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ABSTRACT

A large distribution gap between a target task and pre-training tasks could under-
mine the task adaptation performance of pretrained models. When the target-task
data are scarce, naı̈ve finetuning results in overfitting and forgetting. In various do-
mains, skills can be transferred across semantically related tasks, among which the
general-purposed ones often have more training data. Can we bridge the gap be-
tween a pre-trained model and a low-resource target task by leveraging data from
other tasks? In this paper, we address the low-resource task adaptation challenge
by a transfer learning curriculum, which finetunes a model on a curated sequence
of intermediate tasks, thereby progressively bridging the gap between the pre-
trained model and the target task. To this end, we formulate the task curriculum
as a graph search problem and improve the efficiency of estimating transferability
between tasks. Two search algorithms are studied, i.e., greedy best-first search
and Monte Carlo tree search. We evaluate our approach, i.e., “task-adaptation cur-
riculum learning (TACL)” on two benchmark settings. Extensive evaluations on
different target tasks demonstrate the effectiveness and advantages of TACL on
highly specific and low-resource downstream tasks.

1 INTRODUCTION

Figure 1: Test accuracy (%) of 7 target tasks (x-axis) achieved by applying six different transfer
learning strategies to a graph (or set) of 20 source tasks. TACL (ours) consistently performs the
best across all the 7 target tasks, while MCTS outperforms GBFS on 5/7 target tasks.

Pretrained models have shown a substantial potential to generalize to downstream tasks with promis-
ing performance (Peters et al., 2018; Devlin et al., 2019). While finetuning these models on target
task data usually suffices for a transfer learning from the pre-trained task(s) to the target task, the
final performance heavily depends on the distribution shift between the two tasks and the amount of
available data for the target task, since transfer learning may perform poorly under large distribution
shift and deficient target task data (Kirkpatrick et al., 2017; Wang et al., 2019).

Fortunately, many downstream tasks are semantically related and their data can be re-formatted for
general purposes, so there may exist tasks encapsulating pertinent information for a low-resource
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target task. Hence, finetuning a pre-trained model on those intermediate tasks potentially improves
the adaptation to the target task (Phang et al., 2019; Vu et al., 2020; Poth et al., 2021) and facilitates
smoother knowledge transfer from pre-trained tasks.

Motivated by the efficacy and utility of relevant tasks, we aim to devise a method that guides the
model training through a sequence of intermediate tasks. We compare it with conventional transfer
learning in Figure 2. There are two potential advantages of this approach: (1) its training data is
accumulated along the sequence and thus alleviates the data scarcity of the target task; (2) it estab-
lishes a seamless transfer pathway from pretraining tasks to the target task, bridging the distribution
gap between them. However, searching for the optimal transfer curriculum presents a formidable
challenge, characterized by a combinatorial optimization problem. The impracticality of a brute-
force search becomes evident as the sequence length increases, leading to an exponential growth in
the number of possible curricula of intermediate tasks. Furthermore, discerning the relative gain or
contribution of each task to the target task is non-trivial in practice. Additionally, the dynamic nature
of model parameters, altered after training on each task, makes it hard to determine a sequence in
advance.

Figure 2: Conventional transfer learning (bottom) vs. task-adaptation curriculum learning (top).

To mitigate these challenges, we formulate the problem as searching for a path on a graph of tasks,
effectively connecting the pre-trained task to the target task. This graph-based approach offers sev-
eral advantages in tackling these issues. Firstly, leveraging existing graph search algorithms allows
us to confine the search space, thereby circumventing the need for a computationally intensive brute-
force solution. Secondly, the flexibility of employing heuristic or non-heuristic methods facilitates
the estimation of the priority of tasks to explore on the graph. Lastly, the dynamic nature of graph
search takes into account the evolving model parameters.

To this end, we proposed the framework of task-adaptation curriculum learning (TACL), which
involves finding a sequence of adaptation tasks that progressively bridges the gap between the pre-
trained model and the target task by searching a transfer learning path on a graph of tasks. Specif-
ically, we employ two classic search algorithms within this framework: greedy best-first search
(GBFS) and Monte-Carlo tree search (MCTS) (Coulom, 2006). Approximation methods are ap-
plied to avoid intensive computation. Our approach is examined on two sets of NLP tasks. Through
a meticulous analysis of the experimental results, we find that task-adaptation curriculum learn-
ing emerges as a beneficial approach, particularly in scenarios with limited data availability. An
empirical comparison of different transfer learning strategies on seven target tasks is provided in
Figure 1, showcasing the advantages of TACL. Furthermore, our findings underscore the scalability
and flexibility of this framework, showcasing its adaptability to diverse task settings.

