-free parameter pruning for deep neural networks. arXiv
preprint arXiv:1507.06149, 2015.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in neural information processing systems, 29, 2016.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250,
2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pages 1389–1397, 2017.

Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger. Condensenet: An
efficient densenet using learned group convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2752–2761, 2018.

Kenton Murray and David Chiang. Auto-sizing neural networks: With applications to n-gram
language models. arXiv preprint arXiv:1508.05051, 2015.

Abigail See, Minh-Thang Luong, and Christopher D Manning. Compression of neural machine
translation models via pruning. arXiv preprint arXiv:1606.09274, 2016.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in
neural information processing systems, 32, 2019.

Young Jin Kim and Hany Hassan Awadalla. Fastformers: Highly efficient transformer models for
natural language understanding. arXiv preprint arXiv:2010.13382, 2020.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. Advances in Neural Information Processing Systems, 33:14011–14023,
2020.

Chun Fan, Jiwei Li, Xiang Ao, Fei Wu, Yuxian Meng, and Xiaofei Sun. Layer-wise model pruning
based on mutual information. arXiv preprint arXiv:2108.12594, 2021.

Ananya Harsh Jha, Dirk Groeneveld, Emma Strubell, and Iz Beltagy. Large language model
distillation doesn’t need a teacher. arXiv preprint arXiv:2305.14864, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. Computer Speech & Language, 77:101429, 2023.

Wei Liu, Zhiyuan Peng, and Tan Lee. Comflp: Correlation measure based fast search on asr layer
pruning. arXiv preprint arXiv:2309.11768, 2023a.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

Pratyusha Sharma, Jordan T Ash, and Dipendra Misra. The truth is in there: Improving reasoning in
language models with layer-selective rank reduction. arXiv preprint arXiv:2312.13558, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. arXiv preprint arXiv:2204.00408, 2022.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023a.

Mojan Javaheripi and Sébastien Bubeck. Phi-2: The surprising power of small language models, Dec
2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? arXiv preprint arXiv:2304.15004, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023b.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, !ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and Dacheng Tao. Can chatgpt understand too? a
comparative study on chatgpt and fine-tuned bert. arXiv preprint arXiv:2302.10198, 2023.

Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geometry
of bert, elmo, and gpt-2 embeddings. arXiv preprint arXiv:1909.00512, 2019.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in neural information processing
systems, 33:12449–12460, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Knowledge distillation of large language models.
arXiv preprint arXiv:2306.08543, 2023.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang Zhu, and Michael Zeng. Want to reduce labeling
cost? gpt-3 can help. arXiv preprint arXiv:2108.13487, 2021.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023a.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are all
you need. arXiv preprint arXiv:2306.11644, 2023.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. arXiv preprint arXiv:2301.12726, 2023.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. arXiv preprint arXiv:2305.02301,
2023.

Yuxin Jiang, Chunkit Chan, Mingyang Chen, and Wei Wang. Lion: Adversarial distillation of
closed-source large language model. arXiv preprint arXiv:2305.12870, 2023b.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. arXiv preprint
arXiv:2310.08659, 2023b.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
arXiv preprint arXiv:2301.04213, 2023.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. arXiv preprint arXiv:2304.14767, 2023.

Alexander Yom Din, Taelin Karidi, Leshem Choshen, and Mor Geva. Jump to conclusions: Short-
cutting transformers with linear transformations. arXiv preprint arXiv:2303.09435, 2023.

Wes Gurnee and Max Tegmark. Language models represent space and time. arXiv preprint
arXiv:2310.02207, 2023.

Elena Voita, Javier Ferrando, and Christoforos Nalmpantis. Neurons in large language models: Dead,
n-gram, positional. arXiv preprint arXiv:2309.04827, 2023.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms at
inference time. In International Conference on Machine Learning, pages 22137–22176. PMLR,
2023b.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
in fine-tuned language models. arXiv preprint arXiv:2302.06600, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38–45, Online, October 2020. Associa-
tion for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.
emnlp-demos.6.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Ariel N Lee, Cole J Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement of
llms. arXiv preprint arXiv:2308.07317, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadallah,
Asli Celikyilmaz, Yang Liu, Xipeng Qiu, et al. Qmsum: A new benchmark for query-based multi-
domain meeting summarization. arXiv preprint arXiv:2104.05938, 2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,
Mor Geva, Jonathan Berant, et al. Scrolls: Standardized comparison over long language sequences.
arXiv preprint arXiv:2201.03533, 2022.

16

