
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

XKV: CROSS-LAYER KV-CACHE COMPRESSION VIA
ALIGNED SINGULAR VECTOR EXTRACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) with long context windows enable powerful
applications but come at the cost of high memory consumption to store the key
and value states (KV-Cache). Recent studies attempted to merge KV-Caches from
multiple layers into shared representations, yet these approaches either require
expensive pretraining or rely on per-token cosine similarity across layers, which
may not always be observed in practice. We find that the dominant singular vectors
are remarkably well-aligned across multiple layers of the KV-Cache. Exploiting
this insight, we propose xKV, a post-training compression method that applies
Singular Value Decomposition (SVD) on the KV-Cache of grouped layers. xKV
consolidates the KV-Cache of multiple layers into a shared low-rank subspace,
significantly reducing KV-Cache sizes. Through extensive evaluations on the
RULER long-context benchmark with widely-used LLMs (e.g., Llama-3.1 and
Qwen2.5), xKV achieves up to 8× KV-Cache compression rate while keeping the
accuracy gap within 2–3 percentage points of the non-compressed baseline over a
set of representative long-context tasks, and remains robust in multi-turn settings.
Coupled with the designed Selective Reconstruction (SR) at decode time, xK-SR
(keys only, values offloaded to CPU memory) yields 2.53% higher accuracy than
the state-of-the-art system that combined token selection with single-layer SVD and
delivers up to 3.23× end-to-end generation speedups over full attention on an A100
GPU. At a similar accuracy level, xKV-SR (keys and values on GPU) achieves up
to 4.23× faster speedups. These results highlight xKV as a versatile, plug-and-play
solution to alleviate both memory and latency bottlenecks in long-context LLM
inference.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; OpenAI et al., 2024; Team et al., 2024; lla,
2024; Jiang et al., 2023; Anthropic, 2023) have revolutionized numerous artificial intelligence (AI)
applications with advanced cognitive capabilities that were previously unattainable with conventional
machine learning (ML) models. Recent efforts to extend the context lengths of LLMs have further
expanded their potential: open-sourced models now support up to 1M tokens (Pekelis et al., 2024;
Yang et al., 2025), and proprietary ones like Gemini push this limit even further to 10M tokens
(Team et al., 2024). These extended context windows unlock a wide range of previously impractical
applications, such as large-scale information retrieval and debugging or extending a large-scale
codebase (DeepSeek-AI et al., 2025; Dubey et al., 2024; Yang et al., 2025; OpenAI et al., 2024).

However, this expanded capability on long-context introduces significant challenges, particularly in
the management of key-value (KV) caches during inference (Fu, 2024; Li et al., 2024a). Typically,
KV states are cached to avoid redundant computations; yet, under extended context lengths, the
memory consumption of KV-Cache rapidly becomes prohibitive. This inflated memory footprint
severely limits the number of concurrent inference requests, causing substantial throughput reduction.
To address this, researchers have proposed various approaches to mitigate the large memory footprint
of KV-Caches. These include quantization (Hooper et al., 2024; Liu et al., 2024c; Chen et al., 2025;
Zhao et al., 2023), token eviction (Adnan et al., 2024; Ge et al., 2024; Xiao et al., 2024; Zhang et al.,
2024b; Li et al., 2024b; Cai et al., 2024), and low-rank decomposition (Sun et al., 2024a; Chang
et al., 2025; Zhang et al., 2024a; Yuan et al., 2023). These approaches have primarily focused on
intra-layer redundancies that compress the KV-Cache of each layer separately. While this often yields

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

respectable per-layer compression, these methods do not utilize potential redundancy across layers
(Gromov et al., 2024).

To exploit cross-layer redundancy, two main lines of work have emerged. The first, represented
by Cross-Layer Attention (CLA) (Brandon et al., 2024) and YOCO (Sun et al., 2024b), introduces
new architectures that share a single set of KV-Cache across groups of adjacent layers. While
effective, these methods require architectural modifications and thus expensive pretraining from
scratch, limiting their applicability to existing pretrained models. A second direction, exemplified
by MiniCache (Liu et al., 2024b), operates in a post-hoc manner by merging adjacent layers’ KV-
Cache under the assumption of high cosine similarity, implemented via spherical linear interpolation
(SLERP) (Shoemake, 1985). Our analysis, however, shows that such similarity, though present to
some extent, is not consistently strong enough across layers to support robust compression, leading to
nontrivial accuracy degradation in practice (see §3.1). Together, prior methods are limited either by
costly pretraining or by fragile similarity assumptions, motivating the need for a new approach.

L1

A
B1

SVD

Reconstruction
Matrices

Token
Basis

L2

A
B1

SVD

Reconstruction
Matrices

Token
Basis

KV-Cache KV-Cache

Highly Aligned!
(Our Observation)

Concat L1 L2

Concatenated K/V

A B1 B2

SVD

Reconstruction
Matrices

Shared
Token Basis

Create Shared Basis
à Better Accuracy

Figure 1: The token basis (singular vectors) of
two different layers’ KV-Cache are highly aligned.
xKV concatenates adjacent layers and performs
one SVD to obtain a shared basis A with layer-
specific B1 and B2, improving accuracy at a fixed
rank and reducing memory.

We revisit inter-layer similarity using Centered
Kernel Alignment (CKA) (Kornblith et al.,
2019). Our analysis reveals that, although the
KV-Cache of adjacent layers exhibit low cosine
similarity, their dominant singular vectors re-
main highly aligned (see §3.2). This observation
enables us to share basis vectors across multi-
ple adjacent layers’ KV-Cache, yielding a more
compact representation.

Building on this insight, we propose xKV, a
fully plug-and-play compression method that re-
quires no additional fine-tuning or architectural
modifications. xKV simultaneously compresses
the KV-Cache of multiple layers by extracting
a shared set of singular vectors through cross-
layer SVD, producing a compact token basis
reused across adjacent layers as illustrate in Fig-
ure 1. To further reduce overhead at inference,
we introduce Selective Reconstruction (SR): instead of reconstructing all tokens, we selectively
reconstruct only those relevant to the query (§ 4.3). The pairing of cross-layer compression with SR
substantially lowers reconstruction cost while preserving model accuracy, making xKV practical for
real-world deployment.

To adapt xKV to diverse deployment requirements, we further design two decoding modes (§ 4.4).
When the target application is latency-sensitive, we use xKV-SR, which compresses both keys and
values and keeps them fully in GPU memory, yielding fastest decoding. When accuracy must be
preserved, we use xK-SR, which compresses keys only while offloading values to CPU memory,
delivering near-lossless accuracy with reduced GPU memory usage.

Extensive experiments on RULER with Llama (lla, 2024) and Qwen (Yang et al., 2024; 2025)
models show that xKV achieves up to 8× compression rate with minimal accuracy degradation (<3%),
significantly outperforming representative token eviction and quantization baselines. With SR enabled,
xK-SR yields >2.5 percentage points higher accuracy than state-of-the-art single-layer SVD systems.
Most importantly, by keeping the compressed cache entirely on-device, xKV-SR eliminates PCIe
bottlenecks, translating these efficiency gains into 3.6× faster attention operation and up to 4.23×
higher end-to-end generation throughput over Full KV-Cache baseline with FlashAttention-2 CUDA
kernel on Llama-3.1-8B.

2 RELATED WORK

Low-Rank KV-Cache Compression. A broad line of research exploits the low-rank nature of the
KV-Cache to reduce its memory footprint. For instance, Multi-Head Latent Attention (MLA) (Liu
et al., 2024a; DeepSeek-AI et al., 2025) projects tokens onto a low-rank subspace and caches those
latent representations instead of the original key and value states, however, MLA requires training the
model from scratch. In contrast, several post-training techniques decompose the key/value parameter

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

matrices to obtain low-rank projection modules similar to MLA, such as ASVD (Yuan et al., 2023),
Palu (Chang et al., 2025), and LoRC (Zhang et al., 2024a). Other methods decompose the KV-Cache
directly: EigenAttention (Saxena et al., 2024) applies SVD to a calibration dataset to derive projection
matrices, whereas ShadowKV (Sun et al., 2024a) performs online SVD to capture the dynamics of
different contexts. In xKV, we also exploit the low-rank nature of KV-Cache. However, unlike prior
methods focusing on per-layer compression, xKV further considers the shared information among
multiple layers and extends the usage of low-rank projections to a new cross-layer dimension.

Cross-Layer KV-Cache Optimization. Going beyond the intra-layer perspective, another stream
of research explores inter-layer redundancy of KV-Cache (Brandon et al., 2024; Sun et al., 2024b;
Wu & Tu, 2024; Liu et al., 2024b; Dong et al., 2025). CLA (Brandon et al., 2024) and YOCO(Sun
et al., 2024b) both modify the Transformer model architecture so that later layers can directly reuse or
reference KV states from earlier layers. LCKV (Wu & Tu, 2024) restricts full KV storage to a small
subset of layers, foregoing caches in other layers. However, these methods rely on retraining or model
fine-tuning, which makes them less flexible. Minicache (Liu et al., 2024b), in contrast, provides a
flexible post-training alternative by merging the key and value tokens from adjacent similar layers
using spherical linear interpolation. Our approach goes further by extracting shared singular vectors
of multiple layers’ KV-Caches, thereby enabling higher compression.

