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ABSTRACT

Most existing graph diffusion models have significant bias problems. We observe
that the forward diffusion’s maximum perturbation distribution in most models de-
viates from the standard Gaussian distribution, while reverse sampling consistently
starts from a standard Gaussian distribution, which results in a reverse-starting
bias. Together with the inherent exposure bias of diffusion models, this results in
degraded generation quality. This paper proposes a comprehensive approach to
mitigate both biases. To mitigate reverse-starting bias, we employ a newly designed
Langevin sampling algorithm to align with the forward maximum perturbation
distribution, establishing a new reverse-starting point. To address the exposure
bias, we introduce a score correction mechanism based on a newly defined score
difference. Our approach, which requires no network modifications, is validated
across multiple models, datasets, and tasks, achieving state-of-the-art results.

1 INTRODUCTION

In recent years, graph diffusion models have made significant progress. GDSS (Jo et al., 2022)
introduced the score-based diffusion model to the graph generative task, demonstrating remarkable
results and outperforming existing baselines. This was followed by the development of more advanced
graph diffusion models such as MOOD (Lee et al., 2023), GSDM (Luo et al., 2024), and HGDM (Wen
et al., 2024). Due to the constraints imposed by the scale of graph data and the learning capacity of the
networks, these models truncate the forward diffusion process to improve performance, preventing it
from fully reaching the standard Gaussian distribution. However, in reverse sampling, they typically
start from a standard Gaussian distribution without employing any specific strategy. We identify this
mismatch as a critical bias issue. In addition, graph diffusion models also suffer from exposure bias,
and we are working on addressing both of these challenges.

Diffusion models (Ho et al., 2020; Song et al., 2021) consist of a forward noising and a reverse
denoising process. In the forward process, the data is gradually corrupted by noise over multiple
steps. This process can be divided into four stages with the reduction of the signal-to-noise ratio: (1)
the data distribution, (2) the low-noise stage, (3) the high-noise stage, and (4) the standard Gaussian.

Reverse-Starting Bias. Ideally, the forward process gradually perturbs the data to the standard
Gaussian, while the reverse process starts from the standard Gaussian and gradually recovers clean
data. However, in graph learning, due to limitations in data scale and the network’s learning ability,
it is difficult to accurately predict scores from the high-noise state or the standard Gaussian. This
constrains the forward perturbation to follow a conservative strategy, where the maximum perturbation
distribution deviates significantly from the standard Gaussian (Jo et al., 2022; Luo et al., 2024; Wen
et al., 2024). Yet, the reverse-starting point remains the standard Gaussian in sampling, resulting in a
severe reverse-starting bias as shown in Fig. 1, which significantly affects the generation quality.

Exposure Bias. During the forward process, the model generates a noisy sample xt based on a clean
sample by adding noise. During the reverse process, the model starts from the standard Gaussian
and iteratively denoises to obtain the predicted sample x̂t using the score network. Due to the
prediction error of the score network, this leads to exposure bias: a mismatch between xt in the
forward diffusing and x̂t in sampling. This bias accumulates and propagates as sampling progresses,
ultimately affecting the quality of the generated samples. Naturally, the most direct approach to
address exposure bias is to reduce the prediction errors of the score network.
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Model GDSS GSDM HGDM MOOD

Dataset Comm. Enz QM9 ZINC250k

Type Edge Eigen Edge Node

SDE VPSDE VPSDE VESDE VPSDE

βmin|σmin 0.1 0.1 0.1 0.1

βmax|σmax 1.0 1.0 1.0 1.0

uT 0.7596 0.7596 1.0 0.7596

σ2
T 0.4231 0.4231 1.0 0.4231

(a) Reverse-starting bias

time step

(b) Baseline model-GDSS

time step

(c) Our approach GDSS-S++

Figure 1: (a) According to the diffusion equation, we write the perturbation distribution as
q(xt|x0) = N

(
xt|utx0, σ

2
t I
)
.The maximum perturbation distribution in the forward diffusing

is N
(
xT |uTx0, σ

2
T I
)
, but the reverse-starting point always follows N (xT |0, I), leading to signifi-

cant inconsistencies between forward diffusing and reverse sampling. In particular, we observe that
xT of different baselines are in the low-noise state since their signal-to-noise ratios are always greater
than one. More details are provided in Appendix A. (b) and (c) Expectation of ∥sθ,t(·)∥2 during
sampling (without the corrector) and training on Community-small. Due to the reverse-starting bias,
there is a significant difference between forward diffusing and reverse sampling in the early stages of
sampling in (b). However, after applying our approach, not only is the reverse-starting bias mitigated,
but the exposure bias during the sampling process is also significantly reduced.

Rather than exploring the two biases independently, this paper aims to analyze and mitigate these two
biases in graph diffusion models from a comprehensive perspective:

Q1: Is it possible to mitigate exposure bias while addressing reverse-starting bias? It originates
from a key finding: when xt is in the high-noise stage, the model is highly sensitive to the prediction
error of the score network, which means the prediction error at this stage can significantly affect
the generative quality. Conversely, when xt is in the low-noise state, the model is quite resistant
to the prediction error. Coincidentally, the forward maximum perturbation distribution of many
models are in the low-noise state as shown in Fig. 1(a). Thus, for a given score network sθ,t(·),
we use Langevin sampling (Song & Ermon, 2019) with sθ,T (·) to estimate the forward maximum
perturbation distribution q(xT |x0). It mitigates the reverse-starting bias, meanwhile, it pushes the
reverse-starting point towards the low-noise state, utilizing the model’s resistance to prediction error
to avoid exposure bias.

However, the prediction error of the score network severely affects the stable distribution of Langevin
sampling, forcing us to improve the prediction accuracy of the network, which is also beneficial for
mitigating exposure bias in the sampling process. In particular, we also focus on the cost of achieving:

Q2: How to correct scores without modifying the network or introducing other components?
The issue arises from a key situation: current graph diffusion models design different networks based
on various domains, such as spatial, spectral, and hyperbolic domains. Our goal is to seamlessly
integrate our correction method into these models without modifying the network architecture or
model parameters. Additionally, we do not introduce any extra learner, such as a generator (Zheng
et al., 2023) or a discriminator (Kim et al., 2023). Instead, we aim to fully leverage the existing
diffusion model to address its inherent bias issues. First, we use the pretrained score network to
generate a batch of samples. Second, we train a pseudo score network using these generated samples.
Third, we use the score difference between the two networks to correct the score.

In summary, the main contributions of this paper are as follows: (1) To the best of our knowledge, we
are the first to systematically address bias issues in graph diffusion models, effectively employing
Langevin sampling to mitigate reverse-starting bias while significantly mitigating exposure bias in
graph sampling. (2) We propose a score correction mechanism based on the score difference, and
provide a logical analysis that the corrected scores are closer to the true scores, further mitigating
reverse-starting bias and exposure bias. (3) Our approach does not require modifying the network or
introducing new components. It has been validated on different graph diffusion models, different
datasets, and different tasks, achieving state-of-the-art metrics.
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2 RELATED WORK

Diffusion models were first introduced by Sohl-Dickstein et al. (2015) and later improved by Ho
et al. (2020). Notably, Song et al. (2021) proposed a unified framework for diffusion models based
on stochastic differential equations, greatly advancing their development. GDSS (Jo et al., 2022)
was the first to introduce diffusion models to both nodes and edges of graphs. GSDM (Luo et al.,
2024) extended GDSS by introducing the diffusion process of adjacency matrices into the spectral
domain. HGDM (Wen et al., 2024) introduced node diffusion into hyperbolic space based on degree
distribution characteristics. MOOD (Lee et al., 2023) propose the molecular out-Of-distribution
diffusion to generate novel molecules with specific properties. Huang et al. (2023) proposed a
conditional diffusion model based on discrete graph structures. Furthermore, Xu et al. (2022)
proposed a graph diffusion model for predicting molecular conformations.

