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ABSTRACT

Large Language Models (LLMs) with long context windows enable powerful
applications but come at the cost of high memory consumption to store the key
and value states (KV-Cache). Recent studies attempted to merge KV-Caches from
multiple layers into shared representations, yet these approaches either require
expensive pretraining or rely on per-token cosine similarity across layers, which
may not always be observed in practice. We find that the dominant singular vectors
are remarkably well-aligned across multiple layers of the KV-Cache. Exploiting
this insight, we propose xKV, a post-training compression method that applies
Singular Value Decomposition (SVD) on the KV-Cache of grouped layers. xKvV
consolidates the KV-Cache of multiple layers into a shared low-rank subspace,
significantly reducing KV-Cache sizes. Through extensive evaluations on the
RULER long-context benchmark with widely-used LLMs (e.g., Llama-3.1 and
Qwen2.5), xKV achieves up to 8 x KV-Cache compression rate while keeping the
accuracy gap within 2-3 percentage points of the non-compressed baseline over a
set of representative long-context tasks, and remains robust in multi-turn settings.
Coupled with the designed Selective Reconstruction (SR) at decode time, xK—SR
(keys only, values offloaded to CPU memory) yields 2.53% higher accuracy than
the state-of-the-art system that combined token selection with single-layer SVD and
delivers up to 3.23 x end-to-end generation speedups over full attention on an A100
GPU. At a similar accuracy level, xKV-SR (keys and values on GPU) achieves up
to 4.23 x faster speedups. These results highlight xKV as a versatile, plug-and-play
solution to alleviate both memory and latency bottlenecks in long-context LLM
inference.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., [2023} |OpenAl et al.l 2024; Team et al., 2024; |llal
2024} Jiang et al.l 20235 |Anthropicl 2023) have revolutionized numerous artificial intelligence (AI)
applications with advanced cognitive capabilities that were previously unattainable with conventional
machine learning (ML) models. Recent efforts to extend the context lengths of LLMs have further
expanded their potential: open-sourced models now support up to 1M tokens (Pekelis et al., [2024;
Yang et al., 2025), and proprietary ones like Gemini push this limit even further to 10M tokens
(Team et al.,|2024). These extended context windows unlock a wide range of previously impractical
applications, such as large-scale information retrieval and debugging or extending a large-scale
codebase (DeepSeek-Al et al., 2025} |Dubey et al., [2024; |Yang et al., 2025; OpenAl et al.| [2024)).

However, this expanded capability on long-context introduces significant challenges, particularly in
the management of key-value (KV) caches during inference (Fu, 2024; L1 et al.,20244a)). Typically,
KV states are cached to avoid redundant computations; yet, under extended context lengths, the
memory consumption of KV-Cache rapidly becomes prohibitive. This inflated memory footprint
severely limits the number of concurrent inference requests, causing substantial throughput reduction.
To address this, researchers have proposed various approaches to mitigate the large memory footprint
of KV-Caches. These include quantization (Hooper et al.| |2024; Liu et al.,2024c} |Chen et al., 2025
Zhao et al.,|2023)), token eviction (Adnan et al.| 2024;|Ge et al.l 2024; | Xiao et al., [2024} Zhang et al.,
2024b; [Li et al., 2024bj |Cai et al.|, 2024), and low-rank decomposition (Sun et al., 2024a}; Chang
et al.,[2025} |[Zhang et al.,|2024a; |Yuan et al.,|2023). These approaches have primarily focused on
intra-layer redundancies that compress the KV-Cache of each layer separately. While this often yields
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respectable per-layer compression, these methods do not utilize potential redundancy across layers
(Gromov et al.,[2024).

To exploit cross-layer redundancy, two main lines of work have emerged. The first, represented
by Cross-Layer Attention (CLA) (Brandon et al.,2024) and YOCO (Sun et al.||2024b), introduces
new architectures that share a single set of KV-Cache across groups of adjacent layers. While
effective, these methods require architectural modifications and thus expensive pretraining from
scratch, limiting their applicability to existing pretrained models. A second direction, exemplified
by MiniCache (Liu et al., 2024b), operates in a post-hoc manner by merging adjacent layers” KV-
Cache under the assumption of high cosine similarity, implemented via spherical linear interpolation
(SLERP) (Shoemake, |1985)). Our analysis, however, shows that such similarity, though present to
some extent, is not consistently strong enough across layers to support robust compression, leading to
nontrivial accuracy degradation in practice (see §3.1). Together, prior methods are limited either by
costly pretraining or by fragile similarity assumptions, motivating the need for a new approach.

KV-Cache KV-Cache Concatenated K/V
Kernel Alignment (CKA) (Kornblith et al.|

2019). Our analysis reveals that, although the L2
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fully plug-and-play compression method that re-
quires no additional fine-tuning or architectural Figure 1: The token basis (singular vectors) of
modifications. xKV simultaneously compresses two different layers’ KV-Cache are highly aligned.
the KV-Cache of multiple layers by extracting xKv concatenates adjacent layers and performs
a shared set of singular vectors through cross- one SVD to obtain a shared basis A with layer-
layer SVD, producing a compact token basis specific By and B, improving accuracy at a fixed
reused across adjacent layers as illustrate in Fig- rank and reducing memory.
ure|l} To further reduce overhead at inference,
we introduce Selective Reconstruction (SR): instead of reconstructing all tokens, we selectively
reconstruct only those relevant to the query (§ [4.3). The pairing of cross-layer compression with SR
substantially lowers reconstruction cost while preserving model accuracy, making xKV practical for
real-world deployment.

To adapt xKV to diverse deployment requirements, we further design two decoding modes (§ [4.4).
When the target application is latency-sensitive, we use xKV-SR, which compresses both keys and
values and keeps them fully in GPU memory, yielding fastest decoding. When accuracy must be
preserved, we use xK—SR, which compresses keys only while offloading values to CPU memory,
delivering near-lossless accuracy with reduced GPU memory usage.

Extensive experiments on RULER with Llama (lla, 2024) and Qwen (Yang et al., [2024; [2025)
models show that xKV achieves up to 8§ x compression rate with minimal accuracy degradation (<3%),
significantly outperforming representative token eviction and quantization baselines. With SR enabled,
xK-SR yields >2.5 percentage points higher accuracy than state-of-the-art single-layer SVD systems.
Most importantly, by keeping the compressed cache entirely on-device, xKV-SR eliminates PCle
bottlenecks, translating these efficiency gains into 3.6 x faster attention operation and up to 4.23
higher end-to-end generation throughput over Full KV-Cache baseline with FlashAttention-2 CUDA
kernel on Llama-3.1-8B.

2 RELATED WORK

Low-Rank KV-Cache Compression. A broad line of research exploits the low-rank nature of the
KV-Cache to reduce its memory footprint. For instance, Multi-Head Latent Attention (MLA) (Liu
et al.| 2024aj; DeepSeek-Al et al.| 2025)) projects tokens onto a low-rank subspace and caches those
latent representations instead of the original key and value states, however, MLA requires training the
model from scratch. In contrast, several post-training techniques decompose the key/value parameter
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matrices to obtain low-rank projection modules similar to MLA, such as ASVD (Yuan et al.} 2023,
Palu (Chang et al.| 2025)), and LoRC (Zhang et al.,[2024a). Other methods decompose the KV-Cache
directly: EigenAttention (Saxena et al.,2024) applies SVD to a calibration dataset to derive projection
matrices, whereas ShadowKYV (Sun et al.| 2024a)) performs online SVD to capture the dynamics of
different contexts. In xKV, we also exploit the low-rank nature of KV-Cache. However, unlike prior
methods focusing on per-layer compression, xKV further considers the shared information among
multiple layers and extends the usage of low-rank projections to a new cross-layer dimension.