Dynamic Token Selection and KV Offloading. A complementary line of work accelerates decod-
ing by selecting a small subset of context tokens per step (dynamic sparse attention). Quest (Tang
et al., 2024) proposes query-aware page selection to reduce attention cost without compressing the
KV-Cache. ShadowKV (Sun et al., 2024a) stores a low-rank key cache on GPU, offloads values to
CPU, and employs an accurate landmark-guided selector with a small static outlier set to reconstruct
minimal sparse KV pairs on-the-fly, improving throughput under long contexts. In contrast, xKV
targets cross-layer KV compression: we extract a shared low-rank token basis across adjacent layers
and pair it with selective reconstruction. This lets us (i) match ShadowKV’s “keys-only + offloaded
values” regime via xK-SR, and (ii) run xKV-SR with both keys and values compressed on GPU,
avoiding host–device transfer. Empirically, at matched token budgets, xK-SR/xKV-SR achieve
higher accuracy than Quest and ShadowKV while offering stronger speedups when values remain
on-device.

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

La
ye

r

0.2

0.4

0.6

0.8

1.0

(a) Cosine Similarity Analysis

0 5 10 15 20 25 30
Layer

0

5

10

15

20

25

30

La
ye

r

0.2

0.4

0.6

0.8

1.0

(b) CKA Analysis

Cross-Layer Sharing
àLowers Rank!

(c) Rank Analysis

Figure 2: (a) Average Token-wise Cosine Similarity for value-caches across different layers. For each
pair of layers, we compute the token-level cosine similarities between their embeddings and average
these values into a single similarity score. (b) CKA Matrix for the value-cache. The higher (warmer)
values indicate stronger singular vector alignment across layers. (c) Required rank ratio (percentage
of total dimension) for capturing 95% of the cumulative eigenvalues in the key (red) and value (blue)
matrices, plotted against the number of grouped layers. For each group, we horizontally concatenate
the key/value caches and compute the rank needed to achieve 95% of the cumulative eigenvalues.
As the grouping increases, a smaller rank (relative to total dimension) is required, implying a higher
compression rate for the same level of information preservation. We perform these analyses on
the KV-Cache obtained from Llama-3.1-8B-Instruct, using the multi-valued NIAH dataset from the
RULER (Hsieh et al., 2024) benchmark.

3 ANALYSIS AND MOTIVATION

In this section, we examine the cross-layer similarity of KV-Caches with different metrics to reveal
the motivation behind the design of xKV.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 CROSS-LAYER COSINE SIMILARITY (PRIOR WORK)

To understand the assumption used in the previous work (Liu et al., 2024b), we first measure token-
wise cosine similarity across various layer-pairs. The measurement on the cosine similarity is
presented in Figure 2a. Notably, the adjacent layers exhibit low token-wise similarity. This modest
similarity fundamentally limits the compression rate achieved by prior representative methods (Liu
et al., 2024b).

3.2 REVISIT CROSS-LAYER SIMILARITY WITH CKA

While token-wise (cosine) similarity offers a local perspective, a more holistic view can reveal deeper
patterns in how an entire KV-Cache is aligned across layers. Specifically, we adopt Centered Kernel
Alignment (CKA) (Kornblith et al., 2019) to measure the similarity in the overall structure of two
layers’ KV-Caches. Concretely, for a layer ℓ with KV-Cache Xℓ ∈ Rn×d, we first define the centered
Gram matrix

Gℓ = HXℓ X
⊤
ℓ H, where H = In − 1

n 11⊤.

Then, the CKA between two layers ℓ1 and ℓ2 is

CKA
(
Xℓ1 ,Xℓ2

)
=

trace
(
Gℓ1Gℓ2

)√
trace

(
G2

ℓ1

)
trace

(
G2

ℓ2

) .
Unlike the token-wise cosine similarity metric, which simply compares corresponding token embed-
dings, CKA reflects the similarity of the entire distribution of token embeddings in each layer. If
CKA(Xℓ1 ,Xℓ2) is high, then the dominant left singular vectors of Xℓ1 are highly aligned to those
of layer ℓ2 (ref. Appendix A). In other words, the basis vectors that define how the token varies in
these two layers might be similar.

Observation 1: Highly Aligned Basis. In Figure 2b, we show the CKA value between each layers’
KV-Cache of Llama-3.1-8B-Instruct. As shown in Figure 2b, many pairs of layers exhibit remarkably
high CKA (red blocks) even though their token-wise cosine similarities are quite modest. This
observation suggests that, although individual token embeddings differ across layers, the dominant
singular vectors (i.e., basis) that span the KV-Cache are, in fact, well-aligned. Thus, focusing solely
on the cosine similarity between pairs of token embeddings can underestimate the potential for
cross-layer merging and compression.

3.3 EIGENVALUE ANALYSIS OF KV-CACHE

Observation 2: Horizontally Concatenated KV-Caches Exhibit Lower Rank. Motivated by the
observation that different layers’ basis are well aligned, we examine the rank to achieve a certain
level of information preservation after horizontally concatenating the KV-Caches across multiple
layers. Because each layer shows substantial cross-layer overlap (§3.2), a single set of low-rank
basis vectors can effectively approximate the KV-Caches of all layers in the group. As illustrated
in Figure 2c, a larger group size reduces the fraction of total rank needed to preserve the same
cumulative eigenvalues. Compared with creating separate low-rank subspaces for each layer, this
shared approach avoids storing nearly identical basis vectors multiple times, yielding a more compact
yet expressive representation. In §4, we leverage these observations to propose our xKV method that
achieves significantly higher compression ratios while preserving model accuracy.

4 METHODOLOGY: XKV

4.1 NOTATION

We consider a Transformer with N decoder blocks and a long prompt of length L. Let d denote the
KV hidden size. Under GQA, d = Hkv · dh with Hkv KV heads and per-head width dh. Because the
same decomposition/reconstruction pipeline applies to both keys and values, we use a unified symbol

Xτ
ℓ ∈ RL×d, τ ∈ {Kpre, V },

to denote the cache of type τ at layer ℓ. For RoPE models, we always decompose pre-RoPE keys
(τ = Kpre) and re-apply RoPE after reconstruction.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Decode-time head mapping and row selection. Let Hq be the number of query heads and
ρ : [Hq]→ [Hkv] the GQA mapping from query heads to KV heads. At decode step t, for each layer
ℓ and KV head g, we will use an index set St,ℓ,g ⊆ [L] of selected prompt rows with Mt,ℓ,g = |St,ℓ,g|
(§. 4.3).

4.2 CORE METHOD: CROSS-LAYER SVD

Motivated by our empirical finding that the dominant left singular vectors of KV-Caches are
well-aligned across adjacent layers (§ 3), we group layers into contiguous strides of size G:

Gk = {kG, . . . , kG+G− 1}, k = 0, 1, . . . , N
G − 1.

For a group Gk = {ℓ1, . . . , ℓG} and type τ ∈ {Kpre, V }, we horizontally concatenate the group’s
caches and compute a single low-rank factorization:[

Xτ
ℓ1 , . . . ,X

τ
ℓG

]
≈ Uτ

k,rτS
τ
k,rτ

(
Vτ

k,rτ

)⊤
= Aτ

k︸︷︷︸
∈RL×rτ

[
Bτ

ℓ1︸︷︷︸
∈Rrτ×d

· · · Bτ
ℓG︸︷︷︸

∈Rrτ×d

]
, (1)

where Aτ
k = Uτ

k,rτ
Sτ
k,rτ

is the shared token basis for the group, and Bτ
ℓ are layer-specific reconstruc-

tion matrices. Compared to single-layer SVD, this cross-layer factorization learns a shared subspace
across adjacent layers and is effective for both keys and values. Each layer-specific reconstruction
matrix can also be view as the concatenation of KV-head specific reconstruction matrices:

Bτ
ℓ =

[
Bτ

ℓ,1 · · · Bτ
ℓ,Hkv

]
, Bτ

ℓ,g ∈ Rrτ×dh

𝐊𝟏
𝐊𝟐

𝐕𝟏
𝐕𝟐

𝐀𝐊
𝐁𝐊𝟏

𝐁𝐊𝟐

Shared for 𝐊𝟏/𝐊𝟐

Cross-Layer SVD

𝐀𝐊

𝐀′𝐊𝟏

𝐀′𝐊𝟐

𝐁𝐊𝟏

𝐁𝐊𝟐

𝐊′𝟏

𝐊′𝟐

Select
(𝐊′𝟏/𝐊′𝟐)

𝐀𝐕
𝐁𝐕𝟏

𝐁𝐕𝟐

Shared for 𝐕𝟏/𝐕𝟐

Cross-Layer SVD

𝐀𝐕

𝐀′𝑽𝟏

𝐀′𝑽𝟐

𝐁𝐕𝟏

𝐁𝐕𝟐

𝐕′𝟏

𝐕′𝟐
Select
(𝐕′𝟏/𝐕′𝟐)

xKV-SR Prefill xKV-SR Decode

GPU

𝐊𝟏
𝐊𝟐

𝐕𝟏
𝐕𝟐

𝐕𝟏
𝐕𝟐

𝐀𝐊
𝐁𝐊𝟏

𝐁𝐊𝟐

Shared for 𝐊𝟏/𝐊𝟐

Cross-Layer SVD

GPU

CPU

𝐀𝐊

𝐀′𝐊𝟏

𝐀′𝐊𝟐

𝐁𝐊𝟏

𝐁𝐊𝟐

𝐊′𝟏

𝐊′𝟐

𝐕′𝟏

𝐕′𝟐

𝐕𝟏
𝐕𝟐

Select (𝐊′𝟏)

Select (𝐊′𝟐)

Select (𝐕′𝟏)
Select (𝐕′𝟐)

Offload

xK-SR Prefill xK-SR Decode

Figure 3: Illustration of different optimized operation modes. xKV-SR design (Left) keeps both
low-rank key and value caches on the GPU. xK-SR design (Right) keeps the low-rank key cache on
the GPU and offloads the full value cache to the CPU.