The signal leakage in image diffusion models is somewhat similar to the reverse-starting bias we
found in graph diffusion models. It was first identified by Lin et al. (2024), who modified the diffusion
noise schedule to ensure that the final time step in the forward process achieves a zero signal-to-noise
Ratio. Then, Everaert et al. (2024) estimated the actual maximum perturbation distribution in the
forward process as the reverse-starting point for sampling. The exposure bias of diffusion models was
initially discovered in ADM-IP (Ning et al., 2023), which proposed re-perturbing the perturbation
distribution to simulate exposure bias during sampling. EB-DDPM (Li & van der Schaar, 2023)
estimated the upper bound of cumulative errors and incorporated it as a regularization term to retrain
the model. MDSS (Ren et al., 2024) introduced a multi-step timed sampling strategy to mitigate
exposure bias. Notably, ADM-IP, EB-DDPM, and MDSS all require retraining the model. In contrast,
ADM-ES (Ning et al., 2024) proposed a noise scaling mechanism to mitigate exposure bias without
retraining, while TS-DPM (Li et al., 2024) only requires finding the optimal time points during
reverse sampling to match the forward process as closely as possible.

Our approach aims to effectively mitigate both reverse-starting bias and exposure bias without altering
the network architecture or incorporating additional components.

3 MOTIVATION

3.1 GRAPH DIFFUSION MODELS

Firstly, we define a graph with V nodes asG = (X,A), whereX ∈ RV×F represents node features,
with F indicating that each node has F features; A ∈ RV×V represents the weighted adjacency
matrix. Then, we formally represent the graph diffusion process as the trajectory of the random
variableG over time [0, T ]. The forward diffusion process is given by:

dGt = ft(Gt)dt+ gt(Gt)dw, G0 ∼ pdata, (1)

where ft(Gt) is the linear drift coefficient, gt(Gt) is the diffusion coefficient, w is the standard
Wiener process, andG0 is a graph from the true data distribution pdata. The stochastic differential
equation (SDE), Eq. (1), describes a forward diffusion process. Specifically, we replaceG in Eq. (1)
with nodeX or edgeA, representing the forward diffusion process of nodeX or edgeA, respectively.

Following GDSS (Jo et al., 2022), we separateX andA in the reverse diffusion:

dXt =
[
f1,t(Xt)− g21,t∇Xt

log pt(Xt,At)
]
dt̄+ g1,tdw̄1 ,

dAt =
[
f2,t(At)− g22,t∇At log pt(Xt,At)

]
dt̄+ g2,tdw̄2

(2)

where f1,t and f2,t satisfy ft(X,A) = (f1,t(X), f2,t(A)), representing the drift coefficients of the
reverse process forX andA respectively. g1,t and g2,t are the corresponding scalar diffusion coeffi-
cients, w̄1 and w̄2 are reverse-time Wiener processes in reverse diffusion, and ∇Xt

log p (Xt,At)
and ∇At

log p (Xt,At) represent the partial scores of the node and the edge, respectively. It’s worth
noting that two SDEs in Eq. (2) corresponds to the diffusion process ofX andA, respectively. We
will choose different types of SDEs for X and A based on actual conditions. For example, for
VPSDE (Variance-Preserving SDE) (Song et al., 2021), f1,t(Xt) = − 1

2βtXt, f2,t(At) = − 1
2βtAt,

g1,t = g2,t =
√
βt, βt = βmin + t(βmax − βmin), where βmax and βmin are hyperparameters.

Then, we use sθ,t(Gt) and sϕ,t(Gt) to estimate the partial scores ∇Xt
log p (Xt,At) and

∇At log p (Xt,At), respectively. Based on the idea of reverse denoising score matching, we derive
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(a) sθ̄,t(·) (b) sθ,t(·) (c) FCD metric

Figure 2: (a) and (b) The ℓ2 norm of the predictions from the two score networks at different time
steps. (c) The response of the predictions of the two score networks to perturbations at different time
steps in sampling.

sθ,t(Gt) ≈ ∇Xt
log p0t(Xt|X0) and sϕ,t(Gt) ≈ ∇At

log p0t(At|A0), and the loss is:

min
θ

Et

{
w1(t)EG0EGt|G0

∥∥sθ,t(Gt)−∇Xt log p0t(Xt|X0)
∥∥2
2

}
,

min
ϕ

Et

{
w2(t)EG0

EGt|G0

∥∥sϕ,t(Gt)−∇At
log p0t(At|A0)

∥∥2
2

} (3)

where w1(t) and w2(t) are positive weight functions, t is uniformly sampled in the range of [0, T ]. For
nodes, we have X0 ∼ p0(X), Xt ∼ p0t(Xt|X0), and similarly for edges, we have A0 ∼ p0(A),
At ∼ p0t(At|A0). Since f1,t and f2,t are affine, the transition kernels p0t(Xt|X0) and p0t(At|A0)
are always Gaussian distributions, and closed-form means and variances are obtained based on
standard techniques. For example, the node transition kernel in VPSDE (Song et al., 2021) is:

p0t(Xt|X0) = N
(
Xt|e−

1
4 t

2(βmax−βmin)− 1
2 tβminX0, I− Ie−

1
2 t

2(βmax−βmin)−tβmin

)
. (4)

For simplicity, the subsequent derivations focus onX in VPSDE, as the derivations for bothX and
A in VPSDE and VESDE (Variance Exploding SDE) are similar to those forX in VPSDE.

3.2 WHY BASELINE MODELS ARE TRUNCATED?

In this section, we use GDSS as the basic model and QM9 (Ramakrishnan et al., 2014) as the dataset
to demonstrate the reverse-starting bias and effectively validate our motivations. Specifically, we have
two score networks: the first is a pretrained network sθ,t(·) whose forward maximum perturbation is
far from reaching the standard Gaussian; the second is a network sθ̄,t(·) whose forward maximum
perturbation distribution is constrained to follow the standard Gaussian.

Figs. 2(a) and 2(b) show the ℓ2-norm distribution of the predictions of two score networks at different
timesteps. Taking Fig. 2(a) as an example, we obtain perturbed samples through forward noising
at each step, then use sθ̄,t(·) to predict the score and calculate the corresponding ℓ2-norm value.
We present the details of Fig. 2 in Appendix B. At time 0, the score ℓ2 norm of the ground-truth
X0 spans (0, 2500) approximately, demonstrating the diversity of the true data and its scores. As
the noise intensity increases, the range of the score ℓ2 norm narrows, eventually stabilizing within
(0, 10). The evolution of the score ℓ2 norm of perturbed samples at different time indicates that as
the distribution approaches the standard Gaussian distribution, the model becomes highly sensitive
to score changes. The tightened score ℓ2 norm implies that the slight perturbation in score during
the early sampling stage can significantly affect the generation quality. For Fig. 2(b), the evolution
pattern of sθ,t(·) is consistent with sθ̄,t(·), but since the maximum perturbation distribution of sθ,t(·)
is far from reaching the standard Gaussian, its score ℓ2 norm range is wider, indicating a higher
tolerance for score deviations.

