
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INDICSUPERTOKENIZER: AN OPTIMIZED TOKENIZER
FOR INDIC MULTILINGUAL LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tokenizers play a crucial role in determining the performance, training efficiency,
and the inference cost of Large Language Models (LLMs). Designing effec-
tive tokenizers for multilingual LLMs is particularly challenging due to diverse
scripts and rich morphological variation. While subword methods such as Byte
Pair Encoding (BPE) are widely adopted, their effectiveness in multilingual set-
tings remains underexplored. We present IndicSuperTokenizer, a tokenizer for
Indic multilingual LLMs, that combines both subword and multi-word tokeniza-
tion, along with language-specific pre-tokenization, leading to more linguistically
aligned tokens and achieving a new state-of-the-art in fertility score. Evaluated
across English, 22 Indian languages and code data, our tokenizer improves the av-
erage fertility score by 39.5% over LLaMA4 and by 18% over Sutra (the current
best). This translates to 44% improvement in inference throughput over LLaMA4
while maintaining comparable performance on English and Indic benchmarks. We
also present detailed ablations across tokenizer training data size, vocabulary size,
merging techniques, and pre-tokenization strategies, demonstrating the robustness
of our design choices.

1 INTRODUCTION

Large Language Models (LLMs) (Touvron et al., 2023; Grattafiori et al., 2024; Abdin et al., 2025;
Guo et al., 2025; Yang et al., 2025; Team et al., 2025) rely on the crucial step of tokenization, the
process of converting raw text into discrete units called tokens. A key metric for evaluating tokeniz-
ers is the “fertility score” (or token-to-word ratio) (Ali et al., 2024) where, a lower fertility score
is desirable due to more efficient (and hence cheaper) LLM training and inference. Among the
many proposed approaches, subword tokenization schemes such as BPE (Sennrich et al., 2016a),
Unigram (Kudo, 2018), WordPiece (Song et al., 2021), and their byte-level extensions have become
the de facto choice. However, tokenization remains an understudied topic within the LLM litera-
ture (Dagan et al., 2024; Mielke et al., 2021), especially in multilingual settings (Petrov et al., 2023),
where, skewed fertility scores across languages, often lead to concerns around fairness, high infer-
ence latency, cost and context size. With 22 constitutionally recognized languages1, these issues are
especially pronounced for Indic languages comprising multiple scripts and a rich morphology. Our
analysis suggests that tokenizers of popular multilingual tokenizers, largely designed for English,
could produce fertility scores as high as 10.5 (LLaMA-4 tokenizer for Oriya; Table 22) for Indic
languages, far worse than the near-ideal scores achieved for English. This leads to longer token
sequences, higher compute overheads, and poor alignment with linguistic units like morphemes and
compounds.

Designing an efficient tokenizer involves making careful choices around the size of the vocabulary
(of tokens), tokenizer training data, the tokenization approach, and, doing this across languages is
nontrivial. In this work, we present IndicSuperTokenizer, an efficient tokenizer for Indic LLMs, that
achieves state-of-the-art fertility scores across 22 Indic languages, English, and code. Our design
choices are grounded in detailed ablations and our tokenizer combines linguistically grounded pre-
tokenization with a two-stage subword–superword learning process (inspired from SuperBPE (Liu
et al., 2025b)), yielding a more compact and semantically faithful vocabulary. Figure 1 illustrates

1https://en.wikipedia.org/wiki/Languages_with_official_recognition_in_
India

1

https://en.wikipedia.org/wiki/Languages_with_official_recognition_in_India
https://en.wikipedia.org/wiki/Languages_with_official_recognition_in_India

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: IndicSuperTokenizer (IST) captures superwords (e.g. “wake up”, “in the morning”) and
avoids fragmenting Indic words (see for e.g. Bengali, Tamil).

some examples where our approach avoids fragmenting common words or idiomatic phrases into
unnatural subunits across different languages. We make the following contributions:

• We present IndicSuperTokenizer, a state-of-the-art tokenizer for Indic LLMs, systemati-
cally benchmarking it against popular multilingual baselines.