Cross-Layer KV-Cache Optimization. Going beyond the intra-layer perspective, another stream
of research explores inter-layer redundancy of KV-Cache (Brandon et al.,[2024} Sun et al., 2024bj
Wu & Tul 2024 Liu et al.| 2024b; |Dong et al., [2025). CLA (Brandon et al.,|[2024) and YOCO(Sun
et al.,2024b)) both modify the Transformer model architecture so that later layers can directly reuse or
reference KV states from earlier layers. LCKV (Wu & Tul 2024)) restricts full KV storage to a small
subset of layers, foregoing caches in other layers. However, these methods rely on retraining or model
fine-tuning, which makes them less flexible. Minicache (Liu et al., [ 2024b)), in contrast, provides a
flexible post-training alternative by merging the key and value tokens from adjacent similar layers
using spherical linear interpolation. Our approach goes further by extracting shared singular vectors
of multiple layers’ KV-Caches, thereby enabling higher compression.

Dynamic Token Selection and KV Offloading. A complementary line of work accelerates decod-
ing by selecting a small subset of context tokens per step (dynamic sparse attention). Quest (Tang
et al.l 2024) proposes query-aware page selection to reduce attention cost without compressing the
KV-Cache. ShadowKYV (Sun et al} 2024a)) stores a low-rank key cache on GPU, offloads values to
CPU, and employs an accurate landmark-guided selector with a small static outlier set to reconstruct
minimal sparse KV pairs on-the-fly, improving throughput under long contexts. In contrast, xKV
targets cross-layer KV compression: we extract a shared low-rank token basis across adjacent layers
and pair it with selective reconstruction. This lets us (i) match ShadowKV’s “keys-only + offloaded
values” regime via xK—SR, and (ii) run xKV—-SR with both keys and values compressed on GPU,
avoiding host—device transfer. Empirically, at matched token budgets, xK—SR/xKV—SR achieve
higher accuracy than Quest and ShadowKYV while offering stronger speedups when values remain
on-device.
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Figure 2: (a) Average Token-wise Cosine Similarity for value-caches across different layers. For each
pair of layers, we compute the token-level cosine similarities between their embeddings and average
these values into a single similarity score. (b) CKA Matrix for the value-cache. The higher (warmer)
values indicate stronger singular vector alignment across layers. (¢) Required rank ratio (percentage
of total dimension) for capturing 95% of the cumulative eigenvalues in the key (red) and value (blue)
matrices, plotted against the number of grouped layers. For each group, we horizontally concatenate
the key/value caches and compute the rank needed to achieve 95% of the cumulative eigenvalues.
As the grouping increases, a smaller rank (relative to total dimension) is required, implying a higher
compression rate for the same level of information preservation. We perform these analyses on
the KV-Cache obtained from Llama-3.1-8B-Instruct, using the multi-valued NIAH dataset from the
RULER (Hsieh et al., 2024) benchmark.

3 ANALYSIS AND MOTIVATION

In this section, we examine the cross-layer similarity of KV-Caches with different metrics to reveal
the motivation behind the design of xKV.
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3.1 CROSS-LAYER COSINE SIMILARITY (PRIOR WORK)

To understand the assumption used in the previous work (Liu et al.l 2024b)), we first measure token-
wise cosine similarity across various layer-pairs. The measurement on the cosine similarity is
presented in Figure 2a] Notably, the adjacent layers exhibit low token-wise similarity. This modest
similarity fundamentally limits the compression rate achieved by prior representative methods (Liu
et al.l[2024b).

3.2 REVISIT CROSS-LAYER SIMILARITY WITH CKA

While token-wise (cosine) similarity offers a local perspective, a more holistic view can reveal deeper
patterns in how an entire KV-Cache is aligned across layers. Specifically, we adopt Centered Kernel
Alignment (CKA) (Kornblith et al.,|2019) to measure the similarity in the overall structure of two
layers’ KV-Caches. Concretely, for a layer ¢ with KV-Cache X, € R"*9, we first define the centered
Gram matrix

G, = HX,X/H, where H =1, — 111"

Then, the CKA between two layers /1 and /5 is

CKA(XZUX@) = trace((}él Gég) .
\/tlrauce((}?1 )trace(GZ)

Unlike the token-wise cosine similarity metric, which simply compares corresponding token embed-
dings, CKA reflects the similarity of the entire distribution of token embeddings in each layer. If
CKA(Xy, ,Xy,) is high, then the dominant left singular vectors of X, are highly aligned to those
of layer {5 (ref. Appendix [A). In other words, the basis vectors that define how the token varies in
these two layers might be similar.

Observation 1: Highly Aligned Basis. In Figure[2b] we show the CKA value between each layers’
KV-Cache of Llama-3.1-8B-Instruct. As shown in Figure [2b] many pairs of layers exhibit remarkably
high CKA (red blocks) even though their token-wise cosine similarities are quite modest. This
observation suggests that, although individual token embeddings differ across layers, the dominant
singular vectors (i.e., basis) that span the KV-Cache are, in fact, well-aligned. Thus, focusing solely
on the cosine similarity between pairs of token embeddings can underestimate the potential for
cross-layer merging and compression.

3.3 EIGENVALUE ANALYSIS OF KV-CACHE

Observation 2: Horizontally Concatenated KV-Caches Exhibit Lower Rank. Motivated by the
observation that different layers’ basis are well aligned, we examine the rank to achieve a certain
level of information preservation after horizontally concatenating the KV-Caches across multiple
layers. Because each layer shows substantial cross-layer overlap (§3.2)), a single set of low-rank
basis vectors can effectively approximate the KV-Caches of all layers in the group. As illustrated
in Figure a larger group size reduces the fraction of total rank needed to preserve the same
cumulative eigenvalues. Compared with creating separate low-rank subspaces for each layer, this
shared approach avoids storing nearly identical basis vectors multiple times, yielding a more compact
yet expressive representation. In §4] we leverage these observations to propose our xKV method that
achieves significantly higher compression ratios while preserving model accuracy.

4 METHODOLOGY: XKV

4.1 NOTATION

We consider a Transformer with N decoder blocks and a long prompt of length L. Let d denote the

KV hidden size. Under GQA, d = Hy, - dj with Hy, KV heads and per-head width dj,. Because the

same decomposition/reconstruction pipeline applies to both keys and values, we use a unified symbol
X7 € REx4 e {KPe V),

to denote the cache of type 7 at layer ¢. For RoPE models, we always decompose pre-RoPE keys
(7 = KP') and re-apply RoPE after reconstruction.
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Decode-time head mapping and row selection. Let I, be the number of query heads and
p: [Hy] — [Hxv] the GQA mapping from query heads to KV heads. At decode step ¢, for each layer
¢ and KV head g, we will use an index set S; ¢, C [L] of selected prompt rows with My ; ¢ =[Sy ¢ ¢

(8. E3).