2 RELATED WORK

Transfer learning and multi-task learning The method we propose in this paper addresses the
above problem of task adaptation (Zhai et al., 2019; Neyshabur et al., 2020), which generally refers
to adapting a pre-trained model to a downstream task. Commonly employed practices include fine-
tuning directly and linear probing. Others, such as task/domain-adaptive methods, consider the issue
of catastrophic forgetting (Kirkpatrick et al., 2017; Wang et al., 2019), wherein models may forget
knowledge from previous tasks after training on a new one, leading to negative transfer. DAPT
(Gururangan et al., 2020) tackles this by first tuning the pre-trained model on data related to the
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target domain or the target task itself, and then fine-tuning the adaptive-tuned model on the target
task. Similarly, Dery et al. (2021) propose a multi-task framework to bridge the gap between pre-
trained tasks and the end task by adaptively updating the weights of auxiliary tasks. However,
our method differs in that it seeks to design an algorithm capable of automatically determining
intermediate training task sequences between pre-trained tasks and the target task, eschewing a
multi-task approach.

Task Transferability The concept of intermediate training is also pertinent to our work. In this
paradigm, practitioners typically designate one task as an intermediate step between pre-trained
tasks and the target task. Previous works in this domain leverage transferability or similarity to
identify intermediate tasks (Vu et al., 2020). Estimating task transferability has been a long-studied
problem. Past works mainly use Bayesian optimization (Weiss et al., 2016) and information the-
ory (Bao et al., 2019; Tan et al., 2021). LEEP (Nguyen et al., 2020) proposes to apply linear probing
to the source-task trained model on the target-task data and uses the performance as a transferability
metric. Moreover, task embeddings for transfer learning (Achille et al., 2019) consider the Fisher
information matrix of a model fine-tuned on a task as the “task embedding”, predicting inter-task
transferability by computing the cosine similarity between the task embeddings of the source and
target tasks. Notably, our approach diverges in that we seek not just one intermediate task but a
sequence of adaptation tasks.

Curriculum Learning Curriculum Learning (CL) was first introduced by Bengio et al. (2009) as
a training strategy analogous to the progressive learning nature of humans. A common form of CL
is to rank the difficulty or priority of learning examples and then proceed with learning in such a
sequence. Subsequent works have further explored this idea by studying different criteria or metrics
for data selection. For example, Jiang et al. (2015); Zhou et al. (2020) adjusted the progression pace
based on the difficulty of data, and Jiang et al. (2014); Zhou & Bilmes (2018) further take the data
diversity into account of curriculum design. Our method also intersects with the concept of curricu-
lum learning. While traditional curriculum learning operates at the data level, our focus in the realm
of task adaptation learning is on task-level curriculum learning. Noteworthy work by Pentina et al.
(2015) employs curriculum learning to sequentially solve multiple tasks, demonstrating its superior-
ity over joint task-solving. Their aim, however, was to enhance the average performance across mul-
tiple tasks, whereas our method specifically targets the performance improvement of the target task.

3 PROBLEM FORMULATION

Figure 3: Example of a task-adaptation curriculum on the task graph, which bridges the pre-trained
and target tasks by a sequence of intermediate tasks. (Left) Searching on a fully connected graph.
(Right) Searching on a pruned subgraph of the fully connected graph.

Given a target task Tt, our aim is to improve the performance on Tt by leveraging a set of n
candidate source tasks {T1, T2, T3, · · · , Tn}. A task graph, denoted as Gn, is a graph wherein the
n nodes represent individual tasks, and the edges symbolize the connections between these tasks.
Typically, we assume Gn to be a complete graph, meaning that each task is directly connected
to every other task in the graph. However, Gn can also be a sparse graph to avoid intensive
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computation, illustrated by Figure 3. Now, our objective is to find an optimal sequence σ(·) of l
intermediate training tasks starting from a pretrained encoder f(·; θ) with parameters θ = θ0, i.e.,

s := Pretrained θ0 → Tσ(1) → Tσ(2) → · · · → Tσ(i) · · · → Tσ(l) → Tt
This sequence is a path on Gn connecting the pre-trained task to the target task, aiming to maximize
the performance of Tt. We continuously finetune the encoder parameter θ on each intermediate
task-i (with learning rate η), whose loss Lσ(i)(·, ·) is computed based on the prediction produced by
a task-specific output head ϕi. For each task-σ(i) in the curriculum, we minimize its loss Lσ(i), i.e.,

ϕi, θi ← argmin
ϕ,θ∈B(θi−1)

Lσ(i) (ϕ[f(x; θ)], y) , (1)

where θ ∈ B(θi−1) means that θ is initialized from the encoder parameters θi−1 from the last task.
We repeat the above procedure from i = 1 to l and then finetune the whole model by minimizing
the training loss Ltrain

t (·, ·) of the target task-t. The optimization of curriculum s can be formulated
as a discrete nested optimization problem below, whose top-level objective is the validation-set loss
Lval
t (·, ·) of the target task.

