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ABSTRACT

In recent years, machine learning (ML) methods have become increasingly popular
in wireless communication systems for several applications. A critical bottleneck
when designing ML systems for wireless communications is the availability of real-
istic wireless channel datasets, which are extremely resource intensive to produce.
To this end, the generation of realistic wireless channels plays a key role in the
subsequent design of effective ML algorithms for wireless communication systems.
Generative ML models have been proposed to synthesize channel matrices, but
outputs produced by such methods may not correspond to geometrically viable
channels and do not provide any insight into the scenario of interest. In this work,
we aim to address both these issues by integrating a parametric, physics-based
geometric channel (PBGC) modeling framework with generative methods. To
address limitations with gradient flow through the PBGC model, a linearized refor-
mulation is presented, which ensures smooth gradient flow during generative model
training, while also capturing insights about the underlying physical environment.
We evaluate our model against prior baselines by comparing the generated samples
in terms of the 2-Wasserstein distance and through the utility of generated data
when used for downstream compression tasks.

1 INTRODUCTION

The use of machine learning (ML) for applications in wireless communication has seen extensive
interest in the past few years. At the physical layer (PHY) of wireless systems, ML research
primarily aims to estimate and mitigate distortions in electromagnetic signals during over-the-air
(OTA) transmission Liang et al. (2020); Soltani et al. (2019); Mao et al. (2018); Sant et al. (2022) and
address noise and non-linearities at transmit or receive antennas Drakshayini and Kounte (2022); Sant
and Rao (2024). However, for practical deployments, the ML pipeline requires a substantial amount
of OTA wireless channel data which is a complex, costly, and time-intensive Ju and Rappaport (2023);
Ju et al. (2022); Kumar et al. (2024).

Generative models have been proposed to mitigate this problem by artificially synthesizing large
wireless datasets using considerably fewer OTA data samples Xiao et al. (2022). However, unlike
common modalities of data (image, text, audio, etc.) which are directly human-interpretable, the
wireless channel data is a tensor of complex numbers and is not human-interpretable or easily
visualized. This poses two major challenges around effectively testing and using generative channel
models. Firstly, the outputs of generative models may not correspond to valid channels. Here,
the validity of channel data implies that the wireless channel can be represented as a multipath
geometric model representing the multiple paths the transmitted signal takes, before arriving at
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Figure 1: In the straightforward implementation, the generator directly predicts the parameters ŝ, which are then
used by the PBGC model M to produce the predicted channel.

the receiver Forenza et al. (2007); Meijerink and Molisch (2014). Secondly, it is hard to gain any
insights about the physical parameters associated with the signal propagation or any information
about the environment or scenario being considered (e.g. Angles associated with paths, gains of paths,
line-of-sight transmission or non-line of sight, etc.) from generated data samples.

This work primarily focuses on the design of generative models for synthesizing millimeter wave
(mmWave) channels, crucial for next-generation wireless communication and IoT Kong et al.
(2017). The proposed method overcomes the limitations of existing approaches by incorporat-
ing a physics-based generative channel (PBGC) model into the generative pipeline. As the PBGC
model parametrizes the channel generation, our generative process will learn the joint distribution
of the underlying parameters responsible for channel generation. We also propose a linearized
reformulation of the PBGC model to address training challenges due to its non-convex loss landscape.

2 SYSTEM MODEL AND APPROACH

We consider a wireless communication system with Nt transmit and Nr receive antennas. The
associated PBGC model defined by M : R3P → R2×Nt×Nr Alkhateeb et al. (2014), maps a set of
parameters s ∈ R3P to a matrix H ∈ CNt×Nr , where P is the number of paths that a transmitted
signal takes before being received at the receiver antennas. The PBGC model is given by

H = M(s) =
P∑

p=1

gpar(θpa)at(θ
p
d)

H . (1)

Where, s = [gp, θ
p
a, θ

p
d]

P
p=1, and gp represents the propagation gain associated with the p-th path,

at(·), ar(·) represent the array response vectors on the transmit and receive antennas, θpd and θpa
represent the corresponding angle of departure and angle of arrival. More details on the PBGC model
can be found in Appendix B.

2.1 GENERATIVE MODEL TO PREDICT CHANNEL STATISTICS

For the generative model we use the variational autoencoder (VAE) architecture Kingma and Welling
(2014), as seen in Fig. 1. We use the generative model to produce the parameter vector ŝ using a
latent variable z, which is then passed to the PBGC model M to produce a valid channel matrix.
More details on the training can be found in Appendix C.