Fig. 2(c) illustrates the response of the predictions of the two score networks to perturbations at
different time steps in sampling. Each point in Fig. 2(c) corresponds to a perturbation experi-
ment. The x-axis represents the addition of a standard Gaussian noise perturbation to the predicted
score at the current time, while the y-axis represents the final generation metric resulting from
that perturbation experiment (details in Appendix B). For sθ̄,t(·), at time 0, we start from standard
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Gaussian and perturb the predicted score at the current step. No perturbation is applied during
the subsequent sampling steps, leading to a poor generation metric. As the time step of the per-
turbation increases, the negative impact on generation quality diminishes and eventually stabilizes
after 200 steps. This evolution highlights how diffusion models are highly sensitive to accurate
scores during the early sampling stages, where deviations in the score can significantly degrade the
generated quality. For sθ,t(·), instead of starting from a standard Gaussian, we use samples from the
forward maximum perturbation distribution as the initial point to eliminate the reverse-starting bias.

Figure 3: Score correction based on the score dif-
ference. At the reverse-sampling time t, the opti-
mal score always points toX0. sθ,t(·) points to
γtX0 with some deviation (partially containing
X0), while sψ,t(·) points to γ′

tX0 with larger
deviation (containing littleX0). The difference
between predicted and pseudo scores guides the
predicted score towards the optimal score. We
use λ to control the angle and ω to adjust the
magnitude of the corrected score. The final
corrected score flexibly approaches the optimal
score within the dashed box.

Fig. 2(c) shows that diffusion models are highly
sensitive to score deviations in high-noise states,
while in low-noise states, their resistance to score
deviations significantly increases. Notably, this
provides us with two potential approaches for ad-
dressing the reverse-starting bias: sθ̄,t(·) suggests
retraining the model and constraining the forward
maximum perturbation distribution to follow a
standard Gaussian, while sθ,t(·) suggests explor-
ing a reverse-starting distribution aligned with the
forward maximum perturbation distribution dur-
ing sampling. We observe that the latter not only
mitigates the reverse-starting bias but also offers
greater tolerance to subsequent deviations.

4 METHODOLOGY

4.1 LANGEVIN SAMPLING

Langevin sampling is a key component of SDE-
based diffusion models. Given sufficiently small
step sizes and a large number of steps, Langevin
sampling can utilize the score function to obtain
samples from a probability distribution. Impor-
tantly, the prior distribution of Langevin sampling
can be consistent with that of the diffusion model,
typically a standard Gaussian distribution. More-
over, we already have a pretrained score network
sθ,T (·) ≈ ∇XT

log q(XT |X0). This score guides Langevin sampling (Song & Ermon, 2019) to
sample from the distribution p(X̂T ) ≈ q(XT |X0):

X̂T ← X̂T +
ηT
2
sθ(X̂T , T ) +

√
ηT ϵT (5)

where the subscript T represents the reverse-starting time. In the reverse-starting alignment stage,
we only use the score sθ,T (·) at time T . ηT represents the step size at time T , and ϵT is standard
Gaussian noise. After iterating Eq. (5) M times, we assume the distribution p(X̂T ) has transitioned
to a stable state. We refer to this stage as the reverse-starting alignment stage.

4.2 S++ BIAS CORRECTION METHOD

In theory, after Langevin sampling based on Eq. (5), X̂T almost follows the distribution
q(XT |X0). However, the pretrained score sθ,T (·) struggles to accurately learn the true score
∇XT

log q(XT |X0) = XT−
√
ᾱTX0

1−ᾱT
where ᾱt = 1 − βt,∀ t ∈ [0, T ]. We have to consider the

exposure bias. Without loss of generality, we consider the predicted score at any time with

sθ,t(X̂t) = −
X̂t −

√
ᾱtX̂0

1− ᾱt
. (6)

We can rewrite Eq. (6) as

X̂0 =
1√
ᾱt

(
X̂t + (1− ᾱt)sθ,t(X̂t)

)
= X̂0(X̂t,θ) . (7)
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Straightforwardly, it is challenging to predict X̂0 from X0 analytically. Following Zhang et al.
(2023), we model the estimate of X̂0 by

X̂0 = γtX0 + δtϵa (8)

where γt and δt are constants that reflect the similarity of X̂0 to X0 and ϵa, respectively, with
ϵa ∼ N (0, I). Consequently, for all j, k such that 0 ≤ j < k ≤ N , it holds that 1 > γj > γk ≥ 0

and 0 ≤ δj < δk. We then use the model sθ,t(X̂t) to generate a dataset X ′
0 and train a pseudo

score network sψ,t(·) using X ′
0. Since X̂0 always has a bias compared to X0, the pseudo score

sψ,t(·), trained on the pseudo dataX ′
0, naturally learns the bias. Similarly, we estimate X̂ ′

0(X̂t,ψ)

as X̂ ′
0 = γ′

tX0 + δ′tϵb, where it is straightforward that γ′
t < γt. Then, we define a score difference

between the two scores at the same time point for the same sample:

sθ,t(X̂t)− sψ,t(X̂t) =
√
ᾱt

(γt − γ′
t)X0 + (δtϵa − δ′tϵb)

1− ᾱt
. (9)

We find that the score difference contains information about X0 as shown in Fig. 3. We aim to
utilize this information. Inspired by classifier-free guidance (Ho & Salimans, 2021) and extrapolation
operations (Zhang et al., 2023), we define a new score adjustment by

sθ,t(X̂t) = sθ,t(X̂t) + λ
(
sθ,t(X̂t)− sψ,t(X̂t)

)
= −

X̂t −
√
ᾱt

((
γt + λ(γt − γ′

t)
)
X0 + δtϵa + λ(δtϵa − δ′tϵb)

)
1− ᾱt

(10)

where λ ≥ 0 represents the step size for correcting the score using the score difference, Eq. (9). When
λ = 0, no correction is applied. Conceptually, the correction operation pulls the biased direction
towards the unbiased direction. Although there is some noise in this correction direction, choosing
appropriate parameters λ improves the score accuracy. Then, we divide the sθ,t(X̂t) by a scalar to
adjust the score magnitude, further driving sθ,t(X̂t) closer to the true score:

sθ,t(X̂t) =
sθ,t(X̂t)

ω
. (11)

In particular, we emphasize that the S++ score correction at time T is far more critical than at other
times. In some cases, the correction at time T is so effective that no further correction is needed
in subsequent stages, especially in a truncated model. Therefore, we recommend decoupling the
correction parameter at time T from those at other times during the actual score correction process.
Specifically, by using Langevin sampling (Song & Ermon, 2019) to align the distribution with the
forward maximum perturbation distribution, which is in a low-noise state and retains some data
information from X0, we can shorten the sampling chain and significantly reduce sampling time.
Experimental validation is provided in §5.3.

The score correction method described here can also be applied in the reverse-starting alignment stage,
as Langevin sampling also relies on scores. Once the reverse-starting bias is corrected, it naturally
helps mitigate the exposure bias in subsequent sampling stages. Additionally, our score correction
method is applicable wherever scores are utilized, ensuring its effectiveness across different stages of
the reverse sampling.