σ∗ ∈ argmin
σ
Lval
t (ϕt[f(x; θt)], y) , (2)

s.t. ϕt, θt = argmin
ϕ,θ∈B(θl)

Ltrain
t (ϕ[f(x; θ)], y) , (3)

ϕl, θl ← argmin
ϕ,θ∈B(θl−1)

Lσ(l) (ϕ[f(x; θ)], y) , (4)

· · ·
ϕ1, θ1 ← argmin

ϕ,θ∈B(θ0)

Lσ(1) (ϕ[f(x; θ)], y) (5)

To address this optimization problem, we would explore the discrete space consisting of every pos-
sible sequence s of tasks defined by σ. However, a significant number of σ are not worth investi-
gating. Therefore, the strategic pruning of unhelpful branches becomes imperative. To achieve this,
we adopt the approach of searching on a graph of tasks, dynamically evaluating the value of each
task during the search from the current state of the model. This process can be conceptualized as
utilizing search algorithms to approximate the outer level of the original optimization problem. In
essence, we seek to find the optimal sequence of tasks s∗ through a search algorithm, operating on
the graph Gn, and simultaneously find the minimum of the target task’s training loss Ltrain

t (·, ·).
This dynamic and iterative exploration allows us to efficiently prune the solution space of σ, leading
to a more effective and targeted approach to solving the nested optimization challenge.

Tσ̂(i+1) = SearchAlg(Tσ̂(i);Gn)

Here, SearchAlg denotes the search algorithm employed to determine the subsequent task in the
sequence, given the current task Tσ(i). Consequently, the searched sequence ŝ is achieved as :

ŝ := Pretrained θ0 → Tσ̂(1) → Tσ̂(2) → · · · → Tσ̂(i) · · · → Tσ̂(l) → Tt

4 TASK-ADAPTATION CURRICULUM LEARNING (TACL)

In the realm of task-adaptation curriculum learning, our aim is to determine a sequence of adaptation
tasks that bridge the gap between the pre-trained task and the target task, with the ultimate goal
of enhancing the performance on the target task. Framed as a search problem, we introduce two
straightforward yet effective methods: the greedy best first search (GBFS) and Monte-Carlo tree
search (MCTS), both geared towards identifying the optimal adaptation sequence.

4.1 GREEDY SEARCH OF TASK CURRICULUM

The concept of greedy search, a prevalent technique in the field of search algorithms, involves mak-
ing the best possible decision at each step. This approach entails examining only the immediate
future and selecting the most favorable action. When a problem exhibits an optimal substructure
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property, the greedy algorithm tends to yield optimal results. Due to its simplicity and efficiency,
greedy algorithms are frequently employed to solve optimization problems.

In task-adaptation curriculum learning, the challenge is to select the subsequent adaptation task
after training on a given task. The objective is to make decisions that collectively enhance the
overall performance on the target task. In the case of greedy best first search, we adopt a methodical
approach by selecting the most promising task at each step. This involves training the model on each
auxiliary task, followed by fine-tuning on the target task. Then, the validation accuracy or validation
loss on the target task serves as a heuristic value, representing the efficacy of each auxiliary task in
aiding the target task. The chosen task is the one that maximizes the estimation of the target task
performance. This process is elucidated in detail in algorithm 1 and more discussions on heuristic
are in Appendix A.