4.3 PROCESS DURING INFERENCE

Prefill Compression. During prefill, we compute (1) separately for τ = Kpre and τ = V for every
group k: {

AK
k , {BK

ℓ }ℓ∈Gk

}
,

{
AV

k , {BV
ℓ }ℓ∈Gk

}
.

We perform the decomposition online during prefill to capture prompt dynamics (the added cost is a
small fraction of prefill and diminishes as L grows). Empirically, the online cross-layer SVD accounts
for only 3.9% of prefill time at sequence length of 128K (See Appendix C.1). Newly generated
tokens are left uncompressed by default (their length is typically≪ L in long-context use); for very
long generations, we may reapply cross-layer SVD to those tokens.

Dense reconstruction (baseline cost). A direct use of the factors would, for each ℓ ∈ Gk and head
g, reconstruct all L rows:

X̂τ
ℓ,g = Aτ

k B
τ
ℓ,g.

For keys in RoPE models, we then set K̂rope
ℓ,g = RoPE

(
X̂Kpre

ℓ,g

)
by applying RoPE per row using its

original position index. This dense strategy reconstruction FLOPs AB cost that scales with sequence
L at every step (Appendix D.5). Despite the memory saving that the decomposition can offer, this
additional computation cost can pose an extra latency overhead during decoding.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Selective reconstruction. Prior work shows that LLMs exhibit strong attention sparsity during
decoding, with most queries attending only to a small subset of context tokens (Sun et al., 2024a;
Tang et al., 2024; Cai et al., 2024). Inspired by this characteristic, we leverage this inherent sparsity
nature and reconstruct only the tokens that are likely to matter at that step. Specifically, at step t we
reconstruct only rows in St,ℓ,g ⊆ [L]:

X̂τ
ℓ,g

[
St,ℓ,g, :

]
= Aτ

k

[
St,ℓ,g, :

]
Bτ

ℓ,g. (2)

For any query head h with ρ(h) = g, attention is then computed using X̂τ
ℓ,g restricted to St,ℓ,g.

(For RoPE models, we decompose pre-RoPE keys and apply RoPE after reconstruction.) In our
implementation, the sets St,ℓ,g are produced by a landmark-guided Top-k chunk selector with a small
static outlier set (Sun et al., 2024a). We provide the detailed workflow on how the indices St,ℓ,g in
Appendix B.1 and further analysis on the reconstruction FLOPs in Appendix D.5.

4.4 OPERATION MODES

We design two operation modes, xKV-SR and xK-SR, optimized for different scenarios. The
overview is presented in Figure 3.

Joint key–value compression with selective reconstruction (xKV-SR). Leveraging cross-layer
SVD, xKV can effectively compress both keys and values while maintaining strong accuracy, reducing
the total KV footprint in device memory. With effective compression, we can fit the entire compressed
KV on GPU’s memory and avoid the necessity of KV-Cache offloading that induces host-device
transfer, which is crucial when host–device bandwidth is limited (e.g., PCIe-only servers) or on
unified-memory/embedded platforms (e.g., Jetson-class devices), allowing more requests per GPU
and lower end-to-end latency.

Key-only compression with selective reconstruction and value offloading (xK-SR). When
host-to-device bandwidth is sufficient (e.g., 900GB/s on GB200 Goldwasser et al. (2024)), we
adopt a key-only compression strategy that offloads the value cache to CPU memory, similar to
ShadowKV (Sun et al., 2024a). Our analysis (Figure 2c) shows that values are relatively high-rank
and more sensitive to compression, so leaving them uncompressed preserves accuracy. To mitigate
the added memory cost of this design, we overlap key reconstruction (Eq. 2) with host-device
value transfers, effectively hiding reconstruction latency behind data movement. Unlike ShadowKV,
however, xK-SR leverages xKV’s cross-layer key factorization, yielding higher accuracy under the
same memory budget.

5 ACCURACY EVALUATIONS

Models. We evaluate xKV on three widely used language models using Grouped-Query Attention
(GQA): Llama-3.1-8B-Instruct (Dubey et al., 2024) (8 KV heads) and Qwen2.5-7B-Instruct-1M
(Yang et al., 2025) (4 KV heads). In Appendix E, we also evaluate xKV on DeepSeek-Coder-V2-Lite-
Instruct (Dai et al., 2024) with Multi-head Latent Attention (MLA) and Mixture-of-Experts (MoE) to
demonstrate xKV’s high compatibility with emerging efficient Transformer architectures.

Datasets. We select RULER (Hsieh et al., 2024) as our major benchmark, which features complex
tasks such as retrieval, multi-hop tracking, and question-answering. We also evaluate our approach
using Needle In A Haystack (NIAH) (Kamradt, 2023) under multi-turn setups. We also provide the
LongBench evaluation in the Appendix D.2.

Baselines. We compare xKV with the baselines in two scenarios. Firstly, the pure KV-Compression
without selective reconstruction for reducing KV-Cache memory footprint. In this scenario, we
compare against six baselines: (1) MiniCache (Liu et al., 2024b), the inter-layer compression method
based on cosine similarity cross-layer. (2) Single SVD (Sun et al., 2024a), which compresses
KV-Cache by factorizing each layer’s key and value caches independently without exploiting the
cross-layer similarity. (3) Token eviction baselines PyramidKV (Cai et al., 2024) and SnapKV (Li
et al., 2024b). (4) A 2-bit quantization method KIVI (Liu et al., 2024c). (5) A token selection
methodology, StreamingLLM (Xiao et al., 2024), Quest (Tang et al., 2024), that entails dynamic

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: KV-Cache Compression Results: Performance of different methods on the RULER bench-
mark evaluated at a context length of 64K. xKV consistently achieves a higher accuracy than the Full
Attns at the same compression rate or even at a significantly higher compression rate.

Method Comp. N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3.1-8B-Instruct
Full Attn 1.00 100.00 100.00 98.96 97.92 98.96 97.66 83.33 59.38 97.29 85.42 91.89

MiniCache 1.30 89.58 66.67 43.75 10.42 14.06 21.35 61.46 35.42 49.38 58.33 45.04
KIVI-2 7.10 100.00 96.88 98.96 90.63 91.41 89.58 80.21 55.21 81.46 84.38 86.87

StreamingLLM 8.00 15.63 12.50 13.54 13.54 14.58 17.97 56.25 45.83 9.58 94.10 29.35
PyramidKV 8.00 100.00 100.00 100.00 96.88 100.00 98.44 83.33 57.29 95.42 68.06 89.94

SnapKV 8.00 100.00 100.00 98.96 94.79 100.00 97.66 83.33 58.33 95.00 68.75 89.68
Single SVD 8.40 25.00 51.04 61.46 96.88 28.91 44.79 47.92 36.46 3.54 61.11 45.71
xKV (Ours) 8.03 100.00 96.88 97.92 97.92 96.09 96.62 78.13 56.25 86.67 78.47 88.50

Qwen2.5-7B-Instruct-1M
Full Attn 1.00 100.00 100.00 100.00 100.00 100.00 95.83 84.38 60.42 90.63 86.81 91.81

MiniCache 1.30 26.04 0.00 0.00 0.00 0.00 0.00 12.50 14.58 0.42 3.47 5.70
KIVI-2 7.10 0.00 2.08 3.13 13.54 0.00 0.78 48.96 43.75 36.46 40.63 18.93

StreamingLLM 8.00 15.63 12.50 12.50 9.38 14.84 17.71 46.88 43.75 13.13 89.24 27.56
PyramidKV 8.00 100.00 93.75 96.88 16.67 90.37 80.73 84.38 59.38 89.17 76.39 78.77

SnapKV 8.00 100.00 96.88 97.92 31.25 95.31 83.07 84.38 59.38 91.25 80.56 82.00
Single SVD 8.40 100.00 97.92 96.88 98.96 97.40 91.15 64.58 56.25 73.75 61.46 83.84
xKV (Ours) 8.03 100.00 100.00 100.00 98.96 100.00 90.63 80.21 58.33 82.08 81.94 89.22

token selection. (6) A state-of-the-art baseline, ShadowKV (Sun et al., 2024a), that applies single-
layer SVD compression on keys, offloads values to CPU memory, and performs token selection.

Setup. For xKV variants, we set the rank for key rKpre = 384 and rV = 576 if value compression
is applied. We use torch.svd_lowrank API from PyTorch for performing decomposition. We
set the cross-layer group size to be 4 as the default setting. For baseline, we align MiniCache’s official
settings to merge half of the layers, from the middle to the end of the LLM, and vary the compression
rate by adjusting the layer index at which merging begins. For the token eviction (e.g., SnapKV,
PyramidKV) and quantization baseline (KIVI), we adopt the implementation from MInference (Jiang
et al., 2024; Li et al., 2025) library. We keep the newly generated tokens uncompressed for all
comparison targets to ensure fair comparison. Unless specified, we calculate the compression rate by
assuming a context length of 64k.