4.2 CORE METHOD: CROSS-LAYER SVD

Motivated by our empirical finding that the dominant left singular vectors of KV-Caches are
well-aligned across adjacent layers (§ 3), we group layers into contiguous strides of size G:

G ={kG,... . kG+G—1}, k=01, %1

For a group Gy, = {¢1,...,0c} and type 7 € {KP™, V'}, we horizontally concatenate the group’s
caches and compute a single low-rank factorization:

T
(X7,..... X5, = UL, S, (Vi) = AL [\é &]7 (1)
eRLXxrr cRrr xd CRrr xXd

where A} = Uy . Sp . is the shared token basis for the group, and B are layer-specific reconstruc-
tion matrices. Compared to single-layer SVD, this cross-layer factorization learns a shared subspace
across adjacent layers and is effective for both keys and values. Each layer-specific reconstruction
matrix can also be view as the concatenation of KV-head specific reconstruction matrices:

B} = [Bj, - Bin.], Bi,eRT
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Figure 3: Illustration of different optimized operation modes. xKV—-SR design (Left) keeps both
low-rank key and value caches on the GPU. xK-SR design (Right) keeps the low-rank key cache on
the GPU and offloads the full value cache to the CPU.

4.3 PROCESS DURING INFERENCE

Prefill Compression. During prefill, we compute (I)) separately for 7 = KP™ and 7 = V for every

group k:

{AL Bl Yeea ), {AL (B }eeq, }-
We perform the decomposition online during prefill to capture prompt dynamics (the added cost is a
small fraction of prefill and diminishes as L grows). Empirically, the online cross-layer SVD accounts
for only 3.9% of prefill time at sequence length of 128K (See Appendix [C.I). Newly generated
tokens are left uncompressed by default (their length is typically < L in long-context use); for very
long generations, we may reapply cross-layer SVD to those tokens.

Dense reconstruction (baseline cost). A direct use of the factors would, for each ¢ € G;, and head
g, reconstruct all L rows:

For keys in RoPE models, we then set Kmpe RoPE ()A(fgp re) by applying RoPE per row using its

original position index. This dense strategy reconstruction FLOPs A B cost that scales with sequence
L at every step (Appendix [D.3). Despite the memory saving that the decomposition can offer, this
additional computation cost can pose an extra latency overhead during decoding.
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Selective reconstruction. Prior work shows that LLMs exhibit strong attention sparsity during
decoding, with most queries attending only to a small subset of context tokens (Sun et al., [2024a}
Tang et al., 2024 |Caz1 et al.| [2024). Inspired by this characteristic, we leverage this inherent sparsity
nature and reconstruct only the tokens that are likely to matter at that step. Specifically, at step ¢t we
reconstruct only rows in Sy s 4, C [L]:

szg[st’evg’ ::I = A‘;C—I:St,z,ga ::| Bz,g' (2)

For any query head h with p(h) = g, attention is then computed using )A(E , Testricted to St g g
(For RoPE models, we decompose pre-RoPE keys and apply RoPE after reconstruction.) In our
implementation, the sets S; ¢ 4 are produced by a landmark-guided Top-£ chunk selector with a small
static outlier set (Sun et al.,[2024a). We provide the detailed workflow on how the indices S; ¢ 4 in
Appendix [B.T| and further analysis on the reconstruction FLOPs in Appendix [D.3]

4.4 OPERATION MODES

We design two operation modes, xKV-SR and xK-SR, optimized for different scenarios. The
overview is presented in Figure[3]

Joint key—value compression with selective reconstruction (xKV-SR). Leveraging cross-layer
SVD, xKV can effectively compress both keys and values while maintaining strong accuracy, reducing
the total KV footprint in device memory. With effective compression, we can fit the entire compressed
KV on GPU’s memory and avoid the necessity of KV-Cache offloading that induces host-device
transfer, which is crucial when host—-device bandwidth is limited (e.g., PCle-only servers) or on
unified-memory/embedded platforms (e.g., Jetson-class devices), allowing more requests per GPU
and lower end-to-end latency.

Key-only compression with selective reconstruction and value offloading (xK—-SR). When
host-to-device bandwidth is sufficient (e.g., 900GB/s on GB200 |Goldwasser et al.| (2024))), we
adopt a key-only compression strategy that offloads the value cache to CPU memory, similar to
ShadowKV (Sun et al.|[2024a). Our analysis (Figure shows that values are relatively high-rank
and more sensitive to compression, so leaving them uncompressed preserves accuracy. To mitigate
the added memory cost of this design, we overlap key reconstruction (Eq. [2) with host-device
value transfers, effectively hiding reconstruction latency behind data movement. Unlike ShadowKYV,
however, xK—SR leverages xKV’s cross-layer key factorization, yielding higher accuracy under the
same memory budget.

5 ACCURACY EVALUATIONS

Models. We evaluate xKV on three widely used language models using Grouped-Query Attention
(GQA): Llama-3.1-8B-Instruct (Dubey et al., [2024) (8 KV heads) and Qwen2.5-7B-Instruct-1M
(Yang et al., 2025) (4 KV heads). In Appendix [E} we also evaluate xKV on DeepSeek-Coder-V2-Lite-
Instruct (Dai et al., 2024) with Multi-head Latent Attention (MLA) and Mixture-of-Experts (MoE) to
demonstrate xKV’s high compatibility with emerging efficient Transformer architectures.

Datasets. We select RULER (Hsieh et al.||2024) as our major benchmark, which features complex
tasks such as retrieval, multi-hop tracking, and question-answering. We also evaluate our approach
using Needle In A Haystack (NIAH) (Kamradt, 2023) under multi-turn setups. We also provide the
LongBench evaluation in the Appendix [D.2]

Baselines. We compare xKV with the baselines in two scenarios. Firstly, the pure KV-Compression
without selective reconstruction for reducing KV-Cache memory footprint. In this scenario, we
compare against six baselines: (1) MiniCache (Liu et al.|[2024b), the inter-layer compression method
based on cosine similarity cross-layer. (2) Single SVD (Sun et al. 2024a), which compresses
KV-Cache by factorizing each layer’s key and value caches independently without exploiting the
cross-layer similarity. (3) Token eviction baselines PyramidKV (Cai et al.,|2024) and SnapKV (Li
et al., 2024b). (4) A 2-bit quantization method KIVI (Liu et al.l [2024c). (5) A token selection
methodology, Streamingl.LM (Xiao et al., 2024), Quest (Tang et al., 2024)), that entails dynamic
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Table 1: KV-Cache Compression Results: Performance of different methods on the RULER bench-
mark evaluated at a context length of 64K. xKV consistently achieves a higher accuracy than the Full
Attns at the same compression rate or even at a significantly higher compression rate.

Method ‘ Comp. ‘ N-S1 N-S2 N-MKI N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE ‘ Avg.
Llama-3.1-8B-Instruct
Full Attn 1.00 100.00 100.00  98.96 97.92 98.96 97.66 8333 5938 97.29 8542 | 91.89
MiniCache 1.30 89.58  66.67 43.75 10.42 14.06 2135 61.46 3542 4938 58.33 | 45.04
KIVI-2 | 7.10 100.00  96.88 98.96 90.63 9141 89.58 80.21 55.21 81.46 84.38 | 86.87
StreamingLLM | 8.00 15.63 12.50 13.54 13.54 1458 17.97 5625 4583 9.58 94.10 | 29.35
PyramidKV | 8.00 100.00 100.00  100.00 96.88  100.00 98.44 8333 5729 9542 68.06 | 89.94
SnapKV | 8.00 100.00 100.00  98.96 9479  100.00 97.66 83.33 5833 95.00 68.75 | 89.68
Single SVD | 8.40 25.00 51.04 61.46 96.88 2891 44779 4792 3646 354 61.11 | 45.71
xKV (Ours) | 8.03 100.00 96.88 97.92 97.92 96.09 96.62 78.13 5625 86.67 78.47 | 88.50
Qwen2.5-7B-Instruct-1M
Full Attn 1.00 100.00 100.00 100.00  100.00 100.00 95.83 84.38 60.42 90.63 86.81 | 91.81
MiniCache 1.30 26.04 0.00 0.00 0.00 0.00 0.00 1250 1458 042 347 | 570
KIVI-2 | 7.10 0.00 2.08 3.13 13.54 0.00 0.78 4896 43.75 3646 40.63 | 18.93
StreamingLLM | 8.00 15.63 12.50 12.50 9.38 14.84 1771 46.88 43.75 13.13 89.24 | 27.56
PyramidKV | 8.00 100.00  93.75 96.88 16.67 90.37 80.73 8438 59.38 89.17 76.39 | 78.77
SnapKV | 8.00 100.00  96.88 97.92 31.25 9531 83.07 8438 5938 91.25 80.56 | 82.00
Single SVD | 8.40 100.00  97.92 96.88 98.96 97.40 91.15 6458 5625 7375 61.46 | 83.84
xKV (Ours) | 8.03 100.00 100.00  100.00 98.96 100.00 90.63 80.21 5833 82.08 81.94 | 89.22