We emphasize that utilizing Langevin sampling to obtain aligned samples and using the difference
signal to correct scores are indispensable components for addressing the reverse-starting bias and
the exposure bias. The effect is shown in Fig. 1(c). Additionally, we conduct extensive ablation
experiments in §5.4 to demonstrate this point. We provide a detailed geometric illustration in Fig. 3
and provide detailed derivations and proofs of the equations from §4 in Appendix C.

5 EXPERIMENT

In this section, we select three generic graph datasets and two molecular datasets to evaluate the
performance of our approach. In order to demonstrate the broad applicability of this method
in addressing the reverse-starting bias and mitigating exposure bias, we tested it on a variety of
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Table 1: Generation results on the generic graph datasets (Lower is better). The results of the Enzymes
dataset of GDSS are reproduced by ourselves, the results of other baselines are all from published
papers, and we give detailed settings and instructions in Appendix D.

Dataset Community-small Enzymes Grid
Info. Synthetic, 12 ≤ |V | ≤ 20 Real, 10 ≤ |V | ≤ 125 Synthetic, 100 ≤ |V | ≤ 400

Method Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓
GDSS-OC 0.050 0.132 0.011 0.064 0.052 0.627 0.249 0.309 0.270 0.009 0.034 0.070
GDSS-OC-S++ 0.021 0.061 0.005 0.029 0.067 0.099 0.007 0.058 0.105 0.004 0.061 0.066
GDSS-WC 0.045 0.088 0.007 0.045 0.044 0.069 0.002 0.038 0.111 0.005 0.070 0.070
GDSS-WC-S++ 0.019 0.062 0.004 0.028 0.031 0.050 0.003 0.028 0.105 0.004 0.061 0.057
HGDM-OC 0.065 0.119 0.024 0.069 0.125 0.625 0.371 0.374 0.181 0.019 0.112 0.104
HGDM-OC-S++ 0.021 0.034 0.005 0.020 0.080 0.500 0.225 0.268 0.023 0.034 0.004 0.020
HGDM-WC 0.017 0.050 0.005 0.024 0.045 0.049 0.003 0.035 0.137 0.004 0.048 0.069
HGDM-WC-S++ 0.021 0.024 0.004 0.016 0.040 0.041 0.005 0.029 0.123 0.003 0.047 0.058
GSDM-OC 0.142 0.230 0.043 0.138 0.930 0.867 0.168 0.655 1.996 0.0 1.013 1.003
GSDM-OC-S++ 0.011 0.016 0.001 0.009 0.012 0.087 0.011 0.037 1.2e-4 0.0 1.2e-4 0.066
GSDM-WC 0.011 0.016 0.001 0.009 0.013 0.088 0.013 0.038 0.002 0.0 0.0 7.2e-5
GSDM-WC-S++ 0.011 0.016 0.001 0.009 0.011 0.086 0.010 0.036 5.0e-5 0.0 1.1e-5 0.066

mainstream graph diffusion models, namely GDSS (Jo et al., 2022), GSDM (Luo et al., 2024),
HGDM (Wen et al., 2024), and MOOD (Lee et al., 2023). Our improved model is prefixed with
the basic diffusion model and denoted by S++ at its suffix. At the same time, we perform extensive
downstream task testing and ablation study to further illustrate the effectiveness and necessity of S++.

5.1 GENERIC GRAPH GENERATION

Experimental Setup We select three generic graph datasets to test our approach: (1) Community-
small: 100 artificially generated graphs with community structure; (2) Enzymes: 600 protein maps
representing the enzyme structure in BRENDA (Schomburg et al., 2004); (3) Grid: 100 standard 2D
grid diagrams. To evaluate the quality of the generated graphs, we follow GDSS (Jo et al., 2022) and
we use Maximum Mean Difference (MMD) (Gretton et al., 2012; You et al., 2018) to compare the
statistical distribution of the graphs between the same number of generated plots and the test plots,
including the distribution of measured degrees, clustering coefficients, and the number of orbits of
the 4-node track.

Results Table 1 shows that S++ outperforms all of baselines. For the uncorrected sampling method,
the performance indicators of the baseline model are particularly poor due to the existence of the
reverse-starting bias and score exposure bias, while S++ can significantly improve the performance of
all baseline models and reach or even exceed the level of the baseline model with correctors. Because
the method without correctors can significantly reduce computational complexity, we believe that
S++ can really release the ability of the graph diffusion model, which is enlightening for large-scale
datasets. For the sampling method with aligners, S++ is still significantly better than all baseline
models. At the same time, we also give experimental comparisons of other advanced models in
Appendix F, and results show that S++ achieves SOTA indicators of the corresponding tasks.

5.2 MOLECULAR GRAPH GENERATION

Experimental Setup We select two widely recognized molecular datasets to evaluate our approach:
QM9 (Ramakrishnan et al., 2014) and ZINC250k (Irwin et al., 2012). We generate 10,000 molecules
and select the following metrics: Frechet ChemNet Distance (FCD) (Preuer et al., 2018), Neigh-
borhood subgraph pairwise distance kernel (NSPDK) MMD (Costa & Grave, 2010), validity w/o
correction, and the generation time. (1) FCD uses the activation of the penultimate layer of ChemNet
to calculate the distance between the benchmark molecular dataset and the generated dataset to
characterize the similarity between them, and the lower the FCD, the higher the similarity between
distributions. (2) NSPDK MMD considers the characteristics of nodes and edges at the same time,
and calculates the MMD between the benchmark molecular dataset and the generated dataset; (3)
Sampling time is used to evaluate the speed in generating large-scale molecular datasets, and we only
count the time spent on sampling, regardless of the time spent on preprocessing and evaluation.
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Table 2: Comparison of different methods on QM9 and ZINC250k datasets.

Method QM9 ZINC250k

Sampling time ↓ NSPDK MMD ↓ FCD ↓ Sampling time↓ NSPDK MMD ↓ FCD ↓
GDSS-OC 0.73e2 0.016 4.584 0.73e3 0.047 20.53
GDSS-OC-S++ 5.10 0.001 1.661 0.70e3 0.050 16.79
GDSS-WC 1.61e2 0.004 2.550 1.41e3 0.019 14.66
GDSS-WC-S++ 9.25 0.001 1.661 0.98e3 0.012 12.70
HGDM-OC 0.62e2 0.005 3.164 0.76e3 0.033 21.38
HGDM-OC-S++ 0.62e2 0.003 2.512 0.77e3 0.034 20.79
HGDM-WC 1.16e2 0.002 2.147 1.52e3 0.016 17.69
HGDM-WC-S++ 0.98e2 0.001 2.001 1.17e3 0.016 16.24

Results Table 2 shows that both in terms of sampling time and generation quality, S++ is significantly
better than the baseline models. For the sampling method without correctors, due to the existence
of the reverse-starting bias and score exposure bias, the quality of generation from the baseline
model is particularly poor, while S++ can significantly improve the performance of all baselines
and approximate the sampling methods with correctors of the baseline model. For the sampling
method with aligners, S++ is still significantly better than all baseline models and greatly reduces the
sampling time. At the same time, we provide more comparative experimental results in Appendix F
and provide parameter sensitivity experiments in Appendix G.