Algorithm 1 Greedy Best First Search on Task Graph Gn
Require: l: Length of sequence
Require: Gn: Task graph with nodes representing tasks
Require: fθ: Pre-trained model

1: Tcurrent ← Source task
2: for k = 1 to l do
3: N (Tcurrent)← Neighbors of Tcurrent in Gn
4: for Ti ∈ N (Tcurrent) do
5: Train fθ on Ti: θi = θ − α∇θL(Ti)
6: Compute heuristic value h(Ti) on the target task T ∗

7: end for
8: T ′ ← Task with the best h(Ti) from N (Tcurrent)
9: Update θ ← θ − α∇θL(T ′)

10: Tcurrent ← T ′

11: end for

4.2 MONTE CARLO TREE SEARCH OF TASK CURRICULUM

Monte Carlo Tree Search (MCTS) proposed by Coulom (2006) is a heuristic search algorithm de-
signed for decision processes, particularly in applications involving playing board games. In such
scenarios, MCTS is employed to solve the intricate game tree by approximating the true game-
theoretic value of potential actions from the current state. The algorithm achieves this by iteratively
constructing a partial search tree.

A notable advantage of MCTS lies in its independence from domain-specific knowledge, rendering
it applicable to a wide range of domains that can be modeled using a tree structure. In the realm
of task-adaptation curriculum learning, the process of determining the next task inherently involves
decision-making, akin to a growing tree structure. Consequently, MCTS seamlessly aligns with
our framework for task-adaptation curriculum learning, offering a versatile and domain-agnostic
approach to solving the intricate decision processes involved in the selection of intermediate tasks.
In this context, the state represents the current model, a node corresponds to a specific task, an action
involves training on the chosen task, and the reward is determined by the performance of the target
task after completing the adaptation sequence. A simulation entails training the model on a sequence
of tasks of a specified length.

How the tree is built depends on how nodes in the tree are selected. By framing the choice of a child
node as a multiarmed-bandit problem, we employ the Upper Confidence Bound (UCB1) algorithm
to estimate the value of each child node. The UCB1 algorithm considers the expected reward as
approximated by Monte Carlo simulations, treating these rewards as random variables with unknown
distributions. This approach ensures simplicity, efficiency, and a guaranteed closeness to the best
possible bound on the growth of regret. The selection of a child node is determined by the following
formula:

v′ := argmax
v′∈ children of v

Q(v′)

N(v′)
+ c

√
2 logN(v)

N(v′)
. (6)
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Task | Train | Task type Domain
MNLI (Williams et al., 2018) 393K NLI misc.
QQP (Iyer et al., 2017) 364K paraphrase social QA
QNLI (Wang et al., 2018) 105K QA-NLI Wikipedia
SNLI (Bowman et al., 2015) 570K NLI misc.
SST-2 (Socher et al., 2013) 67K sentiment analysis movie reviews
CoLA (Warstadt et al., 2019) 8.5K grammatical acceptability misc.
STS-B (Cer et al., 2017) 7K semantic similarity misc.
MRPC (Dolan & Brockett, 2005) 3.7K paraphrase identification news
RTE (Dagan et al., 2005) 2.5K NLI news, Wikipedia
WNLI (Levesque et al., 2012) 634 coreference NLI fiction books
SQuAD (Rajpurkar et al., 2016) 108K QA Wikipedia, crowd
DROP (Dua et al., 2019) 77K reading comp. Wikipedia, crowd
WikiHop (Welbl et al., 2018) 51K multi-hop QA Wikipedia, KB
BoolQ (Clark et al., 2019) 16K natural yes/no QA Wikipedia, web queries
CQ (Bao et al., 2016) 2K knowledge-based QA snippets, web queries/KB
WiC (Pilehvar & Camacho-Collados, 2019) 5.4K word sense disambiguation misc.
COPA (Roemmele et al., 2011) 400 commonsense reasoning blogs, encyclopedia
CB (De Marneffe et al., 2019) 250 NLI various
WSC (Levesque et al., 2012) 554 coreference resolution fiction books
ANLI (Nie et al., 2020) 163K NLI misc.

Table 1: Summary of the tasks and their datasets used in our experiments.

Here, N(v) is the number of times the current (parent) node has been visited, N(v′) is the number
of times the child has been visited, and c > 0 is a constant.

As a result, we employ UCB1 for the selection process and implement a random policy for rollout.
The performance of the target task, such as validation accuracy or loss, is utilized to compute the
reward associated with a given sequence. As the tree grows, we iteratively refine our estimates of
the value of choosing the next task. The entire process is encapsulated in algorithm 2 in appendix.

5 EXPERIMENTS

In our experimental investigations, we aim to address the following questions pivotal to the efficacy
of our proposed task-adaptation curriculum learning (TACL) methodology: (1) Can models gain
significant benefits from the adoption of TACL? (2) What are some similarities and differences in
the results produced by GBFS and MCTS? (3) What are some possible factors that could potentially
influence the performance of TACL?