• We study the impact of vocabulary size, training data, and language-specific pre-
tokenization choices on fertility score, showing that careful pre-tokenization outweighs
naive vocabulary scaling.

• To the best of our knowledge, we are the first to carry out a comprehensive benchmarking
of a tokenizer across multiple intrinsic quality measures, as well as to study its downstream
impact on task performance and LLM inference efficiency in both pretraining from scratch
as well as continual pretraining settings.

2 RELATED WORK

Tokenization Algorithms. Tokenization strategies differ in both theory and practice. While al-
ternate sub-word tokenization algorithms have been explored in the past such as WordPiece (Song
et al., 2021), Unigram LM (Kudo & Richardson, 2018), Byte Pair Encoding (BPE) remains the
most widely adopted. Originally developed for compression (Gage, 1994) and later adapted for
neural MT (Sennrich et al., 2016b), BPE merges frequent character pairs to balance coverage with
efficiency. Its variants aim to address inefficiencies: PickyBPE (Chizhov et al., 2024) discards un-
informative merges to improve vocabulary utility, while Scaffold-BPE (Lian et al., 2024) iteratively
prunes low-frequency scaffold tokens to reduce imbalance and enhance downstream performance.
Recent extensions like SuperBPE (Liu et al., 2025a) expand beyond word boundaries, jointly learn-
ing subwords and multi-word “superwords” yielding improved compression and inference efficiency
in a 2-stage curriculum. BoundlessBPE (Schmidt et al., 2024), another contemporary work, relaxes
the Pre-tokenization word boundary constraint in an unified learning step. Our work compares these
two recent approaches and builds upon SuperBPE that preserves subword coverage while capturing
larger semantic units in morphologically rich Indian languages.

Multilingual Tokenizers. Multilingual tokenization faces challenges from script diversity, mor-
phology, and structural variation. Comparative studies show that vocabulary size and construction
strategies strongly affect performance for morphologically rich languages (Karthika et al., 2025a),
while inefficiencies in underrepresented ones, such as Ukrainian, translate to higher fertility and
computational costs (Maksymenko & Turuta, 2025). Tokenization also influences how multilin-
gual models encode morphology, as demonstrated in mT5 vs. ByT5 (Dang et al., 2024). For Indic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

languages, tailored resources (Kakwani et al., 2020) and IndicBERT (AI4Bharat, 2022) highlight
the value of domain-specific tokenization. Recent benchmarks further reveal economic implica-
tions, with BLOOM’s tokenizer achieving the best cost efficiency among popular multilingual LLMs
(ADA Sci, 2024). Together, these studies show that current multilingual tokenizers fragment low-
resource and morphologically rich languages, motivating approaches like ours that combine normal-
ization, language-tailored pre-tokenization, and multi-word learning to achieve better efficiency and
fairness in Indic languages. Tokenization for Indic languages presents unique challenges due to their
linguistic diversity, rich morphology, and script multiplicity.

Pre-tokenization. Pre-tokenization plays a pivotal role in shaping token boundaries, directly in-
fluencing both compression efficiency and reasoning performance (Xue et al., 2024). Sentence-
Piece (Kudo & Richardson, 2018) introduced a language-agnostic approach by treating input as
raw streams, effective for languages without whitespace boundaries. More recent approaches like
BoundlessBPE (Schmidt et al., 2024) relax pre-token constraints to improve frequency distributions,
while regex-based designs continue to prove crucial for capturing script-specific structures.

3 INDICSUPERTOKENIZER (IST)

Language modeling involves estimating the probability distribution over text sequences, P (S),
where S may represent a sentence, paragraph, or document. To achieve this, the text is first
converted into a sequence of discrete tokens through a tokenization function g(S) = X =
(X1, X2, . . . , Xn) ∈ V n, where V denotes the vocabulary and n the sequence length. Tokeniz-
ers can be open-vocabulary, ensuring any string can be represented (e.g., byte-level), or closed-
vocabulary, where unseen text maps to an out-of-vocabulary symbol (e.g., word lists) (Rae et al.,
2021). In our work, we adopt an open-vocabulary approach that combines byte-pair encoding (BPE)
with a UTF-8 byte fallback, following Radford et al. (2018). In this section, we describe our tok-
enizer training and evaluation approach.

