
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

ASR free End-to-End SLU using the Transformer

Anonymous Authors1

Abstract

End-to-end spoken language understanding (SLU)
systems directly map speech to intent through
a single trainable model whereas conventional
SLU systems use Automatic Speech Recognition
(ASR) to convert speech to text and utilize Natural
Language Understanding (NLU) to get intent. In
this paper, we show how transformer-based archi-
tecture can be used for building end to end SLU
systems. We conducted experiments on the Fluent
Speech Commands (FSC) dataset, where intents
are formed as combinations of three slots namely
action, object, and location. We also demonstrate
how state-of-the-art results can be obtained us-
ing a combination of various data augmentation
methods.

1. Introduction
With the growing demand of voice interfaces for various
smart devices (e.g. smartphone, smartTV, in-car navigation
system) Spoken Language Understanding (SLU) has drawn
a great deal of attention in recent years. Traditional SLU
approaches use the text transcribed by an automatic speech
recognition (ASR) system to extract the intent of the user
and the slots describing the query (Mesnil et al., 2015).
The main problem with Traditional SLU systems is that
the errors occurred while transcribing the audio is being
forwarded and affects the intent and the slot filling task.
One way to avoid this problem is by combining ASR and
NLU (referred as end-to-end SLU) and directly map speech
to intent (Chen et al., 2018), (Lugosch et al., 2019). In this
method the model is first pre-trained to predict ASR targets
(words and phonemes). The word and phoneme classifiers
are then discarded, and the entire model is then trained end-
to-end on the supervised SLU task. The pre-trained model
weights can be either frozen or fine-tuned during the SLU
task training.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

In this paper, we propose an ASR free end-to-end spoken
language understanding using the transformer (Vaswani
et al., 2017). The model doesnt learn any ASR level rep-
resentation or use any pre-trained ASR model. We use
the transformer encoder blocks with the convolution layer.
Recurrent neural network (RNN) based approaches, par-
ticularly gated recurrent unit (GRU) and long short-term
memory (LSTM) models, have achieved good performance
for most of the tasks. But when compared with RNNs, the
transformer-based encoder can capture the long term depen-
dency better and can produce even better results. We use
other data augmentations(e.g. changing pitch, reverberation,
changing speed, noise injection) with SpecAugment (Park
et al., 2019) (time masking and frequency masking) and get
significantly low classification error compared to any other
approaches. Following (Palogiannidi et al., 2019), instead
of considering intents as the classes, we consider them as tu-
ples of slots, each having an associated SoftMax layer. This
technique converts a single-label classification task into a
multi-label classification task and thus helps in reducing
the number of classes. In the case of the Fluent Speech
Command dataset, we have a three-slot tuple (action, object,
location). We can say that an intent is predicted correctly if
all the three slots corresponding to that intent are predicted
correctly.

2. Related Work
(Lugosch et al., 2019) suggested a pre-training approach
for end-to-end SLU models and also introduced the Fluent
speech command dataset. They used a single trainable that
directly maps speech to intent without explicitly producing
a text transcript.They showed that by using the pre training
techniques boost efficiency for both large and small SLU
training sets.

(Wang et al., 2020) proposed an unsupervised pre-training
approach for the SLU component of an end-to-end SLU
system to preserve semantic features from large-scale raw
audios. They first pretrain the AM component by using (Lu-
gosch et al., 2019) approach and then feed the AM output to
a softmax layer to get a posterior distribution. This posterior
distribution is used as input of the next SLU component.
(Palogiannidi et al., 2019) uses a RNN based end-to-end
SLU for intent classification. Unlike (Lugosch et al., 2019),

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

ASR free End-to-End SLU using the Transformer

(Palogiannidi et al., 2019) didnt make use of any ASR level
prediction (e.g. phonemes,characters, words) and handle
intent as tuples of slots. Additionally this approach uses var-
ious data augmentation methods and achieves state-of-the-
art results. Our approach is closely related to (Palogiannidi
et al., 2019), but rather than using LSTM we make use of
transformer encoder blocks.