5.1 EXPERIMENTAL SETTING

To systematically address these questions, we designed and conducted experiments on two graphs:
a smaller graph comprising 6 tasks and a larger graph encompassing all 20 tasks. This experimental
setup enables us to evaluate the robustness and scalability of our proposed approach under varying
parameter settings. We selected 20 representative NLP tasks spanning diverse categories and requir-
ing different types of knowledge, as detailed in Table 1. These categories include natural language
inference, question answering, reading comprehension, sentiment analysis, etc. The diverse nature
of these datasets allows us to comprehensively evaluate the adaptability of our method across various
NLP tasks.

5.2 BASELINES

Fine-tune: One of our baseline comparisons involves the direct fine-tuning of the model, as this
serves as a standard approach and aligns with our primary goal of enhancing the performance of
fine-tuning on the target task.

Random: In addition to direct fine-tuning, we include a random sequence of the same length as the
paths searched by our method as an additional baseline. This comparison aims to evaluate whether
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Figure 4: Greedy search vs. Monte Carlo tree search on searching a curriculum for target task QQP.

our method can effectively discover valuable information regarding task transferability within the
graph, as opposed to a random exploration.

Task/text embedding: We also explore two common methods for estimating transferability be-
tween tasks, which can aid in finding an intermediate task. These methods involve mapping tasks
to embeddings/vectors (Achille et al., 2019; Vu et al., 2020) and utilizing cosine similarity between
these embeddings to estimate transferability.

5.3 TACL ON A 6-TASK GRAPH

In this experimental setup, we use six tasks from the GLUE benchmark (Wang et al., 2018) and the
BERT model (Devlin et al., 2019). Additionally, every task included in this graph is considered a
potential target task, allowing for comprehensive exploration and evaluation of the model’s adapt-
ability across various tasks. The core aim of our experiments is to evaluate the efficacy of TACL
in addressing challenges associated with fine-tuning, particularly in situations marked by limited
training data. To achieve this, we explore varying levels of data scarcity across different tasks. This
diverse range of data limitations enables us to systematically assess the adaptability and performance
of our proposed methodology across varying degrees of data scarcity. Further experimental details
are in the appendix C.

Tasks SST-2 MRPC MNLI QNLI QQP RTE Average
| Train | 128 128 1K 1K 1K 2K

Fine-tune 81.8 81.2 60.2 78.6 70.6 68.6 73.5
Random 74.0 80.1 62.1 77.8 71.7 70.1 72.6
Task embedding 73.5 72.1 61.8 76.7 69.1 68.2 70.2
Text embedding 78.3 81.0 59.4 78.8 69.2 71.1 73.0

TACL-GBFS (ours) 84.2 83.2 64.9 79.0 73.0 71.5 76.0
TACL-MCTS (ours) 85.0 83.1 64.2 79.9 73.6 72.8 76.4

Table 2: Target task’s test-set performance (%) achieved by different transfer learning strategies on
a small graph of six-tasks.

Table 2 presents the results for each task treated as the target task. These results reflect the per-
formance of a fully converged model on the target task. The limitations imposed by the scarcity
of data make direct fine-tuning ineffective, resulting in suboptimal outcomes. Random sequences
sometimes exhibit slightly improved results, aligning with the understanding that incorporating in-
termediate training tasks in data-limited scenarios can offer some benefits. For most target tasks,
embedding methods struggle to capture the relative importance of auxiliary tasks, leading to unsat-
isfactory results. In contrast, our proposed methods demonstrate significant success in enhancing
the performance of the target task across all tasks in the graph. Notably, Monte Carlo Tree Search
(MCTS) outperforms Greedy Best-First Search (GBFS) in most tasks, indicating that the iterative
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nature of MCTS likely contributes to its superior performance in navigating the task graph and iden-
tifying more effective adaptation sequences. This observation underscores the effectiveness of our
task-adaptation curriculum learning framework in comparison to baseline methods.

Analysis of paths and structures within the task graph In addition to evaluating performance,
our investigation aims to determine whether our method can uncover specific structures within the
graph that are relevant to the target task. Figure 5 depicts the paths discovered by Greedy Best-First
Search (GBFS) to all target tasks. Figure 6 demonstrates some paths to QQP by Monte Carlo tree
search. While the paths are not entirely deterministic due to the choice of random seed, we are still
able to discover some important patterns and structures within the graph of tasks.

Figure 5: TACL-curricula for six target tasks
achieved by greedy best-first search.

Figure 6: Comparing candidate task-
curricula for QQP (target task) in Monte
Carlo tree search. Better curricula with
higher values are highlighted in red.