token selection. (6) A state-of-the-art baseline, ShadowKV (Sun et al., 2024a)), that applies single-
layer SVD compression on keys, offloads values to CPU memory, and performs token selection.

Setup. For xKV variants, we set the rank for key rgrre = 384 and ry = 576 if value compression
is applied. We use torch. svd_lowrank API from PyTorch for performing decomposition. We
set the cross-layer group size to be 4 as the default setting. For baseline, we align MiniCache’s official
settings to merge half of the layers, from the middle to the end of the LLM, and vary the compression
rate by adjusting the layer index at which merging begins. For the token eviction (e.g., SnapKYV,
PyramidKV) and quantization baseline (KIVI), we adopt the implementation from MInference (Jiang
et al} 2024; [Li et al.| [2025) library. We keep the newly generated tokens uncompressed for all
comparison targets to ensure fair comparison. Unless specified, we calculate the compression rate by
assuming a context length of 64k.

5.1 RESULTS ON RULER DATASETS

KV-Cache Compression Results. Table[I|reports the performance of xKV and several representa-
tive compression methods on the RULER benchmark at a 64K context length. As shown in Table[T}
MiniCache suffers dramatic accuracy loss even at a modest 1.3x compression rate. This degradation
echos our finding in §3.1)), the token-wise cosine similarity in KV-Cache across adjacent layers is
generally low. Compared to single-layer SVD compression, xKV yields substantial accuracy gains:
at an 8x compression rate, xKV improves average accuracy by 43% on Llama-3.1-8B-Instruct and by
8% on Qwen2.5-7B-Instruct-1M, demonstrating its superior information preservation by exploiting
the inherent alignment of KV-Cache representations across layers.

In comparison with token-eviction methods, xKV achieves 88.50% accuracy on Llama-3.1-8B-Instruct
at 8.03x compression, closely matching SnapKV. On Qwen2.5-7B-Instruct-1M, however, both
SnapKV and Pyramid incur noticeable accuracy degradation. We attribute this to Qwen2.5’s inherently
more compact KV cache—due to its smaller number of KV heads—which makes information
preservation more challenging. Despite this, xKV attains 89.22% average accuracy, narrowing the
gap to the non-compressed baseline to just 2.6%. Moreover, xKV surpasses the quantization baseline
KIVI-2 by 1.7% on Llama-3.1-8B while maintaining accuracy on Qwen2.5, where KIVI-2 suffers
significant drops. Finally, as shown in Appendix[D.4] our approach can be combined with quantization
to further increase compression without sacrificing accuracy.

Results on Multi-turn Conversation Datasets. We test our method using a multi-turn Needle-In-
A-Haystack (NIAH) benchmark and compare its efficacy against token eviction—based approaches
(e.g., SnapKV and PyramidKV). We conduct the evaluation at context length of 64K. Figure ] shows
results on Llama-3.1-8B-Instruct. SnapKV and PyramidKV both suffer steep declines after the first
turn because they evict tokens using the initial attention patterns of the first query and cannot recover
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Figure 4: Accuracy of each conversation turn 7515 | 88.43 86.06

1

2
on Multi-turn NIAH. PyramidKV, SnapKYV, and 4 88.50 | 89.70 89.69
xKV are all at a compression rate of 8x. 8 83.91 | 89.74 89.72

Table 3: KV-Cache Compression with Selective Reconstruction Results: Accuracy of different
methods on the RULER benchmark at a context length of 64K. Here, "Comp." indicates the total
KV-Cache reduction, while the number in parentheses shows the effective GPU memory reduction
considering KV-Cache offloading. ShadowKV* refers to a variant of ShadowKYV that additionally
compresses the value cache.

Method | Comp. | N-SI N-S2  N-MKI N-MK2 N-MQ N-MV QA-1 QA2 VT FWE | Avg.
Llama-3.1-8B-Instruct

Full Attn 1.00 100.00 100.00  98.96 97.92 98.96 97.66 83.33 59.38 97.29 8542 | 91.89
Quest | 1.00(8.00) | 93.75  90.63 96.88 87.50 9427 8542 8333 5729 7771 8194 | 84.87
ShadowKV | 1.64 (9.08) | 100.00 100.00  98.96 97.92 96.88  94.53 8229 6042 66.04 74.65 | 87.17
xK-SR (Ours) | 1.63(8.90) 100.00 100.00  98.96 97.92 98.44 9531 8333 6042 87.92 74.65 | 89.70
ShadowKV*

5.51 | 100.00  76.04 75.00 97.92 54.43 4583 8125 5729 4729 7431 ‘ 70.94

xKV-SR (Ours) 5351 100.00 100.00  98.96 97.92 98.44 9557 8229 6042 8729 76.04 | 89.69

context for later queries (Li et al.,[2025). In contrast, our xKV maintains stable performance across
all turns and consistently preserves critical information.

KV-Cache Compression with Selective Reconstruction Results In Table[3] we compare xK-SR,
xKV-SR, and two representative token selection baselines, Quest and ShadowKYV, using the RULER
benchmark at a 64K context length for Llama-3.1-8B-Instruct. For a fair comparison, we fix the
token budget (i.e., the number of tokens selected for each decoding step) to be 2k for evaluation
targets. Compared with Quest, both xK-SR and xKV-SR showcase superior accuracy with around
4% higher in average. As Quest does not entail KV-Cache compression but only dynamic loading,
it does not reduce the size of the KV-Cache and necessitates KV-Cache offloading to avoid out-of-
memory (OOM). Compared against ShadowKV, xK—-SR extends its by replacing the single-layer
SVD compression key cache with a cross-layer alternative. At a 1.64x KV-compression rate (8.9x
GPU memory reduction considering value offloading), xKV—-SR closes the accuracy gaps from 4.7%
to around 2.1%, demonstrating xXK'V’s better capability in preserving information. Leveraging the
cross-layer alignment that we observed, xKV—SR is able to compress and reduce the KV-Cache to a
significant 5.35x while maintaining 89.69% accuracy, roughly 19% higher than ShadowKV*. This
enables retaining all tensors on GPUs and unlocking the faster inference that avoids the host-device
transfer, which improves decoding efficiency over offloading scenarios (See Section [6).

