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Abstract. Contrastive self-supervised learning (CSL) has managed to
match or surpass the performance of supervised learning in image and
video classification. However, it is still largely unknown if the nature of
the representation induced by the two learning paradigms is similar. We
investigate this under the lens of adversarial robustness. Our analytical
treatment of the problem reveals intrinsic higher sensitivity of CSL
over supervised learning. It identifies the uniform distribution of data
representation over a unit hypersphere in the CSL representation space as
the key contributor to this phenomenon. We establish that this increases
model sensitivity to input perturbations in the presence of false negatives
in the training data. Our finding is supported by extensive experiments
for image and video classification using adversarial perturbations and
other input corruptions. Building on the insights, we devise strategies that
are simple, yet effective in improving model robustness with CSL training.
We demonstrate up to 68% reduction in the performance gap between
adversarially attacked CSL and its supervised counterpart. Finally, we
contribute to robust CSL paradigm by incorporating our findings in
adversarial self-supervised learning. We demonstrate an average gain of
about 5% over two different state-of-the-art methods in this domain.

Keywords: Contrastive Learning, Self-supervised Learning, Adversarial
attack, Robustness, Adversarial perturbations.

1 Introduction

Deep Neural Networks (DNNs) are now widely applied for various computer
vision tasks [27],[47],[31],[39],[14]. However, supervised training of DNNs requires
a large amount of annotated data. Hence, self-supervised learning of high-level
semantic representation of images and videos from unlabeled data is an attractive
alternative. To that end, contrastive learning [8] is becoming an increasingly
popular choice for self-supervised learning. It is common to pre-train DNNs using
self-supervised learning on very large unlabelled datasets followed by task-specific
finetuning on a smaller labelled dataset. Adversarial vulnerabilities might be
introduced during this pre-training phase, which could have a cascading effect on

ar
X

iv
:2

20
7.

10
86

2v
1 

 [
cs

.C
V

] 
 2

2 
Ju

l 2
02

2



2 R. Gupta et al.

Large Margin 
Between Classes

Smaller Margin between 
classes leads to higher 

adversarial susceptibility 

(b) Self-Supervised 
Feature Space

(c)  Supervised
       Feature Space

I1

I2

I3

I4

I1
’

Data 
Augmentation

Attract 
augmented 

versions of the 
same instance

Repel all 
other 

instances 
including 

those from 
the same 

class

I1

I2

I3

I4

I0

(a) Contrastive Self-Supervised 
Learning

(d) Contrastive Supervised 
Learning

Attract different 
instances of the 

same class

Repel 
instances from 
other classes

Fig. 1: (a) In Self-Supervised Contrastive Learning (CL) all instances are uniformly
repelled from each other, which results in (b) a representation space with large class
cluster sizes and small inter-class margins. (d) In Supervised CL only instances of
different classes are repelled, which allows for (c) a feature space with larger inter-class
margins between class clusters. Lower inter-class margins lead to higher adversarial
susceptibility of self-supervised CL. Colors represent class labels for instances I0, I1, ..IN .

a multitude of downstream tasks. Since self-supervised and supervised models
achieve similar results on benchmark datasets it is a common perception that
they exhibit similarities in other properties as well. It has been found that both
types of models make similar errors on clean data [22]. In this work, we scrutinize
this under-investigated hypothesis from the perspective of adversarial robustness.
Surprisingly, our findings do not align well with the prevailing belief that both
model types admit representations of similar nature. We find that Contrastive Self-
supervised Learning (CSL) models are considerably inferior to supervised models
in terms of adversarial robustness for image and video classification (Section 4).
Interestingly, we observe that this is true even when the supervised models
use contrastive loss (following [35]) instead of the more common cross-entropy
loss. We show that this disparity also holds when equivalent augmentations and
training schedules are applied to both supervised and self-supervised learning.

Wang et al. [50] highlighted two key properties of CSL representation. (a) Align-
ment : which enforces the closeness of instance features for the positive training
pairs, and (b) uniformity : a property that induces uniform distribution of instances
in the representation space. The latter can be understood as an application of the
principle of maximum entropy [32] (colloquially referred to as Occam’s Razor).
Since class information about the instances is not available for self-supervised
learning, we can preserve the maximum amount of information about the data in
the representation by inducing a uniform distribution of training data instances.
Eventually, when a classifier is trained on the uniformity preserving features,
it can better separate the class instances. However, the uniform feature space
necessarily has low inter-class margins relative to the supervised case where class
instances can be tightly clustered - illustrated in Fig. 1. We establish that this
has a negative influence on the intrinsic robustness of CSL models (Section 3).

Our investigation leads to identifying a link between the ‘false negative pairs’
in the training of CSL and the higher sensitivity of the resulting model to input
alteration. Hence, to improve the robustness of CSL without resorting to the



Adv. Suscep. of Contrastive SSL 3

computationally expensive adversarial training, we explore multiple strategies
that can easily reduce the false negative pairs during model training. These
strategies are inspired by a theoretical insight that the contrastive loss in CSL
still improves model representation for true positive instances despite its exposure
to a few false negatives in the training process. We investigate two categories of
false negative removal methods following a ‘static’ and a ‘dynamic’ strategy, which
respectively remove a fixed and dynamically varying number of suspect samples
from training data. After establishing the effectiveness of these methods, we also
demonstrate enhancement of adversarial contrastive learning techniques [37], [33]
with these strategies. Our key contributions can be summarized as:

– We provide the first systematic evidence of higher sensitivity of CSL to
input perturbations in the form of rigorous analytical results and extensive
experimental verification with image and video classification tasks.

– We establish a connection between CSL model susceptibility and the uni-
formity of its representation, and theoretically identify the influence of false
negative pairs on model sensitivity.

– Leveraging theoretical insights, we devise strategies to improve CSL robust-
ness without adversarial training.

– We also contribute to adversarial CSL by incorporating our findings into
RoCL [37] and ACL [33], achieving consistent performance gain against strong
adversarial attacks PGD [40] and AutoAttack [15]

2 Related Work

In the context of self-supervised deep learning, denoising auto-encoders [48] are
among the first techniques, which were followed by other generative approaches,
e.g., inpainting-based Context Encoder [43] and GAN based methods, such as
DCGAN [46] and BiGAN [19], [20]. More recently, the literature has also witnessed
pre-text task based methods for 2D CNNs [23], [18], [21] and 3D CNNs [53], [1].
However, contrastive learning methods, e.g., SimCLR [8] are currently considered
the state-of-the-art. Therefore, we mainly focus on these methods due to their
high relevance.

Contrastive learning: SimCLR [8] builds upon prior work of MoCo (Momentum
Contrastive learning) [26], Augmented Multiscale Deep InfoMax (AMDIM) [4],
and Contrastive Predictive Coding (CPC) [42] to develop its contrastive learning
pipeline. The pipeline includes data augmentations and a projection head to align
the learned network representation during training. While the performance of
SimCLR has been lately matched or exceeded by MoCov2 [11] and SimCLRv2 [9],
the fundamental structure of contrastive learning framework remains similar
in these works. Contrastive learning has also been successfully extended to
action classification in videos [45], [16], and image classification using transformer
architectures [13].