5.1 RESULTS ON RULER DATASETS

KV-Cache Compression Results. Table 1 reports the performance of xKV and several representa-
tive compression methods on the RULER benchmark at a 64K context length. As shown in Table 1,
MiniCache suffers dramatic accuracy loss even at a modest 1.3× compression rate. This degradation
echos our finding in §3.1), the token-wise cosine similarity in KV-Cache across adjacent layers is
generally low. Compared to single-layer SVD compression, xKV yields substantial accuracy gains:
at an 8× compression rate, xKV improves average accuracy by 43% on Llama-3.1-8B-Instruct and by
8% on Qwen2.5-7B-Instruct-1M, demonstrating its superior information preservation by exploiting
the inherent alignment of KV-Cache representations across layers.

In comparison with token-eviction methods, xKV achieves 88.50% accuracy on Llama-3.1-8B-Instruct
at 8.03× compression, closely matching SnapKV. On Qwen2.5-7B-Instruct-1M, however, both
SnapKV and Pyramid incur noticeable accuracy degradation. We attribute this to Qwen2.5’s inherently
more compact KV cache—due to its smaller number of KV heads—which makes information
preservation more challenging. Despite this, xKV attains 89.22% average accuracy, narrowing the
gap to the non-compressed baseline to just 2.6%. Moreover, xKV surpasses the quantization baseline
KIVI-2 by 1.7% on Llama-3.1-8B while maintaining accuracy on Qwen2.5, where KIVI-2 suffers
significant drops. Finally, as shown in Appendix D.4, our approach can be combined with quantization
to further increase compression without sacrificing accuracy.

Results on Multi-turn Conversation Datasets. We test our method using a multi-turn Needle-In-
A-Haystack (NIAH) benchmark and compare its efficacy against token eviction–based approaches
(e.g., SnapKV and PyramidKV). We conduct the evaluation at context length of 64K. Figure 4 shows
results on Llama-3.1-8B-Instruct. SnapKV and PyramidKV both suffer steep declines after the first
turn because they evict tokens using the initial attention patterns of the first query and cannot recover

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

#1 #2 #3 #4 #5
Conversation Turn

0

20

40

60

80

100

Ac
cu

ra
cy

 o
n

M
ul

ti-
NI

AH

xKV (Ours)
Single SVD
PyramidKV
SnapKV

Figure 4: Accuracy of each conversation turn
on Multi-turn NIAH. PyramidKV, SnapKV, and
xKV are all at a compression rate of 8×.

Table 2: Accuracy across different group sizes on
RULER with Llama-3.1-8B-Instruct. We align
the rank setting with Table 1 and Table 3 for
group size 4. For group sizes 1, 2, and 8, we
scaled the rank linearly to maintain the same
compression rate, with (rKpre , rV) = (96, 144)
and (192, 288), respectively.

Group
Size xKV xK-SR xKV-SR

1 45.71 87.17 72.27
2 75.15 88.43 86.06
4 88.50 89.70 89.69
8 88.91 89.74 89.72

Table 3: KV-Cache Compression with Selective Reconstruction Results: Accuracy of different
methods on the RULER benchmark at a context length of 64K. Here, "Comp." indicates the total
KV-Cache reduction, while the number in parentheses shows the effective GPU memory reduction
considering KV-Cache offloading. ShadowKV* refers to a variant of ShadowKV that additionally
compresses the value cache.

Method Comp. N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3.1-8B-Instruct
Full Attn 1.00 100.00 100.00 98.96 97.92 98.96 97.66 83.33 59.38 97.29 85.42 91.89

Quest 1.00 (8.00) 93.75 90.63 96.88 87.50 94.27 85.42 83.33 57.29 77.71 81.94 84.87

ShadowKV 1.64 (9.08) 100.00 100.00 98.96 97.92 96.88 94.53 82.29 60.42 66.04 74.65 87.17
xK-SR (Ours) 1.63 (8.90) 100.00 100.00 98.96 97.92 98.44 95.31 83.33 60.42 87.92 74.65 89.70

ShadowKV* 5.51 100.00 76.04 75.00 97.92 54.43 45.83 81.25 57.29 47.29 74.31 70.94
xKV-SR (Ours) 5.35 1 100.00 100.00 98.96 97.92 98.44 95.57 82.29 60.42 87.29 76.04 89.69

context for later queries (Li et al., 2025). In contrast, our xKV maintains stable performance across
all turns and consistently preserves critical information.

KV-Cache Compression with Selective Reconstruction Results In Table 3, we compare xK-SR,
xKV-SR, and two representative token selection baselines, Quest and ShadowKV, using the RULER
benchmark at a 64K context length for Llama-3.1-8B-Instruct. For a fair comparison, we fix the
token budget (i.e., the number of tokens selected for each decoding step) to be 2k for evaluation
targets. Compared with Quest, both xK-SR and xKV-SR showcase superior accuracy with around
4% higher in average. As Quest does not entail KV-Cache compression but only dynamic loading,
it does not reduce the size of the KV-Cache and necessitates KV-Cache offloading to avoid out-of-
memory (OOM). Compared against ShadowKV, xK-SR extends its by replacing the single-layer
SVD compression key cache with a cross-layer alternative. At a 1.64× KV-compression rate (8.9×
GPU memory reduction considering value offloading), xKV-SR closes the accuracy gaps from 4.7%
to around 2.1%, demonstrating xKV’s better capability in preserving information. Leveraging the
cross-layer alignment that we observed, xKV-SR is able to compress and reduce the KV-Cache to a
significant 5.35× while maintaining 89.69% accuracy, roughly 19% higher than ShadowKV*. This
enables retaining all tensors on GPUs and unlocking the faster inference that avoids the host-device
transfer, which improves decoding efficiency over offloading scenarios (See Section 6).

Impact of xKV on Compressing Value and Key Only. To understand how xKV affects key and
value compression, we conduct ablation experiments on four subtasks from RULER (Hsieh et al.,
2024) to evaluate how xKV (cross-layer low-rank SVD) affects key and value compression. We
show the results in Figure 5. Overall, xKV consistently boosts accuracy under varying compression
rates. Also, keys exhibit higher compressibility than values, matching the eigenvalue analysis in
Figure 2c. A closer inspection of the results reveals that the achievable compression ratio appears

1This set up have the 8× compressed KV-Cache using cross-layer SVD. The final compression rate is
calculated, including the memory cost of the landmark for computing selective indices. See Appendix D.5 for
more details.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2x 4x 8x 16x
K/V Compression Rate

50

60

70

80

90
Ac

cu
ra

cy

QA-1

2x 4x 8x 16x
K/V Compression Rate

20

30

40

50

60

70

Ac
cu

ra
cy

QA-2

2x 4x 8x 16x
K/V Compression Rate

70

75

80

85

90

95

100

Ac
cu

ra
cy

VT

2x 4x 8x 16x
K/V Compression Rate

80

85

90

95

100

Ac
cu

ra
cy

N-MQ
Single SVD (Value) xKV-2 (Value) xKV-4 (Value) Single SVD (Key) xKV-2 (Key) xKV-4 (Key)

Figure 5: Accuracy comparison of applying different methods to key and value separately on Llama-
3.1-8B-Instruct using RULER benchmark. The number after xKV denotes the cross-layer group size.

to be task-dependent. On the questions-answering subtasks (QA-1 and QA-2) xKV can push the
compression rate to 16× while still preserving performance. In Variable Tracking (VT) and NIAH
multi-queries (N-MQ) (Kamradt, 2023), accuracy begins to decline beyond 8× compression; however,
in these same tasks, values tolerate compression more easily than in QA subtasks. These observations
underscore how different tasks may demand different “sweet spots” for key versus value compression.
In xKV, we employ a fixed compression ratio for all different tasks. Exploring task-specific or
context-aware (Liu et al., 2023b; Akhauri et al., 2025; 2024) rank allocation is a promising avenue
for future work.

Impact of Cross-layer Group Size to Accuracy. To quantify the impact of cross-layer compression,
we conduct a group size ablation on the RULER benchmark at a fixed compression rate (Table 2). For
example, xKV improves from 45.71% with group size 1 to 75.15% at size 2, and further to 88.50%
at size 4. Similar trends are observed for xK-SR and xKV-SR, where performance likewise climbs
steadily as group size increases. These results confirm that sharing across more layers consistently
enhances reconstruction fidelity under an identical compression rate. However, at a group size of 8,
the accuracy of xKV, xK-SR, and xKV-SR all saturates, with accuracy nearly identical to that at a
size of 4. Therefore, we use a group size of 4 in all main experiments.

6 EFFICIENCY STUDIES

8-60k 16-60k 32-60k 4-122k 8-122k 16-122k
Batch Size - Sequence Length

0

1

2

3

4

No
rm

al
ize

d
Sp

ee
du

ps

0.6x 0.6x 0.6x
0.3x 0.4x 0.4x

1.3x 1.4x

2.2x

1.5x

2.1x
2.4x

1.4x 1.5x

2.3x

1.5x

2.2x
2.5x

1.6x

2.1x

3.5x

1.8x

2.6x

3.6x

xKV (Ours) ShadowKV xK-SR (Ours) xKV-SR (Ours)

Figure 6: Attention latency evaluation. Normalized speedup relative to FlashAttention-2.