Impact of xKV on Compressing Value and Key Only. To understand how xKV affects key and
value compression, we conduct ablation experiments on four subtasks from RULER (Hsieh et al.
2024) to evaluate how xKV (cross-layer low-rank SVD) affects key and value compression. We
show the results in Figure[5] Overall, xKV consistently boosts accuracy under varying compression
rates. Also, keys exhibit higher compressibility than values, matching the eigenvalue analysis in
Figure[2c| A closer inspection of the results reveals that the achievable compression ratio appears

'This set up have the 8 x compressed KV-Cache using cross-layer SVD. The final compression rate is
calculated, including the memory cost of the landmark for computing selective indices. See Appendix [D.3]for
more details.
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Figure 5: Accuracy comparison of applying different methods to key and value separately on Llama-
3.1-8B-Instruct using RULER benchmark. The number after xKV denotes the cross-layer group size.

to be task-dependent. On the questions-answering subtasks (QA-1 and QA-2) xKV can push the
compression rate to 16x while still preserving performance. In Variable Tracking (VT) and NIAH
multi-queries (N-MQ) [2023)), accuracy begins to decline beyond 8 x compression; however,
in these same tasks, values tolerate compression more easily than in QA subtasks. These observations
underscore how different tasks may demand different “sweet spots” for key versus value compression.
In xKV, we employ a fixed compression ratio for all different tasks. Exploring task-specific or

context-aware (Liu et al} 2023} [Akhauri et al.} 2025} [2024)) rank allocation is a promising avenue

for future work.

Impact of Cross-layer Group Size to Accuracy. To quantify the impact of cross-layer compression,
we conduct a group size ablation on the RULER benchmark at a fixed compression rate (Table[2). For
example, xKV improves from 45.71% with group size 1 to 75.15% at size 2, and further to 88.50%
at size 4. Similar trends are observed for xK-SR and xKV-SR, where performance likewise climbs
steadily as group size increases. These results confirm that sharing across more layers consistently
enhances reconstruction fidelity under an identical compression rate. However, at a group size of 8,
the accuracy of xKV, xK—SR, and xKV—-SR all saturates, with accuracy nearly identical to that at a
size of 4. Therefore, we use a group size of 4 in all main experiments.

6 EFFICIENCY STUDIES

xKV (Ours) ~ mmm ShadowkV ~— mmm xK-SR (Ours)  mmm xKV-SR (Ours)

3.5x
2.6x
2.4x;
21k 2.2x23% 2.1:2:2%

- 1.8x

L5l — 1.axl.5x 1.5x1 54

L3X
] 0.6 0.64 0.6x |

0.3x] 0.4x| 0.4x;

' 8-60k 16-60k 32-60k 4-122k 8-122k 16-122k
Batch Size - Sequence Length
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Normalized Speedups
- N

0
Figure 6: Attention latency evaluation. Normalized speedup relative to FlashAttention-2.

Setup. We evaluate performance on Llama-3.1-8B (GQA) using an A100 (80GB). Figure[7]reports
end-to-end generation throughput, while Figure [f]isolates the normalized attention latency relative to
FlashAttention-2.

Dense Reconstruction (xKV). xKV reduces memory usage and enables larger batch sizes than
Full Attention, but its runtime is limited by the cost of reconstructing dense KV-Cache tensors. As
Figure [6] shows, dense reconstruction cost grows with sequence length, which increases attention
latency (0.6 x speed at 64k and 0.3 x at 128k). This transition from memory-bound to compute-bound
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Figure 7: Generation throughput (tokens/s) on an A100.

execution is further reflected in the end-to-end throughput (Figure[7). When memory is no longer a
bottleneck,xKV performs similarly to or slightly worse than the baseline.

Selective Reconstruction (xKV-SR). xKV—-SR addresses the compute bottleneck via selective
reconstruction, delivering the highest performance across all metrics. By keeping compressed KV-
Cache entirely on the GPU, it achieves consistent attention latency gains, reaching up to 3.6 x speedup
in Figure[6] This translates directly to generation throughput (Figure [7), where xKV—SR attains up to
3.23x and 4.23 x speedups at 60k and 122k tokens, respectively.

Selective reconstruction with offloaded values (xK-SR and ShadowKYV). Both xK-SR and
ShadowKYV operate in a “keys-only compression + offloaded values” regime. This regime is the
setups with most memory saving. However, their performance tracks closely and is strictly bounded
by PCle bandwidth rather than compute. Comparisons in Figure [f] confirm that reconstructing
compressed values on-chip (xKV—-SR) is significantly faster than fetching uncompressed values over
PCIe (xK-SR and ShadowKYV), making it the superior choice for high-throughput, long-context
decoding.

7 LIMITATIONS AND FUTURE WORK

Long Generation Scenario. Our study focuses on the long-prefill setting, where only the initial
context is compressed while tokens generated during decoding remain uncompressed. This regime
covers many long-context applications (e.g., information retrieval 2025)) and database
QA), but it does not address test-time scaling under extended generation, which the cumulative
KV-Cache can also become the bottleneck. We leave to future work how to leverage the observed
cross-layer alignment of the KV-cache’s dominant singular vectors and proposed cross-layer SVD to
tackle long-generation scenarios.

8 CONCLUSION

We introduce xKV, a plug-and-play compression method for key-value (KV) caches that exploits
inter-layer redundancy. Our approach reveals that KV-Caches across different layers share highly
aligned basis vectors. Leveraging this property, we apply a cross-layer SVD to compress multiple K'V-
Caches into a shared low-rank subspace. Experiments demonstrate that xKV outperforms accuracy
on all other compression methods, including representative inter-layer approaches and intra-layer
methods such as quantization, token eviction, and single-layer SVD. At roughly 8x compression,
xKV keeps average accuracy within 2-3 percentage points of the non-compressed baseline, and it
remains robust in multi-turn settings. With Selective Reconstruction (SR), our fastest alternative
xKV—-SR reaches up to 4.23 x faster generation speed on A100 GPU, highlighting xKV as a practical
approach to reduce both memory footprint and latency for long-context LLM inference.
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A CKA AND INDICATION OF ALIGNED LEFT SINGULAR VECTORS

A.1 NOTATION AND DEFINITIONS

For each layer /, let

X, € R™,
where each of the n rows corresponds to a token (data point). Define the centering matrix

H=1I, - 11",

which subtracts the (row) mean from each token embedding. We define the centered embeddings

X, = HX,,
and the centered Gram matrix o

G, = X;X] € R™",

Because Gy is symmetric and positive semidefinite, its largest-eigenvalue directions capture the most
“energetic” dimensions of )~(¢.

Given two layers /1 and {o, the Centered Kernel Alignment (CKA) between their token embeddings is

trace( Gy, G
CKA(XZUXZQ) _ ( £y (2) ,
\/trace (G})) trace(G?))
which measures how similarly G, and G, encode pairwise relationships (dot products) among the
n token embeddings.

A.2 SVD PERSPECTIVE AND OVERLAP

SVD of centered embeddings. Consider the (compact) SVD of Xg:
X, = Un,V/,
where:
U, € R™"  (orthonormal columns), X, = diag(ay,...,0,), V;€ R" (orthonormal columns),

and r < min(n, d) is the rank. Then the centered Gram matrix factors as
G, = XX/ = U,ziU/,
so the columns of Uy are exactly the eigenvectors of Gy, and o7 are the corresponding eigenvalues.
CKA in terms of left singular vectors. Let X, = Uy, 5, V/ and X, = Uy, 5, V.. Then
Gy = U, 3, U/, Gy =1U,%; U..

