
Under review as a conference paper at ICLR 2024

TIME-SENSITIVE WEIGHT AVERAGING FOR
PRACTICAL TEMPORAL DOMAIN GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal Domain Generalization (TDG) is a valuable yet challenging task that
requires models to support temporal distribution shifts without access to future
samples. Prior work utilized time-sensitive models that take timestamps as in-
put or directly estimated optimal model parameters for each temporal domain.
However, these methods were evaluated in oversimplified settings that do not
scale to complex scenarios. To fundamentally enhance TDG’s value for real-
world applications, we propose three key principles for TDG method design: 1)
Time-sensitive model, 2) Generic method, and 3) Realistic evaluation. Reflecting
these guidelines, we propose Time-sensitive Weight Averaging (TWA), a simple
yet effective approach to apply weight averaging (WA) of specialists for every
temporal domain. For principle 1), we train a selector network to estimate the
good coefficients to average weights based on timestamp input. For principle 2),
TWA is inherently generic, as WA requires no modification to model architecture.
For principle 3), we incorporate more realistic benchmarks into TDG, including
CLEAR-10, CLEAR-100, Yearbook, and FMoW-Time, which feature complex
data distributions and natural temporal shifts. Extensive experiments conducted
on these benchmarks demonstrate the practical value of TWA, e.g., on CLEAR-
10/100, TWA consistently improves accuracy over the baselines by up to 4%. We
also demonstrate TWA boosts performance on common TDG benchmarks used in
prior work. Lastly, we provide theoretical insights behind the outstanding perfor-
mance of TWA.

1 INTRODUCTION

Many researchers have looked into solutions for addressing distribution shifts that occur between
training and testing data, including Domain Adaptation (DA) (Hoffman et al., 2017; Saenko et al.,
2010b) and Domain Generalization (DG) (Gulrajani & Lopez-Paz, 2021; Li et al., 2018b; Saenko
et al., 2010a). They have proposed approaches that either leverage unlabeled data in the target
domain or use only source domains. Others have considered predicting the distribution shifts instead.
For example, in Temporal Domain Generalization (TDG) and related tasks, researchers assume a
smooth shift in the training distribution over time (e.g., ying Bai et al. (2022); Ke et al. (2021b;a);
Lin et al. (2022); Mancini et al. (2019); Nasery et al. (2021); Ortiz-Jiménez et al. (2019); Srinivasan
et al. (2022); Verwimp et al. (2022); Wang et al. (2020); Zeng et al. (2023)). They assumed that
understanding say how a mobile phone’s appearance has changed in the past may help predict future
changes. To date, however, exploration in this direction remains limited. As illustrated in Fig. 1(a),
prior work has either overlooked the temporal shift, or relies heavily on time-sensitive mechanisms at
the expense of generalization (ying Bai et al., 2022; Nasery et al., 2021; Wang et al., 2020; Mancini
et al., 2019). While time-sensitive mechanisms help models generalize to the future by modeling the
temporal shift with architecture modifications and special operations, they also make it challenging
to use large models trained on lots of data (e.g., OpenAI (2023); Touvron et al. (2023); Kirillov et al.
(2023)) that have shown good performance on domain-aware tasks (e.g., Iwasawa & Matsuo (2021);
Kim et al. (2022)). In addition, as our experiments show, they do not generalize to more complex
settings that are more representative of many applications of TDG.

In this paper, we identify three key principles in designing a good TDG method: 1) Time-sensitive
model, 2) Generic method, and 3) Realistic evaluation. Under these guiding principles, we pro-
pose Time-sensitive Weight Averaging (TWA), a weight averaging method that uses a selector

1

Under review as a conference paper at ICLR 2024

(a) The limitations of prior work (Cha et al., 2021; 2022; ying Bai et al., 2022; Nasery et al., 2021;
Wang et al., 2020; Mancini et al., 2019).

(b) Our TWA’s three key design principles.

Figure 1: The 3 key principles of a good TDG method 1) Time-sensitive Model: Model properties
can vary temporally. 2) Generic Method: The method can be easily combined with various archi-
tectures and tasks, requiring as few architecture modifications as possible. 3) Realistic Evaluation:
Evaluation settings need to be representative of real-world applications, e.g., complex data distribu-
tions, natural temporal shifts and large-scale models.

network optimized over source domains to estimate the optimal averaging coefficients for a corre-
sponding temporal index, i.e., a timestamp. As weight averaging makes no architecture assumptions,
it is a generic method that can be easily incorporated into the training procedure of any model. Our
selector network ensures that our approach is time-sensitive, i.e., it accounts for the domain shifts
at a specific temporal index. Finally, to ensure that our approach has practical value, we evalu-
ate on more complex benchmarks than have been used in prior work on TDG. Specifically, we use
CLEAR-10(Lin et al., 2022), CLEAR-100(Lin et al., 2022), Yearbook(Yao et al., 2022), and FMoW-
Time(Yao et al., 2022), which feature complex data distributions and natural temporal shifts.

The closest work to ours are the Weight Averaging (WA) methods that have been explored in domain
generalization (e.g., Cha et al. (2021; 2022); Rame et al. (2022)). As our experiments show, WA
outperforms prior work designed for TDG tasks (e.g., Ortiz-Jiménez et al. (2019); Mancini et al.
(2019); Wang et al. (2020); ying Bai et al. (2022); Nasery et al. (2021); Zeng et al. (2023)) despite
lacking any sense of temporal shifts. To make WA temporally sensitive, we retain a number of
specialized models and then learn to effectively compose them for a particular timestep, providing
up to a 4% performance boost over WA.

Our contributions can be summarized as follows:
• We analyzed the current state of the art in Temporal Domain Generalization (TDG) from the

perspective of real-world applications. We identify three key factors to this end: Time-sensitive
model, Generic method, and Realistic evaluation.

• We propose Time-sensitive Weight Averaging (TWA), which imposes a time-sensitive selector
network over weight averaging (WA) methods. TWA benefits from the generalizability of WA
methods while being time-sensitive in its predictions. To the best knowledge of the authors, TWA
is novel and has never been tried before. We also provide theoretical insights behind TDG tasks
and our method.

• We propose an improved TDG benchmark by incorporating more realistic datasets: CLEAR-10,
CLEAR-100, Yearbook, and FMoW-Time into the TDG setting. Extensive experiments demon-
strate the superiority of our method, while also serving as baselines for future work.

2 RELATED WORK

Domain Adaptation and Generalization. Domain adaptation (DA) has been a long-standing re-
search topic, and a large volume of work exists (Saenko et al., 2010b; Sun et al., 2015; Sun &

2

Under review as a conference paper at ICLR 2024

Saenko, 2016; Bousmalis et al., 2016; Hoffman et al., 2017; Gong et al., 2012; Tzeng et al., 2017;
Liang et al., 2020; Ganin & Lempitsky, 2014; Long et al., 2017; Wang et al., 2018; Li et al., 2016;
Bashkirova et al., 2023). However, DA methods require unlabeled data from the target domain. To
address this, Domain Generalization (DG) methods trains models on one or multiple distinct source
domain(s) that can generalize to any target domain without using data from target domains (e.g.,Li
et al. (2017a); Muandet et al. (2013); Li et al. (2018a; 2017b); Gulrajani & Lopez-Paz (2021); Li
et al. (2018b; 2019a)). Various DG methods have been proposed and can be broadly categorized into
three groups: data manipulation, representation learning, and learning strategy design (Wang et al.,
2022a). Weight Averaging (WA) (Cha et al., 2021; 2022; Rame et al., 2022; Wortsman et al., 2022)
is an example of learning strategy design, which promotes the generalization capability with differ-
ent strategies to average model weights. Another common learning strategy is meta-learning (Balaji
et al., 2018; Li et al., 2017b; 2019b), which constructs meta-learning tasks to simulate domain shift.

Temporal Domain Generalization (TDG) (Ortiz-Jiménez et al., 2019; Mancini et al., 2019; Wang
et al., 2020; ying Bai et al., 2022; Nasery et al., 2021; Zeng et al., 2023; Wang et al., 2022b) emerges
as a specialized branch of Domain Generalization (DG) with two key distinctions: 1). Temporal
domains in TDG can be continuously indexed over time; 2) TDG can leverage temporal information,
e.g. timestamps, to help models generalize to future domains. In some earlier studies, TDG scenarios
are encompassed within applicable scope of Continuous Domain Adaptation methods. CIDA (Wang
et al., 2020) addresses continuously indexed domains by using the domain index as network input
and adversarial DA to learn invariant representations. AdaGraph (Mancini et al., 2019) puts all
domains on a graph and leverages the metadata of each domain to predict BatchNorm parameters.
Recently, GI (Nasery et al., 2021) propose to enable a model to extrapolate into the near future by
supervising the first-order Taylor expansion of the learned function. DRAIN (ying Bai et al., 2022)
uses a Bayesian framework and recurrent graph generation to predict model parameters in the target
domains. Most prior TDG works require architectural changes and use oversimplified evaluation
settings, such as RotatedMNIST(Wang et al., 2020; ying Bai et al., 2022; Nasery et al., 2021).

Continual Learning primarily focuses on the “continual” aspect of the training paradigm. Most
Continual Learning works (Zenke et al., 2017; Lopez-Paz & Ranzato, 2017; Shin et al., 2017;
Chaudhry et al., 2018) place a greater emphasis on the “catastrophic forgetting” problem. Prior
Continual Learning works also have oversimplified evaluation settings. Recent new datasets fea-
ture complex distributions and natural temporal shifts. CLEAR (Lin et al., 2022) is based on the
YFCC100M dataset (Thomee et al., 2016) with a natural temporal evolution of real-world visual
concepts that spans a decade. Wildtimes (Yao et al., 2022) also captures real-world temporal shifts,
comprising 5 datasets for CV, NLP and Data Mining tasks. Yearbook and FMoW-Time are image
datasets with categorical labels.

3 TIME-SENSITIVE WEIGHT AVERAGING FOR TEMPORAL DOMAIN
GENERALIZATION

In Temporal Domain Generalization (TDG) a model must be able to account for shifts in the data
distribution over time in order to improve task performance. A common assumption is that these
distributions have smooth changes (e.g., how the appearance of a mobile phone may change over
time) that can be learned. More formally, we define a distribution function, d(t) that shifts over
time t. In theory, we can have infinite domains continuously distributed along the time axis:
D(t) = {(x0, t, y0), (x1, t, y1)...}, where (xi, yi) ∼ d(t). However, we cannot sample infinite
temporal domains in practice, and many datasets discretely partition the data into finite domains
D1, D2, . . . , DE with timestamps t0 ⩽ t1 ⩽ t2 ⩽ . . . ⩽ tE . Given a split timestamp ts, we can
divide all domains into source domains, D1, D2, ..., Ds, and target domains (future), Ds+1, ..., DE .
Given a network function F(θ, φ), parameterized with model weights θ and generalization strategy
φ, the goal of TDG is to find the optimal generalization strategy φ∗ to enable models trained on
D1, D2, ..., Ds, F(θ∗, φ), to generalize to Ds+1, ..., DE , i.e. minimize the risk on target domains.
Using E(·, Di) to denote the risk function on target domains Di and Eφ(·, Dj) to denote the objective
function within strategy φ on domain Dj , we can frame TDG as a bi-level optimization problem:

φ∗ = argmin
φ

∑
i∈[s+1,E]

E(F(θ∗, φ), Di), s.t. θ∗ = argmin
θ

∑
j∈[1,s]

Eφ(F(θ, φ), Dj) . (1)

3

Under review as a conference paper at ICLR 2024

(a) Training the Selector Network (b) Inference

Figure 2: An overview of our TWA method. (a) When optimizing the selector network in TWA, we
use output averaging as a proxy task, utilizing the estimated coefficients to average the outputs of all
snapshots. (b) During inference, we perform weight averaging with the optimized selector network.

To address this task, we propose Time-senstive Weight Averaging (TWA), which uses a selector
network to choose how to combine domain specialist models for new temporal domains. Sec. 3.1
discusses how we adapt weight averaging to better support temporal domain shifts. Sec. 3.2 de-
scribes our selector network, and Sec. 3.3 provides a theoretical analysis of our approach. Fig. 2
gives an overview of our model, and Sec. F in the appendix we provide detailed pseudo-code for
training TWA.