As shown in Figure 5, MNLI is the most frequently chosen task in task sequences, and its place-
ment at the end of the sequence may be crucial for the performance on the target task. Furthermore,
MNLI tends to be associated with high-value paths produced by MCTS, as illustrated in Figure 6.
Multi-Genre Natural Language Inference (MNLI) is a large-scale entailment classification task. In
MNLI, given a pair of sentences, the objective is to predict whether the second sentence entails,
contradicts, or is neutral with respect to the first one. Based on these observations, we can formulate
a hypothesis that the model becomes more proficient in processing and analyzing semantic informa-
tion after training on MNLI. The frequent inclusion of MNLI suggests its importance in enhancing
the model’s ability to understand and reason about semantic relationships between sentences. This
enhanced capability is expected to translate into improved performance on target tasks. A more
detailed analysis can be found in appendix C.

5.4 TACL ON A 20-TASK GRAPH

After validating the effectiveness of TACL on a relatively small graph, our aim is to extend our
method to a larger graph to assess its flexibility and scalability. When applying it to a graph with
numerous tasks, a key concern is minimizing computational costs, particularly given the inherent
expense of searching on a fully connected graph, where the number of edges grows quadratically
with the number of tasks.

Fortunately, prior research (Vu et al., 2020; Poth et al., 2021; Kim et al., 2023) has extensively ex-
plored similarities and transferability among NLP tasks. Leveraging this knowledge allows us to
perform clustering and prune edges that may lead to negative transfer. This approach enables us
to conduct searches on pruned subgraphs of the original fully connected graph, substantially reduc-
ing computational overhead. When such information is not provided, we can efficiently estimate
transferability using existing training-free or light-training based methods.

In our experiment, we first constructed a pairwise transferability matrix for all 20 tasks based on pre-
vious studies (Vu et al., 2020; Poth et al., 2021). Next, we sparsified the graph by removing edges
below a set threshold in the transferability scores. Finally, we constructed subgraphs for target tasks
based on these scores. We used the DeBERTaV3 (He et al., 2021) model throughout the experiment

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: Test accuracy (%) on target-task SST-2 when spending different numbers of training steps
on each task in the curriculum.

and limited the training samples to simulate a low-data scenario. More experimental details can be
found in Appendix C. As shown in Figure 1, our results indicate that MCTS consistently outper-
forms all other methods, and greedy search also tends to yield better results. This demonstrates the
effectiveness and scalability of TACL.

6 DISCUSSION

Computational cost. While our method offers considerable efficiency gains compared to an
exponential-time brute force approach, TACL encounters a computational bottleneck when estimat-
ing the importance of next states during search. This challenge arises due to the high-dimensional
nature of pretrained models, which significantly escalates training costs. To adress these problems,
when training on an intermediate task within the sequence, we limit the training steps rather than al-
lowing the model to fully converge. This strategy is employed to strike a balance between searching
efficiency and obtaining meaningful insights from the intermediate tasks. In the context of Monte
Carlo Tree Search (MCTS), simulations can be computationally intensive as they involve iterative
fine-tuning of the model. To mitigate this, we reduce the number of steps during simulation, aiming
for a more efficient approximation of the true performance.

Influences of training steps in TACL. In addition to the final results of TACL, our curiosity ex-
tends to understanding the factors that may affect the performance of TACL. Throughout the course
of experiments, we observe that the number of training steps on each task within the task sequence
is sometimes important in determining the final results. For a fixed sequence of tasks, varying the
number of training steps can lead to different outcomes. As depicted in Figure 7, more training steps
may help the model in acquiring and preserving more knowledge from the task, resulting in greater
improvements on the target task. This observation emphasizes the importance of this hyperparame-
ter to the effectiveness of TACL.

7 CONCLUSION

In summary, we have introduced the framework of task-adaptation curriculum learning as a solution
to challenges associated with directly fine-tuning pre-trained models. Our approach offers several
advantages: it is both simple and flexible, allowing for the incorporation of various search algorithms
on graphs. Furthermore, it serves as an extension of intermediate training, leveraging a broader set
of tasks to enhance the model’s generalizability, particularly in scenarios with limited data.

9
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The adaptability provided by a sequence of tasks may play a crucial role in addressing the disparity
between a pre-trained model and a highly specific downstream task. We believe that our methodol-
ogy contributes some insights to the realm of task adaptation in NLP.