We compute

o2 . N 2
trace((}g1 ng) = trace(Ulg1 E?l UZ Uy, 2?2 UZ) = ZZJ?M cr,i’j (uZ)Tuy)) ,

i=1 j=1

where uZ) and ug) are the i-th and j-th columns of Uy, and Uy,, respectively. Meanwhile,
71 T
trace(G%l) = Z UZ‘M, trace(G?Q) = Z U?M-.
i=1 j=1
Hence,

2 2 ()T, ()2
E :%,i%,j (uel ug, )
i\

\/(Zi ot i) (s 04s) |

Because the eigenvalues U?,i reflect how “dominant” each left singular vector is, a large CKA value
requires significant overlap (uZ)Tug ))2 for the most important (largest-o2) directions, implying the
principal subspaces of Gy, and Gy, align closely.

CKA (Xg1 , X, ) =
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A.3 CONCLUSION

In summary, when CKA (X, , Xy, ) is high, the dominant left singular vectors of X,, and X, are
well aligned. Since these vectors also serve as the largest-eigenvalue directions of the centered
Gram matrices, high CKA implies that the principal subspace geometry of the token embeddings
in layers ¢; and /s is structurally very similar—even if token-by-token (cosine) matches are small.
Thus, CKA goes beyond individual token similarities, capturing how tokens vary collectively in a
shared subspace.

B IMPLEMENTATION DETAILS

B.1 LANDMARK-GUIDED CHUNK SELECTOR FOR SELECTIVE RECONSTRUCTION

Algorithm 1 Landmark Construction (Prefill)

Require: Post-RoPE keys K,°P¢ € RN xdn_chunk size c, optional #outliers o
Ensure: Landmarks L, € Rfiexmexdn optional outlier indices {Oy, g C [nc]} 2
ne + [N/c]; N

Chunking the sequence: K < View(K,*"®) € RHivxnexexdn

Chunk means (landmarks): L, < mean(f? , axis = 2) € R xnexdy

(Optional) Static outliers, per head: S, ecos(f( , Ly broadcast along c) € Rffewxnexe
m <+ min(Ses, axis = 2) € RAwXne; vt AroTopK(—m, 0); Oy 4+ I"g,:]
return L, and (optionally) {Oy 4}

AN AN S o

Algorithm 2 Landmark-Guided Top-k Chunk Selection (Decode)

Require: Landmarks L, € R Xnexdn queries (y o € R74*%  GQA map p : [Hy) — [Hiv], token
budget k, chunk size ¢, optional outliers {O 4}
Ensure: Per—KV head selected chunk indices {S; ¢ 4 C [nc]} f:kvl

1: ken + [k/c] B> convert token budget to chunk budget
2: Scores to landmarks (batched MatMul):

Pe RHQXHkvxnc — <Qt,l[:7 ’]a Ll['v ) ']>dh / V dp
: Pool from query heads to KV heads (GQA):

[O%]

Slg. j] « max Plh,g,j] forall g € [Hy], j € [nc]
1: p(h)=g

. Top-k., per KV head: [ € Rfiwxken « AroTopK(S, k)
: (Optional) add static outliers: S,,, < Union(I[g,:], Op4) foreachg

[T N

a

return {St}g,g}f:kvl

We adopted the landmark-guided selection techniques from ShadowKYV (Sun et al.| [2024a)) to decide
the token indices for selective reconstruction. We detail the workflow in the paragraphs below.

Landmark construction (prefill). At layer ¢, we split the post-RoPE key sequence into n, =
[N/c] contiguous chunks of size c. For each KV head ¢ and chunk j, we define the landmark as the

mean key of that chunk:
1

_ rope
Ej»ﬂ - |C| Z Ké,g (l’)
J IECJ'
Optionally, we keep a tiny per-head static outlier set to guard against heterogeneous chunks whose
mean is a weak representative. We identify these by computing the minimum within-chunk cosine
similarity to the landmark,

rgj = min cos (K7 (), £jg),
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and marking the o chunks with the smallest r, ; as outliers for each head g. This metric indicates
how well the landmark summarizes its chunk: lower values signal that at least one token is poorly
captured by the mean, so those chunks are always considered during decoding. We summarize the
procedure in Algorithm. [T]

Landmark-guided selection (decode). At each decode step ¢, given queries Q;, € Rf«Xdn,
we score every chunk via a batched scaled dot-product between ;¢ and the landmarks. With
grouped-query attention, scores are pooled from query heads to KV heads using the GQA map
p ¢ [Hy] — [Hyy| by taking a max over the query heads mapped to each KV head. Given a token
budget k and chunk size ¢, we convert to a chunk budget k., = [k/c] and keep the top k., chunks
per KV head. Optionally, we union these with the static outliers Oy 4. The selected chunk indices
are then expanded to row indices S; ¢ 4 and used to reconstruct only the corresponding tokens. We
summarize the procedure in Algorithm. [2]

C MORE LATENCY STUDIES

C.1 ON-THE-FLY SVD OVERHEAD

Table [ reports the latency of the prefilling phase as well as the cross-layer SVD on A6000 GPU.
On a sequence length of L = 64k tokens, the SVD accounts for 6.92% of the forward-pass time.
This fraction steadily decreases as L increases, reaching only 2.05% at L = 256k, where L denotes
the sequence length. The reduction can be attributed to the fact that the cost of attention grows
quadratically with L, whereas the low-rank decomposition scales only linearly (Li et al.,|2019). As a
result, for very long contexts, the one-time decomposition performed during the prefill phase becomes
practically negligible, contributing minimally to the overall computation time. Similar trends also
hold on A100 GPU as demonstrated in Table

Table 4: The latency data of on-the-fly SVD under different context lengths. Measured on an A6000
GPU with Qwen2.5-14B-Instruct. (Unit: seconds)

Seqlen \ 64k 128k 160k 256k

Prefill Time 39.02 122.30 182.54 425.42
SVD time (G=2) | 1.98 (5.04%) 3.48 (2.85%) 4.37 (2.39%) 6.36 (1.49%)
SVD time (G=4) | 2.70 (6.92%) 4.76 (3.90%) 5.89 (3.23%) 8.74 (2.05%)

Table 5: The latency data of on-the-fly SVD under different context lengths. Measured on an A100
GPU with Llama-3.1-8B. (Unit: seconds)

Seqlen \ 64k 128k 160k 256k

Prefill Time 18.98 47.87 71.55 159.27
SVD time (G=2) | 1.90 (10.03%) 3.48 (7.26%) 4.38 (6.12%) 6.35 (3.99%)
SVD time (G=4) | 2.56 (13.46%) 4.75(9.93%) 5.89 (8.23%) 8.74 (5.48%)

D MORE EXPERIMENTAL RESULTS

D.1 MORE RESULTS ON RULER

KV-Cache More Compression with Selective Reconstruction Results. Table[6|reports results
at different compression rates on the RULER benchmark. At the high compression setting (around
11.5x effective GPU memory reduction), xK—SR outperforms ShadowKYV by a striking 36%. This
demonstrates that xKV—SR is significantly more effective at preserving performance under extreme
compression.
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Table 6: More KV-Cache Compression with Selective Reconstruction Results: Accuracy of different
methods on the RULER benchmark at a context length of 64K. Here, "Comp." indicates the total
KV-Cache reduction, while the number in parentheses shows the effective GPU memory reduction
considering KV-Cache offloading. ShadowKV* refers to a variant of ShadowKYV that additionally
compresses the value cache.

