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ABSTRACT

This paper studies the adversarial robustness of conformal novelty detection. In particular, we fo-
cus on AdaDetect, a powerful learning-based framework for novelty detection with finite-sample
false discovery rate (FDR) control. While AdaDetect provides rigorous statistical guarantees under
benign conditions, its behavior under adversarial perturbations remains unexplored. We first formu-
late an oracle attack setting that quantifies the worst-case degradation of FDR, deriving an upper
bound that characterizes the statistical cost of attacks. This idealized formulation directly moti-
vates a practical and effective attack scheme that only requires query access to AdaDetect’s output
labels. Coupling these formulations with two popular and complementary black-box adversarial
algorithms, we systematically evaluate the vulnerability of AdaDetect on synthetic and real-world
datasets. Our results show that adversarial perturbations can significantly increase the FDR while
maintaining high detection power, exposing fundamental limitations of current error-controlled nov-
elty detection methods and motivating the development of more robust alternatives.

1 INTRODUCTION

Consider the problem setup where training samples of typical events are collected and used for detecting abnormal
events from a large number of testing samples, where the abnormal events follow a different distribution from the
typical ones. This problem, known as novelty detection (e.g., Blanchard et al. (2010)), has attracted much attention
recently through the lens of conformal p-values Vovk et al. (2005); Shafer & Vovk (2008); Bates et al. (2023); Mary
& Roquain (2022); Liang et al. (2022); Marandon et al. (2024); Bashari et al. (2023). The underlying metric is
the false discovery rate (FDR) Benjamini & Hochberg (1995); Benjamini & Yekutieli (2001); Efron et al. (2001);
Genovese & Wasserman (2002); Storey (2002) that quantifies the false positives in a large-scale test dataset. Several
frameworks have been developed with provable FDR control, requiring only exchangeability of the data under the
null hypothesis. In particular, the ingenious method called AdaDetect Marandon et al. (2024) introduces an adaptive
transformation of detection scores, learned from both null and alternative samples, that yields finite-sample FDR
guarantees under exchangeability. AdaDetect can be viewed as an important extension of several existing approaches,
including Bag of Null Statistics (BONus) Yang et al. (2021) and FDR control using conformal p-values Bates et al.
(2023) (see (Marandon et al., 2024, Section 1.2) for detailed comparisons among existing approaches).

The appealing properties of AdaDetect, including the strong theoretical guarantees and efficient algorithm design,
make it a potential strategy to empower existing safety-critical systems where training data samples are highly secure.
For instance, in the banking system, customers’ past personal transaction histories are highly protected yet can be
used to enable fraud detection of new suspicious transactions when customers’ account information is leaked and
leveraged by malicious attackers. Thus, it is of great importance to quantify and evaluate the robustness of AdaDetect
under various adversarial settings. In this work, we study the robustness of AdaDetect through the lens of adversarial
machine learning that concerns the vulnerability of modern classifiers and detection systems under carefully designed
perturbations. Importantly, we are interested in adversarial attacks directly on the data, rather than on transformed
scores (e.g., p-values) — our study is the first of its kind in the literature, explicitly analyzing adversarial attacks on
novelty detection systems while quantifying the cost in FDR control. Our proposed approach is flexible to incorporate
existing adversarial machine learning attack algorithms. We hope to address the following two natural questions.

How does a malicious attacker design an adversarial attack under FDR control? As a first step in this direction, we
focus on the setup where the test data can be attacked while keeping the training data intact, capturing the character-
istics of safety-critical systems mentioned above. Specifically, we propose to first study the worst-case setting as a
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baseline to quantify the loss in FDR under the strongest possible attack. This formulation and the corresponding anal-
ysis provide critical guidelines for the design of practical attack schemes. Interestingly, we have developed a heuristic
yet powerful algorithm that almost achieves the worst possible attack in our synthetic and real data experiments.

How to incorporate existing adversarial machine learning algorithms? We propose a general methodology to make
existing attack algorithms more effective. As a proof of concept, we adopt two popular off-the-shelf black-box ad-
versarial attack algorithms, HopSkipJump Chen et al. (2020) and Boundary Attack Brendel et al. (2018), which only
require the predicted label for refined data perturbation (see a detailed discussion in Section 3.1). These algorithms
allow us to effectively change the score for the decision-making while minimizing the required changes in data. This
approach enables directly attacks on the raw data, which is much more realistic than attacking scores of the data after
some fixed transformation (e.g., p-values). For instance, there are works that focus on attacking p-values directly in
the widely used Benjamini-Hochberg (BH) procedure for FDR control: a distributed setting using the BH procedure in
the presence of compromised Byzantines Zhang et al. (2025), and on the adversarial robustness of the BH procedure
through perturbation of p-values Chen et al. (2024).

1.1 CONTRIBUTIONS AND OUTLINE

The main contributions of this work are threefold. First, we introduce and design the adversarial attacks of the AdaDe-
tect framework by proposing an oracle setting, when the attacker has access to both the model and test data labels,
to quantify the upper bound on the loss in FDR (Section 3.1). Second, our oracle setting naturally motivates the
design of a practical query-based attack scheme (detailed in Section 3.3), called the surrogate decision-based attack,
where the attacker can only query for the labels of the test data. Third, in Section 4, the vulnerability of the AdaDetect
scheme under our proposed attack strategies is extensively evaluated using two popular and complementary adversarial
machine learning attack algorithms: HopSkipJump and Boundary Attack.

1.2 RELATED WORKS

Novelty and anomaly detection with error control. A growing body of work investigates conformal inference
for novelty and anomaly detection with rigorous statistical guarantees (Laxhammar & Falkman, 2015; Smith et al.,
2015; Ishimtsev et al., 2017; Guan & Tibshirani, 2022; Cai & Koutsoukos, 2020; Haroush et al., 2021). While classical
detectors (Khan & Madden, 2014; Agrawal & Agrawal, 2015; Chalapathy & Chawla, 2019) often lack mechanisms for
quantifying uncertainty, recent approaches provide explicit false discovery rate (FDR) control (Yang et al., 2021; Bates
et al., 2023; Marandon et al., 2024). Among these, AdaDetect (Marandon et al., 2024) employs conformal p-values to
guarantee FDR control while simultaneously learning the alternative distribution. Building on this line, Bashari et al.
(2023) introduce a conformal e-value framework that derandomizes novelty detection and achieves rigorous FDR
guarantees. AutoMS (Zhang et al., 2022) addresses model selection for out-of-distribution detection under controlled
false discoveries, whereas online FDR-controlled anomaly detection (Rebjock et al., 2021) extends these guarantees to
time-series data. These developments bring principled error control to novelty detection, but generally assume benign
environments. Adversarial robustness in this context remains underexplored: Lo et al. (2022) shows that one-class
detectors are vulnerable to adversarial manipulation, yet without statistical error guarantees. This gap highlights the
need to integrate FDR-controlled detection with robustness analysis against adversarial threats.