Setup. We evaluate performance on Llama-3.1-8B (GQA) using an A100 (80GB). Figure 7 reports
end-to-end generation throughput, while Figure 6 isolates the normalized attention latency relative to
FlashAttention-2.

Dense Reconstruction (xKV). xKV reduces memory usage and enables larger batch sizes than
Full Attention, but its runtime is limited by the cost of reconstructing dense KV-Cache tensors. As
Figure 6 shows, dense reconstruction cost grows with sequence length, which increases attention
latency (0.6× speed at 64k and 0.3× at 128k). This transition from memory-bound to compute-bound

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

3.23x Speedups

4.23x Speedups

Figure 7: Generation throughput (tokens/s) on an A100.

execution is further reflected in the end-to-end throughput (Figure 7). When memory is no longer a
bottleneck,xKV performs similarly to or slightly worse than the baseline.

Selective Reconstruction (xKV-SR). xKV-SR addresses the compute bottleneck via selective
reconstruction, delivering the highest performance across all metrics. By keeping compressed KV-
Cache entirely on the GPU, it achieves consistent attention latency gains, reaching up to 3.6× speedup
in Figure 6. This translates directly to generation throughput (Figure 7), where xKV-SR attains up to
3.23× and 4.23× speedups at 60k and 122k tokens, respectively.

Selective reconstruction with offloaded values (xK-SR and ShadowKV). Both xK-SR and
ShadowKV operate in a “keys-only compression + offloaded values” regime. This regime is the
setups with most memory saving. However, their performance tracks closely and is strictly bounded
by PCIe bandwidth rather than compute. Comparisons in Figure 6 confirm that reconstructing
compressed values on-chip (xKV-SR) is significantly faster than fetching uncompressed values over
PCIe (xK-SR and ShadowKV), making it the superior choice for high-throughput, long-context
decoding.

7 LIMITATIONS AND FUTURE WORK

Long Generation Scenario. Our study focuses on the long-prefill setting, where only the initial
context is compressed while tokens generated during decoding remain uncompressed. This regime
covers many long-context applications (e.g., information retrieval (Perplexity, 2025) and database
QA), but it does not address test-time scaling under extended generation, which the cumulative
KV-Cache can also become the bottleneck. We leave to future work how to leverage the observed
cross-layer alignment of the KV-cache’s dominant singular vectors and proposed cross-layer SVD to
tackle long-generation scenarios.

8 CONCLUSION

We introduce xKV, a plug-and-play compression method for key-value (KV) caches that exploits
inter-layer redundancy. Our approach reveals that KV-Caches across different layers share highly
aligned basis vectors. Leveraging this property, we apply a cross-layer SVD to compress multiple KV-
Caches into a shared low-rank subspace. Experiments demonstrate that xKV outperforms accuracy
on all other compression methods, including representative inter-layer approaches and intra-layer
methods such as quantization, token eviction, and single-layer SVD. At roughly 8× compression,
xKV keeps average accuracy within 2–3 percentage points of the non-compressed baseline, and it
remains robust in multi-turn settings. With Selective Reconstruction (SR), our fastest alternative
xKV-SR reaches up to 4.23× faster generation speed on A100 GPU, highlighting xKV as a practical
approach to reduce both memory footprint and latency for long-context LLM inference.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Introducing meta llama 3: The most capable openly available llm to date, 2024. URL https:
//ai.meta.com/blog/meta-llama-3/.

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 7, 2024.

Yash Akhauri, Ahmed F AbouElhamayed, Jordan Dotzel, Zhiru Zhang, Alexander M Rush, Safeen
Huda, and Mohamed S Abdelfattah. Shadowllm: Predictor-based contextual sparsity for large
language models. arXiv preprint arXiv:2406.16635, 2024.

Yash Akhauri, Ahmed F AbouElhamayed, Yifei Gao, Chi-Chih Chang, Nilesh Jain, and Mohamed S.
Abdelfattah. Tokenbutler: Token importance is predictable. arXiv preprint arXiv:2503.07518,
2025. URL https://arxiv.org/abs/2503.07518.

Anthropic. Claude: A conversational ai assistant, 2023. URL https://www.anthropic.com/
claude. Large Language Model. Version 1.0. Accessed: 2025-03-13.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelley. Reducing transformer key-value cache size with cross-layer attention. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=M2UzLRoqic.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling, 2024. URL https://arxiv.org/abs/2406.02069.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S. Abdelfattah, and Kai-Chiang Wu. Palu: KV-cache
compression with low-rank projection. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=LWMS4pk2vK.

Yuzong Chen, Xilai Dai, Chi-chih Chang, Yash Akhauri, and Mohamed S Abdelfattah. The power
of negative zero: Datatype customization for quantized large language models. arXiv preprint
arXiv:2501.04052, 2025.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts
language models, 2024. URL https://arxiv.org/abs/2401.06066.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, et al. DeepSeek-R1: Incentivizing Reasoning Capability in
LLMs via Reinforcement Learning, 2025. URL https://arxiv.org/abs/2501.12948.
Version Number: 1.

Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, ZIJIA CHEN, Ameya Sunil Mahabaleshwarkar,
Shih-Yang Liu, Matthijs Van keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan Celine Lin, Jan
Kautz, and Pavlo Molchanov. Hymba: A hybrid-head architecture for small language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=A1ztozypga.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analysis,
2024. URL https://arxiv.org/abs/2405.08944.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

11

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2503.07518
https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://openreview.net/forum?id=M2UzLRoqic
https://openreview.net/forum?id=M2UzLRoqic
https://arxiv.org/abs/2406.02069
https://openreview.net/forum?id=LWMS4pk2vK
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=A1ztozypga
https://openreview.net/forum?id=A1ztozypga
https://arxiv.org/abs/2405.08944
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ivan Goldwasser, Harry Petty, Pradyumna Desale, and Kirthi Devleker. Nvidia gb200
nvl72 delivers trillion-parameter llm training and real-time inference. NVIDIA De-
veloper Blog, Mar 2024. URL https://developer.nvidia.com/blog/
nvidia-gb200-nvl72-delivers-trillion-parameter-llm-training-and-real-time-inference/
?ncid=no-ncid.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion. In International Conference on Machine Learning,
pp. 12098–12107. PMLR, 2023.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference
1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention, 2024. URL
https://arxiv.org/abs/2407.02490.

Greg Kamradt. Needle in a haystack - pressure testing llms. 2023.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMLR, 2019.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei
Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache
management. arXiv preprint arXiv:2412.19442, 2024a.

Xiaocan Li, Shuo Wang, and Yinghao Cai. Tutorial: Complexity analysis of singular value decompo-
sition and its variants. arXiv preprint arXiv:1906.12085, 2019.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H.
Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, and Lili Qiu. SCBench: A KV cache-centric
analysis of long-context methods. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=gkUyYcY1W9.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024b. URL https://openreview.net/forum?id=poE54GOq2l.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache:
KV cache compression in depth dimension for large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024b. URL https://openreview.
net/forum?id=sgVOjDqUMT.

12

https://developer.nvidia.com/blog/nvidia-gb200-nvl72-delivers-trillion-parameter-llm-training-and-real-time-inference/?ncid=no-ncid
https://developer.nvidia.com/blog/nvidia-gb200-nvl72-delivers-trillion-parameter-llm-training-and-real-time-inference/?ncid=no-ncid
https://developer.nvidia.com/blog/nvidia-gb200-nvl72-delivers-trillion-parameter-llm-training-and-real-time-inference/?ncid=no-ncid
https://arxiv.org/abs/2407.02490
https://openreview.net/forum?id=gkUyYcY1W9
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=sgVOjDqUMT
https://openreview.net/forum?id=sgVOjDqUMT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2023a.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024c.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, et al. GPT-4 Technical Report, March
2024. URL http://arxiv.org/abs/2303.08774. arXiv:2303.08774 [cs].

Leonid Pekelis, Michael Feil, Forrest Moret, Mark Huang, and Tiffany Peng. Llama 3 gra-
dient: A series of long context models, 2024. URL https://gradient.ai/blog/
scaling-rotational-embeddings-for-long-context-language-models.

Perplexity. Perplexity. https://www.perplexity.ai/, 2025. Accessed: March 21, 2025.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention
in low-rank space for KV cache compression. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
15332–15344, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.899. URL https://aclanthology.org/2024.
findings-emnlp.899/.

Ken Shoemake. Animating rotation with quaternion curves. SIGGRAPH Comput. Graph., 19(3):
245–254, July 1985. ISSN 0097-8930. doi: 10.1145/325165.325242. URL https://doi.
org/10.1145/325165.325242.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference, 2024a. URL https://arxiv.org/abs/2410.21465.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b. URL
https://openreview.net/forum?id=25Ioxw576r.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode compose:
Code generation using transformer. In Proceedings of the 28th ACM joint meeting on European
software engineering conference and symposium on the foundations of software engineering, pp.
1433–1443, 2020.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST: Query-
Aware Sparsity for Efficient Long-Context LLM Inference. In Proceedings of the International
Conference on Machine Learning (ICML), 2024.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 11175–11188, 2024.