Another relevant self-supervised learning method is SwAV [6]. Even though
it does not use contrastive loss, it preserve the ‘alignment’ property of its rep-
resentation by clustering the augmented versions of instances. Moreover, it is
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also able to preserve the ‘uniformity’ property by enforcing an explicit equiparti-
tioning constraint over its representation space. Other self-supervised learning
methods include BYOL [25] and SimSiam [12], which are energy-based methods.
These techniques do not use negative contrastive pairs, and rely on a siamese
architecture. Since we are mainly concerned with the negative contrastive pairs
in our analysis, these methods are not directly related to our core contribution.

Owing to the promising performance of contrastive learning, recent works have
also focused on exploring the unique properties of contrastive learning. Geirhos
et al. [22] found that such models produce results similar to those learned with
supervision. Xiao et al. [51] found that the specific kind of data augmentation
which works best for self-supervised training depends on the specific dataset.
Purushwalkam et al. [44] claimed that contrastive learning results in superior
occlusion-invariant representations. Wang et al. [50] analyzed contrastive learning
by studying the alignment and uniformity properties of feature distribution.
These properties are claimed to endow more discriminative power to the models.
The uniformity property of contrastive learning is also discussed in Chen et
al. [10], where it is referred to as the ‘distribution’ property. Wang and Liu [49]
also built a relationship between the uniformity property and the temperature
hyper-parameter of the loss function.

Robustness and self-supervision: In prior art on robustification of supervised
learning, self-supervision has been considered as a helpful tool. Hendrycks et
al. [29] found that adversarial robustness of supervised models can be improved
by adding an additional self-supervised task in a multi-task approach. Similarly,
Carmon et al. [5] also found that using additional unlabeled data improves
adversarial robustness of the model. Chen et al. [7] also developed robust ver-
sions of pretext-based self-supervised learning tasks and demonstrated that this,
along with robust fine-tuning of the model, results in significant increase in the
robustness relative to the baseline adversarial training.

Adversarial training for self-supervised models: There has also been work
on adversarial training in the context of self-supervised learning. Kim et al. [37]
developed an instance-based adversarial attack for contrastive self-supervised
training, and later used it during training for model robustness. The concurrent
work by Jiang et al. [34] develops an adversarial contrastive learning framework
that is claimed to surpass prior self-supervised learning methods in robustness as
well as accuracy on clean data. Ho et al. [30] created a generalized formulation
of AdvProp training [52] applicable to self-supervised learning, with the goal to
increase accuracy on clean data. These methods significantly increase the training
cost of the already computationally expensive learning process. Hence, in this
work, we directly focus on addressing the root-cause of the issue, and later also
transfer the benefits of our findings to adversarial training.

3 Adversarial Susceptibility of CSL

The popular contrastive self-supervised representation learning strategy, e.g., used
by SimCLR [8], learns a representation space from unlabeled data. It samples
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the so-called ‘positive pairs’ by applying independent random transformations
to an original sample (a.k.a. anchor). The positive pairs are expected to have
representations similar to the anchor. The ‘negative pairs’ are formed by pairing
the anchor with other original instances.

Let us denote the distribution of original samples in the training data as
porg(.) ∈ Rm. The distribution over the positive pairs can then be defined as
ppos(., .) ∈ Rm × Rm. In general, contrastive loss L(.) is defined over the sample
features computed with an encoder f(.) : Rm → ψq−1, where ‘q’ is the feature
vector dimension and ψq−1 identifies a hypersphere for the ℓ2 normalized features.
Analytically, the contrastive loss takes the form

L= E
(u,v)∼ppos

{u−
i }N

i=1∼porg

[
− log

ef(u)
⊺f(v)/τ

ef(u)⊺f(v)/τ +
∑

i e
f(u−

i )⊺f(v)/τ

]
, (1)

where u, v ∈ Rm are samples forming the positive pairs, {u−i }Ni=1 ∈ Rm are
the corresponding negative instances, τ ∈ R+ is a scalar (a.k.a. temperature
parameter), and N ∈ Z+ is the number of negative samples.

It is shown by [50] that the loss in Eq. (1) induces the following two key
properties in a representation learned under contrastive self-supervised learning.
(a) Alignment : Features of samples in the positive pair are close on the represen-
tation hypersphere. (b) Uniformity : The distribution of all features is roughly
uniform on the hypershpere. The property (a) is supposed to promote robustness
to unintended noise by encouraging similarity between the features of similar
samples. On the other hand, (b) works on the principal of preserving maximum
information to improve the overall performance of the learned representation.
To build our argument, we first verify these properties with an analytical sim-
plification of Eq. (1). By definition, ppos(., .) is symmetric, which lets us write:

L = E
(u,v)∼ppos

[−f(u)⊺f(v)/τ ] + E
(u,v)∼ppos

{u−
i }N

i=1∼porg

[
log(ef(u)

⊺f(v)/τ +
∑
i

ef(u
−
i )⊺f(v)/τ )

]
. (2)

In Eq. (2), minimizing the first term promotes ‘alignment’ of the representation.
Since, the summation defined over {u−i }Ni=1 in the second term is always positive,
alignment plays a significant role in reducing the contrastive loss. As the alignment
improves, we approach f(u)⊺f(v) → 1. This simplifies the loss term to

E
(u,v)∼ppos

{u−
i }N

i=1∼porg

[
log

(
1 +

∑
i e

f(u−
i )⊺f(v)/τ

e1/τ

)]
. (3)

In Eq. (3), the constant term 1/τ is ignored due to its irrelevance. Clearly,
minimizing (3) can be identified as maximizing the difference (in turn, the distance
on the hypersphere) between the normalized features of the negative pairs. This
promotes uniformity in the representation. Thus, a well-learned representation
under contrastive loss must exhibit the uniformity property.



6 R. Gupta et al.

A subtle point to note is that the objective of achieving uniformity is, to
an extent, contradictory to the goal of representation alignment in contrastive
learning. In general, contrastive learning does not assume prior over porg(.). In
the absence of such a prior, positive pair samples are ensured to be positive
under the heuristic of ‘transformation of the same sample’. However, no such
heuristic exists for the negative pairs. This means, the set of negative instances
{u−i }Ni=1 can actually contain some samples that form positive pairs with the
original sample ‘v’ as seen by the downstream task. To elaborate, assume the
downstream task of image classification. The self-supervision mechanism may
use minibatches that contain multiple images of Ostrich. Although minimizing
the first term in Eq. (2) helps the ultimate objective of the downstream task
(i.e. achieving similar representation for all Ostrich samples), Eq. (3) opposes
that objective because it tries to spread apart the (representations of) different
Ostrich images over the hypersphere. For a finite hypersphere, this can force a
subset of Ostrich images to be projected close to the images of another category,
e.g. Dog. This has implications for a downstream task like classification.

Assume we train a downstream classifier C(Ic) : Ic → ℓ, where Ic is a
sample of the cth class that has the correct label ℓ. For training C(.), we use
the representation of contrastive learning as the feature of Ic. However, for
simplicity, here we directly use the symbol Ic for the feature. Our analysis above
hints towards an easy identification of a transformation T (Ic) : C(T (Ic)) → ℓ̃,
such that ℓ̃ ̸= ℓ. We intentionally use an overgeneralized notion of T (.) here.
In Section 4, we will demonstrate how even primitive input transformations
can serve as T (.). At this stage, we are particularly interested in ‘adversarial
perturbation’ [2] as the transformation. For an input Ic ∈ Rm, an adversarial
perturbation is the transformation T (Ic) = Ic + ρ, s.t. ||ρ||p < η, where ρ ∈ Rm

is the perturbation signal whose ℓp-norm (denoted by ||.||p) is bounded by the
threshold η ∈ R+.