8 LIMITATIONS

While our method is evaluated across multiple domains in this study, the diversity of task types
examined remains limited. Moreover, our experiments are conducted using relatively small models
compared to contemporary large language models (LLMs). Thus, there is an opportunity for future
research to extend our method and experiments to encompass a broader range of task types and
incorporate larger models. Additionally, further exploration into the influences of hyperparameters
within the method could enhance our understanding of its performance.
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Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and Iryna Gurevych. What to pre-train on? efficient
intermediate task selection. arXiv preprint arXiv:2104.08247, 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI Spring Symposium Series, 2011.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment tree-
bank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard
(eds.), Proceedings of the 2013 Conference on Empirical Methods in Natural Language Process-
ing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational
Linguistics. URL https://aclanthology.org/D13-1170.

Yang Tan, Yang Li, and Shao-Lun Huang. Otce: A transferability metric for cross-domain cross-
task representations. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2021. URL https://arxiv.org/abs/2103.13843.

12

https://arxiv.org/abs/2002.12462
https://arxiv.org/abs/2002.12462
https://aclanthology.org/2020.acl-main.441
https://aclanthology.org/2020.acl-main.441
https://aclanthology.org/N18-1202
https://aclanthology.org/N19-1128
https://aclanthology.org/D16-1264
https://aclanthology.org/D13-1170
https://arxiv.org/abs/2103.13843


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler, Andrew
Mattarella-Micke, Subhransu Maji, and Mohit Iyyer. Exploring and predicting transferability
across NLP tasks. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7882–
7926, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.635. URL https://aclanthology.org/2020.emnlp-main.635.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Zirui Wang, Zihang Dai, Barnabas Poczos, and Jaime Carbonell. Characterizing and avoiding neg-
ative transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019. doi: 10.1162/
tacl a 00290. URL https://aclanthology.org/Q19-1040.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Jour-
nal of Big data, 2016. URL https://link.springer.com/article/10.1186/
S40537-016-0043-6.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for multi-hop read-
ing comprehension across documents. Transactions of the Association for Computational Linguis-
tics, 6:287–302, 2018. doi: 10.1162/tacl a 00021. URL https://aclanthology.org/
Q18-1021.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Marilyn Walker, Heng Ji, and Amanda Stent
(eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1101. URL https://aclanthology.org/N18-1101.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
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Figure 8: Performance scores (%) of three target tasks achieved by GBFS/MCTS-searched curricu-
lum learning on a nine-task graph. Scores refer to accuracy or F1 score. MCTS-curriculum achieves
the best performance, while both MCTS and GBFS outperform direct finetuning.

A ALGORITHM DETAILS

The goal of a heuristic is to generate a solution within a reasonable time frame that is sufficiently ef-
fective for solving the given problem. The way we compute the heuristic in our algorithms is crucial
to addressing the problem. In our approach, determining the heuristic value typically involves first
training the model on each auxiliary task, followed by fine-tuning on the target task. Metrics such as
loss, accuracy, or F1 score on the target task can then be used as the heuristic value. However, this
process can be computationally intensive, as pretrained models often contain millions to billions
of parameters. To mitigate this issue, we can reduce the number of training steps or run the pro-
cess in parallel. Additionally, first-order approximations can be employed to estimate the heuristic
value. Alternative metrics, such as those related to model complexity, may also serve as heuristics;
however, we leave this avenue for future exploration.

B MORE RESULTS ON GLUE BENCHMARK

In the extension of the experiment on the six-task graph, we expanded the graph to include three
additional GLUE tasks (STS-B, CoLA, WNLI), resulting in a total of nine tasks. In this case, we
focused on observing the performance of our method on three specific tasks: MRPC, QNLI, and
RTE. The experimental settings remained consistent with the smaller graph experiment, ensuring a
fair comparison.

The results of the experiments are presented in figure 8. As indicated by the results, TACL appears to
derive some benefits from a more diverse range of available auxiliary tasks, with slightly improved
performance. Upon examining the new paths, it is noteworthy that STS-B is often included in
the sequence of adaptation tasks. The Semantic Textual Similarity Benchmark involves sentence
pairs sourced from news headlines and other texts, annotated with a score indicating the semantic
similarity between the two sentences on a scale from 1 to 5. Given the nature of the STS-B task,
which assesses the general semantic knowledge of a model, we can hypothesize that the universal
knowledge acquired during the learning process of STS-B may contribute to the model’s improved
adaptability and performance.