13

http://arxiv.org/abs/2303.08774
https://gradient.ai/blog/scaling-rotational-embeddings-for-long-context-language-models
https://gradient.ai/blog/scaling-rotational-embeddings-for-long-context-language-models
https://www.perplexity.ai/
https://aclanthology.org/2024.findings-emnlp.899/
https://aclanthology.org/2024.findings-emnlp.899/
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/325165.325242
https://arxiv.org/abs/2410.21465
https://openreview.net/forum?id=25Ioxw576r

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
Jianhong Tu, Jianwei Zhang, Jingren Zhou, Junyang Lin, Kai Dang, Kexin Yang, Le Yu, Mei
Li, Minmin Sun, Qin Zhu, Rui Men, Tao He, Weijia Xu, Wenbiao Yin, Wenyuan Yu, Xiafei Qiu,
Xingzhang Ren, Xinlong Yang, Yong Li, Zhiying Xu, and Zipeng Zhang. Qwen2.5-1m technical
report, 2025. URL https://arxiv.org/abs/2501.15383.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models, 2023.

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang, Hao Cheng, Chao Zhang, and Yelong
Shen. Lorc: Low-rank compression for llms kv cache with a progressive compression strategy.
arXiv preprint arXiv:2410.03111, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024b.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zhenga, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

14

https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/2501.15383

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A CKA AND INDICATION OF ALIGNED LEFT SINGULAR VECTORS

A.1 NOTATION AND DEFINITIONS

For each layer ℓ, let
Xℓ ∈ Rn×d,

where each of the n rows corresponds to a token (data point). Define the centering matrix

H = In − 1
n 11⊤,

which subtracts the (row) mean from each token embedding. We define the centered embeddings

X̃ℓ = HXℓ,

and the centered Gram matrix
Gℓ = X̃ℓ X̃

⊤
ℓ ∈ Rn×n.

Because Gℓ is symmetric and positive semidefinite, its largest-eigenvalue directions capture the most
“energetic” dimensions of X̃ℓ.

Given two layers ℓ1 and ℓ2, the Centered Kernel Alignment (CKA) between their token embeddings is

CKA
(
Xℓ1 ,Xℓ2

)
=

trace
(
Gℓ1Gℓ2

)√
trace

(
G2

ℓ1

)
trace

(
G2

ℓ2

) ,

which measures how similarly Gℓ1 and Gℓ2 encode pairwise relationships (dot products) among the
n token embeddings.

A.2 SVD PERSPECTIVE AND OVERLAP

SVD of centered embeddings. Consider the (compact) SVD of X̃ℓ:

X̃ℓ = Uℓ Σℓ V
⊤
ℓ ,

where:
Uℓ ∈ Rn×r (orthonormal columns), Σℓ = diag(σ1, . . . , σr), Vℓ ∈ Rd×r (orthonormal columns),
and r ≤ min(n, d) is the rank. Then the centered Gram matrix factors as

Gℓ = X̃ℓ X̃
⊤
ℓ = Uℓ Σ

2
ℓ U

⊤
ℓ ,

so the columns of Uℓ are exactly the eigenvectors of Gℓ, and σ2
i are the corresponding eigenvalues.

CKA in terms of left singular vectors. Let X̃ℓ1 = Uℓ1 Σℓ1 V
⊤
ℓ1

and X̃ℓ2 = Uℓ2 Σℓ2 V
⊤
ℓ2

. Then

Gℓ1 = Uℓ1 Σ
2
ℓ1 U

⊤
ℓ1 , Gℓ2 = Uℓ2 Σ

2
ℓ2 U

⊤
ℓ2 .

We compute

trace
(
Gℓ1 Gℓ2

)
= trace

(
Uℓ1 Σ

2
ℓ1 U

⊤
ℓ1 Uℓ2 Σ

2
ℓ2 U

⊤
ℓ2

)
=

r1∑
i=1

r2∑
j=1

σ2
ℓ1,i σ

2
ℓ2,j

(
u
(i)
ℓ1

⊤u
(j)
ℓ2

)2

,

where u
(i)
ℓ1

and u
(j)
ℓ2

are the i-th and j-th columns of Uℓ1 and Uℓ2 , respectively. Meanwhile,

trace
(
G2

ℓ1

)
=

r1∑
i=1

σ4
ℓ1,i, trace

(
G2

ℓ2

)
=

r2∑
j=1

σ4
ℓ2,j .

Hence,

CKA
(
Xℓ1 ,Xℓ2

)
=

∑
i,j

σ2
ℓ1,i σ

2
ℓ2,j

(
u
(i)
ℓ1

⊤u
(j)
ℓ2

)2
√(∑

i σ
4
ℓ1,i

)(∑
j σ

4
ℓ2,j

) .

Because the eigenvalues σ2
ℓ,i reflect how “dominant” each left singular vector is, a large CKA value

requires significant overlap
(
u
(i)
ℓ1

⊤u
(j)
ℓ2

)2
for the most important (largest-σ2) directions, implying the

principal subspaces of Gℓ1 and Gℓ2 align closely.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 CONCLUSION

In summary, when CKA(Xℓ1 ,Xℓ2) is high, the dominant left singular vectors of X̃ℓ1 and X̃ℓ2 are
well aligned. Since these vectors also serve as the largest-eigenvalue directions of the centered
Gram matrices, high CKA implies that the principal subspace geometry of the token embeddings
in layers ℓ1 and ℓ2 is structurally very similar—even if token-by-token (cosine) matches are small.
Thus, CKA goes beyond individual token similarities, capturing how tokens vary collectively in a
shared subspace.

B IMPLEMENTATION DETAILS

B.1 LANDMARK-GUIDED CHUNK SELECTOR FOR SELECTIVE RECONSTRUCTION

Algorithm 1 Landmark Construction (Prefill)

Require: Post-RoPE keys Krope
ℓ ∈RHkv×N×dh , chunk size c, optional #outliers o

Ensure: Landmarks Lℓ∈RHkv×nc×dh , optional outlier indices {Oℓ,g⊆ [nc]}Hkv
g=1

1: nc ← ⌈N/c⌉;
2: Chunking the sequence: K̃ ← View(Krope

ℓ) ∈ RHkv×nc×c×dh

3: Chunk means (landmarks): Lℓ ← mean
(
K̃, axis = 2

)
∈ RHkv×nc×dh

4: (Optional) Static outliers, per head: Scos←cos
(
K̃, Lℓ broadcast along c

)
∈ RHkv×nc×c

5: m←min(Scos, axis = 2) ∈ RHkv×nc ; Iout←ArgTopK(−m, o); Oℓ,g←Iout[g, :]
6: return Lℓ and (optionally) {Oℓ,g}

Algorithm 2 Landmark-Guided Top-k Chunk Selection (Decode)

Require: Landmarks Lℓ∈RHkv×nc×dh , queries Qt,ℓ∈RHq×dh , GQA map ρ : [Hq]→ [Hkv], token
budget k, chunk size c, optional outliers {Oℓ,g}

Ensure: Per–KV head selected chunk indices {St,ℓ,g⊆ [nc]}Hkv
g=1

1: kch ← ⌈k/c⌉ ▷ convert token budget to chunk budget
2: Scores to landmarks (batched MatMul):

P ∈ RHq×Hkv×nc ← ⟨Qt,ℓ[:, ·], Lℓ[·, :, ·]⟩dh

/√
dh

3: Pool from query heads to KV heads (GQA):

S[g, j] ← max
h: ρ(h)=g

P [h, g, j] for all g ∈ [Hkv], j ∈ [nc]

4: Top-kch per KV head: I ∈ RHkv×kch ← ArgTopK(S, kch)
5: (Optional) add static outliers: St,ℓ,g ← Union

(
I[g, :], Oℓ,g

)
for each g

6: return {St,ℓ,g}Hkv
g=1

We adopted the landmark-guided selection techniques from ShadowKV (Sun et al., 2024a) to decide
the token indices for selective reconstruction. We detail the workflow in the paragraphs below.

Landmark construction (prefill). At layer ℓ, we split the post-RoPE key sequence into nc =
⌈N/c⌉ contiguous chunks of size c. For each KV head g and chunk j, we define the landmark as the
mean key of that chunk:

ℓj,g =
1

|Cj |
∑
x∈Cj

Krope
ℓ,g (x).

Optionally, we keep a tiny per-head static outlier set to guard against heterogeneous chunks whose
mean is a weak representative. We identify these by computing the minimum within-chunk cosine
similarity to the landmark,

rg,j = min
x∈Cj

cos
(
Krope

ℓ,g (x), ℓj,g
)
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and marking the o chunks with the smallest rg,j as outliers for each head g. This metric indicates
how well the landmark summarizes its chunk: lower values signal that at least one token is poorly
captured by the mean, so those chunks are always considered during decoding. We summarize the
procedure in Algorithm. 1.

Landmark-guided selection (decode). At each decode step t, given queries Qt,ℓ ∈ RHq×dh ,
we score every chunk via a batched scaled dot-product between Qt,ℓ and the landmarks. With
grouped-query attention, scores are pooled from query heads to KV heads using the GQA map
ρ : [Hq]→ [Hkv] by taking a max over the query heads mapped to each KV head. Given a token
budget k and chunk size c, we convert to a chunk budget kch = ⌈k/c⌉ and keep the top kch chunks
per KV head. Optionally, we union these with the static outliers Oℓ,g. The selected chunk indices
are then expanded to row indices St,ℓ,g and used to reconstruct only the corresponding tokens. We
summarize the procedure in Algorithm. 2.