2.1.1 LIMITATIONS OF GENERATIVE MODEL TRAINING USING PBGC

The direct use of the PBGC model with the VAE leads to poor training performance due to the
presence of sinusoidal functions in the channel model (Appendix B). This property is illustrated
in Fig. 2. The non-convexity arising from this periodicity is only exacerbated with the addition of
multiple paths. However, these periodicities cannot be effectively approximated by the non-linear
activation functions used in deep neural networks, leading to difficulties in training Nair and Hinton
(2010); Dumoulin and Visin (2016). As a result, depending on the location of the optimizer in
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Figure 2: The loss surface as a function of (θ1a, θ
1
d) in reference to a channel matrix with θ1d = θ1a = 1.0 using

a PBGC model M with P = 1 and Nr = Nt = 4, 16, 64 antennas respectively. The PBGC model M is
extremely non-convex as a function of the parameters θa, θd because of periodicity arising from the formulation
of the array response vectors. As the number of antennas Nr, Nt increase, gradient flowing through the model
will be negligible when at locations further away from the minima, where the loss surface is effectively flat.

the parameter space, the gradient may not flow during backpropagation, resulting in the optimizer
converging at non-optimal points. Further, as the number of antennas, Nt, Nr increase, the number
of local minimas grows, and the optimality gap, the difference between the loss values at the local
minima and the global minima, widens, significantly impacting the overall loss (Appendix C.1).

2.2 LINEARIZED REFORMULATION OF THE PHYSICS MODEL

To overcome the challenges posed by the PBGC model, while maintaining the key underlying
model features for channel generation, the channel synthesis is presented via a weighted sum over a
parameter dictionary. In order to compute the dictionary elements, the range of angles θpa, θ

p
d , given by

[θmin, θmax], is equally divided into R intervals of width ∆θ = (θmax − θmin)/R. We pre-compute
the outer product between the array response vectors, ar(θpa)at(θ

p
d)

H , at the discretized angle values
and store them in a dictionary D. The dictionary D has a total of R2 elements, where each element of
the dictionary, Di,j ∀ i, j ∈ {1, R}, is given by:

Di,j = ar(θi)at(θj). (2)

The relaxed PBGC model using the linearized reformulation can now be expressed as,

H =

R∑
i=1

R∑
j=1

Wi,jDi,j , (3)

where, the channel generation is parametrized by the gain matrix W ∈ RR2

, instead of the parameters
s, and the channel is constructed by the element-wise product between W and D. By making these
changes in the pipeline, we now model the output channel H as a linear function of the gain matrix
W, mitigating the issues arising from the non-convexity of the PBGC model M . Further, it must be
noted that the accuracy of the relaxed model is strongly tied to the number of intervals, R. For a
suitably high value of R, any channel H can be approximated by (3).

2.3 GENERATIVE MODEL TO PREDICT THE GAIN MATRIX

The modified generative model using the linearized reformulation is shown in Fig. 3. The VAE
decoder gϕd

: RZ → RR×R now predicts the gain matrix W, where R is the resolution of W. During
training, the decoder gϕd

takes in the latent vector z as input and produces a gain matrix W as
W = gϕd

(z). The gain matrix is then used to generate the predicted channel using equation 3.
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Figure 3: We relax the PBGC model by defining a discretized array response dictionary D and using the generator
to output gain the gain matrix W. The elementwise multiplication of W and D mimics the PBGC model process.
This relaxation allows the flow of gradient through the generator, enabling it to converge to more suitable optima.

2-Wasserstein Distance MMD
Dataset Ours CGAN DUNet CVAE Ours CGAN DUNet CVAE
Boston 0.475 0.84 0.687 0.87 0.013 0.045 0.052 0.095
ASU 0.283 0.932 0.641 1.095 0.012 0.169 0.02 0.592

Indoor 0.17 0.339 0.529 1.802 0.005 0.003 0.02 0.375
BS10 0.656 1.632 0.857 1.837 0.072 0.317 0.108 0.414
BS11 0.267 0.882 0.463 1.12 0.016 0.086 0.033 0.132

Table 1: The distribution of channels modelled by our method is more similar to the real distribution compared
to baselines in terms of 2-Wasserstein distance and Maximum Mean Discrepancy (MMD).