Method |  Comp. | N-SI N-S2  N-MKI N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE | Avg
Llama-3.1-8B-Instruct

Full Attn 1.00 100.00 100.00  98.96 97.92 98.96 97.66 83.33 59.38 97.29 8542 | 91.89

Quest | 1.00(8.00) | 93.75  90.63 96.88 87.50 9427 8542 8333 5729 77.71 81.94 | 84.87

ShadowKV | 1.60 (7.94) | 100.00 100.00  100.00 97.92 99.22 9583 83.33 59.38 7833 73.96 | 83.80
xK—-SR (Ours) | 1.59(7.76) | 100.00 100.00  98.96 97.92 98.70 9635 8229 6146 8833 75.69 | 89.97
ShadowKV | 1.64(9.08) | 100.00 100.00  98.96 97.92 96.88 9453 8229 60.42 66.04 74.65 | 87.17
xK-SR (Ours) | 1.63(8.90) | 100.00 100.00  98.96 97.92 98.44 9531 8333 6042 8792 74.65 | 89.70
ShadowKV | 1.68 (10.61) | 100.00  71.88 73.96 97.92 2734 2422 6875 5833 5271 7396 | 6491
xK-SR (Ours) | 1.68 (10.45) | 100.00  98.96 98.96 97.92 9453 9349 8229 6042 8083 76.04 | 83.34
ShadowKV | 1.71 (11.59) | 96.88 6.25 5.21 80.21 0.78 234 65.62 56.25 49.79 7257 | 43.59
xK-SR (Ours) | 1.70 (11.44) | 100.00  96.88 92.71 97.92 62.50 5625 80.21 59.38 69.58 76.39 | 79.18

ShadowKV* 4.52 100.00  98.96 96.88 97.92 93.49  91.67 8229 5833 6792 75.69 | 86.32
xKV-SR (Ours) 4.37 100.00  100.00  98.96 96.88 99.48  96.61 8229 6042 8792 75.69 | 89.83
ShadowKV* 5.51 100.00  76.04 75.00 97.92 5443 4583 8125 57.29 4729 7431 | 70.94
xKV-SR (Ours) 5.35 100.00  100.00  98.96 97.92 98.44 9557 8229 6042 8729 76.04 | 89.69

D.2 RESULTS ON LONGBENCH

KV-Cache Compression Results. Table[/|presents the comprehensive evaluation of xKV against
representative compression methods on the LongBench dataset, demonstrating consistent performance
across diverse long-context tasks, including single-document QA, multi-document QA, summariza-
tion, few-shot learning, synthetic tasks, and code completion. Experiments were conducted on
Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct-1M models.

MiniCache exhibits severe performance degradation, with accuracy dropping by 12.57% on Llama-
3.1-8B-Instruct and a catastrophic 26.91% on Qwen2.5-7B-Instruct-1M compared to the baseline,
reinforcing our earlier observation that cross-layer compression methods fail when token-wise cosine
similarity assumptions are violated across different model architectures and task types.

At 8.03x compression, xKV achieves 42.27% average accuracy on Llama-3.1-8B-Instruct, closely
matching PyramidKV and SnapKV. On Qwen2.5-7B-Instruct-1M, xKV reaches 40.37% accuracy,
demonstrating competitive performance against PyramidKV and SnapKV, with a slight accuracy
degradation.

These LongBench results validate xKV’s robustness across heterogeneous task domains, confirming
that our shared low-rank subspace approach effectively preserves critical information for diverse
long-context reasoning scenarios while achieving aggressive compression rates comparable to leading
token eviction methods.

KV-Cache Compression with Selective Reconstruction Results. In Table[§] we evaluate xK-SR
and xKV-SR against Quest and ShadowKYV baselines on the LongBench dataset using Llama-3.1-
8B-Instruct. Quest achieves 42.63% accuracy through dynamic token loading with 8x GPU memory
reduction via offloading, demonstrating minimal performance degradation while requiring host-device
transfers.

At comparable compression ratios, xK—SR consistently outperforms ShadowKYV across different
settings. With 1.68x compression and 10.45x GPU memory reduction, xK—SR achieves 42.50%
accuracy, surpassing ShadowKV by 1.99%. This improvement demonstrates the effectiveness of our
cross-layer key compression approach over single-layer SVD methods.

Most notably, xKV—-SR enables aggressive 5.35x compression while achieving 42.40% accuracy,
outperforming ShadowKV* by 0.89%. These consistent improvements across both RULER and
LongBench benchmarks validate that our cross-layer alignment approach effectively adapts to
diverse evaluation frameworks, preserving critical information across heterogeneous long-context
tasks ranging from retrieval and reasoning to code completion and summarization. Moreover, the
significant gains observed on LongBench further corroborate the robustness and generality of our
method beyond the RULER benchmark.
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Table 7: KV-Cache Compression Results: Accuracy of different methods on LongBench. =KV
consistently achieves a higher accuracy than the Full Attns at the same compression rate or even at a
significantly higher compression rate.

Method | Comp. | Single-doc QA Multi-doc QA Summarization ~Few-shot ~ Synthetic ~Code | Avg.
Llama-3.1-8B-Instruct

Full Attn 1.00 44.23 44.72 28.52 25.88 53.44 62.41 | 43.20
MiniCache 1.30 22.01 26.79 20.51 25.05 52.29 37.11 | 30.63
KIVI | 7.10 40.87 42.45 27.40 26.96 51.70 59.42 | 4147
StreamingLLM | 8.00 30.04 37.79 23.61 25.49 49.75 61.15 | 37.97
PyramidKV | 8.00 42.92 43.99 25.73 27.62 53.02 61.54 | 42.47
SnapKV | 8.00 43.17 44.13 26.09 27.75 53.27 62.56 | 42.83
Single SVD | 8.40 30.34 23.93 20.26 27.41 44.75 52.63 | 33.22
xKV (Ours) | 8.03 44.39 38.82 26.14 27.34 55.50 61.44 | 42.27
Qwen2.5-7B-Instruct-1M
Full Attn 1.00 40.52 49.30 26.67 37.07 54.00 45.11 | 42.11
MiniCache 1.30 11.29 15.93 6.87 28.51 5.38 23.21 | 15.20
KIVI | 7.10 33.54 38.35 21.34 35.55 34.32 39.73 | 33.80
StreamingLLM | 8.00 28.86 38.04 2242 47.58 17.50 42.75 | 32.86
PyramidKV | 8.00 39.48 48.31 23.32 44.13 54.00 43.33 | 42.09
SnapKV | 8.00 40.21 48.32 24.93 43.73 54.00 44.19 | 42.56
Single SVD | 8.40 39.13 43.32 24.04 32.00 36.25 38.42 | 35.53
xKV (Ours) | 8.03 39.73 47.97 26.62 34.42 53.00 40.48 | 40.37

Table 8: KV-Cache Compression with Selective Reconstruction Results: Accuracy of different
methods on the LongBench. Here, "Comp." indicates the total memory reduction, while the number
in parentheses shows the effective GPU memory reduction considering KV-Cache offloading. Shad-
owKV* refers to a variant of ShadowKV that additionally compresses the value cache.