Adversarial perturbations are known to easily fool the supervised models.
Hence, for self-supervision, it is imperative to explore the ‘weaker’ perturbations
to establish the higher sensitivity of contrastive self-supervision. To that end,
the best available tool is Fast Gradient Sign Method (FGSM) [24]. FGSM
performs a single step gradient ascend over the model loss surface w.r.t. the input
and calibrates that with the sign function and a scalar multiplier. Formally, it
computes ρ as: ρ = ϵ sign(∇L(θ, Ic, ℓ)), where ϵ is the scaling factor, θ denotes the
model parameters and ∇(.) computes the gradient. Like most adversarial attack
algorithms, the essence of FGSM is to estimate a direction in the input space
along which the model prediction is highly sensitive. Then, it slightly nudges the
input sample in that direction to fool the model on the resulting imperceptibaly
altered input.

Lemma 3.1 below shows that the presence of false negative pairs in the
training process of self-supervised contrastive learning makes the model even
more sensitive to the nudge. It happens because under the competitive allocation
of classification regions governed by a finite hypersphere ψq−1, false negatives
force the model to place representations of clean samples closer to the decision
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boundaries. The same insight is also applicable to the methods like SwAV, which
use competitive allocation of their clustering subspace under an equipartitioning
constraint. Our empirical results in Section 4 also verify the analogous higher
sensitivity of SwAV against input perturbations.

In general, it is common to regularly encounter false negative pairs in self-
supervised model training because the actual labels are not available for the data.
Frequent occurrence of these pairs in the training process eventually leads to
adversarially more sensitive models because it is easier to alter the predictions of
samples residing closer to model decision boundaries [41].

Lemma 3.1: False negatives u−false in {u−i }Ni=1 bring the decision boundary closer
to the clean samples of their classes.

Explanation: For a representation hypersphere ψq−1 of the q-dimensional fea-
tures of porg’s samples forming ‘C’ classes, the (projection of) classification region

Ξc of the cth class on the hypersphere has an Area(Ξc) =
δc
C

(
2π

q−1
2 /Γ ( q−1

2 )
)
.

Here, Γ (.) is the gamma function and δc ∈ (0, C). The fraction δc
C normalizes

the area for ‘C’ equally likely classes and then scales it for ‘c’. Given the fixed
values for ‘C’ and ‘q’, δc needs to be adjusted for the correct classification such
that {u−i }Ni=1 ∈ Ξ−

c . In that case, u−false ∈ {u−i }Ni=1 ∈ Ξ−
c . However, by defini-

tion, u−false is a clean sample of the cth class. This requires Ξc to be expanded
(with further learning) for an accurate prediction. However, this expansion must

satisfy the competitive constraint
∑C

i Area(Ξc) =
(
2π

q−1
2 /Γ ( q−1

2 )
)
. Hence, the

adjustment can only admit minimal expansion of Ξc to enable u−false ∈ Ξc. This

places (representation of) u−false , i.e. a clean sample of the cth class, and similar
samples closer to the boundary of Ξc.

Whereas our argument on higher sensitivity of contrastive self-supervised
learning is best verified using a weaker attack like FGSM, we also investigate the
adversarial susceptibility of models to stronger attacks, e.g., Projected Gradient
Descent (PGD) [40]. In the following text, we first provide empirical evidence
of higher sensitivity of self-supervised models in Section 4. We verify the link
between the higher sensitivity of the models and false negative example pairs in
Section 5. The tools developed to verify this link in Section 5 are then used to
enhance self-supervised adversarial learning in Section 6.

4 Empirical Evidence of Higher Susceptibility

We primarily focus on providing empirical evidence by comparing the robustness
of contrastive self-supervised image and action classification models to their super-
vised counterparts. Along with adversarial attacks, we also study the robustness
of models w.r.t. other transformations e.g., adding noise, blurring, simulating
effect of adverse weather conditions like fog etc., using ImageNet-C dataset.
Similar to adversarial perturbations, these corruptions instantiate the generic
transformation function T (.) discussed in Section 3.
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Method FGSM PGD-ℓ∞ PGD-ℓ2
ϵ = 0 ϵ = .25/255 ϵ = .5/255 ϵ = 1/255 ϵ = .25/255 ϵ = 1/255 ϵ = 0.5

Supervised 76.71 38.20 ↓50% 22.56 ↓71% 11.53↓85% 28.22 ↓63% 0.65 ↓99% 11.3 ↓85%
SwAV 75.34 23.35 ↓69% 11.47 ↓85% 5.95 ↓92% 11.73 ↓84% 0.20 ↓100% 4.1 ↓95%
SimCLR 68.95 24.33 ↓65% 14.43 ↓79% 8.85 ↓87% 10.89 ↓84% 0.24 ↓100% 5.2 ↓92%

Table 1: Susceptibility of models under weak FGSM and PGD attacks. ImageNet top-1
accuracy is reported. Percentage drop relative to clean input accuracy is given in ↓red.
Self-supervised models show higher relative drops.

4.1 Image classification

For the image classification task, we use a pre-trained ImageNet ResNet50 model
trained in a supervised manner, and two other ResNet50 models trained with self-
supervision techniques. To that end, we use SimCLR [8], which uses contrastive
loss, and SwAV [6] methods. SwAV does not use contrastive loss, however, it also
preserves the uniformity property of representations, which, according to our
analysis in Section 3, is the primary cause of higher adversarial susceptibility of
self-supervised learning models. Hence, for a more insightful analysis, we include
SwAV in our study as well. We keep architectural similarity between different
models to ensure transparent results.

Susceptibility to adversarial perturbations: A comparison of adversarial
susceptibility of the models is provided in Table 1. In the table, we use FGSM
by varying its perturbation scale ϵ in the range [0, 4], where 0 indicates clean
images. The image dynamic range is [0, 255]. For the reported top-1 accuracy,
percentage reductions for SwAV and SimCLR are much larger than the supervised
model. The difference is particularly large for the weaker perturbations, which
indicates the higher sensitivity of the model predictions. The results align well
with the theoretical insights in Section 3. The observation also holds for the
two popular variants of the stronger PGD attack in the last two columns of the
table. We provide results for the standard ℓ∞ and ℓ2 variants of the algorithm,
performing 40 iterations for the former and 10 for the latter, which is a commonly
adopted setting in the literature. Table 1 points to the higher relative adversarial
sensitivity of the self-supervision models.

Susceptibility to image corruptions: We also employ ImageNet-C dataset
[28] to analyze the robustness of models to more primitive transformations,
e.g., blurring and noise addition. ImageNet-C includes these perturbations at 5
increasing distortion levels [28]. However, the lowest level is the most relevant
to our analysis because we are concerned with the higher sensitivity of the
models. Detailed quantitative results of our experiments are presented in the
supplementary material. We summarize those results in Fig. 2, which plots
the drop in model accuracy relative to the clean image baseline against the
corresponding drop for the supervised model. Best-fit lines are plotted in the
figure as ‘Self-Supervised Drop = slope ∗ Supervised Drop’. Here, slope > 1
indicates higher sensitivity of the self-supervised model relative to the supervised
model. The larger the slope, the higher the sensitivity to the image corruption.
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Fig. 2: Susceptibility to ImageNet-C corruptions. A point represents relative accuracy
reduction with corruption (i.e. a row entry in Table 1 of supplementary material). The
slope of the best fit line identifies the overall robustness relative to the supervised baseline.
Larger slope indicates a less robust model. Raw data in Section C of Supplementary.