C MORE LATENCY STUDIES

C.1 ON-THE-FLY SVD OVERHEAD

Table 4 reports the latency of the prefilling phase as well as the cross-layer SVD on A6000 GPU.
On a sequence length of L = 64k tokens, the SVD accounts for 6.92% of the forward-pass time.
This fraction steadily decreases as L increases, reaching only 2.05% at L = 256k, where L denotes
the sequence length. The reduction can be attributed to the fact that the cost of attention grows
quadratically with L, whereas the low-rank decomposition scales only linearly (Li et al., 2019). As a
result, for very long contexts, the one-time decomposition performed during the prefill phase becomes
practically negligible, contributing minimally to the overall computation time. Similar trends also
hold on A100 GPU as demonstrated in Table 5.

Table 4: The latency data of on-the-fly SVD under different context lengths. Measured on an A6000
GPU with Qwen2.5-14B-Instruct. (Unit: seconds)

Seqlen 64k 128k 160k 256k

Prefill Time 39.02 122.30 182.54 425.42
SVD time (G=2) 1.98 (5.04%) 3.48 (2.85%) 4.37 (2.39%) 6.36 (1.49%)
SVD time (G=4) 2.70 (6.92%) 4.76 (3.90%) 5.89 (3.23%) 8.74 (2.05%)

Table 5: The latency data of on-the-fly SVD under different context lengths. Measured on an A100
GPU with Llama-3.1-8B. (Unit: seconds)

Seqlen 64k 128k 160k 256k

Prefill Time 18.98 47.87 71.55 159.27
SVD time (G=2) 1.90 (10.03%) 3.48 (7.26%) 4.38 (6.12%) 6.35 (3.99%)
SVD time (G=4) 2.56 (13.46%) 4.75 (9.93%) 5.89 (8.23%) 8.74 (5.48%)

D MORE EXPERIMENTAL RESULTS

D.1 MORE RESULTS ON RULER

KV-Cache More Compression with Selective Reconstruction Results. Table 6 reports results
at different compression rates on the RULER benchmark. At the high compression setting (around
11.5× effective GPU memory reduction), xK-SR outperforms ShadowKV by a striking 36%. This
demonstrates that xKV-SR is significantly more effective at preserving performance under extreme
compression.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: More KV-Cache Compression with Selective Reconstruction Results: Accuracy of different
methods on the RULER benchmark at a context length of 64K. Here, "Comp." indicates the total
KV-Cache reduction, while the number in parentheses shows the effective GPU memory reduction
considering KV-Cache offloading. ShadowKV* refers to a variant of ShadowKV that additionally
compresses the value cache.

Method Comp. N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3.1-8B-Instruct
Full Attn 1.00 100.00 100.00 98.96 97.92 98.96 97.66 83.33 59.38 97.29 85.42 91.89

Quest 1.00 (8.00) 93.75 90.63 96.88 87.50 94.27 85.42 83.33 57.29 77.71 81.94 84.87

ShadowKV 1.60 (7.94) 100.00 100.00 100.00 97.92 99.22 95.83 83.33 59.38 78.33 73.96 88.80
xK-SR (Ours) 1.59 (7.76) 100.00 100.00 98.96 97.92 98.70 96.35 82.29 61.46 88.33 75.69 89.97

ShadowKV 1.64 (9.08) 100.00 100.00 98.96 97.92 96.88 94.53 82.29 60.42 66.04 74.65 87.17
xK-SR (Ours) 1.63 (8.90) 100.00 100.00 98.96 97.92 98.44 95.31 83.33 60.42 87.92 74.65 89.70

ShadowKV 1.68 (10.61) 100.00 71.88 73.96 97.92 27.34 24.22 68.75 58.33 52.71 73.96 64.91
xK-SR (Ours) 1.68 (10.45) 100.00 98.96 98.96 97.92 94.53 93.49 82.29 60.42 80.83 76.04 88.34

ShadowKV 1.71 (11.59) 96.88 6.25 5.21 80.21 0.78 2.34 65.62 56.25 49.79 72.57 43.59
xK-SR (Ours) 1.70 (11.44) 100.00 96.88 92.71 97.92 62.50 56.25 80.21 59.38 69.58 76.39 79.18

ShadowKV* 4.52 100.00 98.96 96.88 97.92 93.49 91.67 82.29 58.33 67.92 75.69 86.32
xKV-SR (Ours) 4.37 100.00 100.00 98.96 96.88 99.48 96.61 82.29 60.42 87.92 75.69 89.83

ShadowKV* 5.51 100.00 76.04 75.00 97.92 54.43 45.83 81.25 57.29 47.29 74.31 70.94
xKV-SR (Ours) 5.35 100.00 100.00 98.96 97.92 98.44 95.57 82.29 60.42 87.29 76.04 89.69

D.2 RESULTS ON LONGBENCH

KV-Cache Compression Results. Table 7 presents the comprehensive evaluation of xKV against
representative compression methods on the LongBench dataset, demonstrating consistent performance
across diverse long-context tasks, including single-document QA, multi-document QA, summariza-
tion, few-shot learning, synthetic tasks, and code completion. Experiments were conducted on
Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct-1M models.

MiniCache exhibits severe performance degradation, with accuracy dropping by 12.57% on Llama-
3.1-8B-Instruct and a catastrophic 26.91% on Qwen2.5-7B-Instruct-1M compared to the baseline,
reinforcing our earlier observation that cross-layer compression methods fail when token-wise cosine
similarity assumptions are violated across different model architectures and task types.

At 8.03× compression, xKV achieves 42.27% average accuracy on Llama-3.1-8B-Instruct, closely
matching PyramidKV and SnapKV. On Qwen2.5-7B-Instruct-1M, xKV reaches 40.37% accuracy,
demonstrating competitive performance against PyramidKV and SnapKV, with a slight accuracy
degradation.

These LongBench results validate xKV’s robustness across heterogeneous task domains, confirming
that our shared low-rank subspace approach effectively preserves critical information for diverse
long-context reasoning scenarios while achieving aggressive compression rates comparable to leading
token eviction methods.

KV-Cache Compression with Selective Reconstruction Results. In Table 8, we evaluate xK-SR
and xKV-SR against Quest and ShadowKV baselines on the LongBench dataset using Llama-3.1-
8B-Instruct. Quest achieves 42.63% accuracy through dynamic token loading with 8× GPU memory
reduction via offloading, demonstrating minimal performance degradation while requiring host-device
transfers.

At comparable compression ratios, xK-SR consistently outperforms ShadowKV across different
settings. With 1.68× compression and 10.45× GPU memory reduction, xK-SR achieves 42.50%
accuracy, surpassing ShadowKV by 1.99%. This improvement demonstrates the effectiveness of our
cross-layer key compression approach over single-layer SVD methods.

Most notably, xKV-SR enables aggressive 5.35× compression while achieving 42.40% accuracy,
outperforming ShadowKV* by 0.89%. These consistent improvements across both RULER and
LongBench benchmarks validate that our cross-layer alignment approach effectively adapts to
diverse evaluation frameworks, preserving critical information across heterogeneous long-context
tasks ranging from retrieval and reasoning to code completion and summarization. Moreover, the
significant gains observed on LongBench further corroborate the robustness and generality of our
method beyond the RULER benchmark.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: KV-Cache Compression Results: Accuracy of different methods on LongBench. xKV
consistently achieves a higher accuracy than the Full Attns at the same compression rate or even at a
significantly higher compression rate.

Method Comp. Single-doc QA Multi-doc QA Summarization Few-shot Synthetic Code Avg.

Llama-3.1-8B-Instruct
Full Attn 1.00 44.23 44.72 28.52 25.88 53.44 62.41 43.20

MiniCache 1.30 22.01 26.79 20.51 25.05 52.29 37.11 30.63
KIVI 7.10 40.87 42.45 27.40 26.96 51.70 59.42 41.47

StreamingLLM 8.00 30.04 37.79 23.61 25.49 49.75 61.15 37.97
PyramidKV 8.00 42.92 43.99 25.73 27.62 53.02 61.54 42.47

SnapKV 8.00 43.17 44.13 26.09 27.75 53.27 62.56 42.83
Single SVD 8.40 30.34 23.93 20.26 27.41 44.75 52.63 33.22
xKV (Ours) 8.03 44.39 38.82 26.14 27.34 55.50 61.44 42.27

Qwen2.5-7B-Instruct-1M
Full Attn 1.00 40.52 49.30 26.67 37.07 54.00 45.11 42.11

MiniCache 1.30 11.29 15.93 6.87 28.51 5.38 23.21 15.20
KIVI 7.10 33.54 38.35 21.34 35.55 34.32 39.73 33.80

StreamingLLM 8.00 28.86 38.04 22.42 47.58 17.50 42.75 32.86
PyramidKV 8.00 39.48 48.31 23.32 44.13 54.00 43.33 42.09

SnapKV 8.00 40.21 48.32 24.93 43.73 54.00 44.19 42.56
Single SVD 8.40 39.13 43.32 24.04 32.00 36.25 38.42 35.53
xKV (Ours) 8.03 39.73 47.97 26.62 34.42 53.00 40.48 40.37

Table 8: KV-Cache Compression with Selective Reconstruction Results: Accuracy of different
methods on the LongBench. Here, "Comp." indicates the total memory reduction, while the number
in parentheses shows the effective GPU memory reduction considering KV-Cache offloading. Shad-
owKV* refers to a variant of ShadowKV that additionally compresses the value cache.