3.1 ADOPTING WEIGHT AVERAGING FOR TDG

Weight Averaging (WA) methods have demonstrated good domain generalization performance with-
out introducing new network components in prior work (e.g., Cha et al. (2021; 2022); Rame
et al. (2022)). Given sampling function S(·) that samples K model snapshots (training iter-
ates) θ1:K = [θ1, ..., θK], a weight-average is θavg = θ1:K · µ1:K with averaging coefficients
µ1:K = [µ1, ..., µK] ∈ ∆K . SWAD (Cha et al., 2021) is a WA method that densely averages
weights from all iterations in an “overfit-aware” sampling zone determined via validation loss. This
results in flatter minima and smaller domain generalization gaps.

Our task differs from SWAD’s because we assume the domain-shift is temporally aligned and
smooth. In our experiments, we found that optimizing BatchNorm (BN) layers in the models was
necessary for good performance (6% drop on CLEAR-10 otherwise), which are often kept frozen
on DG benchmarks (Gulrajani & Lopez-Paz, 2021). A natural fix is to post-update BN statistics in
averaged models, but this becomes computationally expensive when using time-sensitive averaging
coefficients, and we have observed that directly averaging BN statistics can result in model collapse
when the sampling zone is too large.

To address these issues, we propose a simple trick, Late Sampling, in which we empirically set the
size Ils of the sampling zone. Then, instead of sampling from [Is, Ie], we sample from [max(Is, Ie−
Ils), Ie]. In theory, using late sampling would require two training passes to reach the end of the
sampling zone Ie first, but we can only use one training pass in practice by estimating Ie.

3.2 PREDICTING TIME-SENSITIVE AVERAGING COEFFICIENTS USING A SELECTOR
NETWORK

Weight averaging (WA) methods that have been proposed in prior work were applied to the domain
generalization task (e.g., Cha et al. (2021; 2022); Rame et al. (2022)). As our experiments will
show, a direct application of these methods to the TGD task is effective, but contains one critical
flaw: WA methods from prior work are not time sensitive. Thus, they are unable to take advantage

4

Under review as a conference paper at ICLR 2024

Table 1: Benchmark statistics and experiment setup for CLEAR(Lin et al., 2022), Yearbook(Yao
et al., 2022) and FMoW-Times(Yao et al., 2022).

Benchmark # Sample # Class Split Timestamps Input Shape Models Pretrain

CLEAR-10 35, 000 10 [t9, t8, t7, t5, t3] (224, 224, 3) R18, R50 n/a, CB0
CLEAR-100 150, 000 100 [t9, t8, t7, t5, t3] (224, 224, 3) R18, R50 n/a, CB0

Yearbook 37, 189 2 [1980, 1970, 1960] (32, 32, 1) R18 n/a
FMoW-Times 118, 886 62 [2017, 2016, 2015] (224, 224, 3) R50 ImageNet

of the smooth changes to the distribution over time that is the hallmark of TGD. To address this,
we propose to use the averaging coefficients µ1:K to model the trajectory of the distribution shift
over time. Specifically, given parameters of K models θ1:K = [θ1, ..., θK], we define a “Selector
Network” ϕ : R → ∆K , so that ϕ(t) outputs a vector of averaging coefficients given timestamp t,
µ1:K = ϕ(t). Thus, the WA formulation becomes:

θavg = θ1:K ∗ ϕ(t) =
K∑

k=1

ϕ(t)k · θk (2)

Our implementation of ϕ works by processing a normalized timestamp with a Time2Vec module
(Kazemi et al., 2019) to capture high-frequency trends. Then we generate the coefficients via a small
MLP. To choose models for averaging, we adopt a similar sampling strategy to the one proposed by
SWAD (discussed at the end of Sec. 3.1). However, instead of using dense sampling strategy Sld(·),
we use sparse reservoir sampling Sls(·) to choose K snapshots, so as to limit the output size of ϕ.

3.2.1 TWA TRAINING OBJECTIVE

For each temporal domain Di, we train with objective Ê(·, Di) =
∑

(x,y,t)∼Di
L(F(x, θ, t), y),

where L is the selected loss function. We compute this empirical risk on source domains only, as we
have no access to samples from target domains. And we optimize selector network ϕ to minimize
the empirical risk on source domains.

Theoretically, we can derive the gradient of selector network parameters to optimize it directly.
However, selector network is also used for averaging the BN statistics, which makes the implemen-
tation much more complex in practice, and our attempts to tackle this were unsuccessful. Hence, we
propose to optimize the selector network using output averaging as a proxy task, which simplifies
the implementation while still enabling efficient optimization. After the training process to opti-
mize θ, we add a few extra iterations to optimize selector network ϕ. During inference, we use the
optimized selector network to perform weight averaging. The final optimization problem becomes:

ϕ∗ =argmin
ϕ

∑
i∈[s+1,E]

∑
(x,t,y)∼Di

L

(
K∑

k=1

ϕ(t)k · F(x, θk), y

)
(3)

s.t. θ1:K ∼ Sls(argmin
θ

∑
j∈[1,s]

∑
(X,·,Y)∼Dj

L(F(X, θ), Y)

3.3 THEORETICAL ANALYSIS OF TWA

In addition to our experiments, we have derived some theoretical guarantees on the ability of TWA
to generalize from past to future data, given some mild assumptions about the nature of the tem-
poral domain shift. We take inspiration from the theoretical work of SWAD (Cha et al., 2021),
which found that models that live inside flat minima tend to generalize well. Our analysis shows
that a trajectory of models that live inside flat minima w.r.t. their own temporal “domains” gen-
eralizes well into the future, provided that the domain shift is smooth and the space of selectors
is well-constrained. Some empirical analysis confirms that TWA is indeed learning to produce
weight-averaged models that stay within these flat minima as the data distribution shifts. Please see
Supplementary D for a full exposition and proof of our theoretical results, as well as the empirical
flat minima analysis.

5

Under review as a conference paper at ICLR 2024

Table 2: CLEAR-10 test accuracies (%) on target domains using ERM, CIDA/PCIDA (Wang et al.,
2020), AdaGraph (Mancini et al., 2019), SWAD (Cha et al., 2021) and our TWA.

Model Method D10 D9−10 D8−10 D6−10 D4−10

ResNet-18

ERM (IID) 86.7 ± 0.6 83.8 ± 0.5 84.3 ± 1.5 80.6 ± 1.4 76.3 ± 0.9

ERM (Last) 86.3 ± 2.0 84.3 ± 0.9 82.5 ± 1.5 79.4 ± 1.1 76.6 ± 0.8

AdaGraph 75, 5 ± 4.19 74.8 ± 1.9 71.2 ± 2.5 56.4 ± 3.5 19.3 ± 2.6

CIDA 85.6 ± 0.5 83.9 ± 0.5 81.3 ± 0.9 79.3 ± 1.4 71.5 ± 4.3

PCIDA 87.3 ± 0.8 85.4 ± 0.9 82.9 ± 1.0 79.4 ± 1.5 72.4 ± 2.2

SWAD 87.3 ± 1.0 86.0 ± 0.6 84.6 ± 1.1 81.5 ± 1.4 77.1 ± 1.5

TWA (ours) 88.5 ± 0.3 87.3 ± 0.8 86.3 ± 0.2 83.0 ± 0.7 79.3 ± 0.3

ResNet-50

ERM (IID) 85.9 ± 1.6 84.9 ± 1.0 84.7 ± 0.2 81.0 ± 1.9 77.1 ± 0.6

ERM (Last) 85.6 ± 1.4 85.0 ± 1.8 84.5 ± 0.4 80.6 ± 1.0 76.0 ± 1.5

SWAD 87.3 ± 0.9 86.5 ± 0.2 85.8 ± 1.1 82.2 ± 1.6 78.5 ± 1.1

TWA (ours) 89.0 ± 0.3 87.8 ± 0.3 86.9 ± 0.2 84.0 ± 0.5 80.3 ± 0.4

Table 3: CLEAR-100 test accuracies (%) on target domains using ERM, CIDA/PCIDA (Wang et al.,
2020), AdaGraph (Mancini et al., 2019), SWAD (Cha et al., 2021) and our TWA.

Model Method D10 D9−10 D8−10 D6−10 D4−10

ResNet-18

ERM (IID) 68.3 ± 0.3 66.9 ± 0.7 64.9 ± 1.4 60.4 ± 0.5 53.3 ± 0.9

ERM (Last) 67.0 ± 1.1 66.3 ± 0.6 64.4 ± 0.5 60.2 ± 0.9 53.1 ± 0.8

AdaGraph 50.2 ± 4.5 39.5 ± 2.5 35.0 ± 2.3 21.0 ± 2.6 5.1 ± 0.8

CIDA 67.8 ± 0.3 66.8 ± 1.0 66.5 ± 0.3 61.4 ± 0.9 52.7 ± 1.2

PCIDA 69.2 ± 0.1 67.8 ± 0.7 67.2 ± 0.7 61.3 ± 1.2 53.3 ± 1.7

SWAD 69.4 ± 0.7 67.3 ± 0.7 65.6 ± 1.0 61.5 ± 0.8 53.7 ± 1.0

TWA (ours) 72.1 ± 0.3 70.2 ± 0.3 68.9 ± 0.2 64.3 ± 0.1 57.4 ± 0.3

ResNet-50

ERM (IID) 71.8 ± 0.5 69.1 ± 0.4 67.7 ± 0.7 63.5 ± 0.3 56.1 ± 0.6

ERM (Last) 70.5 ± 1.9 68.5 ± 1.3 66.6 ± 0.7 63.3 ± 1.3 55.4 ± 1.3

SWAD 72.1 ± 0.5 70.8 ± 0.9 69.0 ± 0.9 65.2 ± 0.3 57.8 ± 1.1

TWA (ours) 75.1 ± 0.6 73.4 ± 0.4 72.0 ± 0.3 68.3 ± 0.1 60.4 ± 0.7

4 EXPERIMENTS

Our experiments are designed to highlight two main capabilities of TWA: Realistic Evaluation and
Comprehensive Comparison. On the former, newly incorporated benchmarks serve to showcase
the practical value of our proposed TWA. The latter ensures that when making fair comparisons
on the most commonly used TDG benchmarks to as much baseline methods as possible, TWA still
demonstrates superior performance.

4.1 EXPERIMENTAL SETUP

Evaluation Datasets. We selected 7 datasets for evaluation. CLEAR10/100 (Lin et al., 2022),
Yearbook (Yao et al., 2022), and FMoW-Times (Yao et al., 2022) are the newly incorporated datasets
that are more challenging and reflect real-world applications. Rotated MNIST (Deng, 2012), Rotated
Gaussian (Wang et al., 2020) and Portrait (Ginosar et al., 2015) are commonly used TDG datasets
and we follow the settings in DDA (Zeng et al., 2023) for these 3 datasets.

• CLEAR-10 and CLEAR-100 (Lin et al., 2022) contain user-uploaded images from 2007-2014
with natural temporal shifts of visual concepts. Samples are categorized into 10 bucket timestamps
t1, .., t10. We select t9, t8, t7, t5, t3 to split source and target domains, resulting in 5 settings with
target domains D10, D9−10, D8−10, D6−10, D4−10.

• Yearbook (Yao et al., 2022) contains American high school yearbook photos from 1930-2013,
with changing social norms, fashion, and demographics, on which gender classification is con-
ducted. Split timestamps are 1980, 1970, 1960, so target domains are 1980 − 2013, 1970 −
2013, 1960− 2013.

• FMoW-Times (Yao et al., 2022) contains satellite images from 2002 to 2017 that capture temporal
distribution shifts caused by human activity. The task is classifying land usage, and the split
timestamps are 2017, 2016, 2015, making the target domains 2017, 2016− 2017, 2015− 2017.

6

Under review as a conference paper at ICLR 2024

Table 4: Yearbook test accuracies (%) on target domains, with ResNet-18 trained from scratch,
using ERM, CIDA/PCIDA (Wang et al., 2020), SWAD (Cha et al., 2021), and our TWA

Method 1980− 2013 1970− 2013 1960− 2013

ERM (IID) 92.4 ± 0.7 83.3 ± 0.8 82.6 ± 2.3

ERM (Last) 92.0 ± 0.8 84.3 ± 2.0 81.7 ± 0.8

CIDA 92.2 ± 1.2 82.7 ± 5.0 75.0 ± 5.4

PCIDA 92.1 ± 1.2 85.6 ± 3.9 74.5 ± 6.7

SWAD 93.6 ± 0.7 85.3 ± 1.7 81.1 ± 2.4

TWA (Ours) 93.5 ± 0.5 85.7 ± 0.8 83.2 ± 0.9

• Rotated MNIST (Deng, 2012) is a semi-synthetic dataset where each MNIST image is rotated by
a certain angle per domain.