3 EXPERIMENTAL RESULTS

In this section, we analyze the performance of our method on wireless datasets generated correspond-
ing to real-life scenarios and compare our method against prior art baselines. For our PBGC model
equation 1, we consider transmit and receive antennas Nt = Nr = 16 and assume the number of
paths P = 5. We consider five datasets, sythesized using the DeepMIMO framework Alkhateeb
(2019), modeling street intersections in different cities (see Appendix D.1). We use a VAE as the
generative model, (gϕe, gϕd), which is trained using the Adam optimizer with a learning rate of 1e−3.
Model architecture details are described in Appendix C We compare our model against ChannelGAN
(CGAN)Xiao et al. (2022), the DUNet diffusion model (DUNet) Sengupta et al. (2023) and a VAE
version of CSINet Wen et al. (2018). Models are trained for 300 epochs with a batch size of 256. For
our model, we use resolution R = 64 and latent dimension z = 64.

In Table 1, we analyze the ability of our method to capture the distribution of channel matrices
compared to baseline methods. We generate 3000 synthetic channel matrices and compare the
2-Wasserstein distance Panaretos and Zemel (2019) and Maximum Mean Discrepancy Dziugaite et
al. (2015) between the distribution of the generated channels and the true channels. The channels
generated by our method are closer to the distribution of true channels than those generated by the
ChannelGAN baseline by up to 4×. This shows that our method can generate more realistic channel
data as compared to baselines. A comprehensive evaluation of the generative modeling schemes on
the downstream task of channel compression (CSI compression) can be found in Appendix D.

4 CONCLUSION

In this paper, we developed a generative pipeline that leverages a PBGC model for parametrized
channel generation. We tackle the extreme non-convexity in the PBGC model by developing a
dictionary-based relaxation of the PBGC model and learning a sparse gain matrix whose non-zero
values denote the parameters of the associated paths. We empirically show that our method effectively
captures path-specific parameter distributions for a given dataset of channel matrices and outperforms
prior arts in terms of 2-Wasserstein distance and MMD. Our work can be extended to 3-dimensional
scenarios with angles of elevation and additional parameters such as path delay.
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A RELATED WORK

Several works propose using a generative model to produce novel channel samples through the
stochastic generative process. A generative adversarial network (GAN) based wireless channel
modeling framework was first introduced in Yang et al. (2019). Authors of Xiao et al. (2022) utilize
a Wasserstein-GAN with Gradient Penalty (WGAN-GP) to synthesize novel channel matrices given
a limited set of training data points. Orekondy et al. (2022) trained their model on multiple-input
multiple-output (MIMO) data, with a discriminator explicitly designed to learn the spatial correlation
across the channel data. In Sengupta et al. (2023), the authors utilize diffusion models as the
generative backbone to circumvent the issue of mode collapse in GANs. Works such as Arvinte and
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Tamir (2022) utilize a score-based generative model for joint channel modeling and estimation. All
of the above works utilize a generative model to directly produce channel matrices at the output have
no guarantees on the validity of the generated channel data, with limited interpretability.

An alternative research direction involves using labeled datasets to predict parameters associated
with the wireless channel. In Xia et al. (2022) and Hu et al. (2022), the authors use a conditional
variational autoencoder (VAE) and a conditional GAN framework, respectively, to generate the
channel parameters given the location of UAVs. The above works require datasets labeled with
metadata relating to the environment and locations of the transmitter or receiver to produce parameters
that can be used in downstream channel models and do not evaluate the channel matrices directly. In
contrast, our method does not require labeled data, and can learn channel parameters directly from
the channel matrix.

B DETAILS OF THE PHYSICS BASED GEOMETRIC CHANNEL MODEL (PBGC)

As mentioned, we consider a communication setup with Nt transmit and Nr receive antennas. The
PBGC model considers the channel matrix H to be a superposition of the individual propagation
matrices associated with each of the P paths. The overall model is thus expressed as:

H = M(s) =
P∑

p=1

gpar(θpa)at(θ
p
d)

H . (4)

Where, s = [gp, θ
p
a, θ

p
d]

P
p=1, and gp represents the propagation gain associated with the p-th path,

at(·), ar(·) represent the array response vectors on the transmit and receive antennas, θpd and θpa
represent the corresponding angle of departure and angle of arrival, both of which take values
between [−π, π] radians. Also, in mmWave channels, the total number of paths P is typically small
in over-the-air transmission.