3. Model Architecture
The model consists of three parts: (1) Convolution layer,
(2) Transformer block and (3) Classifier. The overall archi-
tecture of our end-to-end SLU model is shown in Figure
1. (Wang et al., 2019)discarded the sinusoidal positional
encoding for transformers and used convolutionally learned
input representations and got very decent results for the
Automatic Speech Recognition task. Following these, we
use a VGG-like convolution block (Simonyan & Zisserman,
2014) before the transformer encoder.The following section
will describe the three parts separately.

3.1. Convolution layer

In order to make sense of a sequence, the model needs to
know the position of each word in the sequence. To address
this, the transformer uses a sinusoidal positional encoding.
We replace the widely used sinusoidal positional encod-
ing with the convolution layer. We feel that adding early
convolutional layers allow the model to learn the relative
positional encoding and helps the model to identify the right
order of the input sequence. We used 2-D convolutional
blocks with layer normalization and ReLU activation after
each convolutional layer. Each convolutional block contains
two convolutional layers followed by a max-pooling layer.
The architecture is shown in the figure 2.

3.2. Transformer block

The input to the transformer encoder is the output of the
convolution block. We will describe the details of the Trans-
former encoder block in this section.

3.2.1. SCALED DOT-PRODUCT ATTENTION

Self-attention is a mechanism that relates different positions
of input sequences to compute representations for the inputs.
It uses three inputs namely queries(Q), keys(K), and val-
ues(V). The output of one query is calculated as a weighted
sum of the values, where weights can be computed by taking
the dot products of the query with all keys, divide each by
1√
dk

, and apply a softmax function. The attention can :

Attention(Q,K, V) = softmax(QKT

√
dk

)V

Where dk is the dimension of the key vector and the scalar

Figure 1. End to End SLU Architecture using Transformer

1√
dk

is used to prevent softmax function into regions that
have very small gradients.

3.2.2. MULTI-HEAD ATTENTION

To allow the model to jointly attend to information from
different representation subspaces at different positions, the
transformer uses multi-head attention. Multi-head attention
calculates h times scaled dot-product attention where h is
the number of heads. Before performing each attention, first
linearly project the queries, keys and values to more dis-
criminated representations. Then, each Scaled Dot-Product
Attention is calculated independently, and their outputs are
concatenated and fed into another linear projection to ob-
tain the final dmodel dimensional outputs. The multi-head
attention can be formulated as:

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O

Where headi = Attention(QWQ
i ,KWK

i , V WV
i)

3.2.3. POSITION-WISE FEED-FORWARD NETWORK

In addition to attention, each of the encoders contains a
position wise fully connected feed-forward network. It con-
sists of two linear transformations with a ReLU activation
in between.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

ASR free End-to-End SLU using the Transformer

Figure 2. Encoder convolution layer

FFN(x) = max(0, xW1 + b1)W
2 + b2

The dimensionality of input and output is dmodel, and the
inner layer has dimensionality dff . Although the linear
transformations are similar in various locations, different
parameters are used from layer to layer. In addition, resid-
ual connection and layer normalization (Ba et al., 2016)
are important components of the transformer. To squeeze
the output of the transformer encoder, we use an average
pooling layer. Besides that batch normalization (Ioffe &
Szegedy, 2015) is also used.

3.3. Classifier

Following [8], the prediction can be made by considering
both conditional and unconditional models. In case of an
unconditional model, the slots are independent. The intent
probability can be formulated as:

p(A,O,L|D) = p(A|D)p(O|D)p(L|D)

Here Action, Object, Location, and sequence of acoustic
features for the utterance is represented by A, O, L and D
respectively. In the case of conditional model, the intent
probability can be formulated as :

p(A,O,L|D) = p(A|D)p(O|A,D)p(L|A,O,D)

Please note that any ordering of A,O,L is valid and there
will be one independent slot and two dependent slots. When
using unconditional classifiers, the slots can be predicted by
using the transformer encoder output. In the case of condi-
tional classifiers, the action slot is predicted using the trans-
former encoder output, whereas the object slot is predicted
by considering (concatenating) both action prediction em-
bedding and the transformer encoder output. For predicting
location, we use(concatenate) action prediction embedding,
object prediction embedding and the transformer encoder
output. The intent predicted by the model can be then ex-

Table 1. Fluent Speech Commands dataset statistics

SPLIT SPEAKERS UTTERANCES

TRAIN 77 23,132
TEST 10 3,118
VALID 10 3,793

Table 2. Classification error(%) on the test set, given conditional
or unconditional classifier.