3.1 TOKENIZER TRAINING

With the aim of improving fertility in Indic languages and scripts, we follow the curriculum princi-
ples as in the SuperBPE algorithm (Liu et al., 2025a). Specifically, we have:

Stage 1 (Subword Learning): Training begins with standard byte-pair encoding (BPE) applied after
whitespace pre-tokenization. This ensures that merges occur only within word boundaries, allowing
the tokenizer to learn fine-grained subword units such as roots, affixes, and common morphemes.
Stage 1 continues until the vocabulary reaches a pre-defined transition point t (< |V |).
Stage 2 (Superword Learning): After reaching t, training resumes without whitespace constraints,
allowing BPE to merge across word boundaries. This enables the formation of superwords, frequent
multiword expressions or collocations (e.g., “one of the”, “number of”), improving compression and
reducing token counts for common phrases.

This two-stage tokenizer training is particularly effective for morphologically rich languages and
scripts with complex variations where, meaningful subwords are first anchored and then composed
into frequent multiword units.

3.2 PRE-TOKENIZATION

Pre-tokenization segments raw text before subword learning to improve token consistency and
efficiency. We combine regex-based, Unicode normalization, and morphology-aware strategies.
Unicode-aware regex separates punctuation, handles numeric groups, and aligns tokens with seman-
tic units. NFKC normalization standardizes visually identical characters, reducing sparsity (Table
16 illustrates the effect of normalization). Morphology-aware segmentation decomposes words into
roots and affixes to capture recurring morphemes. While we experimented with morphology-aware
segmentation, including them in tokenization without impacting the latency is non-trivial (Refer to
Appendix C.2 for details). In contrast to SuperBPE, in our Stage 1 pre-tokenization step we replace
GPT-2 rules with LLaMA-4 regex for script-agnostic segmentation, improving token-to-word ratios
by 38–40% (See Table 1) on Indic scripts. Stage 2 relaxes whitespace constraints to form multiword

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

tokens capturing collocations and idioms. This design produces a script-robust tokenizer that effi-
ciently supports multiword learning across English and Indic languages. However, unconstrained
merging risks producing tokens that cross sentence boundaries,which destabilizes generation and
distorts end-of-sentence probabilities. To mitigate this, we introduce sentence-level boundary con-
straints: merges are free within sentences but are disallowed across sentence delimiters.

Table 1: Fertility scores showing LLaMA-4 regex outperforms GPT-2 in stage-1 tokenizer training.

Regex as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

GPT-2 4.36 4.72 4.67 1.57 2.88 1.32 3.95 4.12 3.47 2.47 5.95 3.17 7.08 3.30 4.86 4.37 4.44 3.28 5.97 2.71 1.30 6.53 5.61 1.29
LLaMA-4 1.83 1.74 1.99 1.54 1.56 1.33 2.17 1.83 1.36 1.36 2.15 1.56 2.24 2.27 1.61 1.59 1.65 1.47 2.51 3.60 1.45 2.07 1.83 1.47

3.3 TRAINING DATA AND VOCABULARY

Training a multilingual tokenizer involves careful design choices on the vocabulary size, language
(or language script)-wise vocabulary distribution, and training data mix. We evaluate different vo-
cabulary allocation strategies (Section 4.4) and conduct detailed ablations (Section 5) to inform
these design choices. The final IndicSuperTokenizer that we train uses a shared vocabulary of 200K
tokens, distributed across language scripts (Figure 2), and is trained on 10GB of multilingual high
quality data curated from OLMo(OLMo et al., 2025), Wikipedia2, books, PDFs, Common Crawl,
and the Sangraha dataset (Khan et al., 2024).

Figure 2: Vocabulary size distribution across language scripts. See Appendix A.1 for script details.