FGSM-ℓ∞ PGD-ℓ∞
Pre-Training ϵ = 0 ϵ = 1/255 ϵ = 2/255 ϵ = 4/255 ϵ = 1/255 ϵ = 2/255

Supervised 59.4 26.6 ↓55% 12.2 ↓79% 3.9 ↓93% 15.6 ↓74% 5.2 ↓91%

TCLR [16] 75.5 10.8 ↓86% 6.1 ↓92% 3.3 ↓96% 6.30 ↓92% 3.1 ↓96%

CVRL [45] 60.2 6.00 ↓90% 3.0 ↓95% 1.6 ↓97% 4.70 ↓92% 1.9 ↓97%

Table 2: Top-1 accuracy for UCF101 video classification under FGSM and 4-step PGD
attacks. Perturbation scaling ϵ varies from 0 to 2 for 8-bit videos. Percentage drop
relative to clean data accuracy is given in ↓red.

The results in Fig. 2 establish higher overall sensitivity of the self-supervised
models for 15 image corruption types. Interestingly, SimCLR also showed sen-
sitivity to corruptions like Brightness and Contrast jittering, which are used
as augmentations in SimCLR training. SwAV is relatively more robust to non-
adversarial transformations, which is a natural consequence of its ability to
‘cluster’ positive samples for a class.

4.2 Video classification

To establish that our observations also hold for different types of models, we
perform analysis for action recognition as an example of video classification
task. Recently, action recognition techniques have started to exploit contrastive
learning [16], [45]. This opens up the avenue of adversarial robustness analysis
for the problem. We mainly discuss FGSM-based analysis here due to its higher
relevance to the core insight. Results related to PGD are also provided in the
supplementary material, which are in-line with the FGSM results. We employ
an 18-layer R-(2+1)-D model in our experiments. Its one variant is trained
with supervised cross-entropy loss, and other two are trained using contrastive
self-supervised learning methods, TCLR [16] and CVRL [45]. These pre-trained
models are obtained through communication with the authors of TCLR [16].
We summarize our results in Table 2 which shows that the video classification
with self-supervised models also gets affected more strongly by the attack as
compared to the supervised models. This is true despite self-supervised models
outperforming the supervised model on clean inputs by a considerable margin.
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0.80 0.77 0.77 0.76 0.77 0.78 0.62 0.78 0.79 0.78

0.79 0.76 0.78 0.77 0.76 0.77 0.78 0.64 0.78 0.77

0.77 0.77 0.79 0.79 0.80 0.80 0.79 0.78 0.65 0.77

0.79 0.74 0.79 0.78 0.79 0.78 0.78 0.77 0.77 0.61

SimCLR

0.2

0.3

0.4

0.5

0.6

0.7
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Average distance between instances of classes

(b) Self-Supervised

Fig. 3: tSNE Visualization of representation space and average inter- and intra- class
distances for CIFAR-10 instance pairs obtained with (a) Supervised and (b) Self-
Supervised model trained with contrastive loss. Average ratio of inter-class distances
relative to intra-class distances is much lower for the Self-Supervised model (1.19×)
than for Supervised (1.98×), which leads to lower adversarial susceptibility.

Pre-Training FGSM-ℓ∞ PGD-ℓ2 PGD-ℓ1
ϵ = 0 ϵ = 8/255 ϵ = 16/255 ϵ = 0.1 ϵ = 0.25 ϵ = 8.0

CIFAR-10

Supervised (Cross entropy) 95.4 26.0 ↓73% 20.1 ↓79% 31.2↓67% 15.7↓84% 16.5↓83%

Supervised (Contrastive) 95.5 38.8 ↓59% 31.8 ↓67% 34.2↓64% 18.4↓81% 20.7↓78%

Self-Supervised (Contrastive) 92.7 26.8 ↓71% 13.4 ↓86% 20.9↓77% 8.3↓91% 11.5↓88%

CIFAR-100

Supervised (Cross entropy) 74.9 14.3 ↓81% 8.4 ↓89% 23.1 ↓69% 11.5↓85% 12.1↓84%

Supervised (Contrastive) 76.3 12.6 ↓83% 6.7 ↓91% 21.9 ↓71% 9.2 ↓88% 13.4↓82%

Self-Supervised (Contrastive) 68.9 9.40 ↓87% 3.0 ↓96% 13.7 ↓80% 4.4 ↓94% 6.8↓90%

Table 3: Supervised and self-supervised CIFAR models are trained with similar training
setups (see the supplementary material for details) and their robustness is compared for
FGSM (ℓ∞) and PGD attack variants (ℓ1 & ℓ2). Results averaged over 5 training runs.

4.3 Supervised contrastive learning

In the experiments so far, we established higher sensitivity of pre-trained self-
supervised models. These models may be trained with slightly different codebases
that use different augmentations. Hence, here we further analyse the scenario
of in-house model training where a comparison is conducted with contrastive
loss-based supervised counterparts induced under the same codebase. We perform
controlled experiments with supervised contrastive learning [35] using CIFAR-10
and CIFAR-100 datasets. Our experiments use the same data augmentation
strategy for all models, with a minor difference of using weaker color jittering for
the supervised cross-entropy model, as suggested by [9]. Results of our experiments
are summarized in Table 3, which suggest that supervised models with contrastive
loss are still more resilient to adversarial manipulation as compared to their
self-supervised counterparts. In Fig. 3, we provide tSNE visualisation of the
representations for supervised and self-supervised CIFAR-10 models learned
under the contrastive loss in Table 3. Clearly, the supervised model is able to
separate the features better than the self-supervised model. This observation
is inline with our analytical analysis that shows uniform representations in
self-supervised contrastive learning renders the model more sensitive to input
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perturbations. We also provide analysis of inter- and intra-class margins of the
two types of models in the supplementary material to further elaborate on this.

5 False Negative Removal Reduces Susceptibility

We have thoroughly established that self-supervised contrastive learning is more
sensitive to adversarial inputs than supervised learning. Our analytical analysis
in Section 3 points to the presence of false negative instances in the training
data as the major cause of this higher sensitivity. Thus, detecting and removing
those can potentially improve the model robustness. However, identifying those
instances is not straightforward in the absence of label information. Our further
analytical treatment of the problem reveals that self-supervised contrastive
learning process itself can be helpful to address the issue. According to Lemma 5.1,
self-supervised contrastive learning forces the model to gradually improve for
the true positive samples despite the presence of false negatives in the training
data. This observation can be leveraged to identify and remove the suspected
false negatives during model training.

Lemma 5.1: Under contrastive loss of Eq. (1), encoder representation f(.)
improves for (u, v) ∼ ppos to converge despite encountering ‘m’ u−false ∈ {u−i }Ni=1,
where m<N/e.