5.3 DIVERSITY GENERATION

Characteristic molecule generation To evaluate the performance of S++ in generating novel,
drug-like, and synthesizable molecules, we follow (Lee et al., 2023) and assess S++ in the five
docking score (DS) optimization tasks under the quantitative estimate of synthetic accessibility (SA),
drug-likeness (QED) and novelty constraints. The property Y is defined by

Y (G) = D̂S(G)× QED(G)× ŜA(G) ∈ [0, 1] (12)

where D̂S refers to the normalized docking score, ŜA denotes the normalized synthetic accessibility,
and QED represents drug-likeness. We use MOOD-S++ to generate 3000 molecules and evaluate
performance using the following metrics. Novel hit ratio (%) is the fraction of unique hit molecules
whose maximum Tanimoto similarity with the training molecules is less than 0.4. In particular, hit
molecules are defined as the molecules that satisfy the following conditions: DS < (the median DS
of the known active molecules), QED > 0.5, and SA < 5. Novel top 5% docking score refers to the
average DS of the top 5% unique molecules that satisfy the constraints QED > 0.5 and SA < 5 and
their maximum similarity with the training molecules is below 0.4. To avoid bias in target selection,
we utilize five protein targets: parp1, fa7, 5ht1b, braf, and jak2.

Results Tables 3 and 4 show that MOOD-S++ is significantly better than baseline in all target
proteins. This indicates that S++ still has advantages in the discovery of drug-like, synthesizable, and
novel molecular tasks with high binding affinity, and it can be seen that the reverse-starting bias and
exposure bias pose a significant threat to various generation tasks.

Accelerate generation To demonstrate that S++ can generate good samples faster by using fewer
steps of reverse diffusion, we choose GDSS-OC as the benchmark, and QM9 and Comm are selected
to test the performance of our approach and benchmark models at different sampling total time steps.

Results Table 5 shows that S++ is significantly better than the baseline model at different sampling
total time steps N . S++ is not only able to generate samples with fewer reverse-diffusion steps but
also achieves consistent improvements across generation metrics, especially on the QM9 dataset,
where S++ remained close to optimal performance even with a significant reduction in the sampling
time step (N = 100), while the performance of the benchmark model decreased significantly.

In conclusion, S++ shows higher efficiency, better quality, and stronger robustness in graph generative
tasks, which provides a powerful improvement scheme for the application of the diffusion model.
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Table 3: Novel hit ratio (%) results (↑).

Method Target protein

parp1 fa7 5ht1b braf jak2

MOOD 7.017 (± 0.428) 0.733 (± 0.141) 18.673 (± 0.423) 5.240 (± 0.285) 9.200 (± 0.524)
MOOD-S++ 8.286 (± 0.214) 0.900 (± 0.068) 20.354 (± 0.672) 5.653 (± 0.073) 9.167 (± 0.067)

Table 4: Novel top 5% docking score (kcal/mol) results (↓).

Method Target protein

parp1 fa7 5ht1b braf jak2

MOOD -10.865 (± 0.113) -8.160 (± 0.071) -11.145 (± 0.042) -11.063 (± 0.034) -10.147 (± 0.060)
MOOD-S++ -10.961 (± 0.027) -8.182 (± 0.028) -11.231 (± 0.036) -11.143 (± 0.025) -10.163 (± 0.015)

Table 5: Comparison of different methods under different total sampling time steps.

N Method QM9 Community-small

Val. w/o corr. ↑ NSPDK MMD ↓ FCD ↓ Deg.↓ Clus. ↓ Orbit ↓ Avg. ↓

1000 GDSS-OC 73.5 0.015 4.584 0.050 0.132 0.011 0.064
GDSS-OCS++ 94.0 0.001 1.671 0.021 0.061 0.005 0.029

500 GDSS-OC 46.2 0.045 7.960 0.136 0.456 0.151 0.248
GDSS-OC-S++ 93.9 0.001 1.665 0.029 0.142 0.008 0.060

100 GDSS-OC 37.8 0.069 9.951 0.092 0.666 0.394 0.384
GDSS-OC-S++ 93.9 0.001 1.663 0.061 0.414 0.140 0.205

Table 6: Ablation experiments on the QM9 dataset.

Method QM9

Val. w/o corr. ↑ NSPDK MMD ↓ FCD ↓
GDSS-OC 73.5 0.0157 4.58
GDSS-w/o correction in sampling 94.8 0.0037 2.65
GDSS-w/o reverse-starting alignment 89.8 0.0031 2.01
GDSS-OC-S++ 94.0 0.0014 1.67

5.4 ABLATION STUDY

Table 6 demonstrates that GDSS without reverse-starting alignment and score correction indepen-
dently improves performance to varying degrees. Among these, the case without reverse-starting
alignment is more general, as it does not require ηT and T . Even in their absence, our approach still
achieves impressive results, highlighting its robustness and flexibility. Additionally, we provide a
comparative analysis of the two biases in the image and graph domains in Appendix H and present
comparative experiments of S++ with existing methods on images in Appendix I.

6 CONCLUSION

In this paper, we use Langevin sampling to obtain samples aligned with the forward maximum
perturbation distribution, which mitigates the reverse-starting bias and greatly mitigates the exposure
bias of the score network, and we propose a score correction mechanism based on score difference
to further promote the stable-state distribution of Langevin sampling to the true forward maximum
perturbation distribution, and further mitigate the exposure bias in sampling. Since the score is also
used in Langevin sampling, the proposed score correction is also applied to Langevin sampling as
well. Our approach does not require network modifications or the introduction of new learners and
can be naturally integrated into existing graph diffusion models to achieve SOTA metrics on multiple
datasets and multiple tasks.
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A REVERSE-STARTING BIAS

In this section, we provide a detailed discussion of the reverse-starting bias. It is worth noting
that these models are based on SDE (Song et al., 2021). For VPSDE, it obtains perturbed samples
through Eq. (4), which corresponds to Eq. (33) in (Song et al., 2021). At t = T , Eq. (4) gives the
maximum perturbation distribution, which is N (XT |0, I). Similarly, for VESDE, the diffusion
model obtains perturbed samples through p0t(Xt|X0) = N (Xt|X0, σ

2
t I), where σmin = σ1 ≤

σt ≤ σT = σmax. When this expression is extended continuously, we have

p0t(Xt|X0) = N
(
Xt|X0, σ

2
min

(σmax

σmin

)2t
I
)
, t ∈ [0, 1] . (13)

Eq. (13) corresponds to Eq. (31) of (Song et al., 2021). At t = T Eq. (13) achieves the maximum
perturbation distribution, which isN (XT |X0, σ

2
maxI). In particular, we need to make sure that σmax

is large enough that N (XT |X0, σ
2
maxI) ≈ N (XT |0, σ2

maxI).

However, in practice, lots of diffusion models (Jo et al., 2022; Luo et al., 2024; Wen et al., 2024)
adopted a rather conservative strategy when training the network. For VPSDE, results in the maximum
forward perturbation distribution beingN (XT |uTx0, σ

2
T I), which is far from reachingN (XT |0, I).

For VESDE, due to σmax not being large enough, the maximum forward perturbation distribution
is N (XT |X0, σ

2
maxI), which cannot be approximated by N (XT |0, σ2

maxI). However, baselines
always start reverse sampling from the standard Gaussian distribution, which leads to significant
reverse-starting bias. A detailed comparison of parameters is shown in Tables 7, 8, and 9.