3.4 BASELINES

We benchmark against 9 tokenizers, comprising: i) Indic-focused tokenizers: tokenizers designed
primarily for Indian languages: Sutra (Tamang & Bora, 2024) and Sarvam-2B (Team, 2024b) (re-
ferred as Sarvam). ii) Good Indic support tokenizers: multilingual tokenizers with demonstrated
capabilities for Indic languages: Gemma-3-27B-it (Team et al., 2025) (referred as Gemma-3), GPT-
oss (OpenAI, 2025) and LLaMA-4 (AI, 2025b). iii) General tokenizers: tokenizers of widely-used
general-purpose LLMs: Qwen3-32B (Team, 2024a) (referred as Qwen-3), LLaMA-3.2-1B (Dubey
et al., 2024), Mistral-Nemo (AI, 2024) and DeepSeek-R1 (AI, 2025a).

3.5 METRICS

We employ four intrinsic metrics capturing different aspects of token efficiency and informativeness:
(i) Fertility score (Rust et al., 2021; Scao et al., 2022), measuring vocabulary granularity; (ii) Nor-
malized Sequence Length (NSL) (Dagan et al., 2024), quantifying sequence compression relative
to a base tokenizer; (iii) Rényi’s entropy and efficiency (Zouhar et al., 2023), assessing information
density; and (iv) Bytes per token (Kocetkov et al., 2022), reflecting memory and storage efficiency.
We report micro-average per line at the language level. More details on the metrics and definitions
in Section E in Appendix.

3.6 EVALUATION FRAMEWORK

We construct an evaluation set spanning 22 Indic languages, English, and code, curated from the
same sources as the training corpus. Table 2 reports dataset statistics: text volume, number of lines,
and average words per line per language. All metrics are computed at the line level and aggregated
to the language level.

2https://en.wikipedia.org/wiki/

4

https://en.wikipedia.org/wiki/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We also develop a modular evaluation framework supporting HuggingFace3, SentencePiece4, and
TikToken5 tokenizers along with a comprehensive set of intrinsic metrics, including, Fertility score,
normalized sequence length (NSL), Rényi entropy and efficiency, and bytes per token. We will
release both the evaluation dataset and the framework for reproducible benchmarking and fair com-
parison of multilingual tokenizers.

Table 2: Evaluation corpus statistics across 22 Indic languages, English, and code. We report stan-
dard ISO codes here. See Section A.1 for the actual language name.

as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

Size (MB) 56 562 13 4 1 148 67 83 422 30 252 60 311 34 152 82 46 144 110 0.47 38 502 486 38
Lines (K) 65 681 19 118 2 449 135 91 545 21 273 129 337 64 257 126 59 198 139 1 69 658 773 27
Avg W/Line 51 47 41 3 43 56 37 59 59 145 41 39 35 43 33 40 45 57 36 26 70 32 32 185

4 EXPERIMENTS AND RESULTS

4.1 INTRINSIC EVALUATION OF TOKENIZERS

We achieve SOTA performance across 9 tokenizers for fertility score in consideration (see Table 3
for Indic focused or good Indic support tokenizers and an extended version Table 22 in Appendix for
the rest). As shown in Table 3, IndicSuperTokenizer consistently achieves the lowest ratios across
all evaluated languages, which reflects the degree of fragmentation. Bytes-per-token (Appendix
E.2) measures the average raw text bytes per token, indicating information density and sequence
compactness. Table 7 shows that IndicSuperTokenizer achieves consistently higher values across
languages. See Appendix E.2 for details.

Table 3: Fertility score (↓) comparison for Indic focused and Good support tokenizers across lan-
guages here. IST performs best in 20 of 24 languages. An extended version in Table 22 (Appendix).