Adversarial machine learning. Research on adversarial machine learning has revealed diverse classes of attacks
depending on the adversary’s knowledge and resources. In the white-box setting, adversaries have full knowledge
of the model, including parameters and gradients. Early gradient-based attacks include FGSM Goodfellow et al.
(2015), BIM/I-FGSM Kurakin et al. (2017), PGD Madry et al. (2018), DeepFool Moosavi-Dezfooli et al. (2016) and
the CW attack Carlini & Wagner (2017). JSMA Papernot et al. (2016a) reduces perturbations to only a few criti-
cal dimensions. Universal and generative attacks extend beyond instance-specific perturbations (Moosavi-Dezfooli
et al., 2017; Baluja & Fischer, 2017). More recent work considers spatial and semantic transformations, including
Robust Physical Perturbations (RP2) Eykholt et al. (2018) and spatially transformed adversarial examples Xiao et al.
(2018). In the black-box setting, adversaries lack direct access to model gradients or parameters. Instead, they rely
on querying the model or leveraging transferability. Score-based attacks estimate gradients using output probabilities,
e.g., Zeroth-Order Optimization (ZOO) Chen et al. (2017), Natural Evolution Strategies (NES) Ilyas et al. (2018),
and One-Pixel Attack Su et al. (2019). Decision-based attacks, such as the Boundary Attack Brendel et al. (2018),
HopSkipJump Chen et al. (2020), and Sign-OPT Cheng et al. (2020), require only the final predicted label and progres-
sively refine perturbations. Transfer-based methods exploit the phenomenon that adversarial examples often transfer
across models: perturbations crafted on a surrogate can fool the target Papernot et al. (2016a). See Zheng et al. (2025)
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for a comprehensive benchmark of black-box adversarial attacks. In response to the growing body of adversarial at-
tacks, researchers have developed a range of defense mechanisms Xu et al. (2018); Madry et al. (2018); Zhang et al.
(2019); Cohen et al. (2019); Papernot et al. (2016b); Wong & Kolter (2018); Metzen et al. (2017).

2 BACKGROUND

We have n null training samples {Zi}ni=1 sharing a common yet unknown marginal distribution P0, and m unlabeled
testing samples {Zi}m+n

i=n+1 where m0 of the testing samples share the same distribution as P0 while the rest m1 =
m − m0 of them follow different distributions. Let H0 contain all true null indices, while H1 contains all non-null
indices in the testing data. We define the key performance metrics as follows. Let V be the number of true nulls that
are incorrectly rejected (false discoveries) and R be the total number of rejections. The FDR is defined as

FDR = E
[

V

R ∨ 1

]
, (1)

where R ∨ 1 := max{R, 1}. The power measures the detection performance of non-nulls, defined as power =
E[(R− V )/(m1 ∨ 1)], where m1 = |H1| is the number of non-nulls in the test set.

2.1 THE ADADETECT SCHEME MARANDON ET AL. (2024)

We use {X train
1 , . . . , X train

n } to represent null training samples and {X test
1 , . . . , X test

m } for the unlabeled testing samples.
Following the notation from Marandon et al. (2024), we combine them into {Zi}n+m

i=1 in this work where {Zi}ni=1

represent {X train
1 , . . . , X train

n } and {Zi}n+m
i=n represent {X test

1 , . . . , X test
m }. Regarding the data generation mechanism,

we make the following general assumption, which is the same as (Marandon et al., 2024, Assumption 1).
Assumption 1 (Exchangeability of nulls given non-nulls).

(Z1, . . . , Zn, Zn+i : i ∈ H0) | (Zn+j : j ∈ H1)
d
= (Zπ(1), . . . , Zπ(n), Zπ(n+i) : i ∈ H0) | (Zn+j : j ∈ H1)

for any permutation π of the indices {1, . . . , n+m0}.

AdaDetect is an adaptive novelty detection procedure that combines data-driven learning with distribution-free in-
ference to provide finite-sample FDR control. The AdaDetect method partitions the null sample into training data
{Zi}ki=1 and calibration data {Zi}ni=k+1. The algorithm proceeds as follows.

Step 1: Learn score function. Partition the data into the training data {Zi}ki=1 and the mixed sample
{Zi}n+m

i=k+1, which contains both calibration samples from P0 and unlabeled test samples. Under the positive-
unlabeled (PU) learning framework, apply a machine learning algorithm to learn a data-driven and measurable
score function: s : Z × Zk ×Zn+m−k → R as

s(z) := s(z; (Z1, . . . , Zk), (Zk+1, . . . , Zn+m)) (2)

satisfying the following permutation invariance property. For any permutation π of {k + 1, . . . , n+m},
s(z; (z1, . . . , zk), (zπ(k+1), . . . , zπ(n+m))) = s(z; (z1, . . . , zk), (zk+1, . . . , zn+m)). (3)

Step 2: Transform to scores. Apply the learned function to obtain univariate scores

Oi = s(Zi; (Z1, . . . , Zk), (Zk+1, . . . , Zn+m)), i ∈ [k + 1 : n+m], (4)

where a larger score indicates a higher likelihood of being a novelty.
Step 3: Compute p-values. For each test observation Zj with j ∈ [n + 1 : n + m], generate empirical
p-values by comparing against the calibration set:

pj =
1

n− k + 1

(
1 +

n∑
i=k+1

1{Oi > On+j}

)
, j ∈ [1 : m]. (5)

Step 4: Apply BH procedure. Apply the Benjamini-Hochberg algorithm to (p1, . . . , pm) to get the BH
threshold τ at target level α and reject those p-values less than this threshold.
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3 WORST-CASE ATTACK AND PRACTICAL ATTACK

In this section, we wish to study two attack schemes: an oracle attack and a query-based practical attack. Both schemes
are compatible with existing black-box decision-based adversarial machine learning algorithms.

3.1 ORACLE SETTING: WORST-CASE ATTACK SCHEME

We first introduce the oracle setting to obtain an upper bound on the FDR loss when given the full information, enabling
a theoretical analysis of the FDR behavior. Specifically, we assume that the attacker has access to the full dataset with
correct labels, as well as all the configurations of the algorithm used in AdaDetect by the user. Specifically, the attacker
has

Data: Training samples {Zj}nj=1 and test samples {Zj}m+n
j=n+1, and the attacker knows which test samples

are nulls and non-nulls;
Algorithm: All the information about the AdaDetect implemented by the user, including the machine learn-
ing model for the score function and its parameters.

We start by describing our first attack scheme (Step 1 and Step 2) and the outputs after applying AdaDetect directly
on the attacked data (Step 3).

Step 1: Attack set selection. Select a subset {Zn+i : i ∈ A} from the true null test samples {Zn+i : i ∈ H0}
as the attack target. We set the attack size as fixed size where |A| = ma for some fixed number ma.
Step 2: Decision-based adversarial perturbation. Since the attacker has correct labels for all the data, the
attacker can use them to train a score function g(z) for the attack algorithm. We form the labeled dataset

Doracle = {(Zi, Y
∗
i )}m+n

i=1

where Y ∗
i = 0 for i ∈ H0, Y ∗

i = 1 for i ∈ H1 and then train a score function

g(z)← TrainScoreFunction(Doracle).