• Rotated Gaussian (Wang et al., 2020) is a synthetic dataset with 30 domains generated by the
same Gaussian distribution with rotating decision boundary.

• Portrait (Ginosar et al., 2015) is a simplified version of the Yearbook dataset, which contains
photos of high school students over different years.

Compared Baseline Methods. We mainly compare our TWA with Domain Generalization (DG)
and Temporal Domain Generalization (TDG) methods.

• Domain Generalization (DG) baseline methods include: ERM, MTL, GROUPDRO (Sagawa
et al., 2019), IRM (Arjovsky et al., 2019), MMD (Li et al., 2018a), CORAL (Sun & Saenko,
2016), SAGNET (Nam et al., 2021), SELFREG (Kim et al., 2021), SWAD (Cha et al., 2021)
and MIRO Cha et al. (2022). Specifically, SWAD and MIRO are time-agnostic WA methods
from prior domain generalization works.

• Temporal Domain Generalization (TDG) baseline methods include: MLDG (Li et al., 2017b),
CIDA/PCIDA (Wang et al., 2020), AdaGraph (Mancini et al., 2019), EAML (Liu et al., 2020),
LSSAE (Qin et al., 2022), DRAIN(ying Bai et al., 2022), GI (Nasery et al., 2021),and DDA (Zeng
et al., 2023). Note that CIDA, PCIDA, and AdaGraph are the most commonly used TDG base-
lines.We also provide a stand-alone comparison with DRAIN(ying Bai et al., 2022) in the appendix
C.5 due to its highly task-specific design.

4.2 RESULTS

We first focus our experiments on the newly incorporated benchmarks. These experiments are de-
signed to take into account three important aspects of TDG tasks: the extent of temporal distribution
shifts, network architectures, and pre-training procedures. Prior work typically evaluated “near fu-
ture” settings with only minor shifts (e.g. (ying Bai et al., 2022; Nasery et al., 2021)), where source
and target domains are temporally “close”, e.g., [D1, ..., D29] → [D30]. In contrast, as shown in
Tab. 1, we consider a larger variety of temporal shifts with different split timestamps.We employed
two common backbones: ResNet-18 (R18) and ResNet-50 (R50) (He et al., 2016). These backbones
were either pretrained on ImageNet (Deng et al., 2009), MoCo V2 (Chen et al., 2020), 700K unla-
beled images from CLEAR (Lin et al., 2022) (denoted as CB0), or trained from scratch on source
datasets. For all experiments, we report top-1 accuracy. See supplementary for additional details.

Training from Scratch on CLEAR-10/100. Tabs. 2& 3 report TDG performance on CLEAR-10
and CLEAR-100 datasets when training from scratch. Notably, the time-invariant Weight Averag-
ing baseline (SWAD (Cha et al., 2021)) achieves up to a 5% boost in accuracy over PCIDA, the best
prior TDG method in our comparison. That said, our time-sensitive WA approach, TWA, achieves an
additional boost of 1-3%. We also find other time-sensitive methods, such as CIDA and PCIDA, per-
form well with slight temporal shifts. However, their performance degrades when faced with larger
shifts, while our approach remains robust to these changes. Table 4 demonstrates that our approach
also generalizes to the Yearbook dataset, where we see similar trends to those from CLEAR-100.

Training with Pre-trained Weights on CLEAR-10/100. The choice of pretraining method and data
has significant impact on domain generalization performance (Iwasawa & Matsuo, 2021; Kim et al.,
2022). Tab. 5 shows results on CLEAR datasets when pretrained on unlabeled data. Our approach
still has a consistent advantage over SWAD, even when combined with MIRO (Cha et al., 2022).
Notably, our biggest gains come on the more challenging CLEAR-100, where combining TWA with

7

Under review as a conference paper at ICLR 2024

Table 5: CLEAR test accuracies (%) on target domains, using R50 and CB0 pre-training, using
ERM, SWAD (Cha et al., 2021), MIRO (Cha et al., 2022) and our TWA

Dataset Method D10 D9−10 D8−10 D6−10 D4−10

CLEAR-10

ERM (IID) 92.3 ± 1.1 91.3 ± 0.7 91.6 ± 1.0 89.2 ± 0.9 85.9 ± 0.7

SWAD + ERM 93.5 ± 0.4 93.0 ± 0.3 92.3 ± 0.6 90.1 ± 1.0 88.2 ± 0.6

TWA + ERM 94.4 ± 0.4 93.8 ± 0.3 93.1 ± 0.2 91.2 ± 0.3 88.8 ± 0.2

MIRO (IID) 95.3 ± 0.5 94.6 ± 0.4 93.9 ± 0.9 93.1 ± 0.4 90.9 ± 1.1

SWAD + MIRO 96.3 ± 0.2 95.3 ± 0.3 94.9 ± 0.7 93.7 ± 0.7 91.5 ± 1.0

TWA + MIRO 96.3 ± 0.2 95.9 ± 0.2 95.3 ± 0.3 94.3 ± 0.3 92.5 ± 0.6

CLEAR-100

ERM (IID) 68.3 ± 0.3 66.9 ± 0.7 64.9 ± 1.4 60.4 ± 0.5 53.3 ± 0.9

SWAD + ERM 69.4 ± 0.7 67.3 ± 0.7 65.6 ± 1.0 61.5 ± 0.8 53.7 ± 1.0

TWA + ERM 69.4 ± 0.7 67.3 ± 0.7 65.6 ± 1.0 61.5 ± 0.8 53.7 ± 1.0

MIRO (IID) 81.7 ± 0.1 80.5 ± 0.4 79.1 ± 0.5 75.7 ± 0.1 70.7 ± 0.1

SWAD + MIRO 83.0 ± 0.7 82.7 ± 0.4 80.1 ± 1.4 77.7 ± 0.4 73.0 ± 1.1

TWA + MIRO 85.2 ± 0.3 84.5 ± 0.3 83.9 ± 0.2 80.8 ± 0.2 76.0 ± 0.1

Table 6: FMoW-Times test accuracies (%) on target domains, with R50 and ImageNet pre-training,
using ERM, SWAD (Cha et al., 2021), MIRO (Cha et al., 2022) and our TWA

Method 2017 2016− 2017 2015− 2017

ERM (IID) 63.5 ± 0.9 50.1 ± 1.6 53.7 ± 1.0

SWAD + ERM 66.1 ± 0.6 48.9 ± 0.6 55.1 ± 0.1

TWA (ours) + ERM 69.5 ± 0.9 51.5 ± 0.3 53.8 ± 0.3

MIRO (IID) 64.5 ± 1.9 49.2 ± 0.5 54.9 ± 1.4

SWAD + MIRO 67.1 ± 1.1 49.9 ± 1.3 55.3 ± 0.5

TWA (ours) + MIRO 67.0 ± 2.7 51.0 ± 1.5 57.4 ± 0.2

MIRO obtains 2-4% gains over prior work. Note that ImageNet pretraining is not suitable for TDG
evaluation on CLEAR as there is significant overlap in the categories found in these datasets.

Results on Yearbook and FMoW-Times. Tab. 6 reports performance on the challenging FWoW
benchmark. Variants of our TWA approach obtain best performance. Notably, although MIRO
performed well on CLEAR, it did not generalize well to this setting. But our method is still able
to boost performance over MIRO alone or combined with SWAD. The distributions and temporal
shifts in Yearbook and FMoW-Times are more task-specific. Tab. 4 and Tab. 6 show that TWA is
robust to diverse patterns of temporal shift.

Comparisons in settings of prior work. Many TDG methods do not generalize well to our more
complex benchmarks. Thus, we follow the experimental settings of DDA (Zeng et al., 2023) to
compare TWA and other DG and TDG methods over three commonly used TDG benchmarks. Tab. 7
reports our results, where combining TWA with DDA achieves state-of-the-art results on all three
datasets. This demonstrates that TWA generalizes across many datasets and settings.

4.3 ABLATION STUDY

In this section, we run ablation experiments to answer two questions, “How Long?” and “How
Many?”, referring to the length of sampling zone and number of sampled snapshots. All the ablation
experiments are conducted with ResNet-18 trained from scratch with a reduced training process for
10K iterations. Other experiment settings are the same as those in Sec. 4.2.

How Long? What is the adequate length of the sampling zone when applying WA method to TDG
and optimizing BN layers? We take SWAD as an example, and analyze the impact of sampling zone
length (in iterations) on test accuracy. We also evaluate the ERM performance when optimizing BN
layers, ERM (IID), and the performance when freezing BN layers, ERM (FB). The results are shown
in Fig. 3(a). We see that performance drops significantly when freezing BN layers or having a long
sampling zone. It’s safe to set the sampling zone length as 1000-3000 iterations.

How Many? What is the optimal number of sampled snapshots in our TWA? We analyze the impact
of snapshot number on test accuracy of TWA. The results are shown in Fig. 3(b). It can be observed
that TWA achieves improved performance as the number of snapshots increases. However, the rate

8

Under review as a conference paper at ICLR 2024

Table 7: Comprehensive comparisons with 2 synthetic benchmarks, Rotated MNIST (Deng, 2012)
and Rotated Gaussian (Wang et al., 2020), and 1 real-world benchmark, Portrait (Ginosar et al.,
2015). We compare our TWA with ERM, MTL, GROUPDRO, IRM, MMD (Li et al., 2018a),
CORAL (Sun & Saenko, 2016), SAGNET (Nam et al., 2021), SELFREG (Kim et al., 2021),
MLDG (Li et al., 2017b), CIDA (Wang et al., 2020), EAML (Liu et al., 2020), LSSAE (Qin et al.,
2022), GI (Nasery et al., 2021), DDA (Zeng et al., 2023). The baseline results are from Zeng et al.
(2023) if not noted.

Dataset Rotated MNIST Rotated Gaussian Portrait

10◦ 15◦ 20◦ 30◦

GROUPDRO 91.1 83.5 79.8 63.9 80.8 ± 3.4 92.6 ± 0.2

IRM 75.0 67.1 55.1 48.6 72.0 ± 2.2 91.3 ± 0.4

MMD 88.5 82.8 75.6 45.9 56.8 ± 1.3 92.0 ± 0.2

CORAL 91.9 84.1 77.6 63.2 56.8 ± 1.1 91.3 ± 0.2

MTL 92.8 84.1 77.5 63.1 56.4 ± 1.4 92.0 ± 0.1

SAGNET 91.9 86.8 79.2 62.6 52.0 ± 1.8 92.7 ± 0.2

SELFREG 93.0 87.5 77.9 67.5 54.4 ± 1.0 90.6 ± 0.3

ERM 90.2 ± 0.3 85.5 54.4 ±1.0 90.6 ± 0.3 59.2 ± 1.1 90.3 ± 0.1

MLDG 92.2 ± 0.1 85.9 80.9 ± 0.3 70.6 ± 0.2 53.6 ± 2.1 91.5 ± 1.1

CIDA 92.0 ± 1.2 85.1∗ 85.2 ± 1.4 72.1 ± 1.2 50.5 ± 1.5 92.3 ± 0.4

EAML 92.2 ± 0.5 82.0∗ 84.7 ± 0.4 71.5 ± 0.4 61.0 ± 2.8 90.1 ± 0.4

LSSAE 92.5 ± 0.4 88.4∗ 85.5 ± 0.3 72.4 ± 0.4 88.4 ± 0.8 93.1 ± 0.3

GI 93.3 ± 0.2 83.2∗ 85.3 ± 0.1 71.8 ± 0.2 85.1 ± 0.5 93.7 ± 0.2

DDA† 93.3 ± 1.2 88.6 ± 1.6 85.0 ± 1.1 73.4 ± 0.6 91.2 ± 3.3 92.7 ± 0.7

DDA+TWA 94.0 ± 0.7 89.5 ± 0.5 86.0 ± 0.6 73.8 ± 1.2 92.7 ± 3.5 94.0 ± 1.2

∗ 15◦ results calculated from the Table 2 of Zeng et al. (2023). † Reproduced DDA results.