Proof: Given a reasonable model state for which f(u) ̸⊥ f(v), f(u)⊺f(v) >
0 ∀(u, v) ∼ ppos. Ignoring the temperature parameter, we get ef(u)

⊺f(v) ∈ (1, e],
because false positives are not possible under self-supervised constrastive learning
strategy. In this case, the lower bound on L for convergence in Eq. (1) is given by
LLB = − log( 1

1+N/e ). This is achievable when f(u) ∥ f(v) and f(u−i ) ⊥ f(v),∀i.
Assuming ‘m’ false negatives in data for a practical state where f(u) ̸∥ f(v), the
model must assert the following to achieve convergence: e

e+N = ρ
(m+1)ρ+N−m ,

where ρ = ef(u)
⊺f(v). Simplifying, we get f(u)⊺f(v) = ln e(N−m)

N−em = δassert. For
LLB, δtarget = ln e = 1, resulting in δassert > δtarget under the validity condition
em < N . Given ‘u’ and ‘v’ are fixed for δassert, reducing the loss value for
convergence is only possible by improving f(.) for ppos even in the presence of
m ∈ [1, N/e) false negatives u−false ∈ {u−i }Ni=1. QED.

As per Lemma 5.1, a converging training process (wherein L gradually reduces)
identifies an improvement of model representation for the true positives despite a
few false negatives in the mini-batch. By definition, false negatives must correlate
strongly to the true positives. Hence, we can decide on a suspect false negative by
measuring the cosine distance between a sample’s representation to that of the
anchor in our mini-batch. In every epoch, we remove ‘k’ potential false negatives
with the largest distances, where we adjust k dynamically following the intuition
from Lemma 5.1.

Our dynamic false negative removal methodology, which is inspired by the
learning objective itself, must account for two concerns. Namely, if we are too
aggressive in instance removal, we may also accidentally remove true negatives.
On the other hand, if we are not aggressive enough, we may miss removing
actual false negatives. Since it is not possible to know the rate of instance
removal a priori, we devise two strategies which approach the problem from the
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Attacks → FGSM-ℓ∞ AutoAttack-ℓ∞
Pre-Training ϵ = 0 ϵ = 8/255 ϵ = 16/255 ϵ = 1/255 ϵ = 2/255

Supervised Contrastive 95.5 38.8 ↓59% 31.8 ↓67% 24.3 ↓74% 11.5 ↓88%

Self-Supervised Contrastive 92.7 26.8 ↓71% 13.4 ↓86% 13.7 ↓85% 4.3 ↓95%

SimCLR + Static False Negative Removal

Frequency Prior 93.1 30.1 ↓68% ↑25% 21.3 ↓77% ↑53% 17.4 ↓81% ↑25% 7.5 ↓92% ↑43%

Clustering based Psuedo-Labeling 92.8 28.9 ↓69% ↑18% 18.7 ↓80% ↑32% 18.1 ↓80% ↑18% 7.8 ↓91% ↑57%

SimCLR + Dynamic False Negative Removal

Precision strategy 93.5 33.6 ↓64% ↑58% 24.9 ↓73% ↑68% 19.3 ↓79% ↑57% 8.7 ↓90% ↑72%

Recall strategy 91.5 31.3 ↓66% ↑42% 21.6 ↓76% ↑53% 19.1 ↓79% ↑55% 8.6 ↓90% ↑70%

Table 4: Robustness improvement with false negative removal. Top-1 accuracy under
FGSM attack and AutoAttack for CIFAR-10 models. The first two rows provide results
without false negative removal. Drop in accuracy under attack is reported in ↓red,
percentage of gap closed w.r.t. supervised contrastive learning is indicated in ↑green.

opposite sides. Based on principles they follow we term them ‘precision’ and
‘recall’ strategies.
Precision strategy (dynamic) is conservative, and only starts removing po-
tential false negatives once the quality of model improves considerably. The k
nearest instances in feature space are removed as potential false negatives while
computing the contrastive loss. After every ‘N ’ epochs, we sets k = k + 1, where
k = 0 at initialization.
Recall strategy (dynamic) starts off by removing half of the samples closest
to the anchor and slowly decreases the size of the removed set by Batch-size/R
after every ‘N ’ epochs. This strategy prioritizes removing false negatives even
at the cost of inadvertently removing true negatives. Hence, we termed it recall
strategy.

Both precision and recall are dynamic false negative removal strategies. Apart
from these, we also analyze two simpler static strategies, which provide a baseline
for our results in Table 4. These methods are described below.
Frequency prior (static): We remove a fixed fraction of negative instances
from the mini-batch. These instances are sorted based on the cosine distance
of their representation with the anchor. So, the removed samples are likely to
include false negatives. While this improves the results over the SimCLR baseline
- see Table 4, here B

C samples per mini-batch are removed, where B is the batch
size and C is the number of classes in the dataset. Its key weakness is that it
requires a priori knowledge of class sample frequencies for optimal performance.
This makes the method less pragmatic.
Clustering-based (static): This is a two-stage process where we first learn
a model using SimCLR. Then, in the second stage, we perform supervised
contrastive learning using pseudo-labels obtained by clustering the training data
using features from the first stage model. The cluster labels are used to ensure
that we do not encounter false negatives in the second stage.

In the above, ‘frequency prior’ performs a constant thresholding, disregarding
the suspect false negative proportion or model quality. The ‘pseudo labelling’
method is computationally expensive as it requires an additional round of train-
ing. Hence, both these methods are less desirable than our dynamic strategy.
Nevertheless, they provide informative experimental baselines as naive techniques.
We set hyperparameters using cross-validation. For the precision strategy, we set
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N = 100. For the recall strategy, N = 75 and R = 16 give the best results. For
the static psuedo-labelling, we set K = 20 clusters.

Results for the best set of hyperparameters are averaged over 5 training
runs for each strategy and summarized in Table 4. The first two rows are
provided for reference, as they do not employ false negative removal. From
the table, the dynamic methods are more successful, with precision strategy
achieving a considerable gain in the robustness, bringing the self-supervised
model performance closer to the supervised model performance. The robustness
improvement achieved here is without any adversarial training and minimal
additional overhead.

6 Enhancing Adversarial Contrastive Learning
Adversarial learning is a widely adopted paradigm for robustifying models against
adversarial attacks in the supervised learning domain [3]. We demonstrate that
our technique in Section 5 can readily augment adversarial learning in the CSL
domain. To that end, we enhance the popular Robust Contrastive Learning
(RoCL) [37] and Adversarial Contrastive Learning (ACL) [33] methods with
our technique. Here, it is also pertinent to mention that referring to [37], [5],
[7], Hendrycks et al. [29] alluded to the idea that self-supervision can help in
adversarial robustness. This proposition has never been tested though. Our
findings provide evidence against this idea. This makes our contribution towards
the enhancement of adversarial contrastive learning even more relevant. Below,
we provide details of enhancing the RoCL method with our technique. Discussion
on the ACL enhancement is provided in the supplementary material.