For each i ∈ A, generate

Z̃n+i = fattack(Zn+i; g(z)) (6)
:= fattack(Zn+i; {Z1, ..., Zn, Zn+j : j ∈ H0 \ A}, (Zn+j : j ∈ A ∪H1)) (7)

such that 1{g(Zn+i) ≥ 0.5} ≠ 1{g(Z̃n+i) ≥ 0.5}, meaning that the decision is altered. Here we write

{Z1, ..., Zn, Zn+j : j ∈ H0 \ A}

as an unordered set to highlight that fattack does not depend on the order of elements in this set.
Step 3: Applying AdaDetect on the attacked data. After the attack, the user applies AdaDetect and com-
putes the score function as the first step. As the data is now changed by the attacker, we denote the score
function after the attack by s̃, and the empirical p-values after the attack by p̃i for i ∈ [1 : m]. We stress that
s̃ still satisfies equation 3.

The key in this oracle setting is that the attacker knows which ones are true nulls in the test data. The attacker
will simply pick A with ma = |A|, which consists of a fixed set of indices of nulls in the test data (i.e., there is
no randomness in A and ma). Our proposed methodology is flexible in that it can incorporate existing adversarial
machine learning attack algorithms.

The following proposition is critical for our analysis. It holds since (I) fattack(· ; g(z)) only relies on the score function
g(z), and (II) g(z) is invariant to order of elements in {Z1, . . . , Zn+i : i ∈ H0 \ A} as they are all labeled as 0.
Proposition 1. fattack does not depend on the order of elements in {Z1, ..., Zn, Zn+j : j ∈ H0 \ A}.

In Section 4, we evaluate adversarial robustness using two representative decision-based attacks: the Boundary At-
tack (Brendel et al., 2018) and the HopSkipJumpAttack (HSJA) (Chen et al., 2020). Decision-based attacks, which rely
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solely on query access to the decision function, capture adversarial capabilities more realistically than white-box or
score-based methods. Moreover, evaluating FDR loss under such attacks provides a stringent robustness assessment,
as these “blind” perturbations often induce more severe failures than those observed under other threat models. The
two algorithms were chosen for their complementary properties. The Boundary Attack is a seminal decision-based
approach that operates via a random-walk strategy, starting from an adversarial example and progressively reducing
the perturbation while remaining misclassified. It is conceptually simple, model-agnostic, and widely adopted as a
baseline in the literature. In contrast, HSJA is a more recent attack that achieves state-of-the-art query efficiency by
combining binary search with adaptive estimation of the decision boundary’s normal vector. While both attacks re-
quire only hard-label access to the model, Boundary Attack provides a robust baseline, whereas HSJA represents a
stronger and more query-efficient adversary. Together, they allow us to assess robustness against both classical and
modern decision-based adversarial paradigms.

The attack in the last step pushes the score above the decision boundary. It is important to note that the output
of the HSJA scheme Chen et al. (2020), i.e., fattack = HSJA indeed does not depend on the order of elements in
{Z1, ..., Zn, Zn+i : i ∈ H0 \ A}. The same holds for the Boundary Attack (Brendel et al., 2018).
Remark 1. Although HSJA is sometimes described as a gradient estimation method, it does not require differentiability
of the model; instead, it approximates the boundary’s normal vector using only hard-label queries. This makes it
applicable even to non-differentiable classifiers such as random forests.

3.2 ANALYSIS

In our oracle setting, we denote the corresponding FDR as FDR∗
attack. Our main theorem quantifies the loss in FDR

caused by the attack. The proof is deferred to Appendix C.
Theorem 1. Consider that A is a fixed set of indices with ma = |A|. Under Assumption 1, with the score function
s̃ satisfying the permutation invariance property in equation 3 and the attack scheme fattack being order-invariant as
in equation 7, the FDR after the attack is

FDR∗
attack ≤ α+ma · E

[
1

R̃ ∨ 1

]
, (8)

where the expectations are taken over the randomness in the training and test samples {Zj}m+n
j=1 .

Unlike the original AdaDetect, which guarantees FDR ≤ α in benign settings, Theorem 1 provides an upper-bound
under adversarial perturbations. In our proofs, we start with decomposing the FDR into attacked and unattacked
components, and our key technical innovations (Lemmas 1 and 2) say that the first term E[

∑
i∈H0\A

Ṽi

R̃∨1
] remains

bounded by α even after perturbations, demonstrating that AdaDetect’s statistical control over unattacked samples is
preserved.
Remark 2. It turns out that the proof techniques for this oracle setting in Theorem 1 can be adapted to less stringent
settings where the true labels of test samples are unknown to the attacker. We report them in Appendix D. In the next
section, we propose a heuristic algorithm that is motivated by our oracle setting.

The key lemma below shows the conditional exchangeability we need for Theorem 1. First, we introduce the following
notation for simplicity of presentation. Denote the number of unattacked true null test samples by m̃0. In order to
simplify notation, let

U\A = (U1, . . . , Un+m̃0
) := (Z1, . . . , Zn, Zn+i : i ∈ H0 \ A),

UA = (Un+m̃0+1, . . . , Un+m0
) := (Zn+i : i ∈ A),

ŨA = (Ũn+m̃0+1, . . . , Ũn+m0
) := (Z̃n+i : i ∈ A),

V = (V1, . . . , Vm1
) := (Zn+i : i ∈ H1).

With a slight abuse of notation, the condition equation 7 on fattack can be simplified as

Z̃n+i = fattack(Zn+i ; U\A, UA ∪ V ), (9)

where we stress that fattack does not depend on the order of the elements in U\A. The following lemma establishes a
crucial property not addressed in the original AdaDetect:
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A form of conditional exchangeability is preserved even after adversarial perturbations.

The key insight is that by conditioning on not only non-null data V but also the attack outcomes ŨA, the unattacked
null samples maintain their exchangeable structure. See the proof in Appendix A.
Lemma 1. Under the setting of Theorem 1, we have

(Uk+1, . . . , Un+m̃0
) | V ∪ ŨA

d
= (Uπ(k+1), . . . , Uπ(n+m̃0)) | V ∪ ŨA

for any permutation π of the indices {k + 1, . . . , n+ m̃0}.
Remark 3. For our theoretical analysis, we find it is sufficient to establish exchangeability for the unattacked true
null elements indexed from k + 1 onwards to derive the FDR upper bound. While the original AdaDetect analysis
demonstrates exchangeability for all true null elements including the first k training samples, this broader exchange-
ability does not hold in our adversarial setting due to the attack’s dependence on the complete dataset. Specifically,
their exchangeability expression covers (Z1, . . . , Zn, Zn+i : i ∈ H0) conditioned on V , while our restricted result
only requires (Zk+1, . . . , Zn, Zn+i : i ∈ H0 \ A) to be exchangeable conditioned on ŨA and V .