(a) SWAD (Cha et al., 2021) test acc (%) vs. sampling
zone length

(b) TWA test acc (%) vs. snapshot number

Figure 3: Ablation results. (a) SWAD (Cha et al., 2021) performance drops significantly when
using large sampling zone. Freezing BN layers also damage all performances with a bad basic
model (ERM (FB)). (b) TWA performance increases with more snapshots, but the marginal growth
decreases after 10 snapshots.

of improvement diminishes after 10 snapshots. Hence, we typically sample 10 snapshots to strike a
balance between performance and computational cost.

5 CONCLUSION

In this paper we introduced Time-sensitive Weight Averaging (TWA) for Temporal Domain Gener-
alization (TDG). Our TWA method uses a meta-learning approach that trains a Selector Network to
predict coefficients from a timestamp for averaging a set of models into a time-sensitive network.
We experiment on a wide set of real-world TGD benchmarks including CLEAR-10, CLEAR-100,
Yearbook, and FMoW, where we report up to 4% boost in performance over state-of-the-art. In
addition, we find that our approach can be combined with other methods, such as MIRO (Cha et al.,
2022), to further boost performance. This demonstrates that our approach can generalize across
many settings.

Limitations. A limitation of our work is that it is based on the assumption of smooth temporal
shifts rather than abrupt ones, such as viral memes or unexpected natural disasters. Future work will
explore how to enhance TDG for abrupt shifts.

9

Under review as a conference paper at ICLR 2024

6 CODE OF ETHICS STATEMENT

Like many works in AI, ours could be used for both benefit and harm. For example, one could
use TWA to monitor and mitigate climate change or the spread of diseases. On the other hand, our
contributions might help a bad actor build a stronger surveillance system, or spread misinformation.
It is our responsibility as researchers, and as a society, to ensure that techniques like ours are used
for good.

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain gener-
alization using meta-regularization. In Neural Information Processing Systems, 2018.

Dina Bashkirova, Samarth Mishra, Diala Lteif, Piotr Teterwak, Donghyun Kim, Fadi Alladkani,
James Akl, Berk Calli, Sarah Adel Bargal, Kate Saenko, Daehan Kim, Minseok Seo, YoungJin
Jeon, Dong-Geol Choi, Shahaf Ettedgui, Raja Giryes, Shady Abu-Hussein, Binhui Xie, and
Shuang Li. Visda 2022 challenge: Domain adaptation for industrial waste sorting, 2023.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer
Vaughan. A theory of learning from different domains. Machine Learning, 79:151–175, 2010.
URL http://www.springerlink.com/content/q6qk230685577n52/.

Konstantinos Bousmalis, Nathan Silberman, David Dohan, D. Erhan, and Dilip Krishnan. Unsuper-
vised pixel-level domain adaptation with generative adversarial networks. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 95–104, 2016.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Infor-
mation Processing Systems, 34:22405–22418, 2021.

Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by mutual-
information regularization with pre-trained models. European Conference on Computer Vision
(ECCV), 2022.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. ArXiv, abs/1812.00420, 2018.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE Signal Processing Magazine, 29:141–142, 2012.

Yaroslav Ganin and Victor S. Lempitsky. Unsupervised domain adaptation by backpropagation.
ArXiv, abs/1409.7495, 2014.

Shiry Ginosar, Kate Rakelly, Sarah Sachs, Brian Yin, Crystal Lee, Philipp Krähenbühl, and
Alexei A. Efros. A century of portraits: A visual historical record of american high school
yearbooks. 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp.
652–658, 2015. URL https://api.semanticscholar.org/CorpusID:1545091.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised
domain adaptation. 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.
2066–2073, 2012.

10

http://www.springerlink.com/content/q6qk230685577n52/
https://api.semanticscholar.org/CorpusID:1545091

Under review as a conference paper at ICLR 2024

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei A. Efros,
and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International
Conference on Machine Learning, 2017.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic do-
main generalization. Advances in Neural Information Processing Systems, 34:2427–2440, 2021.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay
Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a
vector representation of time. ArXiv, abs/1907.05321, 2019.

Zixuan Ke, Bing Liu, Hao Wang, and Lei Shu. Continual learning with knowledge transfer for
sentiment classification. In ECML/PKDD, 2021a.

Zixuan Ke, Hu Xu, and Bing Liu. Adapting bert for continual learning of a sequence of aspect
sentiment classification tasks. In North American Chapter of the Association for Computational
Linguistics, 2021b.

Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee. Selfreg: Self-
supervised contrastive regularization for domain generalization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9619–9628, 2021.

Donghyun Kim, Kaihong Wang, Stan Sclaroff, and Kate Saenko. A broad study of pre-training
for domain generalization and adaptation. In European Conference on Computer Vision (ECCV),
2022.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick.
Segment anything. ArXiv, abs/2304.02643, 2023.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
generalization. 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5543–5551,
2017a.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Learning to generalize: Meta-
learning for domain generalization. In AAAI Conference on Artificial Intelligence, 2017b.

Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M. Hospedales.
Episodic training for domain generalization. 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 1446–1455, 2019a.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex Chichung Kot. Domain generalization with
adversarial feature learning. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 5400–5409, 2018a.

Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao.
Deep domain generalization via conditional invariant adversarial networks. In European Confer-
ence on Computer Vision, 2018b.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normaliza-
tion for practical domain adaptation. arXiv preprint arXiv:1603.04779, 2016.

Yiying Li, Yongxin Yang, Wei Zhou, and Timothy M. Hospedales. Feature-critic networks for
heterogeneous domain generalization. In International Conference on Machine Learning, 2019b.

Jian Liang, D. Hu, and Jiashi Feng. Do we really need to access the source data? source hypothesis
transfer for unsupervised domain adaptation. In International Conference on Machine Learning,
2020.

11

Under review as a conference paper at ICLR 2024

Zhiqiu Lin, Jia Shi, Deepak Pathak, and Deva Ramanan. The clear benchmark: Continual learning
on real-world imagery. ArXiv, abs/2201.06289, 2022.

Hong Liu, Mingsheng Long, Jianmin Wang, and Yu Wang. Learning to adapt to evolving domains.
Advances in neural information processing systems, 33:22338–22348, 2020.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Conditional adversarial
domain adaptation. In Neural Information Processing Systems, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
NeurIPS, 2017.

Massimiliano Mancini, Samuel Rota Bulò, Barbara Caputo, and Elisa Ricci. Adagraph: Unifying
predictive and continuous domain adaptation through graphs. In Computer Vision and Pattern
Recognition (CVPR), June 2019.

Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant
feature representation. In International Conference on Machine Learning, 2013.

Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing do-
main gap by reducing style bias. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021.

Anshul Nasery, Soumyadeep Thakur, Vihari Piratla, Abir De, and Sunita Sarawagi. Training for
the future: A simple gradient interpolation loss to generalize along time. In Thirty-Fifth Confer-
ence on Neural Information Processing Systems, 2021. URL https://openreview.net/
forum?id=U7SBcmRf65.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Guillermo Ortiz-Jiménez, Mireille El Gheche, Effrosyni Simou, Hermina Petric Maretic, and Pascal
Frossard. Cdot: Continuous domain adaptation using optimal transport. ArXiv, abs/1909.11448,
2019.

Tiexin Qin, Shiqi Wang, and Haoliang Li. Generalizing to evolving domains with latent structure-
aware sequential autoencoder. In International Conference on Machine Learning, pp. 18062–
18082. PMLR, 2022.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. In NeurIPS,
2022.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In European Conference on Computer Vision, 2010a.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to
new domains. In Computer Vision–ECCV 2010: 11th European Conference on Computer Vision,
Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV 11, pp. 213–226. Springer,
2010b.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks. In International Conference on Learning Representations, 2019.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In NeurIPS, 2017.

Tejas Srinivasan, Ting-Yun Chang, Leticia Pinto Alva, Georgios Chochlakis, Mohammad Rostami,
and Jesse Thomason. Climb: A continual learning benchmark for vision-and-language tasks.
Advances in Neural Information Processing Systems, 35:29440–29453, 2022.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
ECCV Workshops, 2016.

Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. ArXiv,
abs/1511.05547, 2015.

12

https://openreview.net/forum?id=U7SBcmRf65
https://openreview.net/forum?id=U7SBcmRf65

Under review as a conference paper at ICLR 2024

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aur’elien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971, 2023.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2962–2971, 2017.

Eli Verwimp, Kuo Yang, Sarah Parisot, Hong Lanqing, Steven McDonagh, Eduardo Pérez-Pellitero,
Matthias De Lange, and Tinne Tuytelaars. Clad: A realistic continual learning benchmark for
autonomous driving. arXiv preprint arXiv:2210.03482, 2022.

Hao Wang, Hao He, and Dina Katabi. Continuously indexed domain adaptation. In International
Conference on Machine Learning, 2020.

Jindong Wang, Wenjie Feng, Yiqiang Chen, Han Yu, Meiyu Huang, and Philip S. Yu. Visual do-
main adaptation with manifold embedded distribution alignment. Proceedings of the 26th ACM
international conference on Multimedia, 2018.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun
Zeng, and Philip Yu. Generalizing to unseen domains: A survey on domain generalization. IEEE
Transactions on Knowledge and Data Engineering, 2022a.

William Wei Wang, Gezheng Xu, Ruizhi Pu, Jiaqi Li, Fan Zhou, Changjian Shui, Charles
Ling, Christian Gagné, and Boyu Wang. Evolving domain generalization. arXiv preprint
arXiv:2206.00047, 2022b.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy with-
out increasing inference time. In Proceedings of the 39th International Conference on Machine
Learning, 2022.

Huaxiu Yao, Caroline Choi, Bochuan Cao, Yoonho Lee, Pang Wei Koh, and Chelsea Finn. Wild-
time: A benchmark of in-the-wild distribution shift over time. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

Guang ying Bai, Ling Chen, and Liang Zhao. Temporal domain generalization with drift-aware
dynamic neural network. ArXiv, abs/2205.10664, 2022.

Qiuhao Zeng, W. Wang, Fan Zhou, Charles X. Ling, and Boyu Wang. Foresee what you will
learn: Data augmentation for domain generalization in non-stationary environments. ArXiv,
abs/2301.07845, 2023.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
Proceedings of machine learning research, 70:3987–3995, 2017.

13

Under review as a conference paper at ICLR 2024

A APPENDIX

Our supplementary is organized as follows. Sec. B gives further details on our implementation and
hyperparameter settings. Sec. C presents additional experiments, including an alternative method
of creating expert snapshots, experiments over NLP benchmarks, efficiency evaluation of TWA,
detailed results on each target domain, and comparison with DRAIN(ying Bai et al., 2022). Sec. D
gives a full proof Theorem 1 from the main paper, as well as a refinement of it and an alternative
bound that may be tighter in some special cases. Sec. E presents a toy experiment that illustrates
the benefits of time-sensitive weight-averaging and looks at the role of temporal complexity. Sec. F
provides pseudocodes for the training and inference algorithms of TWA.

B IMPLEMENTATION DETAILS

B.1 CLEAR-10 AND CLEAR-100

Dataset Settings For CLEAR-10 and CLEAR-100, we set the image input shape as (224, 224, 3)
and using random crops and horizontal flips as data augmentations for all methods. We set Iθ, the
number of iterations to optimize θ, to 70 epochs over the s source domains D1, ..., Ds for different
timestamp splits ts.

SWAD & MIRO For SWAD and MIRO on CLEAR-10 and CLEAR-100, we used 20% of the
samples from source domains as the validation set and used the rest for training. We set the sampling
zone length to be 1500 iterations. The batch size is set to be 8 · s, where s is the number of source
domains. We used Adam optimizer with a learning rate of 3 × 10−4 for training from scratch, and
1× 10−4 for training with CB0 pre-training. We use the default values from the original authors for
other hyperparameters.

TWA When applying TWA on CLEAR-10 and CLEAR-100, we use a 2-layer MLP as the selector
network. The output dimension of Time2Vec that is concatented to the image features is set to be
128, and the hidden feature dimension of the MLP is set to be 64. When optimizing θ, we used
the same settings as those of SWAD and MIRO. When optimizing ϕ, we typically use 2000 extra
iterations. We also used Adam optimizer for ϕ with learning rate set to 3× 10−3, and the batch size
is set to be 32 with gradient accumulation.

CIDA & PCIDA When applying CIDA and PCIDA on CLEAR-10 and CLEAR-100, we con-
catenate the timestamp to the 4th dimmension of the network, and, thus, the ResNet-18 input size
becomes (224, 224, 4), without changing other network structures. The ratio of adversarial loss is
set to be 2.0. We used Adam optimizer, and used exponential learning rate decay with the initial
learning rate to be 1 × 10−3. The batch size is set to be 64. Other hyperparameters are kept as
default.