C EXPERIMENTAL DETAILS

More experimental details on the 6-task graph Given that the test sets of GLUE datasets are
not publicly available, our reported performance metrics are based on the validation sets. We split
some samples from the training set to serve as a validation set during the course of our experiments.
Regarding performance metrics, we report F1 scores for QQP and MRPC, and accuracy scores for
the other tasks. Regarding task embedding and text embedding baselines, our experimental settings
closely align with those outlined by Vu et al. (2020). In terms of the training methodology, we
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Algorithm 2 Monte Carlo Tree Search
Require: {Tn}: A set of n auxiliary tasks
Require: fθ: Current model

1: function MCTS(fθ)
2: while within computation budget do
3: Tl ← TREEPOLICY(fθ, null)
4: r ← SIMULATE(T )
5: BACKUP(Tl, r)
6: end while
7: return argmaxT UCT(null, 0)
8: end function
9: function TREEPOLICY(fθ, T )

10: while T is nonterminal do
11: if T not fully expanded then
12: Choose an untried tasks T ′

13: Add a new child T ′ to T
14: Train fθ on T ′: θ ← θ − α∇θL(T ′)
15: return T ′

16: else
17: T ← argmaxT UCT(T , c)
18: Train fθ on T : θ ← θ − α∇θL(T )
19: end if
20: end while
21: return T
22: end function
23: function SIMULATE(T )
24: while T is nonterminal do
25: Choose T ′ randomly
26: Train fθ on T : θ ← θ − α∇θL(T )
27: T ← T ′

28: end while
29: Train fθ on T ∗: θ ← θ − α∇θL(T )
30: r ← evaluate fθ on T ∗

31: return r
32: end function
33: function BACKUP(T , r)
34: while T ̸= null do
35: N(T )← N(T ) + 1
36: Q(T )← Q(T ) + r
37: T ← parent of T
38: end while
39: end function
40: function UCT(T , r)

41: return Q(v′)
N(v′) + c

√
2 logN(v)

N(v′)

42: end function
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Figure 9: Performance scores (%) across different steps of all target tasks achieved by greedy cur-
riculum on the 6-task graph. Scores refer to accuracy or F1 score.

Parameter 6-task graph 20-task graph
Checkpoint bert-base-uncased microsoft/deberta-v3-base
Max sequence length 4 5
Max steps 96, 128, 256 128, 256
Learning rate 2× 10−5 2× 10−5

Batch size 16 8, 16
Weight decay 0.01 0.01
Learning rate decay Linear Linear
Adam ϵ 1× 10−6 1× 10−6

Adam β1 0.9 0.9
Adam β2 0.999 0.999

Table 3: Hyper-parameters for experiments on the 6-task and 20-task graphs

use a fresh optimizer for each phase of training. For each task, we add only a single task-specific,
randomly initialized output layer to the pre-trained Transformer model. For all experiments, the
loss function is the cross-entropy error between the predicted and true class. The implementation is
carried out using Hugging Face’s transformers library (Wolf et al., 2019) and PyTorch (Paszke et al.,
2019). While we follow the recommended hyperparameters by Devlin et al. (2019), we adjust the
batch size to suit our experimental requirements.

We also provide figure 9 to illustrate how target task performance evolves across different stages
of the curriculum. As the chart indicates, for most tasks (SST-2, MRPC, QNLI, QQP), MNLI con-
tributes the most to performance improvement. For the remaining tasks (MNLI, RTE), MRPC also
plays a significant role. MNLI and MRPC are both natural language understanding tasks that fo-
cus on semantic relationships between sentence pairs, making them highly relevant for transfer to
many target tasks in NLP. To be more specific, MNLI requires the model to understand fine-grained
semantic relationships such as entailment, contradiction, and neutrality, providing generalized lan-
guage understanding and reasoning capabilities that benefit a wide range of target tasks. MRPC, on
the other hand, focuses specifically on identifying whether two sentences are paraphrases. This task
improves the model’s ability to detect semantic equivalence, which is particularly useful for tasks
like textual entailment (e.g., RTE).
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More experimental details on the 20-task graph To reduce computational cost, we conducted
the search on subgraphs. Subgraphs were constructed for each task based on its five nearest neigh-
bors (i.e., the top five source tasks as determined by transferability scores). All other conditions
remained consistent with the experiments on the six-task graph. For STS-B, we report the Spearman
correlation, and for all other tasks, we report accuracy.

Tasks COPA BoolQ RTE WNLI STS-B CB WiC
| Train | 300 1K 1K 500 1K 200 1K

Table 4: Number of training samples for target tasks in the 20-task graph experiments
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