To simplify the discussion, we consider Uniform Linear Arrays (ULA) Forenza et al. (2007) and
limit the discussion to the azimuth plane. Thus, the array response vectors can be defined as:

at(θpd) =
1√
Nt

[1, eju sin(θp
d), . . . , ej(Nt−1)u sin(θp

d)]T , (5)

ar(θpa) =
1√
Nr

[1, eju sin(θp
a), . . . , ej(Nr−1)u sin(θp

a)]T , (6)

where, u =
2π

λ
d, λ is the wavelength of the carrier signal and d is the distance between antenna

elements.

C GENERATIVE MODEL TRAINING WITH PBGC

During the training phase, the encoder of the generative model takes a channel matrix H as input and
samples a latent vector z from the posterior distribution as z ∼ fϕe

(H). The decoder of the generative
model then takes in the latent vector z as input and produces a parameter vector ŝ as ŝ = gϕd

(z). The
predicted parameter vector is then passed to the model M to produce an output channel Ĥ as follows
Ĥ = M(ŝ). The system loss is a generalization of the evidence based lower bound (ELBO)Kingma
and Welling (2014), given by

L = ||H − Ĥ||22 + αD · KL(z,N (0, I)). (7)

Here, the first term corresponds to the reconstruction or mean square error (MSE) loss between
the input H and the predicted channel matrix Ĥ. This ensures that the outputs are similar to the
inputs. The second term penalizes the Kulback-Leibler (KL) divergence Kullback and Leibler (1951)
between the latent vector z and a simple, known distribution, in this case, the multivariate unit
Gaussian distribution N (0, I), where I is the identity matrix of dimension Z. This encourages the
distribution of the latent vectors to be similar to N (0, I).
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C.1 CONVERGENCE ISSUES WITH THE PBGC MODEL
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Figure 4: In the straightforward integration of the PBGC model with the VAE, the generator directly predicts
the parameters ŝ, which are then used by the PBGC model M to produce the predicted channel. In such
implementations, the generator cannot converge to suitable optima due to the non-convexity of the PBGC model.
Further, as the number of antennas, Nt, Nr increases, the optimality gap, the difference between the loss values
at the local minima and the global minima, widens, significantly impacting the overall loss. In this figure, we
show the average training performance of the pipeline over several independent training instances. As can be
seen, the normalized mean squared error (NMSE) barely reduces and continues to remain high across the entire
training horizon.

C.2 MODEL ARCHITECTURE

We consider a variational autoencoder (VAE) architecture as the generative model for our experiments.
The architecture of our model is given in Fig. 5.

Figure 5: The architecture of the VAE model used in our experiments. We use the Leaky ReLU activation after
each BatchNorm and Linear layer.

D EXPERIMENTAL RESULTS

D.1 DATASET INFORMATION

Five datasets are generated using the used to generate channel datasets using 3D ray tracing. Datasets
corresponding to the following scenarios are used; (i) Two base stations in an outdoor intersection
of two streets with blocking and reflecting surfaces, given by (BS10) and (BS11); (ii) an indoor
conference room, given by (Indoor); (iii) a section of downtown Boston, Massachusetts, USA,
generated using the 5G model developed by RemCom Remcom, given by (Boston) and (iv) a section
of the Arizona State University campus in Tempe, Arizona, USA, given by (ASU).

We evaluate the accuracy of generated channels as well as effectiveness of the generative pipeline for
downstream channel compression tasks.

D.2 PREDICTION OF PARAMETERS

We evaluate the accuracy of our system in capturing the underlying distribution of parameters
associated with a given dataset. A user-defined dataset D of channel matrices is created by sampling

8



Accepted at the DeLTa Workshop at ICLR 2025

Figure 6: The distributions of angles of arrival and departure (θpa, θ
p
d) captured by our method (Left) match the

underlying distributions of the training dataset (Right). Each color corresponds to a distinct path.
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Figure 7: (a) Our method can generate samples with a high degree of fidelity in terms of 2-Wasserstein distance
and MMD. even with a training dataset of around 50% of the size of the training dataset. (b) For a physics
model M , as the number of antennas (Nr, Nt) increase, an increase in the resolution (R) of the gain matrix W
results in a higher degree of fidelity with the input data distribution in terms of the 2-Wasserstein distance, as the
highest possible precision with which parameters can be estimated is dependent on the number of antennas. (c)
The performance of our method is consistent across a varying number of paths P , as the generative process is
independent of P , relying on the loss function to balance reconstruction fidelity and the identified number of
paths, given by the number of non-zero values in the gain matrix W.

parameters [gp, θap , θ
d
p]

P
p=1 from a user-defined distribution. The proposed model is trained on this

dataset, and the distribution of the generated parameters from this model is illustrated. The results
Fig. 6, compare the ground truth distributions with the output of the generative model. We observe
that our method can accurately capture the distributions of the angles of arrival and departure for each
path. This shows that our model training and parameter extraction methods can be used to determine
the distributions of parameters of input channels without requiring labeled data.