AdaGraph When applying AdaGraph to CLEAR-10 and CLEAR-100, we used 70 epochs for train-
ing the model on source domains, with 10 extra epochs to train the BatchNorm parameter estimation.
We also used Adam optimizer. The initial learning rate is also 1×10−3 and we also use exponential
learning rate decay. The batch size is also set to be 64.

B.2 YEARBOOK

Dataset Settings On Yearbook, we set the image input shape as (32, 32, 1) with no extra data aug-
mentation for all methods. And we set the Iθ equal to 20 epochs over the source domains D1, ..., Ds
for different split timestamps ts.

SWAD For SWAD on Yearbook, we use learning rate 1×10−4 and sampling zone length 1000. The
batch size is ⌊0.8× s⌋. Other settings are the same as those for CLEAR.

TWA When applying TWA to Yearbook, we only use 1000 extra iterations for optimizing the se-
lector network. Batch size for optimizing θ is ⌊0.8 × s⌋. Other settings are the same as those for
CLEAR.

CIDA & PCIDA When applying CIDA and PCIDA on Yearbook, we concatenate the timestamp
to the 2nd dimension of the network input, and thus the ResNet-18 input size becomes (32, 32, 2),

14

Under review as a conference paper at ICLR 2024

Table 8: CLEAR-10 test accuracies (%) on target domains, using ERM, AdaGraph (Mancini et al.,
2019), CIDA/PCIDA (Wang et al., 2020), SWAD (Cha et al., 2021) and our TWA.

Model Method D10 D9−10 D8−10 D6−10 D4−10

ResNet-18

ERM (IID) 86.7 ± 0.6 83.8 ± 0.5 84.3 ± 1.5 80.6 ± 1.4 76.3 ± 0.9

ERM (Last) 86.3 ± 2.0 84.3 ± 0.9 82.5 ± 1.5 79.4 ± 1.1 76.6 ± 0.8

AdaGraph 75, 5 ± 4.19 74.8 ± 1.9 71.2 ± 2.5 56.4 ± 3.5 19.3 ± 2.6

CIDA 85.6 ± 0.5 83.9 ± 0.5 81.3 ± 0.9 79.3 ± 1.4 71.5 ± 4.3

PCIDA 87.3 ± 0.8 85.4 ± 0.9 82.9 ± 1.0 79.4 ± 1.5 72.4 ± 2.2

SWAD 87.3 ± 1.0 86.0 ± 0.6 84.6 ± 1.1 81.5 ± 1.4 77.1 ± 1.5

TWA-R 88.5 ± 0.3 87.3 ± 0.8 86.3 ± 0.2 83.0 ± 0.7 79.3 ± 0.3
TWA-E 88.5 ± 0.2 87.3 ± 0.3 86.5 ± 0.3 82.8 ± 0.4 79.3 ± 0.4

ResNet-50

ERM (IID) 85.9 ± 1.6 84.9 ± 1.0 84.7 ± 0.2 81.0 ± 1.9 77.1 ± 0.6

ERM (Last) 85.6 ± 1.4 85.0 ± 1.8 84.5 ± 0.4 80.6 ± 1.0 76.0 ± 1.5

SWAD 87.3 ± 0.9 86.5 ± 0.2 85.8 ± 1.1 82.2 ± 1.6 78.5 ± 1.1

TWA-R 89.0 ± 0.3 87.8 ± 0.3 86.9 ± 0.2 84.0 ± 0.5 80.3 ± 0.4
TWA-E 88.8 ± 0.5 87.1 ± 0.3 87.1 ± 0.1 84.0 ± 0.4 80.3 ± 0.2

without changing other network structures. Other settings are kept the same as those of CLEAR.
Other settings are the same as those for CLEAR.

B.3 FMOW-TIME

Dataset Settings We set the image input shape as (224, 224, 3) with normalizing the image only.
We set Iθ to 30 epochs over source domains D1, ..., Ds for different split timestamps ts.

SWAD & MIRO & TWA We used 3× 10−4 as the learning rate with pre-training on FMoW-Time.
All the other settings are the same as those for CLEAR.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERT SNAPSHOTS

Our TWA method uses random sampling with late sampling strategy to get snapshots. But we
have also tried using domain-specific fine-tuning to obtain snapshots, which we refer to as ”Expert
Snapshots”. First, we train a base model θall over all source domains, and separately fine-tune s
different models θ1, ..., θs on each of the s source domains, using θall as pre-trained weights. In this
approach, we avoid using late sampling by freezing BN layers when fine-tuning θ1, ..., θs.

Expert Snapshot experiments were conducted on CLEAR-10 and CLEAR-100. We trained our
models for 2000 iterations with a learning rate that is 1

s times the original learning rate. We use
TWA-R to denote TWA with randomly sampled snapshots, which is the TWA method presented in
the main paper, and we use TWA-E to denote TWA with Expert Snapshots. Results and comparisons
are in Tab. 8 and Tab. 9. We can see that TWA-E can also produce strong performance, but cannot
outperform TWA-R. We have chosen TWA-R as our primary approach due to its simplicity and
performance, but we still present our exploration results on Expert Snapshots, for potential reference
in future work.

C.2 NATURAL LANGUAGE PROCESSING BENCHMARKS

In addition to the image benchmarks used in our paper, we have also evaluated our method on NLP
benchmarks. For this purpose, we use the ArXiv and Huffpost benchmarks in Wild-Time.

ArXiv (Yao et al., 2022) The task is to predict the primary category of arXiv pre-prints given the
paper title as input. The entire dataset includes 2,057,952 titles within 172 pre-print categories from
2007 - 2022.

Huffpost (Yao et al., 2022) The task is to identify tags of news articles from their headlines. The
dataset includes 63,907 articles within 11 categories from 2012 - 2022 in total.

15

Under review as a conference paper at ICLR 2024

Table 9: CLEAR-100 test accuracies (%) on target domains using ERM, AdaGraph (Mancini et al.,
2019), CIDA/PCIDA (Wang et al., 2020), SWAD (Cha et al., 2021) and our TWA.

Model Method D10 D9−10 D8−10 D6−10 D4−10

ResNet-18

ERM (IID) 68.3 ± 0.3 66.9 ± 0.7 64.9 ± 1.4 60.4 ± 0.5 53.3 ± 0.9

ERM (Last) 67.0 ± 1.1 66.3 ± 0.6 64.4 ± 0.5 60.2 ± 0.9 53.1 ± 0.8

AdaGraph 50.2 ± 4.5 39.5 ± 2.5 35.0 ± 2.3 21.0 ± 2.6 5.1 ± 0.8

CIDA 67.8 ± 0.3 66.8 ± 1.0 66.5 ± 0.3 61.4 ± 0.9 52.7 ± 1.2

PCIDA 69.2 ± 0.1 67.8 ± 0.7 67.2 ± 0.7 61.3 ± 1.2 53.3 ± 1.7

SWAD 69.4 ± 0.7 67.3 ± 0.7 65.6 ± 1.0 61.5 ± 0.8 53.7 ± 1.0

TWA-R 72.1 ± 0.3 70.2 ± 0.3 68.9 ± 0.2 64.3 ± 0.1 57.4 ± 0.3
TWA-E 71.2 ± 0.4 69.5 ± 0.3 68.0 ± 0.1 63.4 ± 0.2 56.8 ± 0.4

ResNet-50

ERM (IID) 71.8 ± 0.5 69.1 ± 0.4 67.7 ± 0.7 63.5 ± 0.3 56.1 ± 0.6

ERM (Last) 70.5 ± 1.9 68.5 ± 1.3 66.6 ± 0.7 63.3 ± 1.3 55.4 ± 1.3

SWAD 72.1 ± 0.5 70.8 ± 0.9 69.0 ± 0.9 65.2 ± 0.3 57.8 ± 1.1

TWA-R 75.1 ± 0.6 73.4 ± 0.4 72.0 ± 0.3 68.3 ± 0.1 60.4 ± 0.7
TWA-E 74.3 ± 0.5 72.1 ± 0.5 70.6 ± 0.4 66.8 ± 0.6 59.6 ± 0.3

We optimize our model parameters θ with the default settings used in the original Wild-Time pa-
per Yao et al. (2022), including the network architectures and the split timestamps. We show the
results with different training iterations, while keeping the sampling zone length as 1000 iterations.
The other settings for SWAD and TWA are the same as those of the image benchmarks.

Results are presented in the Tab. 10. We see that TWA continues to enhance model generalization
even in language tasks.

Table 10: ArXiv and HuffPost (Yao et al., 2022) test accuracies (%) on target domains, using
SWAD (Cha et al., 2021) and our TWA.

Dataset arXiv (Yao et al., 2022) HuffPost (Yao et al., 2022)

Target Domains 2020 − 2022 2018 − 2022 2016 − 2022 2017 − 2018 2016 − 2018 2015 − 2018

ERM (IID) 52.1 ± 0.6 49.4 ± 0.2 46.3 ± 1.1 74.0 ± 0.5 69.7 ± 0.3 68.1 ± 1.2

ERM (Last) 52.0 ± 0.2 49.0 ± 0.1 46.9 ± 0.4 73.7 ± 0.2 69.6 ± 0.9 66.7 ± 1.1

SWAD 52.9 ± 0.1 50.0 ± 0.1 47.5 ± 0.1 74.8 ± 0.1 70.6 ± 0.5 68.0 ± 0.6
TWA 52.7 ± 0.1 50.0 ± 0.1 47.4 ± 0.1 74.8 ± 0.3 70.6 ± 0.5 68.0 ± 0.7

C.3 EFFICIENCY EVALUATION

TWA does introduce some additional computational cost for optimizing the selector. To compre-
hensively assess TWA’s performance, we also provide the speed of TWA on various datasets and
network structures in Tab. 11. We can observe that the additional TWA does not significantly in-
crease training time, resulting in an increase of 2− 20% of the total cost.

Table 11: Time costs in GPU hours. TWA Cost is the cost of optimizing the selector. All time costs
are evaluated on a Tesla V100 GPU. We evaluate the efficiency performances on CLEAR (Lin et al.,
2022), Yearbook and FMoW-Time (Yao et al., 2022), with ResNets (He et al., 2016).

Dataset CLEAR-10 CLEAR-100 Yearbook FMoW-Time

Model ResNet-18 ResNet-50 ResNet-18 ResNet-50 ResNet-18 ResNet-50

TWA Cost 0.2 0.4 0.2 0.4 0.1 0.6
Total Cost 1.9 3.1 8.4 10.6 0.5 4.8

TWA Proportion 10.5% 12.9% 2.4% 3.8% 20.0% 12.5%

16

Under review as a conference paper at ICLR 2024

C.4 PERFORMANCES ON EACH TARGET DOMAIN

We train the model over source domains D1−5 and evaluate the performances of ERM (Lats), SWAD
and TWA on each single domain within D6−10. The results are shown in Tab. 12. Generally, the
performance decreases as the domain gap becomes larger. And TWA improves the performances on
every target domain equally, without significant bias towards any specific domain.

Table 12: CLEAR test accuracies (%) on every single target domain within D6−10 using
SWAD (Cha et al., 2021) and TWA.

Dataset Model Method D6 D7 D8 D9 D10 D6−10

CLEAR-10

R18
ERM (Last) 79.9 79.8 79.2 79.1 78.5 79.3

SWAD 81.3 80.6 81.7 81.5 82.0 81.4
TWA 82.6 82.4 83.2 82.9 83.8 83.0

R50
ERM (Last) 80.9 81.0 80.4 80.3 80.0 80.5

SWAD 82.3 81.4 82.6 81.8 82.6 82.1
TWA 84.1 83.4 84.5 83.7 84.5 84.0

CLEAR-100

R18
ERM (Last) 60.8 61.5 59.5 57.8 59.9 59.9

SWAD 61.0 60.9 60.8 60.3 60.5 60.7
TWA 64.1 64.1 64.0 63.6 63.2 63.8

R50
ERM (Last) 64.4 65.3 63.6 62.3 63.3 63.8

SWAD 65.9 66.0 65.2 64.3 64.6 65.2
TWA 68.4 68.2 67.9 67.7 67.3 67.9

C.5 COMPARISON WITH DRAIN

As DRAIN(ying Bai et al., 2022) is hard to compare with different benchmarks due to its highly
task-specific implementation details, we evaluate DDA(Zeng et al., 2023) and DDA + TWA on
DRAIN’s Rotated MNIST setting for comparison. We use the exactly same experimental settings as
those used in DRAIN. The comparison results are in Tab. 13. We could see that, our TWA still better
performance when compared with DRAIN. In addition, the comparison with GI in Tab. 7 can also
complement the comparison with DRAIN, as GI is generally comparable to DRAIN in performance
according to DRAIN(ying Bai et al., 2022).