Now we show that the conditional exchangeability of data in Lemma 1 can be carried over to the scores. See the proof
in Appendix B.
Lemma 2. Under the setting of Lemma 1 and assume that s̃ satisfies equation 2, then we have

(s̃(Uk+1), . . . , s̃(Un+m̃0
)) | (s̃(Zn+j) : j ∈ H1) ∪ (s̃(Z̃n+j) : j ∈ A)

d
= (s̃(Uπ(k+1)), . . . , s̃(Uπ(n+m̃0))) | (s̃(Zn+j) : j ∈ H1) ∪ (s̃(Z̃n+j) : j ∈ A)

for any permutation π of the indices {k + 1, . . . , n+ m̃0}.

Building on Lemma 1 and Lemma 2, the following result follows directly from (Marandon et al., 2024, Theo-
rem A.1 (iii) and (iv))) and we skip the proof.

Lemma 3. Under the Lemma 2 setting. Let i ∈ H0 be an unattacked null index and Si := s̃(Z̃i) for i ∈ [1 : m+ n].
Define

W̃i = {Sk+1, . . . , Sn, Sn+i} ∪ (Sn+j : j ̸= i, j ∈ H0) ∪ (Sn+j : j ∈ H1). (10)
Then we have

(i) The p-value p̃i is independent of W̃i.

(ii) The quantity (n− k + 1)p̃i is uniformly distributed on the integers {1, . . . , n− k + 1}.

3.3 SURROGATE DECISION-BASED ATTACK SCHEME

Motivated by our oracle setting, we consider a practical scenario, where the attacker does not have the training samples
{Zj}nj=1 and does not know the true labels of the test samples, but is allowed to query the label from the user who
applies AdaDetect, with underlying machine learning algorithms unknown to the attacker. Such query access is a
standard assumption in adversarial settings as mentioned in Section 1.2, reflecting a realistic constraint on the attacker’s
capability. Specifically, the attack has

Data: Only test samples {Zj}m+n
j=n+1, but the attacker does not know which ones are nulls and non-nulls;

Query: The attacker can query the user (who owns all the training and test data and the AdaDetect algorithm)
to obtain the labels for all the testing data {Zj}m+n

j=n+1.

We propose a surrogate score function g(z), trained on the pseudo-labeled dataset D = {(Zn+i, yi)}mi=1, where we
refer to {yi}mi=1 as pseudo-labels since , unlike the true labels available in our oracle setting, these are the labels
assigned by AdaDetect on the entire test set. This surrogate score function approximates AdaDetect’s binary decision:
1{g(Zn+i) ≥ 0.5} ≈ yi, enabling decision-based adversarial attacks on a black-box detector.

Step 1: Initial detection. The attacker queries the labels of the test data from the user. Upon request, the
user applies AdaDetect to the full test set {Zn+i}mi=1 at once, producing pseudo-labels Yi ∈ {0, 1} where,

(Y1, . . . , Ym) = AdaDetect ({Zn+i}mi=1) .

6
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Step 2: Surrogate score function training. Assuming AdaDetect has reasonable detection power, we form
the pseudo-labeled dataset D = {(Zn+i, Yi)}mi=1 and train a surrogate score function

g(z)← TrainScoreFunction(D).

Step 3: Attack set selection and adversarial perturbation. Select a subset A from the unrejected test
samples as the attack target, where |A| = mA = ⌊γ(m − R)⌋ with γ ∈ (0, 1] being the attack intensity
parameter. For each i ∈ A, compute

Z̃n+i = fattack(Zn+i, g(z)).

It is important to note that our surrogate decision-based attack does not require information about the algorithm,
making it a practical attack scheme. This point is also highlighted in our experiment section through mismatched
setups where the user and attacker adopt two different algorithms to learn the score function (see Experiment 3 and
Experiment A.1 for details).
Remark 4. We note that another possible attack is to treat AdaDetect as a black-box and apply a decision-based attack
directly to its outputs. However, this might require a prohibitively large query budget, since changing the empirical
FDR demands perturbing many test samples, and each sample in turn requires multiple queries to attack successfully.

4 EXPERIMENTS

As explained in Section 3.1, we will focus on two adversarial machine learning attacks: HSJA and Boundary attack.
Each experiment is repeated 20 times to calculate the mean and variance of the FDR and power. We denote the
AdaDetect score function by s(z) and the score function used for attack by g(z). The estimated upper bound according
to equation 8 is computed by α+ma · 1

20

∑20
i=1

(
1

R̃(i)∨1

)
. This is computed for all of the rest of the experiments and

they are listed in the tables.

4.1 SYNTHETIC DATA EXPERIMENTS

We conduct four comprehensive experiments to evaluate our method’s performance across different data distributions
and model configurations. All experiments use the following base parameters: training sample size n = 5000, testing
sample size m = 1000, k = 4000, true null data m0 = 900, and significance level α = 0.1. We test our approach
on three types of synthetic data distributions: independent Gaussian, non-Gaussian, and exchangeable Gaussian data.
Due to space limitations, we defer the synthetic data generation and one more synthetic experiments in Appendix E.

Experiment 1: Varying attack size with random forest (RF) models. We evaluate the impact of attack size on
both oracle and surrogate attack performance using identical RF architectures for both score functions. The attack
size ma sweeps between 50 and 200. We assess how each attack scheme performs under different attack scales with
homogeneous RF configurations.

We only tested HSJA in synthetic data experiments while both of HSJA and Boundary attack will be evaluated in
real-world data experiments. The result shows that the FDR for both attack schemes are under the theoretical upper
bound, and oracle attack outperforms surrogate attack in non-gaussian case when the original power is low. Overall,
both attack schemes successfully increase the FDR across varying attack sizes.

4.2 REAL-WORLD DATA EXPERIMENTS

We evaluated the attack performance on four real-world datasets with diverse characteristics and application domains.
All experiments use the same base parameters (n, m, k, m0, α) as the synthetic data experiments. Each experiment
is repeated 20 times to calculate the mean and variance of the FDR and power. We consider four popular datasets:
Shuttle, Credit Card, KDDCup99, and Mammography (see data descriptions and one more experiment in Appendix E
due to space limitations).

Experiment 2: Real-world data with RF models. We evaluated both oracle and surrogate attack performance in
the five real-world datasets using identical RF architectures for both score functions, with attack size ma = 200. This
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Table 1: Experiment 1: FDR + RF

Dataset Independent Gaussian Non-Gaussian Exchangeable Gaussian

original FDR 0.08± 0.03 0.08± 0.04 0.08± 0.04

oracle (ma = 50) 0.36± 0.02 0.40± 0.05 0.38± 0.02

surrogate (ma = 50) 0.34± 0.02 0.20± 0.05 0.37± 0.02

estimated upper bound 0.43 0.42 0.41

oracle (ma = 200) 0.67± 0.00 0.71± 0.01 0.69± 0.00

surrogate (ma = 200) 0.67± 0.00 0.64± 0.01 0.67± 0.00

estimated upper bound 0.80 0.78 0.77

Table 2: Experiment 1: Power + RF

Dataset Independent Gaussian Non-Gaussian Exchangeable Gaussian

original power 0.96± 0.02 0.55± 0.06 1.00± 0.00

oracle (ma = 50) 0.99± 0.01 0.87± 0.01 1.00± 0.00

surrogate (ma = 50) 0.96± 0.02 0.65± 0.05 1.00± 0.00

oracle (ma = 200) 0.99± 0.01 0.98± 0.01 1.00± 0.00

surrogate (ma = 200) 0.96± 0.02 0.78± 0.05 1.00± 0.00

allows us to compare attack effectiveness across different real-world data characteristics. We compare the boundary
attack with our default HSJA under both oracle and surrogate attack schemes, using identical RF architectures for both
score functions with ma = 200. The result shows that our oracle and surrogate attack schemes and decision-based
algorithms (HopSkipJump and Boundary) can significantly increase the FDR in comparison to the original FDR.