B FIGURE DETAILS

In this section, we present the detailed procedures to plot Fig. 2. Let sθ,t(·) represent the pretrained
GDSS score network. Due to the conservative strategy of GDSS, with βmin = 0.1 and βmax = 1,

Table 7: The actual parameters of the forward perturbation of GDSS.
Model GDSS

Dataset Community-small Enzymes Grid QM9 ZINC250k

Type Node Edge Node Edge Node Edge Node Edge Node Edge

SDE VPSDE VPSDE VPSDE VESDE VPSDE VPSDE VESDE VESDE VPSDE VESDE
βmin|σmin 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2
βmax|σmax 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0
uT 0.7596 0.7596 0.7596 1.0 0.7596 0.7788 1.0 1.0 0.7596 1.0
σ2
T 0.4231 0.4231 0.4231 1.0 0.4231 0.3935 1.0 1.0 0.4231 1.0

Table 8: The actual parameters of the forward perturbation of HGDM.
Model HGDM

Dataset Community-small Enzymes Grid QM9 ZINC250k

Type Node Edge Node Edge Node Edge Node Edge Node Edge

SDE VPSDE VPSDE VPSDE VESDE VPSDE VESDE VPSDE VESDE VPSDE VESDE
βmin|σmin 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2
βmax|σmax 1.0 1.0 1.0 1.0 7.0 0.8 2.0 1.0 1.0 1.0
uT 0.7596 0.7596 0.7596 1.0 0.1695 1.0 0.5916 1.0 0.7596 1.0
σ2
T 0.4231 0.4231 0.4231 1.0 0.9713 0.64 0.6501 1.0 0.4231 1.0

Table 9: The actual parameters of the forward perturbation of GSDM and MOOD.
Model GSDM MOOD

Dataset Community-small Enzymes Grid QM9 ZINC250k

Type Node Eigen Node Eigen Node Eigen Node Edge Node Edge

SDE VPSDE VPSDE VPSDE VPSDE VPSDE VPSDE VPSDE VESDE VPSDE VESDE
βmin|σmin 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2
βmax|σmax 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0
uT 0.7596 0.7596 0.7596 0.7596 0.7596 0.7788 1.0 1.0 0.7596 1.0
σ2
T 0.4231 0.4231 0.4231 0.4231 0.4231 0.3935 1.0 1.0 0.4231 1.0
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(a) FCD (b) NSPDK MMD (c) Validity w/o correction

Figure 4: Generation metric responses to perturbations at different time steps for two score networks.

the maximum perturbation distribution is N (XT |0.7596X0, 0.4231I) at t = T . On the other hand,
sψ,t(·) is defined with the constraints of βmin = 0.1 and βmax = 20. At t = T , the maximum
perturbation distribution is N (XT |0, I). Then, sθ,t(·) and sψ,t(·) not only represent two different
networks but also indicate that their maximum perturbation distributions in the forward diffusing are
completely different.

To plot Figs. 2(a) and 2(b), we freeze the converged sθ,t(·) and sψ,t(·), then replaceXt in Eq. (3)
with At to obtain perturbation samples of 1024 edges at different time steps. We then compute
∥sθ,t(·)∥2 and ∥sψ,t(·)∥2 and plot them in Fig. 2.

To plot Fig. 2(c), we introduce perturbations to sθ,t(·) at different time stepsin sampling. We employ
a sampling method without a corrector and perturb the score at the selected time step (y-axis) using
Gaussian noise:

sθ,t(·) = sθ,t(·) + zt (14)
where zt ∼ N (zt|0, I). For the other time steps, we do not introduce any perturbations, allowing the
diffusion model to perform sampling and record the generation metrics. We conduct the perturbation
experiment on sθ,t(·) using the same method, and ultimately compare the results of the two perturba-
tion experiments based on the time steps to evaluate how different score networks in the diffusion
model resist bias at various time steps. We present a detailed comparison of the generation metrics
from the perturbation experiments, as shown in Fig. 4.

C DERIVATIONS FOR §4.2

For a diffusion model, let the true data beX0, and the pretrained score network be sθ,t(·). Based on
the set noise addition method, we have

∇Xt log q(Xt|X0) = −
Xt −

√
ᾱtX0

1− ᾱt
. (15)

However, sθ,t(·) often deviates from the optimal logarithmic gradient of q(Xt|X0). In the reverse-
sampling process, assuming the current time t has a data state X̂t, the predicted score is

sθ,t(X̂t) = −
X̂t −

√
ᾱtX̂0

1− ᾱt
. (6)

We model X̂0 by
X̂0 = γtX0 + δtϵa . (8)

Eq. (6) becomes

sθ,t(X̂t) = −
X̂t −

√
ᾱt(γtX0 + δtϵa)

1− ᾱt
. (16)

Then, we train a new score network sψ,t(·) based on the generated data X ′ from the score network.
Following the above derivation, we can write the predicted score at the current time t as

sψ,t(X̂t) = −
X̂t −

√
ᾱtX̂

′
0

1− ᾱt
. (17)
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Due to the bias of sθ,t(·), the generated pseudo dataX ′
0 always deviates fromX0, and considering

the prediction error of the network, we can easily obtain

X̂ ′
0 = γ′

tX0 + δ′tϵb (18)

where γ′
t < γt, δ′t > δt, meaning that at the same time t, sψ,t(·) trained on generated data has a

larger bias in predicting the target distribution than sθ,t(·) trained on the true data. By substituting
Eq. (18) into Eq. (17), we have

sψ,t(X̂t) = −
X̂t −

√
ᾱt(γ

′
tX0 + δ′tϵb)

1− ᾱt
. (19)

The score difference is defined as the difference between Eq. (16) and Eq. (19),

sθ,t(X̂t)− sψ,t(X̂t) = −
X̂t −

√
ᾱt(γtX0 + δtϵa)

1− ᾱt
−

(
−X̂t −

√
ᾱt(γ

′
tX0 + δ′tϵb)

1− ᾱt

)

=
√
ᾱt

(γt − γ′
t)X0 + (δtϵa − δ′tϵb)

1− ᾱt
. (9)

We incorporate this score difference as a correction term into the predicted score and introduce a
hyperparameter to fine-tune the adjustment, improving the alignment of the predicted score with the
true score. It is given by

sθ,t(X̂t) = sθ,t(X̂t) + λ
(
sθ,t(X̂t)− sψ,t(X̂t)

)
= −

X̂t −
√
ᾱt

(
γtX0 + δtϵa + λ(γt − γ′

t)X0 + λ(δtϵa − δ′tϵb)
)

1− ᾱt

= −
X̂t −

√
ᾱt

((
γt + λ(γt − γ′

t)
)
X0 + δtϵa + λ(δtϵa − δ′tϵb)

)
1− ᾱt

. (10)

Since γ′
t < γt, this score difference helps the predicted score incorporate more information from the

true dataX0. By appropriately setting a hyperparameter λ, we can consistently use the information
from X0 to guide the score correction process. Finally, we introduce an adjustment magnitude
coefficient to further refine the score correction based on the score difference, which improves the
alignment of the predicted score with the true score.

sθ,t(X̂t) =
sθ,t(X̂t)

ω
. (11)

We provide a logical analysis showing that the score difference helps to correct the score.

D DETAILS FOR EXPERIMENT

We provide detailed parameters for experiments described in §5, as shown in Tables 10 and 11.
Specifically, we distinguish between the relevant parameters for sampling methods with correctors
and those without correctors. As shown in Tables 10, both Langevin sampling and the S++ correction
are implemented in the reverse-starting alignment stage. After this stage, the subsequent sampling
stages require little to no further correction. This suggests that in a truncated diffusion model, once
correction is applied at a certain point, the later stages can achieve good sampling performance
without the need for additional corrections.