CLASSIFIER ERROR(%)

CONDITIONAL CLASSIFIER 2.95
UNCONDITIONAL CLASSIFIER 3.725

pressed by combining the prediction for action slot, object
slot and the location slot.

4. Experiments
In this section we are going to talk about the experiments
that we conduct on Fluent Speech Command datasets. We
compare our results with state-of-the-art models. We rep-
resent input signals as a sequence of 83 dimensional log-
Mel filter bank features that is extracted every 10ms. We
use a 512 dimensional attention vector with 4 heads along
with Adam optimizer with a learning rate of 0.0001. We
conducted multiple sets of experiments. Some of the experi-
ments are conducted without using any augmentations while
some use augmentation. The best epoch is chosen for each
experiment based on the results on the validation set and the
classification error achieved on the test set. The overall loss
function for the model is the summation of cross entropy
losses for the three slots.

4.1. Dataset

The dataset is composed of 16 kHz single-channel .wav au-
dio files. Each audio file has a recording of a single spoken
command in English. The dataset statistics are given in the
Table 1. Here intents are considered as valid combinations
of slots. There are 31 unique intents in total with 6,14,4
unique action,object,location respectively. For each intent
there can be multiple possible wordings. For example, the in-
tent action: ”bring”, object: ”newspaper”, location: ”none”
can have Bring me the newspaper, Get me the newspaper
and Fetch the newspaper as the possible wordings.

4.2. Conditional and Unconditional classifier

To examine which classifier works best, we trained both the
conditional and the unconditional model given the entire
training set (without using any augmentations). Examining
the results in Table 2, we observe that the model using

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

ASR free End-to-End SLU using the Transformer

Table 3. Classification error on the test set, given conditional or
unconditional classifier.

ENCODER LAYERS ERROR(%)

4 4.45
6 3.49
8 3.07
12 2.95

conditional classifier performs better than the model using
unconditional classifier.

4.3. Varying number of encoder layers

To explore the effect of large models, we vary the number
of encoder layers. We try 4, 6, 8 and 12 encoder layers.
The result of the experiments is shown in Table 3. All these
experiments are conducted using the entire training set (with-
out using any augmentations). We can see that as we are
increasing the number of encoder layers, the classification
error is decreasing. By using 12 encoder layers, we achieve
2.95% as the lowest classification error on the test set.

4.4. Data Augmentation Methods

We trained our model in three different ways. Firstly to eval-
uate the performance of the model on the original dataset we
trained our model without using any data augmentation. We
then use SpecAugment (Time masking and Frequency mask-
ing) on log-Mel filter bank features while training. To make
it more robust, we first augment the original data using four
different augmentations namely reverberation, pitch change,
speed change, and noise injection. After using data augmen-
tation the number of training samples increases from 23132
to 115660. We then make use of SpecAugment (Time mask-
ing and Feature masking) on log-Mel filter bank features of
the augmented data while training. In this section, we are
going to talk about some of the augmentation methods we
used. Table 5 shows the results of augmentation.

Noise Injection: Noise injection is a fundamental tool for
data augmentation. Adding noise during training can make
the training process more robust and reduce generalization
error.

Changing Pitch: Pitch is the quality that enables sounds to
be judged as higher and lower in the sense associated with
musical melodies. We use the librosa library for this data
augmentation.

Reverberation: Reverberation is the reflection of sound
waves created by the superposition of echoes. This can be
done using the pysndfx library.

Changing speed: Changing speed is a commonly used
method for doing data augmentation, where the play rate of

the audio is randomly changed. Same as changing pitch, this
augmentation is performed by librosa function. It stretches
time series by a fixed rate. The audio speed is changed by
taking a value between 0.85 to 1.15 randomly.

SpecAugment: (Park et al., 2019) introduced SpecAugment
for data augmentation in speech recognition. SpecAugment
is applied directly to the input features of a neural network.
There are three basic ways to augment data which are time
warping, frequency masking, and time masking. We use
time masking and frequency masking methods while train-
ing the model.