Table 3: Experiment 2: FDR + RF

Dataset Credit-card Shuttle KDD Mammography

original FDR 0.08± 0.03 0.01± 0.00 0.04± 0.02 0.04± 0.08

oracle+hop. 0.60± 0.02 0.65± 0.02 0.48± 0.10 0.51± 0.10

surrogate+hop. 0.56± 0.02 0.66± 0.03 0.45± 0.08 0.45± 0.11

oracle+bound. 0.61± 0.02 0.68± 0.02 0.65± 0.07 0.61± 0.05

surrogate+bound. 0.64± 0.03 0.70± 0.02 0.67± 0.06 0.57± 0.04

estimated upper bound 0.85 0.73 0.69 0.88

We make two important observations. Firstly, compared to the other three datasets, the original power on Mammog-
raphy is relatively low (∼ 0.48). As a consequence, the surrogate method learns the score function from less accurate
labels, leading to a larger gap in FDR between the oracle vs. the surrogate. Similar phenomena also appear in the
next real-world experiments, as well as the two in the Appendix E. Secondly, the power after attack often increases,
since the attack targets data points near the decision boundary in practice, some of which belong to the alternative
hypothesis and are thus more likely to be correctly rejected.
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Table 4: Experiment 2: Power + RF

Dataset Credit-card Shuttle KDD Mammography

original power 0.78± 0.03 0.84± 0.02 0.88± 0.04 0.48± 0.09

oracle+hop. 0.86± 0.03 0.99± 0.01 0.94± 0.05 0.67± 0.07

surrogate+hop. 0.87± 0.03 0.99± 0.01 0.93± 0.05 0.80± 0.05

oracle+bound. 0.98± 0.02 0.97± 0.02 0.95± 0.01 0.80± 0.09

surrogate+bound. 0.95± 0.03 0.96± 0.03 0.96± 0.01 0.78± 0.10

Experiment 3: Real-world data with mismatched configurations. We apply four mismatched score function
configurations (RF–NN, RF–RF) to the five real-world datasets with a fixed attack size of ma = 200, evaluating
both the oracle and surrogate attack performance. This enables us to assess how different model combinations affect
each attack type’s performance across various real-world scenarios. The results indicate that an attacker can employ
a model different from the user’s and still inflate the FDR beyond the target level. Our experiments show that using
the neural network configuration as the attacker’s model can substantially speed up the attack process. The results for
RF-RF configuration is covered in Experiment 2.

Table 5: Experiment 3: FDR + RF-NN

Dataset Credit-card Shuttle KDD Mammography

original FDR 0.09± 0.05 0.01± 0.01 0.02± 0.01 0.09± 0.05

oracle+bound. 0.64± 0.03 0.69± 0.02 0.69± 0.02 0.69± 0.01

surrogate+bound. 0.60± 0.02 0.50± 0.03 0.67± 0.03 0.64± 0.01

estimated upper bound 0.79 0.72 0.69 0.85

5 DISCUSSION

We believe that this work opens up a wide range of possible directions concerning the interplay between adversarial
robustness and conformal novelty detection. We briefly comment on two potential research directions.

Defense and robust training. In response to the growing body of research on adversarial attacks, researchers have
developed a range of defense mechanisms. Early approaches focused on input preprocessing, such as feature squeez-
ing Xu et al. (2018) or randomized transformations, but these were often circumvented by adaptive adversaries. More
principled methods emphasize robust training. Adversarial training Madry et al. (2018) has become the de facto
standard, where models are trained on adversarial examples generated during training to improve robustness. In the
context of novelty detection with FDR control, these techniques suggest potential defenses against adversarially in-
duced FDR inflation: robust training can make the decision boundary less susceptible to small perturbations, while
randomized smoothing could stabilize conformal scores or p-values, thereby preserving statistical error guarantees un-
der attack. Exploring such defenses offers a promising direction for integrating adversarial robustness with principled
error control.

Attack on training or calibration data. As a first step in understanding the robustness of AdaDetect, we consider the
security-critical scenarios where the training data is highly secure. It would be interesting to study the impact of attacks
on the null samples, including the training and calibration data. This can be a suitable setup for less powerful agents,
such as power-limited sensors or local servers in decentralized formulations (e.g. Zhang et al. (2025); Pournaderi &
Xiang (2023)). For instance, consider that each sensor is deployed in the environment for monitoring, then attacking
the calibration data is more reasonable and powerful, as it changes the reference for all the test samples.
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A APPENDIX: PROOF OF LEMMA 1

Proof. From Assumption 1, for any permutation π of the indices {1, . . . , n + m̃0} such that π(i) = i for i ≤ k, we
have

(U\A | V )
d
= (Uπ

\A | V ). (11)

From the property of the attack algorithm, we have for each i ∈ A that

Z̃n+i = fattack(Zn+i ; U\A, UA ∪ V ), (12)

and we write this in a compact form as ŨA = fattack(UA ; U\A, UA ∪ V ). We want to show that

(U\A | fattack(UA ; U\A, UA ∪ V )
d
= (Uπ | fattack(UA ; Uπ

\A, UA ∪ V ). (13)

According to Proposition 1, fattack does not depend on order of the elements from Uk+1 to Un+m̃0
in U\A, so we have

ŨA = fattack(UA ; Uπ
\A, UA ∪ V ). For any measurable set U\A in the support of U\A, we have

P
(
U\A ∈ U\A | ŨA = ũA, V = v

)
=

P(U\A ∈ U\A, fattack(UA ; U\A, UA ∪ V ) = ũA, V = v)

P(fattack(UA ; U\A, UA ∪ V ) = ũA, V = v)
. (14)

According to Assumption 1, we know that all the elements inside U\A are exchangeable given V . Along with the
assumption that fattack satisfies equation 7, we have that

P(U\A ∈ U\A, fattack(UA ; U\A, UA ∪ V ) = ũA | V = v) (15)

= P(Uπ
\A ∈ U\A, fattack(UA ; Uπ

\A, UA ∪ V ) = ũA | V = v). (16)

Therefore,
P
(
U\A ∈ U\A | ŨA = ũA, V = v

)
= P

(
Uπ
\A ∈ U\A | ŨA = ũA, V = v

)
, (17)

i.e., {Uk+1, . . . , Un+m̃0
} is conditionally exchangeable given (ŨA, V ) = (fattack(UA ; U\A, UA ∪ V ), V ).