E SAMPLING ALGORITHM

In this section, we present the sampling algorithm procedure for S++, as shown in Algorithm 1.
βt = βmin + t(βmax − βmin) for t ∈ [0, 1]. Additionally, our approach can be naturally integrated
into the reverse sampling of various diffusion models without a corrector, greatly improving the
generation quality of sampling methods. For methods with a corrector, we can significantly reduce
the correction time interval by introducing a truncation time. Specifically, we apply the corrector
when the time exceeds tc further reducing the computational cost.
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Algorithm 1 The S++ sampling algorithm.

Input: An inference model sθ,t(·), a pretrained pseudo model sψ,t(·), and the cut-off time tc .
Initialize: XT ∼ N (0, I) where T = N−1

N ;
for j = 1 to M do

sθ,T (XT )←
sθ,T (XT )+λ1

(
sθ,T (XT )−sψ,T (XT )

)
ω1

;
ϵ ∼ N (0, I) ;
XT ←XT + ηT

2 sθ,T (XT ) +
√
ηT ϵ ;

end for
for i = N − 1 to 0 do
t = i

N ;

sθ,t(Xt)←
sθ,t(Xt)+λ2

(
sθ,t(Xt)−sψ,t(Xt)

)
ω2

;
ϵ ∼ N (0, I) ;
Xt ← (2−

√
1− βt)Xt + βtsθ,t(Xt) +

√
βtϵ ;

if t ≤ tc then
if corrector then
ϵ ∼ N (0, I) ;
Xt ←Xt +

ηt

2 sθ,t(Xt) +
√
ηtϵ ;

end if
end if

end for
return X0 .

Table 10: Experimental parameters for sampling methods without a corrector (OC).
Model Hyper. Comm. Enzymes Grid QM9 ZINC250k

M 400 420 350 400 400
λ1 0.2 0.0008 0.06 1.19 2.5

GDSS-OC-S++ ω1 0.998 1.0 1.0 1.09 1.0
λ2 0 0 0 0 0
ω2 1.0 1.0 1.0 1.0 1.0

M 280 310 280 240 220
λ1 0.02 0.0 0.02 0.1 0.025

HGDM-OC-S++ ω1 1.0 1.0 1.0 1.0 1.07
λ2 0.36 0.0 0.0 0.36 0.0
ω2 1.0 1.0 1.0 0.78 1.0

M 200 400 400 - -
λ1 0.0 0.0 0.0 - -

GSDM-OC-S++ ω1 1.0 1.0 1.0 - -
λ2 0.0 0.0 0.0 - -
ω2 1.0 1.0 1.0 - -

F ADDITIONAL EXPERIMENTS

To demonstrate the superiority of S++, we select generative models other than diffusion models
as baseline models for comparison. GraphVAE (Simonovsky & Komodakis, 2018) is a graph
generative model based on variational autoencoders; DeepGMG (Li et al., 2018) is a deep generative
model that generates graphs in a sequential, node-by-node manner; GraphAF (Shi et al., 2020)
is an autoregressive flow-based model. GraphRNN (You et al., 2018) is an autoregressive model
using recurrent neural networks to generate graphs; EDP-GNN (Niu et al., 2020) is a score-based
generative model using energy-based dynamics. GraphEBM (Liu et al., 2021) is an energy-based
generative model that generates molecules by minimizing energy through Langevin dynamics, which
is categorized as a one-shot generative method. We provide detailed comparative experiments in
Tables 12 and 13, and the results show that our approach significantly outperforms the baseline
models and other generative models.
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Table 11: Experimental parameters for sampling methods with a corrector (WC).
Model Hyper. Comm. Enzymes Grid QM9 ZINC250k

M 400 420 350 400 400
λ1 0.2 0.0008 0.06 1.19 2.5

GDSS-WC-S++ ω1 0.998 1.0 1.0 1.09 1.0
tc 0.2 0.45 0.055 0.1 0.4
λ2 0 0 0 0 0
ω2 1.0 1.0 1.0 1.0 1.0

M 280 200 360 240 220
λ1 0.02 0.0 0.18 0.1 0.25

HGDM-WC-S++ ω1 1.0 1.0 1.0 1.0 1.07
tc 0.2 0.5 0.1 0.65 0.6
λ2 0.36 0.0 0.0 0.0 0.0
ω2 1.0 1.0 1.0 1.44 0.87

M 200 400 400 - -
λ1 0.0 0.0 0.0 - -

GSDM-WC-S++ ω1 1.0 1.0 1.0 - -
tc 0.05 0.70 0.45 - -
λ2 0.0 0.0 0.0 - -
ω2 1.0 1.0 1.0 - -

Table 12: Additional experiments on generic graph datasets.
Dataset Community-small Enzymes Grid
Info. Synthetic, 12 ≤ |V | ≤ 20 Real, 10 ≤ |V | ≤ 125 Synthetic, 100 ≤ |V | ≤ 400

Method Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg.

DeepGMG 0.220 0.950 0.400 0.523 - - - - - - - -
GraphRNN 0.080 0.120 0.040 0.080 0.017 0.062 0.046 0.042 0.064 0.043 0.021 0.043
GraphAF 0.18 0.20 0.02 0.133 1.669 1.283 0.266 1.073 - - - -
GraphDF 0.06 0.12 0.03 0.070 1.503 1.061 0.202 0.922 - - - -
GraphVAE 0.350 0.980 0.540 0.623 1.369 0.629 0.191 0.730 1.619 0.0 0.919 0.846
EDP-GNN 0.053 0.144 0.026 0.074 0.023 0.268 0.082 0.124 0.455 0.238 0.328 0.340

GDSS-OC 0.050 0.132 0.011 0.064 0.052 0.627 0.249 0.309 0.270 0.009 0.034 0.070
GDSS-OC-S++ 0.021 0.061 0.005 0.029 0.067 0.099 0.007 0.058 0.105 0.004 0.061 0.066
GDSS-WC 0.045 0.088 0.007 0.045 0.044 0.069 0.002 0.038 0.111 0.005 0.070 0.070
GDSS-WC-S++ 0.019 0.062 0.004 0.028 0.031 0.050 0.003 0.028 0.105 0.004 0.061 0.057
HGDM-OC 0.065 0.119 0.024 0.069 0.125 0.625 0.371 0.374 0.181 0.019 0.112 0.104
HGDM-OC-S++ 0.021 0.034 0.005 0.020 0.080 0.500 0.225 0.268 0.023 0.034 0.004 0.020
HGDM-WC 0.017 0.050 0.005 0.024 0.045 0.049 0.003 0.035 0.137 0.004 0.048 0.069
HGDM-WC-S++ 0.021 0.024 0.004 0.016 0.040 0.041 0.005 0.029 0.123 0.003 0.047 0.058
GSDM-OC 0.142 0.230 0.043 0.138 0.930 0.867 0.168 0.655 1.996 0.0 1.013 1.003
GSDM-OC-S++ 0.011 0.016 0.001 0.009 0.012 0.087 0.011 0.037 1.2e-4 0.0 1.2e-4 0.066
GSDM-WC 0.011 0.016 0.001 0.009 0.013 0.088 0.013 0.038 0.002 0.0 0 7.2e-5
GSDM-WC-S++ 0.011 0.016 0.001 0.009 0.011 0.086 0.010 0.036 5.0e-5 0.0 1.1e-5 0.066

Table 13: Additional experiments on QM9 and ZINC250k datasets.