Tokenizer (↓) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

Gemma-3 2.65 1.69 2.84 1.79 1.69 1.39 2.60 2.50 1.47 1.48 3.34 1.91 3.45 2.07 2.03 2.03 4.42 2.83 3.37 5.16 2.03 2.50 2.94 1.44
GPT-OSS 2.66 2.41 3.17 1.51 1.89 1.33 2.73 2.37 1.72 1.58 3.34 2.01 3.51 2.41 2.61 2.10 6.26 2.71 3.89 13.01 1.76 3.18 3.13 1.51
LLaMA-4 4.40 2.93 3.34 1.46 2.00 1.34 2.84 3.37 1.83 1.72 4.23 2.28 4.95 2.73 2.79 2.46 10.51 3.23 4.12 9.04 2.13 5.87 4.53 1.76
Sarvam 4.24 1.91 2.92 2.14 1.85 1.66 3.01 2.11 1.53 1.91 2.53 2.11 3.19 4.60 1.94 2.35 2.43 1.67 3.78 13.07 7.62 2.49 2.63 7.93
Sutra 2.12 2.07 3.06 2.12 1.78 1.17 2.68 2.15 1.62 1.48 2.71 2.08 3.10 2.40 2.18 2.01 2.24 1.50 3.76 2.03 2.23 2.58 2.77 1.55
IST 1.85 1.74 2.04 1.47 1.45 1.12 2.17 1.77 1.23 1.21 2.19 1.58 2.30 2.28 1.63 1.62 1.65 1.39 2.59 3.72 1.45 2.12 1.88 1.44

Table 4: NSL score (↓) comparison for Indic focused and Good support tokenizers across languages
here. IST performs best in 23 of 24 languages. An extended version in Table 21 (Appendix).

Tokenizer (↓) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

Gemma-3 0.63 0.59 0.87 1.31 0.91 1.06 0.94 0.76 0.83 0.93 0.81 0.89 0.73 0.81 0.76 0.83 0.44 0.89 0.84 0.59 0.99 0.45 0.67 0.85
GPT-oss 0.63 0.83 0.95 1.03 0.96 1.00 0.96 0.71 0.94 0.95 0.79 0.90 0.72 0.89 0.94 0.85 0.60 0.85 0.94 1.43 0.83 0.56 0.71 0.88
Sutra 0.55 0.74 0.93 2.09 0.92 0.89 0.96 0.68 0.92 0.91 0.67 0.94 0.65 0.92 0.84 0.82 0.24 0.51 0.91 0.26 1.10 0.47 0.59 0.90
Sarvam 0.99 0.66 0.91 1.50 1.00 1.27 1.13 0.64 0.85 1.19 0.62 0.99 0.65 2.19 0.72 0.96 0.24 0.54 0.93 1.45 3.63 0.45 0.56 4.25
IST 0.45 0.60 0.65 0.94 0.78 0.85 0.82 0.54 0.68 0.80 0.53 0.76 0.50 0.91 0.61 0.67 0.18 0.45 0.66 0.45 0.72 0.38 0.44 0.86

Normalized sequence length (Appendix E.3) quantifies tokenized sequence length relative to a
base tokenizer, indicating relative compression efficiency. Table 4 shows that IndicSuperTokenizer
achieves shorter normalized sequences across languages. Rényi’s entropy quantifies the uncertainty
of token distributions, while Rényi’s efficiency normalizes entropy by vocabulary size to assess
utilization. Table 6 shows that IndicSuperTokenizer achieves superior efficiency across languages,
reflecting effective and balanced token allocation.

4.2 EXTRINSIC EVALUATION ON DOWNSTREAM TASKS

We also evaluated the downstream model performance by pretraining LLaMA-3.2 1B models us-
ing two tokenizers: i) IndicSuperTokenizer, our proposed tokenizer optimized for morphologically
meaningful segmentation in Indic and multilingual settings, and (ii) LLaMA-4 tokenizer, chosen for

3https://github.com/huggingface/tokenizers
4https://github.com/google/sentencepiece
5https://github.com/openai/tiktoken

5

https://github.com/huggingface/tokenizers
https://github.com/google/sentencepiece
https://github.com/openai/tiktoken

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 5: Inference latency com-
parison of 1B models trained with
LLaMA-4 and IST tokenizers.

Model TTFT (ms) ↓ OTPT (tokens/s) ↑
LLaMA-4 19.17 ± 0.15 117.99
IST 18.98 ± 0.36 169.42

Table 6: Rényi’s Entropy and Efficiency across top In-
dic tokenizers. Higher efficiency indicates better bal-
ance between vocabulary capacity and token usage.