Table 13: Comparison with Rotated MNIST of our TWA with ERM, CDOT (Ortiz-Jiménez et al.,
2019), CIDA (Wang et al., 2020), GI (Nasery et al., 2021), DRAIN (ying Bai et al., 2022) and
DDA (Zeng et al., 2023). The Acc is accuracy (in %). The experiment settings are the same as those
of Rotated MNIST in Table 1 of DRAIN (ying Bai et al., 2022).

Method ERM CDOT CIDA GI DRAIN DDA DDA + TWA

Acc 81.4 ± 4.0 85.8 ± 1.0 90.7 ± 0.7 92.3 ± 1.3 92.5 ± 1.1 91.3 ± 1.5 92.7 ± 0.7

D THEORETICAL ANALYSIS OF TWA

This section walks through the theoretical analysis described in the main paper. It is organized
as follows. Sec. D.1 gives complete definitions of all terms and assumptions, as well as some
intermediate definitions that are used in the full proof. Sec. D.2 proves all necessary lemmas in
full detail. These lemmas work by bounding future risk in terms of past risk, using the maximum
possible difference in risk gap of any two selectors on the future vs the past; this difference is then
shown to be approximated well by temporal complexity d̂ΦΓΦ. Sec. D.3 proves Theorem 1 from
these lemmas by bounding past risk in terms of empirical robust risk across the temporal domains.
Sec. D.4 proves Theorem 2, which is a refinement of Theorem 1 that gives a tighter bound. Sec. D.5
proves Theorem 3, which gives an alternative bound that may be tighter when the selector hypothesis
class is highly constrained.

17

Under review as a conference paper at ICLR 2024

D.1 DEFINITIONS AND ASSUMPTIONS

D.1.1 DATA DISTRIBUTION

Let DP(x, t, y) and DF (x, t, y) be joint distributions over (x, t, y), denoting the true distributions
of past and future data. (x1, t1, y1), ..., (xm, tm, ym) ∼ Dm

P (x, t, y) are the training set. We as-
sume that these distributions come from a mixture of H stationary components D(x, y|h), where
only mixing probabilities D(h|t) vary over time, and marginals for time are known and uniform.
Specifically:

DP(x, t, y) :=

H∑
h=1

D(x, y|h)D(h|t)DP(t) DF (x, t, y) :=

H∑
h=1

D(x, y|h)D(h|t)DF (t) (4)

DP(t) := Unif([0, TP]) DF (t) := Unif([TP , TP + TF]) (5)

where TP is the past-vs-future ”cutoff” time, and TP +TF is the end of the future. Note that D(h|t)
is the source of all temporal domain shift.

We assume that the speed of domain-shift is bounded, and that the rate of change of the velocity of
this shift is also bounded. Specifically, ∃ constants η, ρ, and τ such that, for all times t and t

′
> t:∥∥∥D(h|t

′
)−D(h|t)

∥∥∥
1
≤ η(t

′
− t) (6)∥∥∥∥∥D(h|t′)−D(h|t)

t′ − t
− D(h|t)−D(h|t− τ)

τ

∥∥∥∥∥
1

≤ ρ(t
′
− t) (7)

Note that if we multiply both sides of the second inequality by t
′ − t, we see that it implies that a

linear extrapolation of D(h|t′) from D(h|t) and D(h|t − τ) will be off by at most ρ(t
′ − t)2. We

will use such an extrapolation in our temporal complexity term d̂ΦΓΦ.

D.1.2 LOSS AND RISK TERMS

Our risks all depend on the loss function l(·, ·), which is the 0-1 loss.

We start by defining distributional risks:

• ζθ1:K (µ, t) := E(x,y)∼D(x,y|t)[l((θ1:K ∗ µ)(x), y)] is the distributional risk caused by
weight-averaging coefficients µ on (x, y) pairs sampled at time t. Note that t could be
in the future or the past for this definition.

• EDP (ϕ) := Et∼DP(t)[ζ
θ1:K (ϕ(t), t)] is distributional risk caused by selector ϕ on past data.

• EDF (ϕ) := Et∼DF (t)[ζ
θ1:K (ϕ(t), t)] is distributional risk on future data.

• EDP
⋃

F (ϕ) := Et∼DP
⋃

F (t)[ζ
θ1:K (ϕ(t), t)] is distributional risk on data from DP

⋃
F ,

which is an equal mixture of past and future data.
• G : ∆K → [0, 1]H is a function such that G(µ)h := E(x,y)∼D(x,y|h)[l((θ1:K ∗ µ)(x), y)].

In other words, G(µ)h tells us the risk that weight-averaging coefficients µ would cause on
data from the h-th mixture component. Note that ζθ1:K (µ, t) = G(µ) ·D(h|t).

We also define a best-in-family selector and an oracle risk:

• ϕ∗
DP

⋃
F
:= argminϕ∈Φ EDP

⋃
F (ϕ) is the “best-in-family” selector for data from both past

and future. It depends on the capacity of selector hypothesis class Φ.
• λ∗

DP
:= Et∼DP(t)[infµ∈∆K

ζθ1:K (µ, t)] is the risk that would be incurred by an “oracle”
that could independently choose a µ for each t. It is not limited by Φ, but only by snapshots
θ1:K and the Bayes risk of the data distribution itself.

Our proof uses the concept of “risk-gaps”, which we define below:

• EDP (ϕ
′
, ϕ

′′
) := Et∼DP(t)[|ζθ1:K (ϕ

′
(t), t)− ζθ1:K (ϕ

′′
(t), t)|]

18

Under review as a conference paper at ICLR 2024

• EDF (ϕ
′
, ϕ

′′
) := Et∼DF (t)[|ζθ1:K (ϕ

′
(t), t)− ζθ1:K (ϕ

′′
(t), t)|]

Our proof relies on the technique of discretizing the past data into “time-bins”, so we give some
definitions related to that:

• B(t) := [(⌈t/ TP√
m
⌉ − 1) TP√

m
, ⌈t/ TP√

m
⌉ TP√

m
] maps time t to the “time-bin” that contains it.

Note that each bin has width TP/
√
m, so there are

√
m bins total.

• ξt(µ) := Es∼Unif(B(t))[ζ
θ1:K (µ, s)] is the risk caused by coefficients µ on data whose time

is in the same bin as t. Note that ξt(µ) is the same for all values of t within the same bin.

• D
t
(h) := Es∼Unif(B(t))[D(h|s)] is shorthand denoting expectation of mixing probabilities

over time-bin containing t. Again, this is the same for all values of t within the same bin.

Finally, we define some empirical risks.

• ξ̂t(µ) := 1√
m

∑
i:ti∈B(t) l((θ1:K ∗µ)(xi), yi) is the empirical risk caused by coefficients µ

on training data from bin B(t). Note that we assume there are exactly
√
m training points

in each of the
√
m bins. We use this definition in our temporal complexity measure.

• ξ̂γ,t(µ) := max∥β∥≤γ
1√
m

∑
i:ti∈B(t) l((θ1:K ∗ µ+ β)(xi), yi) is the robust version of the

above. We use this definition in Theorems 1 and 2.

• ÊDP (ϕ) :=
1
m

∑m
i=1 l((θ1:K ∗ϕ(ti))(xi), yi) is the plain empirical risk of selector ϕ on the

entire training set. We use this definition in Theorem 3.

D.1.3 TEMPORAL COMPLEXITY

Inspired by the dH∆H divergence from Ben-David et al. (2010), we define a temporal complexity
metric that only depends on selector hypothesis class Φ and training dataset. Our metric is:

d̂ΦΓΦ := sup
ϕ′ ,ϕ′′∈Φ

Et∼DF (t)[|ℵ̂F (ϕ
′
, t)− ℵ̂F (ϕ

′′
, t)|]− Et∼DP(t)[|ℵ̂P(ϕ

′
, t)− ℵ̂P(ϕ

′′
, t)|] (8)

where ℵ̂F (ϕ, t) := ξ̂TP (ϕ(t)) + t−TP
τ (ξ̂TP (ϕ(t))− ξ̂TP−τ (ϕ(t))) and ℵ̂P(ϕ, t) := ξ̂t(ϕ(t))

and ξ̂t(µ) := 1√
m

∑
i:ti∈B(t) l((θ1:K ∗ µ)(xi), yi).

d̂ΦΓΦ estimates how much the risk gap between any two selectors can grow from past to future. Note
that ℵ̂F (ϕ, t) is in some sense a linear extrapolation of future risk from past risk, except that it feeds
future timestamps into the selector net before applying its outputted coefficients to past training data.

D.2 LEMMAS

We begin our proof with similar reasoning to Ben-David et al. (2010) to derive a bound on EDF (ϕ)
in terms of EDP (ϕ) using the “risk-gap” concept defined earlier.
Lemma 1. The following bound holds for all ϕ ∈ Φ:

EDF (ϕ) ≤ EDP (ϕ) + 2(EDP
⋃

F (ϕ
∗
DP

⋃
F
)− λ∗

DP
) + sup

ϕ′ ,ϕ′′∈Φ

(EDF (ϕ
′
, ϕ

′′
)− EDP (ϕ

′
, ϕ

′′
)) (9)

Proof. We start by noting the following fact about any three non-negative numbers a, b ≥ c ≥ 0:

|a− b| = |(a− c)− (b− c)| ≤ |a− c|+ |b− c| = (a− c) + (b− c) = a+ b− 2c (10)

Substituting ζθ1:K (ϕ(t), t), ζθ1:K (ϕ∗
DP

⋃
F
(t), t), and infµ∈∆K

ζθ1:K (µ, t) for a, b, and c, respec-
tively, and taking the expectation over t ∼ DP(t) gets us the following useful fact about
EDP (ϕ, ϕ

∗
DP

⋃
F
):

19

Under review as a conference paper at ICLR 2024

EDP (ϕ, ϕ
∗
DP

⋃
F
) ≤ EDP (ϕ) + EDP (ϕ

∗
DP

⋃
F
)− 2λ∗

DP
(11)

We now use this fact in our derivation:

EDF (ϕ) = Et∼DF (t)[ζ
θ1:K (ϕ(t), t)] (12)

≤ Et∼DF (t)[ζ
θ1:K (ϕ∗

DP
⋃

F
(t), t) + |ζθ1:K (ϕ(t), t)− ζθ1:K (ϕ∗

DP
⋃

F
(t), t)|] (13)

= EDF (ϕ
∗
DP

⋃
F
) + EDF (ϕ, ϕ

∗
DP

⋃
F
) (14)

= EDF (ϕ
∗
DP

⋃
F
) + EDP (ϕ, ϕ

∗
DP

⋃
F
) + (EDF (ϕ, ϕ

∗
DP

⋃
F
)− EDP (ϕ, ϕ

∗
DP

⋃
F
)) (15)

≤ EDP (ϕ) + 2(EDP
⋃

F (ϕ
∗
DP

⋃
F
)− λ∗

DP
) + (EDF (ϕ, ϕ

∗
DP

⋃
F
)−EDP (ϕ, ϕ

∗
DP

⋃
F
)) (16)

≤ EDP (ϕ) + 2(EDP
⋃

F (ϕ
∗
DP

⋃
F
)− λ∗

DP
) + sup

ϕ′ ,ϕ′′∈Φ

(EDF (ϕ
′
, ϕ

′′
)− EDP (ϕ

′
, ϕ

′′
)) (17)

Our next set of lemmas will lead to an upper bound on the supremum from the above lemma. We
start by showing that ξ̂t(µ) is likely close to ξt(µ).
Lemma 2. Fix t to an arbitrary value in [0, TP]. Let ve be the VC-dimension of CH(θ1:K), where
“CH” denotes a convex hull. With probability at least 1− δ

2
√
m

, the following holds for all µ ∈ ∆K:

|ξ̂t(µ)− ξt(µ)| ≤

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
(18)

Proof. We start by expanding both quantities by their definitions:

|ξ̂t(µ)− ξt(µ)| = | 1√
m

∑
i:ti∈B(t)

l((θ1:K ∗ µ)(xi), yi)− Es∼Unif(B(t))[ζ
θ1:K (µ, s)]| (19)

= | 1√
m

∑
i:ti∈B(t)

l((θ1:K ∗ µ)(xi), yi)− Es∼Unif(B(t)),(x,y)∼D(x,y|s)[l((θ1:K ∗ µ)(x), y)]| (20)

We note that θ̃ := θ1:K ∗ µ ∈ CH(θ1:K) for all µ ∈ ∆K , and so the following is true:

sup
µ∈∆K

|ξ̂t(µ)− ξt(µ)|

≤ sup
θ̃∈CH(θ1:K)

| 1√
m

∑
i:ti∈B(t)

l(θ̃(xi), yi)− Es∼Unif(B(t)),(x,y)∼D(x,y|s)[l(θ̃(x), y)]|
(21)

This is a supremum over the difference in empirical and distributional risk of θ̃ ∈ CH(θ1:K),
where the distribution is over (x, y) pairs from time-bin B(t) and the number of empirical
datapoints is

√
m. Thus, we can bound this supremum with a standard VC-bound which is√

4ve(ln(
√
m/ve)+1)+ln(4

√
m/δ)√

m
, which concludes the proof of this lemma.