In general, adversarial learning solves the following (non-convex) min-max
optimization problem:

argmin
θ

E
(v,ℓ)∼porg

[
max

ρ∈B(v,ϵ)
L(θ, v + ρ, ℓ)

]
, (4)

where ℓ is the label used to generate ρ within the ℓ∞-ball B(v, ϵ) of radius ϵ. The
requirement of apriori knowledge of ℓ in Eq. (4) makes this formulation inap-
plicable to the self-supervised learning paradigm. Hence, [37] adopts a different
formulation. In our settings, we can re-write the RoCL problem as

argmin
θ

E
v∼porg

[
max

ρ∈B(u,ϵ)
L

con,θ

(
u+ ρ, {ũ}, {u−i }

N
i=1

)]
. (5)

The notation in the above equation is described as part of the discussion below.
In Eq. (5), L

con,θ
is a more generalized form of the contrastive loss presented

in Eq. (1). We refer to [37] for the exact analytical expression. Here, it is relevant
to understand that the inner maximisation objective in Eq. (5) sees a sample
as ‘adversarial’ if it increases the contrastive loss. This removes the need of
sample labels in computing the adversarial examples (in contrast to Eq. 4).
However, the considered contrastive loss must be defined over a set of N negative
samples, along the perturbed positive sample (u+ ρ) and a set of other positive
samples ({ũ}) that are formed by transforming the anchor. Not only that, the
outer minimization problem must again be solved with the help of contrastive
self-supervised learning, which relies on negative instances, along other factors.
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Pre-Training PGD-ℓ∞ PGD-ℓ2 PGD-ℓ1 AutoAttack-ℓ∞

ϵ = 0 ϵ = 8
255

ϵ = 16
255

ϵ = 0.25 ϵ = 12 ϵ = 8
255

ϵ = 16
255

Supervised 95.5 0.0 0.0 24.8 25.4 0.0 0.0

Self-Supervised 92.7 0.0 0.0 17.1 21.1 0.0 0.0

RoCL [37] 86.0 43.6 11.4 70.9 80.0 40.8 11.2

Ours (A-RoCL-static) 87.5 44.8 ↑2.8% 12.9 ↑13.2% 72.3 ↑3.4% 80.9 ↑1.1% 42.3 ↑3.7% 11.9 ↑6.3%

Ours (A-RoCL-dynamic) 87.9 45.9 ↑5.3% 13.2 ↑15.8% 72.8 ↑2.7% 82.1 ↑2.6% 43.1 ↑5.6% 12.1 ↑8.0%

ACL [37] 86.2 41.2 12.1 72.3 80.7 39.8 10.2

Ours (A-ACL-static) 87.5 42.1 ↑2.2% 13.1 ↑8.3% 75.3 ↑4.1% 83.4 ↑3.3% 41.0 ↑2.9% 10.7 ↑4.7%

Ours (A-ACL-dynamic) 87.9 42.5 ↑3.1% 13.2 ↑9.5% 75.9 ↑5.0% 83.5 ↑3.5% 41.3 ↑3.7% 10.8 ↑5.5%

Table 5: Top-1 accuracy of adversarially trained CIFAR-10 models under PGD attack
and AutoAttack. Attack strength ϵ is expressed in terms of ℓ∞, ℓ2 and ℓ1 norms. The
first two rows provide results without adversarial training. Robust models are trained
with PGD ℓ∞ adversary. Percentage performance gain of our false negative removal
augmented methods over adversarially trained RoCL (median gain across attacks 5.5%)
and ACL (median gain 4.4%) is in ↑green .

It does not require sophisticated analytical analysis to conclude that a corrupt
set of negative instances {u−i }Ni=1 in Eq. (5) can have pronounced adverse effects
on RoCL due to the multi-fold dependence of the optimisation problem on those
instances. To mitigate that, we alter the optimisation problem of RoCL to:

argmin
θ

E
v∼porg

[
max

ρ∈B(u,ϵ)
L

con,θ

(
u+ρ, {ũ}, {φ(u−i )}

N
i=1

)]
, (6)

where φ(.) is a false negative replacement function. It removes the suspect false
negatives using a strategy discussed in the previous section, and replaces them
with other negative samples from the training data. We solve Eq. (6) with a
variant of RoCL algorithm [37] that we devise and refer to as Augmented-RoCL
(A-RoCL). The key difference between RoCL and A-RoCL is the additional false
negative sample replacement step that we introduce to incorporate our findings.
We provide complete details of A-RoCL training method in Section D of the
supplementary material, where we also discuss the Augmented-ACL (A-ACL).

To evaluate the performance gain achieved by A-RoCL and A-ACL, we mainly
followed [37] and performed adversarial training with PGD ℓ∞-norm bounded
adversary. The model robustness is evaluated for ℓ∞, ℓ1, ℓ2 PGD. Additionally,
we also evaluate the performance on ℓ∞ AutoAttack for the CIFAR-10 dataset.
Our results are averaged over 5 training runs and are summarized in Table 5.
A-RoCL-static and A-ACL-static use ‘frequency prior’ for negative instance
removal, whereas A-RoCL-dynamic and A-ACL-dynamic uses the ‘precision’
strategy. These are the best performing strategies from their respective categories.
As can be seen, A-RoCL and A-ACL consistently improve performance gain over
RoCL [37] and AC [33].

7 Conclusion

We presented the first systematic evidence of higher sensitivity of contrastive self-
supervised learning models to adversarial attacks. We analytically established the
presence of false negative pairs during CSL training as the major contributor to
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the adversarial susceptibility of these models due to the property of ‘uniformity’.
Our analysis is supported by extensive empirical evidence, which we provided for
image and video classification tasks. We also devised simple yet effective strategies
to intrinsically improve the adversarial robustness of contrastive self-supervised
learning. Finally, we showed that these strategies can also help in improving
state-of-the-art adversarial contrastive learning approaches.

A Overview

This supplementary material is organized into 8 sections. Firstly, Section B
provides necessary implementation details and attribution for existing assets used
in our experiments. Section C provides the raw numberical results for experiments
with natural corruptions of ImageNet-C data. These results are the same as
plotted in Figure 2 of the main paper. Section D.1 and Section D.2 provide the
modified algorithm for ARoCL and AACL training respectively. Sections E and F
provide additional experimental results which were excluded from the main paper.
This includes detailed results for adversarial robustness of video classification
models under additional attacks such as PGD and AutoAttack and robustness of
our dynamic false negative removal technique under PGD attack (FGSM and
AutoAttack results were included in the main paper). Section G provides an
empirical comparison of the inter- and intra- class margin between self-supervised
and supervised contrastive models. Section H details our hypothesis exploring
the similarities between SwAV and Contrastive Pre-Training in terms of feature
space uniformity.

B Implementation Details

B.1 Resources Used

All experiments are performed using an internal slurm cluster with 4x Quadro
RTX 6000 GPUs (24GB VRAM each) and 16 CPU cores along with 64 GigaBytes
of memory. The resource constraints primarily apply to the self-supervised training
experiments and other experiments can be done with fewer resources. PyTorch
1.9 was used for all experiments.

B.2 ImageNet Experiments

The pretrained model weights are chosen from the following repositories:
SimCLR: https://github.com/google-research/simclr
SwAV: https://github.com/facebookresearch/swav

FGSM and PGD attacks are used to test the adversarial robustness of Ima-
geNet Models. FGSM attack results are verified through two different implemen-
tations (Foolbox library and authors’ implementation). Attack magnitudes are
specified in the respective tables.

ImageNet-C experiments only utilize a subset of the dataset for which the
distortion strength was 1 (on a scale of 1-5). The dataset can be obtained from
the authors at: https://github.com/hendrycks/robustness

https://github.com/google-research/simclr
https://github.com/facebookresearch/swav
https://github.com/hendrycks/robustness
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B.3 CIFAR Experiments

This section provides the implementation details necessary for reproducing the
results in Table 4 of the main paper. These are controlled experiments on CIFAR-
10 and CIFAR-100 datasets performed for the purpose of isolating the effect of
Self-Supervised and Supervised training on adversarial robustness.