D.3 EFFECT OF VARYING SIZE OF TRAINING DATASET

In this experiment, we train our model on datasets of varying sizes, choosing a subset of the original
dataset of the appropriate size. We use the DeepMIMO dataset BS10 for this experiment, which
consists of 16, 000 datapoints.

In Fig. 7(a), we observe that our method is able to provide a similar level performance even when the
size of the training data is reduced by up to ∼ 40%. This is because our model predicts distributions
in the parameter space, which are less complex than the distributions in the channel space, even a
small number of datapoints can capture the distribution related characteristics of the input channels.
In a practical deployment, this translates to significant savings in terms of the resources deployed to
acquire channel data.
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Train
Testing R10 Testing R11 Testing G10 Testing G11

Ours CGAN DUNet CVAE Ours CGAN DUNet CVAE Ours CGAN DUNet CVAE Ours CGAN DUNet CVAE
R10 0.02 0.02 0.02 0.02 1.35 1.35 1.35 1.35 0.06 1.29 0.46 0.55 1.36 1.37 1.18 1.07
R11 1.14 1.14 1.14 1.14 0.06 0.06 0.06 0.06 1.21 1.51 1.14 1.04 0.25 0.45 0.42 0.72
G10 0.05 0.77 0.19 0.85 1.41 0.97 1.04 1.49 0.01 0.09 0.03 0.09 1.5 0.92 1.17 1.1
G11 1.1 1.37 1.02 1.04 0.14 0.56 0.37 0.52 1.31 1.94 1.33 1.15 0.01 0.02 0.01 0.02

Table 2: NMSE loss for downstream compression tasks using different pairs of training and testing datasets.
When compression models are trained on real data and evaluated on generated data (Rows 1,2) and vice versa
(Rows 3,4), our method records lower NMSE for corresponding real-generated dataset pairs, indicating that the
data generated by our method is more similar to the real channel data.

D.4 EFFECT OF INCREASING NUMBER OF PATHS

In this experiment, we observe the effect of increasing the number of constituent paths P in a channel
matrix. We consider the channel dataset given in Table 1 and add additional paths where needed as
follows. Path 6 is sampled from θap ∼ U(0.4, 0.8)/θap ∼ U(0.1, 0.3), Path 7 is sampled from θap ∼
U(0.6, 1.0)/θap ∼ U(−0.3,−0.1), and Path 8 is sampled from θap ∼ U(−0.3, 0.9)/θap ∼ U(0.6, 1.0).
gp ∼ U(0.001, 0.01) for all paths.

In Fig. 7(c), we observe that the performance of our generative pipeline remains consistent across
a varying number of paths P . This is because our model is independent of P , and leverages the
formulation of the loss function to balance the reconstruction accuracy and the number of non-zero
output values, which dictates the number of identified paths. This is encapsulated by the last term,
which enforces output sparsity. The hyperparameter αS in the loss function can thereby be tuned by
observing the reconstruction loss. Thus, our method can adapt to a range of values for the number of
paths by finding a suitable balance between the NMSE and the L1 regularization loss such that the
number of non-zero values are proportional to the number of paths.

D.5 CROSS EVALUATION BETWEEN DISTINCT DATASETS

In this experiment, we analyze the ability of our method to learn distinct channel distributions
based on the cross evaluation of models trained on distinct channel distributions in the context of a
downstream channel compression task.

We consider two channel datasets R10, R11 from the DeepMIMO scenario, generated from base
stations 10 and 11 respectively. We train an independent instance of the generative model on each
dataset and generate synthetic datasets of size 20, 000, given by G10, G11 respectively. We then train
independent instances of the CSINet channel compression model Wen et al. (2018) on each set. We
perform cross evaluation considering all pairwise combinations of training and testing datasets and
calculate the test NMSE given in Table 2.

Now, a model trained on G10 should generalize well to R10, and vice versa for a model trained
on G11. In Table 2, we observe that a compression model trained on data generated by our model
follows the aforementioned rules, indicating that our method can capture the distinctions between
two different datasets and generate distinct channel data samples.
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