We next use the “first-derivative” bound on D(h|t) to show that ξt(µ) is close to ζθ1:K (µ, t).
Lemma 3. The following bound holds for all t ∈ [0, TP] and all µ ∈ ∆K:

|ξt(µ)− ζθ1:K (µ, t)| ≤ η
TP√
m

(22)

20

Under review as a conference paper at ICLR 2024

Proof. We start by expanding ξt(µ) and noting that ζθ1:K (µ, t) = G(µ) ·D(h|t) to get:

|ξt(µ)− ζθ1:K (µ, t)| = |Es∼Unif(B(t))[ζ
θ1:K (µ, s)]− ζθ1:K (µ, t)| (23)

= |Es∼Unif(B(t))[G(µ) ·D(h|s)]−G(µ) ·D(h|t)| (24)

= |G(µ) · (Es∼Unif(B(t))[D(h|s)]−D(h|t))| (25)

= |G(µ) · (Dt
(h)−D(h|t))| (26)

≤
∥∥∥Dt

(h)−D(h|t)
∥∥∥
1

(27)

where the last line is true because G(µ) ∈ [0, 1]H .

Now, we note that D
t
(h), D(h|t) ∈ CH({D(h|s) : s ∈ B(t)}). Therefore:

∥∥∥Dt
(h)−D(h|t)

∥∥∥
1
≤ diam(CH({D(h|s) : s ∈ B(t)})) (28)

= diam({D(h|s) : s ∈ B(t)}) (29)

= sup
s′ ,s′′∈B(t)

∥∥∥D(h|s
′′
)−D(h|s

′
)
∥∥∥
1

(30)

≤ η
TP√
m

(31)

where the last line is due to the first bound in 6 and the fact that a time-bin has width TP√
m

.

Our next lemma combines the previous two lemmas to show that ξ̂t(µ) is close to ζθ1:K (µ, t).
Lemma 4. Fix t to an arbitrary value in [0, TP]. Let ve be the VC-dimension of CH(θ1:K). With
probability at least 1− δ

2
√
m

, the following bound holds for all µ ∈ ∆K:

|ξ̂t(µ)− ζθ1:K (µ, t)| ≤ η
TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
(32)

Proof. This follows immediately from combining Lemma 2 with Lemma 3.

We will next show that ℵ̂F (ϕ, t) is likely close to ζθ1:K (ϕ(t), t) for any future t.
Lemma 5. Fix t to an arbitrary value in [TP , TP + TF]. Let ve be the VC-dimension of CH(θ1:K).
With probability at least 1− δ

2 , the following bound holds for all ϕ ∈ Φ:

|ℵ̂F (ϕ, t)− ζθ1:K (ϕ(t), t)|

≤ (1 + 2
t− TP

τ
)(η

TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
) + ρ(t− TP)

2
(33)

Proof. We start by expanding the definition of ℵ̂F (8) and combining with Lemma 4 to conclude
that, with probability at least 1− δ

2 , the following holds for all ϕ ∈ Φ:

|ℵ̂F (ϕ, t)− (ζθ1:K (ϕ(t), TP) +
t− TP

τ
(ζθ1:K (ϕ(t), TP)− ζθ1:K (ϕ(t), TP − τ)))| (34)

≤ (1 + 2
t− TP

τ
)(η

TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
) (35)

21

Under review as a conference paper at ICLR 2024

The “all ϕ ∈ Φ” part is valid because {ϕ(t) : ϕ ∈ Φ} ⊆ ∆K , and the “1− δ
2” part is valid because

there are at most
√
m possible failure events (one for each time-bin), each with failure probability

at most δ
2
√
m

, so a union bound can be applied.

Next, we use a linear extrapolation:

|ζθ1:K (ϕ(t), t)− (ζθ1:K (ϕ(t), TP) +
t− TP

τ
(ζθ1:K (ϕ(t), TP)− ζθ1:K (ϕ(t), TP − τ)))| (36)

= |G(ϕ(t)) · (D(h|t)− (D(h|TP) +
t− TP

τ
(D(h|TP)−D(h|TP − τ))))| (37)

≤
∥∥∥∥D(h|t)− (D(h|TP) +

t− TP

τ
(D(h|TP)−D(h|TP − τ)))

∥∥∥∥
1

(38)

= (t− TP)

∥∥∥∥D(h|t)−D(h|TP)

t− TP
− D(h|TP)−D(h|TP − τ)

τ

∥∥∥∥
1

(39)

≤ ρ(t− TP)
2 (40)

Third-last line is valid because G(ϕ(t)) ∈ [0, 1]H , and last line is valid due to second bound in 6.

Putting these two parts together gets us the conclusion of the lemma.

We are now ready to prove a bound on the supremum from Lemma 1.

Lemma 6. Let ve be VC-dimension of CH(θ1:K). With probability at least 1−δ
2 , the following holds:

sup
ϕ′ ,ϕ′′∈Φ

(EDF (ϕ
′
, ϕ

′′
)− EDP (ϕ

′
, ϕ

′′
))

≤ d̂ΦΓΦ + 2(2 +
TF

τ
)(η

TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
) +

2

3
ρT 2

F

(41)

Proof. First, we use the definitions of EDP (ϕ
′
, ϕ

′′
) and ℵ̂P , as well as Lemma 4, and take expecta-

tion over t to conclude that, with probability at least 1− δ
2 , the following is true for all ϕ

′
, ϕ

′′ ∈ Φ:

|Et∼DP(t)[|ℵ̂P(ϕ
′
, t)− ℵ̂P(ϕ

′′
, t)|]− EDP (ϕ

′
, ϕ

′′
)| (42)

≤ Et∼DP(t)[||ξ̂t(ϕ
′
(t))− ξ̂t(ϕ

′′
(t))| − |ζθ1:K (ϕ

′
(t), t)− ζθ1:K (ϕ

′′
(t), t)||] (43)

≤ 2(η
TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
) (44)

Next, we use the definition of EDF (ϕ
′
, ϕ

′′
), as well as Lemma 5, and take expectation over t to

conclude that, with probability at least 1− δ
2 , the following is true for all ϕ

′
, ϕ

′′ ∈ Φ:

|Et∼DF (t)[|ℵ̂F (ϕ
′
, t)− ℵ̂F (ϕ

′′
, t)|]− EDF (ϕ

′
, ϕ

′′
)| (45)

≤ Et∼DF (t)[||ℵ̂F (ϕ
′
, t)− ℵ̂F (ϕ

′′
, t)| − |ζθ1:K (ϕ

′
(t), t)− ζθ1:K (ϕ

′′
(t), t)||] (46)

≤ Et∼DF (t)[2(1+2
t−TP

τ
)(η

TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
)+ρ(t−TP)

2] (47)

= 2(1 +
TF

τ
)(η

TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
) +

2

3
ρT 2

F (48)

22

Under review as a conference paper at ICLR 2024

Putting these two bounds together and taking the supremum over ϕ
′
, ϕ

′′ ∈ Φ gets us the conclusion
of the lemma. Note that the failure probability is at most δ

2 because there are at most
√
m possible

failure events, one per time-bin, each with failure probability at most δ
2
√
m

.

We are now ready to bound EDF (ϕ) in terms of EDP (ϕ) and d̂ΦΓΦ.

Lemma 7. Let ve be the VC-dimension of CH(θ1:K). With probability at least 1− δ
2 , the following

bound holds for all ϕ ∈ Φ:

EDF (ϕ) ≤ EDP (ϕ) + 2(EDP
⋃

F (ϕ
∗
DP

⋃
F
)− λ∗

DP
)

+ d̂ΦΓΦ + 2(2 +
TF

τ
)(η

TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
) +

2

3
ρT 2

F

(49)

Proof. This follows immediately from combining Lemma 6 with Lemma 1.

D.3 RESTATEMENT AND PROOF OF THEOREM 1

We now restate Theorem 1 from the main paper, and prove it using the above lemmas.

Theorem 1. Let Θ1, ...,ΘN be a finite cover of model space Θ ⊂ Rd, where N := ⌈(diam(Θ)/γ)d⌉.
Let vj be the VC-dimension of Θj , and let ve be the VC-dimension of CH(θ1:K), which is the convex
hull of the snapshots. Then, with probability at least 1− δ, the following bound holds for all ϕ ∈ Φ:

EDF (ϕ) ≤ Et∼DP(t)[ξ̂
γ,t(ϕ(t))] + max

j

√
vj(ln(

√
m/vj)+1) + ln(4N

√
m/δ)√

m

+ 2(EDP
⋃

F (ϕ
∗
DP

⋃
F
)− λ∗

DP
)

+ d̂ΦΓΦ + 2(
5

2
+

TF

τ
)(η

TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
) +

2

3
ρT 2

F

(50)

Proof. First, we must prove an upper bound on EDP (ϕ) in terms of empirical risk. To derive this
bound, we fix t to an arbitrary value in [0, TP] and consider the following fact:

sup
µ∈∆K

|ξ̂γ,t(µ)− ξt(µ)|

≤ sup
θ̃∈Θ

| max
∥β∥≤γ

1√
m

∑
i:ti∈B(t)

l((θ̃ + β)(xi), yi)− Es∼Unif(B(t)),(x,y)∼D(x,y|s)[l(θ̃(x), y)]|
(51)

This is the supremum (over Θ) of the absolute difference between empirical robust risk and distribu-
tional risk where the distribution is (x, y) pairs from the B(t) time-bin, and the number of empirical
samples is

√
m. Therefore, we apply Lemma 2 from SWAD (Cha et al., 2021) to conclude that with

probability at least 1− δ
2
√
m

, the following is true for all µ ∈ ∆K :

|ξ̂γ,t(µ)− ξt(µ)| ≤ max
j

√
vj(ln(

√
m/vj)+1) + ln(4N

√
m/δ)√

m
(52)

Combining with Lemma 3 lets us conclude that, with probability at least 1− δ
2
√
m

, the following is
true for all µ ∈ ∆K :

|ξ̂γ,t(µ)− ζθ1:K (µ, t)| ≤ η
TP√
m

+max
j

√
vj(ln(

√
m/vj)+1) + ln(4N

√
m/δ)√

m
(53)

23

Under review as a conference paper at ICLR 2024

Taking the expectation over t ∼ DP(t), and noting that there are at most
√
m possible failure events,

we can conclude that, with probability at least 1− δ
2 , the following is true for all ϕ ∈ Φ:

|Et∼DP(t)[ξ̂
γ,t(ϕ(t))]− EDP (ϕ)| ≤ η

TP√
m

+max
j

√
vj(ln(

√
m/vj)+1) + ln(4N

√
m/δ)√

m
(54)

By combining with Lemma 7, we can conclude that with probability at least 1− δ, the following is
true for all ϕ ∈ Φ:

EDF (ϕ) ≤ Et∼DP(t)[ξ̂
γ,t(ϕ(t))] + max

j

√
vj(ln(

√
m/vj)+1) + ln(4N

√
m/δ)√

m

+ η
TP√
m

+ 2(EDP
⋃

F (ϕ
∗
DP

⋃
F
)− λ∗

DP
)

+ d̂ΦΓΦ + 2(2 +
TF

τ
)(η

TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
) +

2

3
ρT 2

F

(55)

We can upper-bound this by adding in an extra
√

4ve(ln(
√
m/ve)+1)+ln(4

√
m/δ)√

m
term and refactoring

to get the bound from the theorem statement.