For implementing our contrastive learning experiments, we build upon the code
from the authors of SCL [36] (https://github.com/HobbitLong/SupContrast),
and implement the adversarial attacks and our false negative removal strategies.
The models are trained with a batch size of 1024. The contrastive models are
trained for 1000 epochs, whereas the cross-entropy based model is trained for
500 epochs. Cosine annealing learning rate scheduler with a peak learning rate
of 1.0 and warmup is used in both cases. For each type of model, 20 different
training runs are carried out and the results are averaged across them in order
to reduce the effect of random run-to-run variance.

Data Splits: We use the standard Test (10,000)/Train (40,000) split for the
CIFAR datasets as provided by Torchvision datasets submodule.

Image Augmentations: We design our augmentation pipeline using trans-
formation operations from the torchvision.transforms library. Both spatial
(Random Cropping and Flipping) and Colorimetric transforms (Color jitter-
ing and dropping) are used. As suggested by SimCLR [8] we utilize stronger
augmentations for training the contrastive models.

The specific augmentation pipeline used in each case are as follows:
Contrastive Models:

RandomResizedCrop(size=32,scale=(.2,1.)),

RandomHorizontalFlip(),

RandomApply([ColorJitter(0.4,0.4,0.4,0.1)],p=0.8),

RandomGrayscale(p=0.2),

ToTensor(),

Normalize(mean=mean,std=std)

Cross-Entropy Models:

RandomResizedCrop(size=32,scale=(.2,1.)),

RandomHorizontalFlip(),

RandomApply([ColorJitter(0.1,0.1,0.1,0.05)],p=0.8),

RandomGrayscale(p=0.2),

ToTensor(),

Normalize(mean=mean,std=std)

B.4 Datasets and other assets

CIFAR Datasets by Alex Krizhevsky et al. [38], ImageNet by Jia Deng et al. [17]
and ImageNet-C by Dan Hendrycks et al. [28] were originally collected from
across the internet, and the copyright for the individual images rests with the

https://github.com/HobbitLong/SupContrast
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original owner. They are used only for research purposes and are not redistributed
by us. They can be obtained from the original authors at:

CIFAR: https://www.cs.toronto.edu/ kriz/cifar.html
ImageNet: https://www.image-net.org/download.php
Pre-Trained models for UCF-101 Action Recognition were obtained from

the authors of TCLR [16] can be requested directly from them for reproducing
the results.

C Robustness to Natural Image Corruptions

In Section 5.1 of the main paper, we utilize the Imagenet-C [28] dataset to evaluate
the robustness of self-supervised and supervised ImageNet classifiers on common
natural corruptions and perturbations. ImageNet-C contains full sized images
for all 1,000 ImageNet classes, with natural corruptions such as noise, digital
transformations, blurring and simulated rough weather. For each corruption,
there are 5 different strength levels. Since the models being evaluated are not
adversarially trained, we only use corruptions of strength 1. The self-supervised
models (with contrastive loss) are significantly less robust over a broad range of
distortion types, including noise, digital effects, blurring and simulated weather
distortions. Table 6 in this document reports the accuracies and performance
drop for the supervised, SimCLR [8] and SwAV [6] models used in the main
paper. Each row entry in this table corresponds to a point in Figure 2 of the
main paper (pg. 5).

D Augmented Robust Self-Supervised Contrastive
Learning Algorithms

In Section 7 of the main paper, we propose two different Augmented Robust
Self-Supervised Contrastive Learning Algorithms based on our finding about the
effect of False Negative Pairs during training. As compared to the original algo-
rithms [37], [33] that we build on, the proposed algorithms expect an additional
input, i.e. the false negative replacement function φ(.). As noted in the main
paper, we can implement this functions as ‘static’ or ‘dynamic’ strategies (Section
6 of the paper). The major difference between RoCL and ARoCL (and ACL
and AACL) is the application of φ(.) to the negative examples. Since we have
established false negatives as the main source of excess adversarial susceptibility,
simply improving the set of negative examples improves the performance of
robust contrastive learning.

D.1 Augmented-RoCL

Augmented Robust Contrastive Learning (ARoCL) algorithm, which we develop
as an enhancement of the RoCL algorithm [37]. ARoCL is presented in Algorithm 1
below. In the presented algorithm, we follow the notational conventions from [37]
for the ease of understanding.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/download.php
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Type Supervised SimCLR SwAV

- 76.7 68.9 75.3

Noise

Impulse 49.2 ↓36% 37.2 ↓46% 35.3 ↓53%

Shot 59.7 ↓22% 51.5 ↓25% 60.4 ↓20%

Gaussian 61.8 ↓19% 53.5 ↓22% 61.9 ↓18%

Digital

Brightness 72.9 ↓5% 64.0 ↓7% 71.7 ↓5%

Contrast 63.8 ↓17% 60.7 ↓12% 67.8 ↓10%

Pixelate 64.9 ↓15% 57.1 ↓17% 65.8 ↓13%

Elastic 65.8 ↓14% 53.9 ↓22% 65.2 ↓13%

JPEG 65.4 ↓15% 54.1 ↓21% 61.1 ↓19%

Blur

Defocus 58.6 ↓24% 43.5 ↓37% 56.6 ↓25%

Motion 64.6 ↓16% 52.4 ↓24% 62.6 ↓17%

Glass 54.4 ↓29% 44.2 ↓36% 51.8 ↓31%

Zoom 52.9 ↓31% 34.8 ↓49% 47.9 ↓36%

Weather

Fog 61.1 ↓20% 44.2 ↓36% 59.1 ↓22%

Frost 60.2 ↓22% 52.0 ↓25% 58.4 ↓22%

Snow 53.3 ↓31% 41.8 ↓39% 47.2 ↓37%

Table 6: Robustness to simulated corruptions on ImageNet-C (top-1 accuracy). Per-
centage drop relative to clean accuracy is in red. The table corresponds to Figure 2 in
the main paper.

D.2 Augmented-ACL

Augmented Adversarial Contrastive Learning (ARoCL) algorithm uses a two
stream architecture in which we maintain separate batch-norm layers for the
adversarial and clean data. This technique is an enhancement of the ACL al-
gorithm [33]. AACL is detailed in Algorithm 2 below. We closely follow the
notational conventions from [33] for the ease of understanding, but some changes
have been made for consistency.

E Additional Attacks on Video Classification

In Section 5.2 of the main paper, we have shown that supervised action recognition
models are more robust than self-supervised models under the FGSM attack [24].
In this section, we demonstrate that this is also true for the case of stronger PGD
attack [40]. Results for 4-step ℓ∞ PGD and AutoAttack attacks are presented in
Table 7 of this document. The table corresponds to Table 3 in the main paper
(that uses FGSM attack). As can be seen, for small values of ϵ, the reduction
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Algorithm 1 Augmented Robust Contrastive Learning (ARoCL)

Require: Dataset D, model parameters θ, model f , parameter of projector π, projector
g, constant λ, replacement function φ(.)