Method |  Comp. | Single-doc QA Multi-doc QA Summarization Few-shot Synthetic Code | Avg.
Llama-3.1-8B-Instruct
Full Attn 1.00 44.23 4472 28.52 25.88 53.44 62.41 | 43.20
Quest | 1.00 (8.00) 43.18 44.40 28.20 26.57 52.88 60.55 | 42.63
ShadowKV ‘ 1.68 (10.61) 37.98 44.11 25.26 24.43 53.35 57.92 ‘ 40.51
xK-SR  1.68 (10.45) 43.64 44.47 27.62 25.31 52.63 61.32 42.50
ShadowKV ‘ 1.64 (9.08) 43.35 44.87 27.15 25.76 52.63 59.53 ‘ 42.21
xKV-SR  1.63 (8.90) 44.38 44.63 27.98 25.55 52.13 61.50 42.69
ShadowKV* ‘ 5.51 41.76 44.89 26.02 24.74 52.73 58.91 ‘ 41.51
xKV-SR 5.35 44.58 45.20 27.76 25.32 52.63 58.94 42.40

Table 9: Accuracy of different methods
on GSM8K and BBH with Llama-3.1-
8B-Instruct.

D.3 RESULTS ON REASONING-HEAVY TASK

To demonstrate the broad applicability of our method on
reasoning-intensive benchmarks, we evaluated xKV on

GSMS8K and the BIG-Bench Hard (BBH) suite, where Method | Comp. | GSM8K  BBH
retention of all intermediate states is critical. As shown Full Attn | 1.00 7847  69.70
in Table[9] token eviction approaches suffer catastrophic ~ PyramidKV | 7.00 54.66  10.89
declines, with accuracy plunging from approximately 78% SnapKV | 7.00 59.06  10.59
to just over 10% on BBH and into the mid-50s on GSM8K KIVI | 7.10 6755  52.96

at a 7x compression rate. Even the quantization baseline xKv | 700 4z 6019

KIVI experiences significant degradation on BBH. In stark contrast, xKV preserves strong per-
formance across both benchmarks, underscoring that our shared low-rank subspace compression
achieves a consistently superior accuracy—compression trade-off, even under the most demanding
reasoning conditions.

D.4 INTEGRATE WITH QUANTIZATION

xKV can be combined with other cache management techniques. To illustrate this capability, we
conducted preliminary experiments integrating xKV with Quantization. Specifically, we applied a
simple round-to-nearest (RTN) quantization method to the compressed cache. With 4-bit quantization,
the cache achieves a substantial 25.6 X compression while maintaining model accuracy.
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Table 10: Accuracy of xKV integrated with naive quantization on RULER benchmark.

Method \ Comp. \ N-S1 N-S2 N-MKI N-MK2 N-MQ N-MV QA-1 QA2 VT FWE Avg
Llama-3.1-8B-Instruct

Full Attn 1.00 100.00 100.00  98.96 97.92 98.96 98.18 83.33 6042 97.71 8542 92.09

xKV | 8.03 100.00  98.96 97.92 97.92 96.35 97.14 78.13 57.29 86.67 78.13 88.85

xKVv-4bit | 25.7 100.00  96.88 97.92 97.92 96.35 9323 77.08 5521 8333 7847 87.64
xKV-3bit | 32.12 | 93.75  94.79 95.83 96.88 95.05 90.89 77.08 52.08 7333 76.74 84.64

Table [I0] presents the performance of xKV with naive quantization on the RULER benchmark,
evaluated using Llama-3.1-8B-Instruct. We observe that xKV alone provides an 8 x compression
with minimal accuracy loss. Further applying 4-bit quantization yields a total compression of 25.6,
with only a slight drop in the average score from 88.85% to 87.64%. Even more aggressive 3-bit
quantization achieves 32 x compression, with a moderate decrease in performance (average 84.64%),
demonstrating that xKV can be effectively combined with other cache reduction techniques without
severely impacting accuracy.

D.5 FLOPs & MEMORY COST

Dense Reconstruction (no selection). For a given type 7, if one reconstructs all L rows per layer
at decode, the per-layer cost of A”B7 is
FLOPs) = L.r,-d. 3)

dense

If both keys and values are reconstructed densely, costs add: FLOPSgense = » . L1, d.

Selective Reconstruction (per step). With index sets S; ¢ 5 and My ¢ g = |S;¢,4|, the per-step cost
for a given T becomes
Hy,

FLOPS(). = > My 7+ dy, “

sparse
g=1

and FLOPsparee = ZT FLOPsg;frse when compressing both types. When M, , , < L, selective re-
construction is a small fraction of the dense cost. Computing S; ¢ 4 itself involves light matrix—vector

operations and is independent of the cross-layer factors.

Compressed-cache memory. xKV stores, per group k, the shared token bases A7 € REX"" (one

per type) and, per layer, the reconstructions B € R"~ %4 Summed over all groups/layers, the total

memory is

N N
> (FLr + Nrd )+ Zd 5)
re ~— ~

Te{KP,V} shared bases layer reconstructions Jandmark (optional)
compared to 2N L d for the full KV-Cache (keys and values). In Mode (A) (key-only compression),
only the K terms in (8) apply and values are fetched (or lightly quantized) from host memory. In
Mode (B), both types are compressed and resident on GPU. When activating SR, we have to store the

landmark L; of size %d for computing the indices for selective reconstruction.

How we compute the KV-Cache compression ratio. Let C' denote the compression ratio achieved
by the xKV cache (i.e., the ratio of the original KV-Cache size to the compressed size). The landmark
requires storing % x d elements, which is exactly one-eighth the size of the full K-Cache. The
outlier set is a constant and can be ignored when the context length is long. The numerator 2 in each
formula represents the combined original size of keys and values; the denominator represents the
post-compression storage of the KV-Cache plus the landmark set (and, in the total memory case, the
full value cache).

For xK-SR (key-only compression, value offloading):

Effective GPU memory compression ratio:
2
+

(6)

Ryx-sr,gPU = 7

Ql
=
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Total memory compression ratio (counting values at original size):

2
RxK—SR, total = T 1 . o 7N
ctgtl
For xKV—-SR (both keys and values compressed):
2
Ryxv-sr = 2 1 ®)
cTs

E EXTENDING xKV ON MULTI-HEAD LATENT ATTENTION (MLA)

DeepSeek-Coder-V2-Lite-Instruct

LCC RepoBench-P
704
601
> >
@ 501 @ 50
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—e— Single SVD —e— Single SVD
20 —o— xKV (Ours) 20 —o— xKV (Ours)
1x 2x 3.6x 4.5x 1x 2X 3.6x 4.5x
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Figure 8: Evaluation results of different KV-Cache methods on DeepSeek-Coder-V2-Lite-Instruct

model using RepoBench-P (Liu et al., 2023a) and LCC(Guo et al.,[2023). The accuracy denotes
the edit similarity (Svyatkovskiy et al.|[2020), and the dotted line represents the baseline score with

uncompressed KV-Cache.

To demonstrate the effectiveness of xKV on emerging attention variants, we evaluate XKV on
DeepSeek-V2-Coder-Lite (Liu et al}[20244), which employs the efficient Multi-head Latent Attention
(MLA) architecture (Liu et al., 2024a). MLA is proposed to reduce the KV-Cache size per layer
through low-rank projections. As shown in Figure [8] we can further compress the compact latent
cache by exploiting the cross-layer redundancy by using our xKV. With a group size of 4, xKV
achieves a 3x compression rate on RepoBench 20234) and 3.5x on LCC (Guo et al.

without compromising accuracy. In contrast, other methods, such as MiniCache (Liu et al.
2024b) and Single SVD, fail to preserve accuracy on the MLA architecture even at substantially
lower compression rates. These results underscore xKV’s versatility and compatibility with emerging

memory-efficient attention architectures (Liu et al., [2024a).

F BROADER CKA ANALYSIS
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Figure 9: Extended CKA analysis of different models. GPT-OSS is a hybrid architecture that
interleaves window attention and full attention layers in a 1:1 ratio.
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