Gemma-3 GPT-oss LLaMA-4 Sarvam Sutra IST

Entropy ↓ 20.70 20.81 21.09 20.71 20.62 20.42
Efficiency ↑ 0.22 0.19 0.14 0.21 0.23 0.28

Table 7: Bytes-per-token score (↑) comparison for Indic focused and Good support tokenizers across
languages here. IST performs best in 22 of 24 languages.

Tokenizer (↑) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

Gemma-3 6.37 10.45 5.87 2.33 6.75 4.36 5.29 6.31 9.16 7.01 6.73 6.42 7.57 6.23 8.90 8.31 3.76 4.62 6.66 2.59 3.87 9.60 6.82 5.55
GPT-oss 6.36 7.35 5.27 2.77 6.04 4.55 5.02 6.68 7.83 6.54 6.74 6.11 7.43 5.34 6.94 8.04 2.65 4.83 5.79 1.03 4.46 7.56 6.41 5.28
LLaMA-4 3.84 6.05 4.99 2.85 5.70 4.53 4.84 4.69 7.37 6.03 5.33 5.39 5.26 4.71 6.49 6.84 1.58 4.05 5.45 1.48 3.69 4.10 4.43 4.54
Sarvam-2B 3.92 9.42 5.70 1.95 6.16 3.65 4.55 7.62 8.92 5.29 9.07 5.83 8.63 2.81 9.46 7.20 7.17 7.95 6.03 1.02 1.02 9.74 8.46 1.00
Sutra 8.04 8.50 5.44 1.97 6.39 5.15 4.98 7.36 8.33 7.00 8.38 5.88 8.75 5.36 8.35 8.45 7.73 8.76 6.04 6.59 3.49 9.38 8.04 5.15
IST 9.12 10.15 8.18 2.84 7.86 5.44 6.29 8.95 11.01 8.59 10.30 7.80 11.33 5.67 11.11 10.39 10.07 9.40 8.70 3.60 5.40 11.32 10.70 5.55

comparable vocabulary size and widespread use. Both models were trained on the same dataset in
iso-compute setting to ensure a fair comparison. More details in the Appendix B. We find that our
tokenizer shows competitive performance across the English and Indic benchmarks.

The pretraining corpus (Table 20 in Appendix) balances coverage and domain diversity. It combines
web-scale sources (Nemotron CC) for general context with structured data including MegaMath,
StackV2, synthetic generations, and books. Indic-language content constitutes roughly 20% of the
corpus, drawn from Indic CC, Wikipedia, and Sangraha Verified, providing sufficient signal to eval-
uate cross-lingual and morphologically rich representation quality.

Table 8: Performance comparison of English (left) and Indic benchmarks (right).

English Benchmarks Indic Benchmarks

Dataset LLaMA-4 IST Dataset LLaMA-4 IST

HellaSwag 0.353 0.357 Indic COPA 0.544 0.556
CommonsenseQA 0.206 0.204 Indic Sentiment 0.524 0.551
OpenBookQA 0.216 0.218 Indic XNLI 0.347 0.346
Winogrande 0.504 0.510 Indic Paraphrase 0.534 0.539
GSM8K 0.016 0.018 MILU (Indic Multi-turn LU) 0.261 0.258
ARC Easy 0.623 0.630 ARC Challenge (Indic) 0.236 0.244
ARC Challenge 0.291 0.292 TriviaQA (Indic) 0.268 0.262
MMLU 0.252 0.249
DROP 0.048 0.036

Average 0.279 0.279 Average 0.388 0.394

4.3 HOW DOES TOKENIZER DESIGN IMPACT MODEL LATENCY AND THROUGHPUT?

Next, we evaluate how tokenization impacts end-to-end model efficiency. We trained two 1B-
parameter models under identical conditions: one with our tokenizer and one with the LLaMA
tokenizer of similar vocabulary size. We then evaluated inference efficiency over 200 samples
spanning Indic languages and English, with varying input lengths. Latency6 was measured using
standard metrics, including Time-To-First-Token (TTFT), Output Throughput (OTPT), and Input
Sequence Length (ISL), across 200 instances with 5 warm-up requests and results averaged over 10
runs. Experiments were served on 8 H100 GPUs using Triton Inference Server as backend, with a
maximum generation limit of 256 new tokens. Our tokenizer yields clear efficiency gains (Table 5).