Learn: model parameters θ, parameter of projector π ▷ Replacement function φ(.)
removes False Negatives

1: for all iter ∈ number of training iteration do
2: for all x ∈ minibatch x = {x1, . . . , xm} do
3: Generate adversarial examples from transformed inputs ▷ RoCL uses

instance-wise attacks

t(x)i+1 = ΠB(t(x),ϵ)(t(x)
i + αsign(∇t(x)iLcon,θ,π(t(x)

i, {t′(x)}, φ(t(x)neg))))

4: end for
5: Compute total loss:

Ltotal =
1

N

N∑
k=1

[LRoCL,θ,π + λLcon,θ,π(t(x)
adv
k , {t′(x)k}, {φ(t(x)neg}))]

6: Optimize weights θ, π over Ltotal

7: end for

PGD AutoAttack

Pre-Training ϵ = 0 ϵ = 1/255 ϵ = 2/255 ϵ = 1/255

Supervised 59.4 15.6 ↓74% 5.2 ↓91% 12.6 ↓79%

TCLR [16] 75.5 6.30 ↓92% 3.1 ↓96% 4.00 ↓95%

CVRL [45] 60.2 4.70 ↓92% 1.9 ↓97% 3.70 ↓94%

Table 7: Top-1 accuracy for UCF101 video classification under 4-step PGD attack and
AutoAttack. Perturbation scaling ϵ varies from 0 to 2 for 8-bit videos. Percentage drop
relative to clean data accuracy is given in ↓red.

in the accuracy of supervised method is much less than that of self-supervised
models. Note that we are interested in relative susceptibility of the models. Since
PGD is a very strong attack that can easily fool even supervised models, we
operate in the lower range of ϵ values to demonstrate the relative susceptibility
of the models.

F Robustness of Dynamic False negative removal under
PGD Attack

In the main paper, we demonstrate that false negative removal is, to an extent,
successful at mitigating the lack of robustness in self-supervised contrastive
models. Those results were based on FGSM attack and AutoAttack. Here, we
demonstrate that this observation is also true in the case of the stronger PGD
attack. Results for 4-step ℓ∞ PGD attack are presented in Table 8. Note that, here
we are only concerned with the dynamic strategies for False Negative removal.
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Algorithm 2 Augmented Adversarial Contrastive Learning (AACL)

Require: Dataset D; Transforms T ; Network backbone f , projection head g; replace-
ment function φ(.);

Learn: Standard BN parameters θbn; Adversarial branch BN parameters θbnadv ; All
parameters θ in f and g;

1: for all iter ∈ number of training iteration do
2: for all minibatch x = {x1, . . . , xm} do
3: Sample augmentations from T to form (x̃i, x̃j) from x. ▷ Replacement

function φ(.) removes False Negatives
4: Generate the corresponding adversarial mini-batch (x̃i + δi, x̃j + δj) with

δi, δj = argmax
∥δi∥∞≤ϵ,∥δj∥∞≤ϵ

ℓNT (f ◦ g(φ(x̃i) + δi, φ(x̃j) + δj ;θ,θbnadv))

5: Compute total losses with adversarial and clean examples:

Lclean = LNT−XENT (f ◦ g(φ(x̃i), φ(x̃j);θ,θbn))

Ladversarial = LNT−XENT (f ◦ g(φ(x̃i) + δi, φ(x̃j) + δj ;θ,θbnadv))

Ltotal = Lclean + αLadversarial

6: Update parameters (θbn, θbnadv , θ) to minimize Ltotal.
7: end for
8: end for

G Discussion of Inter- and intra-class margins

As discussed in Section 5.3 of the main paper, here we provide numerical evidence
that inter- and intra-class difference between supervised and self-supervised
contrastive models explains the difference in the robustness of these models.
We provide heatmaps for SimCLR (self-supervised) and supervised contrastive
learning model in Figure 3 of the main paper. The heatmaps show average
distances between instances of each class-pair. We provide the heatmaps on
the same color scale. The diagonal terms correspond to the intra-class margins,
whereas the off-diagonal terms are the inter-class margins. For SimCLR, the
inter- and intra-class margins are very similar (avg ratio of inter upon intra class
margin is 1.19), whereas for the Supervised Contrastive model, the inter-class
margins are much higher than the intra-class margins (avg ratio of inter upon
intra class margin is 1.98). As a result the supervised models are much more
adversarially robust.

H Discussion of SwAV and feature space uniformity

Even though SwAV is not a pure “contrastive” learning method in that it does
not utilize a contrastive loss, nevertheless due to its design it possess the uni-
formity property which makes it vulnerable to adversarial attacks in a similar
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Pre-Training ϵ = 0 ϵ = 1/255 ϵ = 4/255

Supervised Contrastive 95.5 29.5 ↓69% 16.3 ↓83%

Self-Supervised Contrastive (SimCLR) 92.7 20.1 ↓78% 9.60 ↓90%

SimCLR + Dynamic False Negative Removal

precision strategy 93.5 26.1 ↓72% 11.9 ↓87%

recall strategy 91.5 24.9 ↓73% 11.0 ↓76%

Table 8: Further results for robustness improvement with dynamic false negative
removal strategies proposed in the main paper. Top-1 accuracy under 4-step PGD
attack (attack strength ϵ expressed in terms of ℓ∞ norm) is reported for CIFAR-10
models. The first two rows provide baseline results without false negative removal. FGSM
and AutoAttack Results are in the main paper.

way as contrastive attacks. Both SwAV and SimCLR rely on generating positive
pairs through data augmentation. While SimCLR loss directly operates on the
features/representation generated by the CNN, SwAV utilizes an online cluster-
ing algorithm to generate “codes” using learned prototypes. SimCLR enforces
the alignment property by forcing the features for positive pairs to be similar,
whereas SwAV relies on a “swapped” prediction problem, i.e. predicting the “codes”
obtained from one augmented view using the other view. On the other hand,
while SimCLR enforces uniformity by simply treating each instance as a negative
pair for the anchor in the contrastive loss, SwAV requires a different strategy.

The two key components of SwAV enforcing uniformity in the feature space are
the equipartition constraint and entropy regularization. Since SwAV operates on
“codes” assigned using an online clustering algorithm, the equipartition constraint
enforces that on average each prototype is selected at least Batch Size

Number of prototypes

times in each minibatch. This means that in a given minibatch the instances are
assigned uniformly across the prototypes on average.

Mathematically the SwAV code assignment step is represented as the following
optimization:

max
Q∈Q

Tr
(
Q⊤C⊤Z

)
+ εH(Q), (7)

Here we have a mini-batch of B feature vectors Z = [z1, . . . , zB], and the
optimization is mapping them to prototypes C = [c1, . . . , cK ]. The mapping is
represented by Q = [q1, . . . ,qB ], where Q is optimized to maximize the similarity
between the features and the prototypes. Here H is the entropy regularization
function, H(Q) = −

∑
ij Qij logQij , which can be adjusted through ε which

controls the smoothness of the mapping. A higher ε means instances are more
uniformly assigned to different prototypes.

Mathematically, the equipartition constraint can be represented as:

Q =

{
Q ∈ RK×B

+ | Q1B =
1

K
1K ,Q

⊤1K =
1

B
1B

}
, (8)
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Here 1K denotes the K-dimensional vector of ones. This constraint enforces
that on average each prototype is selected at least B

K times in the batch.
Working in tandem, the equipartition constraint and entropy regularization

ensure that instances are well distributed across the representation hypersphere,
which prevents tight clustering of classes which is possible with supervised learning.
In the limit where number of prototypes used in SwAV is equal to number of
instances in the dataset, SwAV will be equivalent to SimCLR.
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