Method QM9 ZINC250k

Val. w/o corr. (%)↑ NSPDK MMD ↓ FCD ↓ Val. w/o corr. (%)↑ NSPDK MMD ↓ FCD ↓
GraphAF 67.00 0.020 5.268 68.00 0.044 16.289
GraphDF 82.67 0.063 10.816 89.03 0.176 34.202
MoFlow 91.36 0.017 4.467 63.11 0.046 20.931
EDP-GNN 47.52 0.005 2.680 82.97 0.049 16.737
GraphEBM 8.22 0.030 6.143 5.29 0.212 35.471

GDSS-OC 73.49 0.015 4.584 41.84 0.047 20.53
GDSS-OC-S++ 93.74 0.001 1.661 59.50 0.050 16.79
GDSS-WC 94.91 0.004 2.550 95.83 0.019 14.66
GDSS-WC-S++ 93.79 0.001 1.661 93.15 0.012 12.70
HGDM-OC 92.22 0.005 3.164 66.47 0.033 21.38
HGDM-OC-S++ 94.95 0.003 2.512 67.12 0.034 20.79
HGDM-WC 98.02 0.002 2.147 93.26 0.016 17.69
HGDM-WC-S++ 97.03 0.001 2.001 91.03 0.016 16.24
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Table 14: FCD(↓) on GDSS-OC baseline and
QM9 under different parameters λ (λ = 0 repre-
sents the baseline).

λ 0 1.17 1.18 1.19 1.20 1.21

FCD 4.583 1.768 1.756 1.754 1.761 1.762

Table 15: Degree(↓) on GDSS-OC baseline and
Community-small under different parameters λ
(λ = 0 represents the baseline).

λ 0 0.18 0.19 0.20 0.21 0.22

Degree 0.05 0.023 0.024 0.022 0.024 0.026

G INSENSITIVITY OF λ

We emphasize that S++ is largely insensitive to the choice of λ, as performance improvements are
consistently observed across a wide range of λ values, as shown in Tables 14 and 15.

H TWO BIASES IN IMAGE AND GRAPH

Given the existing research on reverse-starting bias and exposure bias in the image domain, this
section highlights the key differences between these biases in image and graph data, focusing on
three aspects: data scale, data structure, and network performance.

1-a Reverse-starting bias in images. DPM-Fixes (Lin et al., 2024) was the first to identify that
traditional noise scheduling strategies fail to ensure the maximum forward perturbation distribution
aligns with a standard Gaussian distribution:

xT = 0.068265x0 + 0.997667ϵT . (20)

This shows a slight deviation from the standard Gaussian starting point used in reverse sampling. To
address this, DPM-Fixes constrains the forward xT to follow the standard Gaussian by adjusting
the noise scheduling scale. This approach benefits from large image datasets and robust network
performance, which enable accurate noise (or score) predictions even in high-noise states. On
the other hand, DPM-Leak (Everaert et al., 2024) estimates the maximum forward perturbation
distribution during diffusion based on pixel modeling, using it as the new reverse-starting point for
sampling. This strategy capitalizes on the image data structure and scale, which allows pixels to be
modeled independently and follow a Gaussian distribution.

1-b Reverse-starting bias in graphs. Unlike image data, where the models can rely on more
manageable data scales and network capacities, graph models are hindered by the challenges of
accurately predicting noise (or score) from high-noise states. As a result, baseline models tend to adopt
a conservative strategy during training, leading to the maximum forward perturbation distribution
significantly deviating from a standard Gaussian. While this approach avoids the instability of
high-noise states, it introduces considerable reverse-starting bias. Consequently, strategies like
DPM-Fixes, which enforce xT to follow a standard Gaussian distribution, are not suitable. Given the
interdependencies of nodes and edges in graph data and its inherent sparsity, we cannot assume that
nodes or edges follow a Gaussian distribution to estimate the maximum forward perturbation. This
makes approaches like DPM-Leak equally inappropriate.

2-a Exposure bias in images. In images, exposure bias refers to the mismatch between forward
process xt and reverse process x̂t, with differences accumulating throughout sampling, ultimately
affecting generation quality. Many current image exposure bias works assume no reverse-starting bias
exists, focusing on sampling process bias, as reverse-starting bias in images is indeed quite minimal.

2-b Exposure bias in graphs. Unlike the minor signal leakage seen in image diffusion models, graph
diffusion models suffer from significant reverse-starting bias, leading to substantial exposure bias
after the initial sampling step. In other words, the exposure bias in graphs is not solely a result of
network prediction errors or the accumulation of sampling iterations, but is heavily influenced by the
reverse-starting bias. Therefore, effectively addressing graph exposure bias requires first mitigating
the reverse-starting bias.

In conclusion, we emphasize that reverse-starting bias is a particularly acute and unique issue in
graph diffusion models. While exposure bias also affects graphs, solutions developed for image-based
models cannot be directly applied. This work is the first to focus specifically on reverse-starting bias
in graph diffusion models, proposing a simple yet effective solution.
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Table 16: FCD(↓) on QM9 without a corrector.

ω 0.7 0.8 0.9 1.0 1.1

GDSS-OC-ES 3.57 3.417 3.768 4.584 5.517
GDSS-WC-S++ 2.94 2.814 3.198 4.187 5.201

Table 17: FCD(↓) on QM9 with a corrector.

ω 0.9 1.0 1.1 1.2 1.3

GDSS-WC-ES 2.809 2.552 2.319 2.301 2.542
GDSS-WC-S++ 2.321 2.034 1.858 1.852 2.152

I S++ AND EXISTING SOLUTIONS IN IMAGES

Although there are many solutions to mitigate the exposure bias in current images, these solutions
cannot replace S++. In this section, we choose to compare S++ in detail with similar works (Li et al.,
2024; Ning et al., 2024), as they are plug-and-play solutions that do not introduce new components.

TS-DPM (Li et al., 2024) proposes searching an optimal time s during sampling. TS-DPM relies on
two fundamental assumptions: (a) image pixels are independent and follow Gaussian distribution,
Eq. (13) in Appendix J of Li et al. (2024); (b) sample pixel variance approximates population variance,
Eq. (20) in Appendix J of Li et al. (2024). These assumptions are based on large image datasets and a
large number of pixels. However, nodes and edges in graphs are highly sparse. Specifically, many
graph datasets are small (Community-small, Enzymes, and Grid have fewer than 1000 samples). Both
assumptions do not hold for graph data, making TS-DPM inapplicable to graph diffusion models.

ADM-ES(Ning et al., 2024) proposes reducing sθ,t(·), originally noise ϵθ,t(·), during sampling to
mitigate exposure bias. However, this approach does not involve the angle of sθ,t(·). Our approach
addresses this limitation:

sθ,t(Xt) =
sθ,t(Xt) + λ

(
sθ,t(Xt)− sψ,t(Xt)

)
ω

. (21)

If λ = 0, it is equivalent to ADM-ES. In other words, ADM-ES is a special case of S++, while the
score difference sθ,t(Xt)− sψ,t(Xt) provides the direction information.

For fair comparison with ADM-ES, we introduce λ(sθ,t(Xt)− sψ,t(Xt)) for each magnitude factor
ω, with λ uniformly set to 0.5, to examine whether sθ,t(Xt)− sψ,t(Xt) brings improvements over
ADM-ES. Tables 16 and 17 demonstrate that the angle information in S++ leads to significant gains.
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