Figure 3. Results of training on complete dataset

Figure 4. Results of training on partial dataset

4.5. Training on complete dataset

We conducted multiple experiments using the entire training
set. Firstly we trained the model without using any augmen-
tation. Then we experimented with SpecAugment. Finally

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

ASR free End-to-End SLU using the Transformer

Table 4. Comparison of classification error(%) between different
approaches on the Fluent Speech Command dataset.

MODEL ERROR(%)

PRE TRAINED SLU(LUGOSCH ET AL., 2019) 1.2
LSTM BASED SLU(PALOGIANNIDI ET AL., 2019) 1.15
ERNIE(WANG ET AL., 2020) 0.98
SPEC AUGMENT 1
SPEC + OTHER AUGMENTATION 0.34

Table 5. Classification error(%) on full training set and 10% of the
training set.

EXPERIMENT FULL DATA 10% DATA

NO AUG 2.95 25.05
SPECAUG 1 14.12
SPECAUG + OTHERAUG 0.34 8

we used other data augmentation methods (described earlier)
with the SpecAugment and achieved a classification error of
0.34% on the test set. In comparison with the previous state-
of-the-art results Table 4, our model achieved significantly
low classification error. We performed all these experiments
using 12 encoder layers. The validation accuracy for these
experiments over time is shown in Figure 3. The results
obtained on the test set for different experiments is shown
in the Table 5 (Full training set column).

4.6. Training on 10% dataset

To evaluate the performance of models, we randomly se-
lected 10% of the training data and used this dataset for
training instead of using the full dataset. All the experi-
ments. We conducted multiple experiments using 10% of
the training set (all the experiments described for the full
dataset), and observed that by using other data augmentation
methods with the SpecAugment we achieved a classification
error of 8%. The validation accuracy for these experiments
over time is shown in Figure 4. Table 5 compares the results
obtained on a full training set with the results obtained using
only 10% of the training data.

5. Conclusion
End-to-end SLU approaches provide a new perspective for
various applications since the speech is directly map to
intent. In this paper, we proposed an end-to-end transformer
based SLU for intent classification. The experiment results
show that our proposed approach significantly outperforms
SOTA end-to-end SLU systems. In the future, we plan to
explore the limitations of end-to-end SLU and will try to
enhance the architecture.

References
Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization,

2016.

Chen, Y., Price, R., and Bangalore, S. Spoken language
understanding without speech recognition. In 2018 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 6189–6193, 2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift,
2015.

Lugosch, L., Ravanelli, M., Ignoto, P., Tomar, V. S., and
Bengio, Y. Speech model pre-training for end-to-end
spoken language understanding, 2019.

Mesnil, G., Dauphin, Y., Yao, K., Bengio, Y., Deng, L.,
Hakkani-Tur, D., He, X., Heck, L., Tur, G., Yu, D., and
Zweig, G. Using recurrent neural networks for slot filling
in spoken language understanding. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, 23(3):
530–539, 2015.

Palogiannidi, E., Gkinis, I., Mastrapas, G., Mizera, P., and
Stafylakis, T. End-to-end architectures for asr-free spoken
language understanding, 2019.

Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B.,
Cubuk, E. D., and Le, Q. V. Specaugment: A simple
data augmentation method for automatic speech recog-
nition. Interspeech 2019, Sep 2019. doi: 10.21437/
interspeech.2019-2680. URL http://dx.doi.org/
10.21437/Interspeech.2019-2680.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition, 2014.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2017.

Wang, C., Wu, Y., Du, Y., Li, J., Liu, S., Lu, L., Ren,
S., Ye, G., Zhao, S., and Zhou, M. Semantic mask for
transformer based end-to-end speech recognition, 2019.

Wang, P., Wei, L., Cao, Y., Xie, J., and Nie, Z. Large-
scale unsupervised pre-training for end-to-end spoken
language understanding. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 7999–8003, 2020.

http://dx.doi.org/10.21437/Interspeech.2019-2680
http://dx.doi.org/10.21437/Interspeech.2019-2680