Method Comp. Single-doc QA Multi-doc QA Summarization Few-shot Synthetic Code Avg.

Llama-3.1-8B-Instruct
Full Attn 1.00 44.23 44.72 28.52 25.88 53.44 62.41 43.20

Quest 1.00 (8.00) 43.18 44.40 28.20 26.57 52.88 60.55 42.63

ShadowKV 1.68 (10.61) 37.98 44.11 25.26 24.43 53.35 57.92 40.51
xK-SR 1.68 (10.45) 43.64 44.47 27.62 25.31 52.63 61.32 42.50

ShadowKV 1.64 (9.08) 43.35 44.87 27.15 25.76 52.63 59.53 42.21
xKV-SR 1.63 (8.90) 44.38 44.63 27.98 25.55 52.13 61.50 42.69

ShadowKV* 5.51 41.76 44.89 26.02 24.74 52.73 58.91 41.51
xKV-SR 5.35 44.58 45.20 27.76 25.32 52.63 58.94 42.40

D.3 RESULTS ON REASONING-HEAVY TASK
Table 9: Accuracy of different methods
on GSM8K and BBH with Llama-3.1-
8B-Instruct.

Method Comp. GSM8K BBH

Full Attn 1.00 78.47 69.70
PyramidKV 7.00 54.66 10.89

SnapKV 7.00 59.06 10.59
KIVI 7.10 67.55 52.96
xKV 7.00 71.42 69.19

To demonstrate the broad applicability of our method on
reasoning-intensive benchmarks, we evaluated xKV on
GSM8K and the BIG-Bench Hard (BBH) suite, where
retention of all intermediate states is critical. As shown
in Table 9, token eviction approaches suffer catastrophic
declines, with accuracy plunging from approximately 78%
to just over 10% on BBH and into the mid-50s on GSM8K
at a 7× compression rate. Even the quantization baseline
KIVI experiences significant degradation on BBH. In stark contrast, xKV preserves strong per-
formance across both benchmarks, underscoring that our shared low-rank subspace compression
achieves a consistently superior accuracy–compression trade-off, even under the most demanding
reasoning conditions.

D.4 INTEGRATE WITH QUANTIZATION

xKV can be combined with other cache management techniques. To illustrate this capability, we
conducted preliminary experiments integrating xKV with Quantization. Specifically, we applied a
simple round-to-nearest (RTN) quantization method to the compressed cache. With 4-bit quantization,
the cache achieves a substantial 25.6× compression while maintaining model accuracy.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Accuracy of xKV integrated with naive quantization on RULER benchmark.

Method Comp. N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3.1-8B-Instruct
Full Attn 1.00 100.00 100.00 98.96 97.92 98.96 98.18 83.33 60.42 97.71 85.42 92.09

xKV 8.03 100.00 98.96 97.92 97.92 96.35 97.14 78.13 57.29 86.67 78.13 88.85
xKV-4bit 25.7 100.00 96.88 97.92 97.92 96.35 93.23 77.08 55.21 83.33 78.47 87.64
xKV-3bit 32.12 93.75 94.79 95.83 96.88 95.05 90.89 77.08 52.08 73.33 76.74 84.64

Table 10 presents the performance of xKV with naive quantization on the RULER benchmark,
evaluated using Llama-3.1-8B-Instruct. We observe that xKV alone provides an 8× compression
with minimal accuracy loss. Further applying 4-bit quantization yields a total compression of 25.6×,
with only a slight drop in the average score from 88.85% to 87.64%. Even more aggressive 3-bit
quantization achieves 32× compression, with a moderate decrease in performance (average 84.64%),
demonstrating that xKV can be effectively combined with other cache reduction techniques without
severely impacting accuracy.

D.5 FLOPS & MEMORY COST

Dense Reconstruction (no selection). For a given type τ , if one reconstructs all L rows per layer
at decode, the per-layer cost of AτBτ is

FLOPs(τ)dense = L · rτ · d. (3)

If both keys and values are reconstructed densely, costs add: FLOPsdense =
∑

τ Lrτd.

Selective Reconstruction (per step). With index sets St,ℓ,g and Mt,ℓ,g = |St,ℓ,g|, the per-step cost
for a given τ becomes

FLOPs(τ)sparse =

Hkv∑
g=1

Mt,ℓ,g rτ dh, (4)

and FLOPssparse =
∑

τ FLOPs(τ)sparse when compressing both types. When Mt,ℓ,g ≪ L, selective re-
construction is a small fraction of the dense cost. Computing St,ℓ,g itself involves light matrix–vector
operations and is independent of the cross-layer factors.

Compressed-cache memory. xKV stores, per group k, the shared token bases Aτ
k ∈ RL×rτ (one

per type) and, per layer, the reconstructions Bτ
ℓ ∈ Rrτ×d. Summed over all groups/layers, the total

memory is ∑
τ∈{Kpre,V }

(
N
G Lrτ︸ ︷︷ ︸

shared bases

+ N rτ d︸ ︷︷ ︸
layer reconstructions

)
+

N

c
d︸︷︷︸

landmark (optional)

, (5)

compared to 2N Ld for the full KV-Cache (keys and values). In Mode (A) (key-only compression),
only the K terms in (5) apply and values are fetched (or lightly quantized) from host memory. In
Mode (B), both types are compressed and resident on GPU. When activating SR, we have to store the
landmark Ll of size N

c d for computing the indices for selective reconstruction.

How we compute the KV-Cache compression ratio. Let C denote the compression ratio achieved
by the xKV cache (i.e., the ratio of the original KV-Cache size to the compressed size). The landmark
requires storing L

8 × d elements, which is exactly one-eighth the size of the full K-Cache. The
outlier set is a constant and can be ignored when the context length is long. The numerator 2 in each
formula represents the combined original size of keys and values; the denominator represents the
post-compression storage of the KV-Cache plus the landmark set (and, in the total memory case, the
full value cache).

For xK-SR (key-only compression, value offloading):

Effective GPU memory compression ratio:

RxK-SR,GPU =
2

1
C + 1

8

(6)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Total memory compression ratio (counting values at original size):

RxK-SR, total =
2

1
C + 1

8 + 1
(7)

For xKV-SR (both keys and values compressed):

RxKV-SR =
2

2
C + 1

8

(8)

E EXTENDING XKV ON MULTI-HEAD LATENT ATTENTION (MLA)

1x 2x 3.6x 4.5x
Compression Rate

20
30
40
50
60
70

Ac
cu

ra
cy

LCC

MiniCache
Single SVD
xKV (Ours)

1x 2x 3.6x 4.5x
Compression Rate

20
30
40
50
60
70

Ac
cu

ra
cy

RepoBench-P

MiniCache
Single SVD
xKV (Ours)

DeepSeek-Coder-V2-Lite-Instruct

Figure 8: Evaluation results of different KV-Cache methods on DeepSeek-Coder-V2-Lite-Instruct
model using RepoBench-P (Liu et al., 2023a) and LCC(Guo et al., 2023). The accuracy denotes
the edit similarity (Svyatkovskiy et al., 2020), and the dotted line represents the baseline score with
uncompressed KV-Cache.

To demonstrate the effectiveness of xKV on emerging attention variants, we evaluate xKV on
DeepSeek-V2-Coder-Lite (Liu et al., 2024a), which employs the efficient Multi-head Latent Attention
(MLA) architecture (Liu et al., 2024a). MLA is proposed to reduce the KV-Cache size per layer
through low-rank projections. As shown in Figure 8, we can further compress the compact latent
cache by exploiting the cross-layer redundancy by using our xKV. With a group size of 4, xKV
achieves a 3× compression rate on RepoBench (Liu et al., 2023a) and 3.5× on LCC (Guo et al.,
2023) without compromising accuracy. In contrast, other methods, such as MiniCache (Liu et al.,
2024b) and Single SVD, fail to preserve accuracy on the MLA architecture even at substantially
lower compression rates. These results underscore xKV’s versatility and compatibility with emerging
memory-efficient attention architectures (Liu et al., 2024a).

F BROADER CKA ANALYSIS

(a) Llama3.2-1B

Alignments across
Sliding window Attn

Alignments across
Full Attn

(b) GPT-OSS 120B

Figure 9: Extended CKA analysis of different models. GPT-OSS is a hybrid architecture that
interleaves window attention and full attention layers in a 1:1 ratio.

21

	Introduction
	Related Work
	Analysis and Motivation
	Cross-Layer Cosine Similarity (Prior Work)
	Revisit Cross-Layer Similarity with CKA
	Eigenvalue Analysis of KV-Cache

	Methodology: xKV
	Notation
	Core Method: Cross‑Layer SVD
	Process During Inference
	Operation Modes

	Accuracy Evaluations
	Results on RULER Datasets

	Efficiency Studies
	Limitations and Future Work
	Conclusion
	CKA and Indication of Aligned Left Singular Vectors
	Notation and Definitions
	SVD Perspective and Overlap
	Conclusion

	Implementation Details
	Landmark-guided Chunk Selector for Selective Reconstruction

	More latency studies
	On-the-fly SVD overhead

	More Experimental Results
	More Results on RULER
	Results on LongBench
	Results on Reasoning-Heavy Task
	Integrate with Quantization
	FLOPs & Memory Cost

	Extending xKV on Multi-head Latent Attention (MLA)
	Broader CKA Analysis