B APPENDIX: PROOF OF LEMMA 2

Proof. Let
Q = h(U, ŨA, V ) = ((Z1, . . . , Zk), {Z̃n+i : i ∈ A ∪ Zn+i : i ∈ H1}). (18)

By Lemma 1, we have
(U, ŨA, V )

d
= (Uπ, ŨA, V ). (19)

This implies
(U, ŨA, V,Q) = (U, ŨA, V, h(U, ŨA, V ))

d
= (Uπ, ŨA, V, h(U

π, ŨA, V )). (20)

Since the permutation keeps those indices fixed, by the definition of Q, we have h(Uπ, ŨA, V ) = h(U, ŨA, V ) = Q.
Thus

(U, ŨA, V,Q)
d
= (Uπ, ŨA, V,Q). (21)

Applying the score function s to each Ui, we obtain

(S1, . . . , Sn+m̃0
) | ŨA, V,Q

d
= (Sπ(1), . . . , Sπ(n+m̃0)) | ŨA, V,Q. (22)

Since π(i) = i for all i ≤ k and i > n+ m̃0, the permutation only affects the scores

((Sk+1, . . . , Sn), Sn+i : i ∈ H0 \ A).

Therefore, Eq. equation 22 implies

(Sk+1, . . . , Sn), Sn+i : i ∈ H0 \ A) | ŨA, V,Q

d
= (Sπ(k+1), . . . , Sπ(n)), Sπ(n+i)) : i ∈ H0 \ A) | ŨA, V,Q.
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Now, we justify why conditioning on (ŨA, V,Q) is equivalent to conditioning only on (s̃(Zn+j) : j ∈ H1) ∪
(s̃(Z̃n+j) : j ∈ A). First, note that Q = h(U, ŨA, V ) is a deterministic function of U , ŨA and V . The score
function s depends on ŨA and V only through this transformation Q.

Furthermore, those conditional scores are the results of a deterministic function of (Q, ŨA, V ). Therefore, the scores
(s̃(Zn+j) : j ∈ H1 ∪ A) are fully determined once ŨA, V and Q are fixed, and vice versa.

As a result, conditioning on (ŨA, V,Q) is equivalent to conditioning on the non-null and attacked scores, thus

(s̃(Zk+1), . . . , s̃(Zn), s̃(Zn+i) : i ∈ H0 \ A) is exchangeable conditioned on

(s̃(Zn+j) : j ∈ H1) ∪ (s̃(Z̃n+j) : j ∈ A)

C APPENDIX: PROOF OF THEOREM 1

Proof of Theorem 1. Let Ṽi denote the indicator function for the rejection of hypothesis i and τ̃ be the BH threshold
under the adversarial attack, where

Ṽi = 1{ p̃i ≤ α (τ̃ /m)}. (23)
We can decompose FDRattack as follows,

FDRattack = E

 ∑
i∈H0\A

Ṽi

R̃ ∨ 1

+ E

[ ∑
i∈A∩H0

Ṽi

R̃ ∨ 1

]
. (24)

Let R̃ =
∑m

i=1 Ṽi be the total number of rejections after the attack. For the second term, we can bound it by

E

[ ∑
i∈A∩H0

Ṽi

R̃ ∨ 1

]
≤ E

[
|A ∩ H0|
R̃ ∨ 1

]
(a)
= E

[
mA

R̃ ∨ 1

]
, (25)

where (a) follows since A ⊆ H0. For the first term, define Si = s̃(Z̃i) for i ∈ [1 : m+ n]. Fix any i ∈ H0 \ A, and
for j ̸= i:

Ci,j =
1

n− k + 1

 ∑
s∈{Sk+1,...,Sn, Sn+i}

1{ s > Sn+j}

 . (26)

Define the empirical p-values after attack

p̃i =
1 +

∑n
j=k+1 1{s̃(Zj) ≥ s̃(Z̃n+i)}

n− k + 1
.

We now create the auxiliary p-value vector (p′1, . . . , p
′
m) by

p′j =


1

n− k + 1
if j = i,

Ci,j if j ̸= i.
(27)

Hence p′j ≤ p̃j whenever p̃j ≤ p̃i is guaranteed by construction (Ci,j is smaller or equal if p̃j ≤ p̃i), and p′j = p̃j if
p̃j > p̃i. Condition (63) in (Marandon et al., 2024, Lemma D.6) is satisfied for all j ̸= i. Recall τ̃ is the BH index for
(p̃1, . . . , p̃m) and let τ ′i := τ ′BH be the BH index for (p′1, . . . , p

′
m). By (Marandon et al., 2024, Lemma D.6), we obtain{

p̃i ≤ α ( τ̃
m )
}
=
{
p̃i ≤ α (

τ ′
i

m )
}
⊆ {τ̃ = τ ′i}. (28)

Focusing on i ∈ H0 \ A, we have

1 {p̃i ≤ α (τ̃ /m)} = 1 {p̃i ≤ α (τ ′i/m)} . (29)
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Summing over i ∈ H0 \ A,

E

 ∑
i∈H0\A

Ṽi

R̃ ∨ 1

 = E

 ∑
i∈H0\A

1{ p̃i ≤ α (τ̃ /m)}
τ̃

 = E

 ∑
i∈H0\A

1{ p̃i ≤ α (τ ′i/m)}
τ ′i

 . (30)

We define
W̃i = {Sk+1, . . . , Sn, Sn+i} ∪ (Sn+j : j ̸= i, j ∈ H0) ∪ (Sn+j : j ∈ H1), (31)

so τ ′i is W̃i-measurable. Hence

E

 ∑
i∈H0\A

Ṽi

R̃ ∨ 1

 = E

 ∑
i∈H0\A

E
[
1 {p̃i ≤ α (τ ′i/m)}

τ ′i

∣∣∣ W̃i

] (32)

= E

 ∑
i∈H0\A

1

τ ′i
E
[
1 {p̃i ≤ α (τ ′i/m)}

∣∣∣ W̃i

] , (33)

where the last equality is due to τ ′i acting as a known constant inside that inner conditional. From Lemma 3, we know
that (n− k + 1)p̃i is exactly the rank of Sn+i among {Sk+1, . . . , Sn, Sn+i} and p̃i is independent of W̃i. As a result,
(n− k + 1) p̃i is uniform on {1, . . . , n− k + 1}, independent of τ ′i . Thus

E
[
1{ p̃i ≤ α (τ ′i/m)}

∣∣∣ W̃i

]
= P

(
(n− k + 1) p̃i ≤ α (n− k + 1)

τ ′
i

m

∣∣∣ W̃i

)
=
⌊α(n− k + 1)

τ ′
i

m⌋
n− k + 1

. (34)

Hence

E

 ∑
i∈H0\A

Ṽi

R̃ ∨ 1

 = E

 ∑
i∈H0\A

⌊α(n− k + 1) τ ′i/m⌋
(n− k + 1) τ ′i

 ≤ m0 · E
[
⌊α(n− k + 1) τ ′i/m⌋

(n− k + 1) τ ′i

]
. (35)

The first term is thus bounded by α.

D APPENDIX: DIRECT DECISION-BASED ATTACK SCHEME

Different from the oracle setting, we assume that the attacker has access to

Data: Training samples {Zj}nj=1 and test samples {Zj}m+n
j=n+1, but the attacker does not know which test

samples are nulls and non-nulls;

Algorithm: All the information about the AdaDetect implemented by the user, including the machine learn-
ing model for the score function and its parameters.