We can derive a somewhat tighter bound by refining this proof, which we will do next.

D.4 STATEMENT AND PROOF OF THEOREM 2

Theorem 2. Let Θ1, ...,ΘNCH be a finite cover of the convex hull of snapshots CH(θ1:K) ⊂ Rd,
where NCH := ⌈(diam(θ1:K)/γ)d⌉. Let vCH

j be the VC-dimension of Θj , and let ve be the VC-
dimension of CH(θ1:K). Then, with probability at least 1 − δ, the following bound holds for all
ϕ ∈ Φ:

EDF (ϕ) ≤ Et∼DP(t)[ξ̂
γ,t(ϕ(t))] + max

j

√
vCH
j (ln(

√
m/vCH

j)+1) + ln(4NCH
√
m/δ)

√
m

+ 2(EDP
⋃

F (ϕ
∗
DP

⋃
F
)− λ∗

DP
)

+ d̂ΦΓΦ + 2(
5

2
+

TF

τ
)(η

TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
) +

2

3
ρT 2

F

(56)

Proof. The proof proceeds exactly the same way as the proof of Theorem 1, except that in the step
51 we take the supremum over θ̃ ∈ CH(θ1:K) instead of θ̃ ∈ Θ.

We next prove an alternate bound that may be tighter when Φ is highly constrained.

D.5 STATEMENT AND PROOF OF THEOREM 3

Theorem 3. Let Hs := {θ1:K ∗ ϕ : ϕ ∈ Φ} be a hypothesis class of functions that take (x, t) as
input. Let vs be the VC-dimension of Hs, and let ve be the VC-dimension of CH(θ1:K). Then, with
probability at least 1− δ, the following bound holds for all ϕ ∈ Φ:

EDF (ϕ) ≤ ÊDP (ϕ) +

√
4vs(ln(m/vs)+1) + ln(4/δ)

m
+ 2(EDP

⋃
F (ϕ

∗
DP

⋃
F
)− λ∗

DP
)

+ d̂ΦΓΦ + 2(
5

2
+

TF

τ
)(η

TP√
m

+

√
4ve(ln(

√
m/ve)+1) + ln(4

√
m/δ)√

m
) +

2

3
ρT 2

F

(57)

24

Under review as a conference paper at ICLR 2024

Figure 4: Test loss change Eθ′ :||θ′−θ||≤γ [EDi(θ
′
) − EDi(θ)] as a function of radius γ. The use of a

time-sensitive selector ϕ allows TWA to find flatter minima for each temporal domain. Theorem 1
suggests that these lower robust risks should translate to better future generalization.

Proof. We start by putting a standard VC-bound on EDP (ϕ). With probability at least 1 − δ
2 , the

following is true for all ϕ ∈ Φ:

|ÊDP (ϕ)− EDP (ϕ)| ≤
√

4vs(ln(m/vs)+1) + ln(4/δ)

m
(58)

Combining with Lemma 7 gets us the conclusion of the theorem.

D.6 EMPIRICAL FLATNESS ANALYSIS

To verify whether TWA can find flat minima, where empirical robust risk Et∼DP(t)[ξ̂
γ,t(ϕ(t))] is

low, we look at the test loss landscape in past and future temporal domains of CLEAR-10. Following
Cha et al. (2021), we measure flatness of model θ on temporal domain Di by computing expected
loss change Eθ′ :∥θ′−θ∥≤γ [EDi(θ

′
)−EDi(θ)] for radius γ, where EDi(θ) is test loss of θ on temporal

domain Di. We use Monte-Carlo with 50 trials. When evaluating TWA, we use θ := θ1:K ∗ ϕ(ti)
where ti is midpoint time of temporal domain Di. We also evaluate baselines SWAD and ERM, in
which θ is stationary. Fig. 3 shows expected loss change as a function of γ, and shows that TWA
finds flatter minima than the baselines. This means that TWA has lower robust risks, which, per
Theorem 1, allows better generalization to future data.

E ILLUSTRATIVE EXAMPLE OF TWA BENEFITS

In order to better illustrate and understand the benefits of time-sensitive weight averaging, we con-
struct a toy experiment in which the data distribution shifts continuously over time. In this dataset,
x is a 2D vector and y is either +1 or −1.

The distribution is a mixture of Gaussians, where D(y|h) := Unif({−1,+1}) and D(x|y, h) :=
yµh + ϵ, where µh := [cos(2πh/H), sin(2πh/H)] and ϵ ∼ N (0, σ2I2) is IID spherical Gaussian
noise. D(h|t) is periodic and is defined as softmax(1

ωM [cos(2πpoly(t/H)); sin(2πpoly(t/H))]),
where poly(·) is a polynomial and Mh,· := µh. For our experiments, we set H := 12, σ := 0.5,
ω := 0.25, and poly is a 1-degree polynomial (i.e. linear function) with slope 1.333 and intercept
0.42.

In this experiment, time is always discretized to integer values 0, 1, 2, ..., 11, where 0 through 8 is
the past, and 9 through 11 is the future. 60 datapoints are sampled per time.

Our snapshots θ1:K are linear models without any bias, and we use K := 9 of them. We obtain the
snapshots using the following procedure. First, initialize base model by sampling from Gaussian
with bandwidth 0.05. Then, optimize for 100k steps, using a batch size of 1 for each step (and
sampling with replacement), and minimizing the linear loss −yθx. Use weight-clipping to constrain
the model magnitude to always be ≤ 0.15. Use a constant learning rate of 0.1 to ensure adequate
diversity of snapshots. Sample snapshots uniformly from among the last 10k iterations.

The selector has a similar form to the data-generating model. Its has the following form:

softmax(A[cos(2πpoly(t/H)); sin(2πpoly(t/H))] + b), (59)

25

Under review as a conference paper at ICLR 2024

Figure 5: Data and results for one run of the toy experiment. Blue points are positive, red points are
negative. Green line is decision boundary for TWA, magenta line is for stationary weight-averaging.
The ”comb” indicates which side of the decision boundary is predicted positive.

Figure 6: (left) Model snapshots from one run of the toy experiment, shown as direction vectors (i.e.
decision boundaries would be perpendicular. (right) Temporal complexity vs difference between
test loss and train loss, with trendline. Higher temporal complexity is positively correlated with a
wider gap between test and train loss, in line with our theoretical result.

where A, b, and polynomial coefficients are learnable. The number of degrees in the polynomial
is a hyperparameter. As with the model snapshots, the selector is trained to minimize linear loss
−y(θ1:K ·ϕ(t)) ·x, with the constraint that all non-intercept polynomial coefficients are in [−3,+3]
interval (the intercept is unconstrained), and all entries in A and b are in [−1,+1] interval. All
parameters are initialized uniformly within their constraint bounds, and L-BFGS-B is used to mini-

26

Under review as a conference paper at ICLR 2024

mize loss across the whole training set at once. We do 100 trials of this minimization and return the
selector that got the lowest training loss. For each trial, there is a 0.2 probability that we will blend
our initial model with the best one so far, in order to harness both exploration and exploitation.

Fig. 1 shows the data and results for one run of the toy experiment. Positive points are shown in
blue, and negatives in red. The decision boundary given by TWA is shown in green, with the ”comb”
indicating which side of the boundary is predicted positive. As a baseline, we also plot the decision
boundary of a stationary uniform average of the model snapshots, in magenta. We see that TWA
is able to adapt to the temporal domain shift, while the performance of the stationary average is
unreliable due to the shift. The left side of Fig. 2 shows the model snapshots as direction vectors.

We also take a look at temporal complexity d̂ΦΓΦ to see how well it correlates with the gap between
train and test risks. For ease of optimization, we measure temporal complexity in terms of gaps
in linear loss, instead of 0-1 loss, and likewise measure its correlation with the difference between
linear test loss and linear train loss. Measuring temporal complexity is similar to training a selector,
since it involves maximizing a quantity that is a function of a pair of selectors.

We generate the toy dataset with 5 different random seeds and evaluate the train loss, test loss, and
temporal complexity (in terms of linear losses) for selectors with polynomial degrees 1-6, giving
us a total of 30 experiments. The right side of Fig. 2 plots temporal complexity on the x-axis
and test-loss-minus-train-loss on the y-axis. We see that there is a positive correlation between the
two quantities, which is what we would expect from our theoretical result. In particular, the two
quantities have a Pearson correlation coefficient of 0.703, and hence an R2 value of 0.495, meaning
that our temporal complexity explains almost 50% of the variance in the train-test loss gap for these
toy experiments.

F TWA TRAINING AND INFERENCE ALGORITHMS

In this section, we present pseudocodes for TWA training and inference. We assume that
there is a dataset consisting of source temporal domains D1, ..., Ds and target temporal do-
mains Ds+1, ..., DE . Alg. 1 describes how to create model snapshots θ1:K using source domains
D1, ..., Ds, given total iterations Iθ, late-sampling iterations ILS , sampling strategy S , and model
snapshot number K. Alg. 2 describes how to optimize selector ϕ on source domains D1, ..., Ds us-
ing snapshots θ1:K from the previous algorithm, given iterations Iϕ. Finally, Alg. 3 describes how to
use snapshots θ1:K and trained selector ϕ to obtain a prediction for a query sample (xte, tte), which
could come from any of the target domains Ds+1, ..., DE . Note that ϕ(t) denotes the inference of
selector model ϕ on a timestamp t, while F(x, θ) denotes the inference of a base model θ on an
input x.

Algorithm 1 TWA Training Algorithm - Creating Snapshots
1: INPUT: Source domains D1, ..., Ds.
2: INPUT: Total iterations Iθ , late-sampling iterations ILS , sampling strategy S, model snapshot number K.
3: for i = 1, 2, ..., Iθ − ILS do
4: Get training sample (x, ·, y) from D1, ..., Ds.
5: Optimize model θ with L(F(x, θ), y) while also optimizing the BN layers.
6: end for
7: for i = Iθ − ILS + 1, ..., Iθ do
8: Sample model snapshots θ1:K ∼ Sls(argminθ

∑
j∈[1,s]

∑
(X,·,Y)∼Dj

L(F(X, θ), Y))

9: end for
10: return θ1:K

27

Under review as a conference paper at ICLR 2024

Algorithm 2 TWA Training Algorithm - Optimizing Selector
1: INPUT: Source domains D1, ..., Ds.
2: INPUT: Model snapshots θ1:K from Alg. 1, and iterations Iϕ.
3: for i = 1, 2, ..., Iϕ do
4: Get training sample (x, t, y) from D1, ..., Ds.
5: Generate the averaging coefficients ϕ(t).

6: Optimize selector ϕ with loss
∑

i∈[1,s]

∑
(x,t,y)∼Di

L
(∑K

k=1 ϕ(t)k · F(x, θk), y
)

.
7: end for
8: return ϕ

Algorithm 3 TWA Inference Algorithm
1: INPUT: Query sample (xte, tte) from any of target domains Ds+1, ..., DE .
2: INPUT: Model snapshots θ1:K from Alg. 1, and trained selector ϕ from Alg. 2.
3: Generate the averaging coefficients ϕ(tte).
4: Get the inference model weight by averaging the snapshots θavg =

∑K
k=1 ϕ(tte)k · θk.

5: Inference with ŷ = F(xte, θavg)
6: return ŷ

28

	Introduction
	Related Work
	Time-sensitive Weight Averaging for Temporal Domain Generalization
	Adopting Weight Averaging for TDG
	Predicting Time-sensitive Averaging Coefficients using a Selector Network
	TWA Training Objective

	Theoretical Analysis of TWA

	Experiments
	Experimental Setup
	Results
	Ablation Study

	Conclusion
	Code of Ethics Statement
	Appendix
	Implementation Details
	CLEAR-10 and CLEAR-100
	Yearbook
	FMoW-Time

	Additional Experimental Results
	Expert Snapshots
	Natural Language Processing Benchmarks
	Efficiency Evaluation
	Performances on Each Target Domain
	Comparison with DRAIN

	Theoretical Analysis of TWA
	Definitions and Assumptions
	Data Distribution
	Loss and Risk Terms
	Temporal Complexity

	Lemmas
	Restatement and Proof of Theorem 1
	Statement and Proof of Theorem 2
	Statement and Proof of Theorem 3
	Empirical Flatness Analysis

	Illustrative example of TWA Benefits
	TWA Training and Inference Algorithms