With such information at hand, the attacker is able to apply AdaDetect locally on {Zj}m+n
j=1 , to obtain the score

function s(z) defined as in equation 2.

We start with describing our first attack scheme as follows.

Step 1: Initial detection and BH labeling. Using the training data {Zj}nj=1 and the mixed sample
{Zj}n+m

j=k+1, form the dataset
D = {(Zi, Yi)}n+m

i=1

where Yi = 0 for i ∈ [1 : k] and Yi = 1 for i ∈ [k+1 : n+m] using the positive-unlabeled (PU) framework.
Train the score function

s(z)← TrainScoreFunction(D).
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Note that s(z) automatically satisfies the condition in equation 3 as Yi for i ∈ [k + 1 : n+m] are the same.
Compute empirical p-values for i ∈ [1 : m]

p̂i =
1 +

∑n
j=k+1 1{s(Zj) ≥ s(Zn+i)}

n− k + 1
.

Then apply the BH-procedure to (p̂1, . . . , p̂m) to get BH threshold τ̂ at target level α and produce binary
labels

(Ŷ1, . . . , Ŷm) = BH ((p̂1, . . . , p̂m), α) ,

where Ŷi = 1 indicates rejection (detected as non-null) and Ŷi = 0 indicates non-rejection (undetected).
Step 2: Attack set selection. Within the set of test samples (i.e., with indices from [n+1 : n+m]), select a
subset {Zn+i : i ∈ A} from the unrejected test samples as the attack target.
We set the attack size as (1) fixed size where |A| = ma for some fixed number ma, or (2) random size
where mA = ⌊γ(m−R)⌋, where γ ∈ (0, 1] is an “attack intensity” parameter specified by the attacker. One
natural choice of A is to select the unrejected hypotheses with the smallest p-values (i.e., those closest to
the rejection boundary). Let (i1, i2, . . . , im−R) denote the indices of unrejected hypotheses ordered by their
p-values: p̂i1 ≤ p̂i2 ≤ · · · ≤ p̂im−R

. Then we define A = {i1, i2, . . . , imA}. This selects the mA unrejected
indices with the smallest p-values, targeting hypotheses that are close to τ̂ and making it an effective attack
strategy as demonstrated in our experiments.
Step 3: Decision-based adversarial perturbation. For each i ∈ A, generate

Z̃n+i = fattack(Zn+i; s(z)) (36)
:= fattack(Zn+i; {Zk+1, ..., Zn, Zn+j : j ∈ H0 \ A}, (Zn+j : j ∈ A ∪H1), (Z1, . . . , Zk)) (37)

such that 1{s(Zn+i) ≥ 0.5} ≠ 1{s(Z̃n+i) ≥ 0.5}, meaning that the decision is altered. Here we write

{Zk+1, ..., Zn, Zn+j : j ∈ H0 \ A}
as an unordered set to highlight that fattack does not depend on the order of elements in this set.
Step 4: Applying AdaDetect on the attacked data. After the attack, the user applies AdaDetect and com-
putes the score function as the first step. As the data is now changed by the attacker, we denote the score
function after the attack by s̃, and the empirical p-value after the attack by p̃i for i ∈ [1 : m]. We stress that s̃
still satisfies equation 3.

The attack set A is inherently random because it depends on the outcome of the BH procedure in Step 1, which in
turn depends on the computed p-values of the random test samples {Zn+i}mi=1. More specifically, each p-value p̂i
relies on the entire dataset, including both the training samples {Zj}nj=1 and test samples {Zn+j}mj=1, through the
score function computation and ranking procedure. In other words, A is a complex yet deterministic function of the
complete dataset.
Proposition 2. fattack does not depend on the order of elements in {Zk+1, ..., Zn, Zn+j : j ∈ H0 \ A}.

This proposition captures the main subtle yet important difference between this attack scheme and the oracle setting
in Theorem 1. It holds because fattack(· ; s(z)) only relies on the score function s(z), and s(z) is invariant to order of
elements in {Zk+1, . . . , Zn+m} according to equation 3, as a consequence of the PU framework.

D.1 ANALYSIS

In this setting, we denote the corresponding FDR as FDR∗
attack–decision, and quantify the loss in FDR caused by the

attack.
Theorem 2. Consider that A is a fixed set of indices with ma = |A|. Under Assumption 1, with the score function
s̃ satisfying the permutation invariance property in equation 3 and the attack scheme fattack being order-invariant as
in equation 37, the FDR after the attack is

FDR∗
attack–decision ≤ α+ma · E

[
1

R̃ ∨ 1

]
, (38)

where the expectations are taken over the randomness in the training and test samples {Zj}m+n
j=1 .
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Remark 5. It has been proved that AdaDetect has a strong detection power (the probability of correctly rejecting
a non-null), as shown in (Marandon et al., 2024, Theorem 5.1). This implies that the set A will nearly contain all
indices from true nulls because the non-nulls are mostly rejected. We use this to show that the upper bound E[ mA

R̃∨1
]

in equation 1 is relatively tight (see details in Proposition 3).

Proof of Theorem 2. It follows directly from proof of Theorem 1, as the only difference between Theorem 2 and
Theorem 1 is that the score function is trained differently. But according to Proposition 2, the score function for attack
is still invariant under the permutation of {Zk+1, ..., Zn, Zn+j : j ∈ H0 \ A}, which makes the rest of the proof
exactly the same as that for Theorem 1.

Corollary 1. Consider that A is random with fixed size |A| = ma. Under Assumption 1, with equation 3 and equa-
tion 7, the FDR after the attack is

FDRattack ≤ FDR∗
attack–decision ≤ α+ma · E

[
1

R̃ ∨ 1

]
, (39)

where the expectations are taken over the randomness in the training and test samples {Zj}m+n
j=1 , which induces

randomness in A and R̃.

Unlike the original AdaDetect, which guarantees FDR ≤ α in benign settings, Corollary 1 provides an FDR upper-
bound under adversarial perturbations. We also have the following corollary about the setting when A is random with
a fixed size mA.
Corollary 2. Consider that A is random with a random size |A| = mA. Under Assumption 1, with equation 3
and equation 7, the FDR after the attack is

FDRattack ≤ α+ E
[

mA

R̃ ∨ 1

]
, (40)

where the expectations are taken over the randomness in the training and test samples {Zj}m+n
j=1 , which induces

randomness in A and R̃.

In the following proposition, we show that the upper bound in equation 25 is relatively tight by making a connection
between step (a) in equation 25 and the power of AdaDetect. Roughly speaking, the upper bound is relatively tight
when the power of AdaDetect is decent. Instead of showing detailed technical steps following the proof of (Marandon
et al., 2024, Theorem 5.1), we choose to provide a high-level argument to connect the power of AdaDetect and our
upper bound in equation 25.
Proposition 3. Under the assumptions in (Marandon et al., 2024, Theorem 5.1) and when A is randomly selected
from the unrejected indices with mA = ⌊γ(m−R)⌋, we have that for some small δ′ and η′,

P (A ⊆ H0) ≥ (1− δ′) · l(η′), (41)

where l(η′)→ 1 as η′ → 0.

According to (Marandon et al., 2024, Theorem 5.1), we have that the rejection set by AdaDetect at level λ, denoted by
AdaDetectλ satisfies

P

(
|AdaDetectλ ∩H1|

m1
≥ 1− η

)
≥ 1− δ, (42)

for some small δ and η. This can be adapted to our setting as follows, with one approximation, where we treat the data
samples being attacked as non-nulls. After the attack, we have

P

(
| ˜AdaDetectλ ∩ (H1 ∪ A)|

|H1 ∪ A|
≥ 1− η′

)
≥ 1− δ′, (43)

where ˜AdaDetectλ denotes the rejection set after the attack, and we note that the number of non-nulls becomes |H1 ∪
A| ≤ m1 +mA after the attack.
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Since R̃ = ˜AdaDetectλ and |R̃∩(H1∪A)| = R̃−Ṽ , we have that the unrejected set contains (|H1∪A|−(R̃−Ṽ ))) ≤
|H1 ∪A| · η′ with probability at least 1− δ′. Define E =

{ ∣∣R̃− Ṽ
∣∣ ≥ |H1 ∪ A| · (1− η′)

}
. We use the shorthand

Z := {Zi}n+m
i=1 to denote the whole dataset. Given any fixed dataset Z = z, the only remaining randomness comes

from the random selection (and it is independent of Z), while the random variables R̃,A, and mA take on realizations
as R̃(z), A(z), and mA(z), respectively. We now have

P (A ⊆ H0) ≥ P (E) · P (A ⊆ H0 | E)

≥ (1− δ′) ·
∫
z

(
m− R̃(z)− |H1 ∪ A(z)| · η′

mA(z)

)
(
m− R̃(z)

mA(z)

) · P (Z = z|E) dz := (1− δ′) · l(η′),

where l(η′)→ 1 as η′ → 0. The last step follows since given event E and {Z = z}, we have |R̃(z)∩ (H1 ∪A(z))| ≥
|H1 ∪ A(z)| · (1− η′), which implies the number of unrejected non-nulls is smaller than |H1 ∪ A(z)| · η′.

E APPENDIX: ADDITIONAL EXPERIMENTS

Synthetic data generation. We generate two types of data: null samples from distribution P0 and non-null samples
from distribution P1. We let d = 20 for all the synthetic data.

• Independent Gaussian: We consider

P0 = N (0, Id), P1 = N (µ, Id),

where µ ∈ Rd is a sparse mean shift vector: the first five coordinates are set to
√
2 log(d) and the remaining

coordinates are zero.
• Non-Gaussian: We let the first two coordinates of nulls and non-nulls be drawn independently from Beta

distributions, with

P0 : (X1, X2) ∼ Beta(5, 5), P1 : (X1, X2) ∼ Beta(1, 3).

The remaining coordinates are drawn i.i.d. from Beta(1, 1) under both P0 and P1.
• Exchangeable Gaussian: Let T = N (µ,Σ) be the d-variate Gaussian distribution with mean vector µ =
[µ1, . . . , µd]

⊤ and covariance matrix Σ = [σij ]
d
i,j=1. Suppose T is exchangeable, i.e.,

µi = µj =: a, σii = σjj =: b2, σij = σkl =: c,

for all i, j, k, l with i ̸= j and k ̸= l. Then the covariance matrix can be written as

Σ = c11⊤ + (b2 − c)Id,

where 1 = [1, . . . , 1]⊤ ∈ Rd.
We define the null and non-null distributions as

P0 = N (a1,Σ), P1 = N ((a+ δ)1,Σ),

where δ > 0 introduces a mean shift across all coordinates. Thus P0 and P1 share the same exchangeable
covariance structure but differ in their mean vectors.

Four real-world datasets.

• Shuttle: Radiator data onboard space shuttles. Instances from class 1 are considered nominal, while instances
from classes 2–7 are considered novelties Dua & Graff (2019).

• Credit Card: Transactions made by credit cards over two days, some of which are fraudulent Dal Pozzolo
et al. (2015).

• KDDCup99: A set of network connections that includes a variety of simulated intrusions Stolfo et al. (1999).
• Mammography: Features extracted from mammograms, some with microcalcifications Woods et al. (1993).
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Experiment A.1: Mismatched score function configurations. We investigate both oracle and surrogate attack
performance when using different model architectures and parameters for the score functions, with attack size ma =
200. This experiment comprises four distinct configurations for each attack type:

• RF–NN: AdaDetect score function s(z) uses an RF, attack model score function g(z) uses an NN.
• RF–RF: Both score functions use RFs with same hyperparameters.

Table 6: Experiment A.1: FDR + RF-NN

Dataset Independent Gaussian Non-Gaussian Exchangeable Gaussian

original FDR 0.08± 0.03 0.08± 0.04 0.08± 0.04

oracle (ma = 200) 0.66± 0.00 0.70± 0.02 0.67± 0.00

surrogate (ma = 200) 0.68± 0.00 0.63± 0.01 0.65± 0.02

estimated upper bound 0.77 0.76 0.67

Experiment A.2: Real-world data with NN models. This experiment employs NN architectures for both score
functions on the four real-world datasets, evaluating both oracle and surrogate attack performance with attack size
ma = 200. This allows us to evaluate how each attack type performs when both the target model and attacker use
NN-based approaches on realistic data distributions. We compare boundary attack with our default HSJA attack under
both oracle and surrogate attack schemes, using identical RF architectures for both score functions with ma = 200.
The result shows that both HSJA and boundary attack are successful at rasing the FDR for NN models in real-world
data.

Table 7: Experiment A.2: FDR + NN

Dataset Credit-card Shuttle KDD Mammography

original FDR 0.09± 0.05 0.01± 0.01 0.02± 0.01 0.09± 0.05

oracle+hop. 0.67± 0.04 0.44± 0.01 0.59± 0.03 0.78± 0.01

surrogate+hop. 0.67± 0.05 0.43± 0.00 0.61± 0.02 0.65± 0.02

oracle+bound. 0.66± 0.02 0.36± 0.05 0.47± 0.06 0.64± 0.05

surrogate+bound. 0.65± 0.02 0.45± 0.09 0.43± 0.05 0.61± 0.04

estimated upper bound 0.77 0.76 0.81 0.80

Table 8: Experiment A.2: Power + NN

Dataset Credit-card Shuttle KDD Mammography

original power 0.80± 0.03 0.84± 0.09 0.78± 0.04 0.53± 0.09

oracle+hop. 0.95± 0.03 0.98± 0.01 0.88± 0.02 0.65± 0.01

surrogate+hop. 0.86± 0.04 0.99± 0.01 0.86± 0.03 0.87± 0.01

oracle+bound. 0.93± 0.03 0.94± 0.01 0.99± 0.01 0.77± 0.06

surrogate+bound. 0.95± 0.02 0.99± 0.01 0.97± 0.01 0.80± 0.07
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