6https://tinyurl.com/4e7nh7c8

6

https://tinyurl.com/4e7nh7c8

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

These gains stem from improved compression: shorter token sequences encode more information
per token, thereby lowering per-request computation without compromising expressivity. Overall,
this demonstrates that tokenizer design directly shapes not only pretraining efficiency but also real-
world deployment latency, making it a critical factor for practical model performance.

4.4 VOCABULARY ALLOCATION: EXPLICIT VS. CORPUS-DRIVEN

We allocate vocabulary budgets proportionally across scripts to preserve subword/multi-word granu-
larity. Budgets were derived from corpus sizes, ensuring that both high- and low-resource scripts re-
tained sufficient capacity. We compared two strategies for realizing this allocation. The first, explicit
merging, trains script-specific tokenizers and concatenates their vocabularies via a rule-stacking
procedure. While conceptually modular, this approach introduces distributional interference across
scripts, yielding higher token-to-word ratios and fragmented segmentation (Table 9). The second,
corpus-driven alignment, trains a single tokenizer on the concatenated multilingual corpus, allowing
the vocabulary to adapt naturally to language frequencies. This unified training not only mirrored
corpus composition (Table 10) but also achieved the lowest fertility scores across scripts (Table 3),
outperforming explicit merging and public baselines. While script-aware budget allocation is neces-
sary, explicit merging is inefficient; corpus-driven alignment provides a more scalable and faithful
multilingual tokenization strategy.

Table 9: Fertility comparison between individual script tokenizers and the merged tokenizer across
selected Indic languages. Lower values are better.

Tokenizer as bn hi mai mr san te

Individual 2.05 2.13 1.21 1.35 1.75 2.49 1.40
Merged 2.32 2.14 1.55 1.57 1.73 2.79 1.95

Table 10: Script-specific training data size (Total corpus size 9.4 GB) and resulting vocabulary
percentage distribution. Refer to Table 17 in Appendix for script mapping.

Metric ar bn deva en gu ka ml pa ta te
Data size (MB) 106 396 2200 3590 124 644 580 307 616 617
Percentage 1.12 4.18 23.25 37.94 1.31 6.81 6.13 3.24 6.51 6.52
Vocab perc dist 2.69 6.32 20.89 32.92 2.38 7.82 6.76 4.68 7.04 8.50

4.5 QUALITY ANALYSIS: UNDERTRAINED “GLITCH” TOKEN

We analyze under-trained tokens in our tied-embedding LLaMA-3.2-1B models trained with both
the IST tokenizer and a comparable BPE tokenizer of similar vocabulary size trained on the same
corpus. Both tokenizers share the first 90% of the vocabulary. The IST tokenizer switches to super-
word training for the last 10% whereas the base BPE tokeniser continues standard subword training.
Following Land & Bartolo (2024) to construct a reference for unused embeddings, we introduced
a small set of dummy tokens into the vocabulary that have zero occurrences in the training data.
Their embeddings were averaged to obtain a mean reference vector. We then retrieved the top-K
nearest neighbors (cosine distance), which represent potential “glitch” tokens (Geiping et al., 2024).
As shown in Figure 5 (in the Appendix) the IST tokenizer produces far fewer such glitch tokens
than the base BPE tokenizer. These results suggest that incorporating multi-words promotes more
efficient utilization of the vocabulary, while purely subword-based tokenizers overfit in the long tail,
yielding a higher proportion of under-trained tokens. More discussion in Appendix Section C.3.

4.6 CAN WE REPLACE OPENSOURCE MODEL TOKENIZER WITH IST?

Following ReTok (Gu et al., 2024), we replace the tokenizer of a pre-trained LLaMA-3.2-1B
model (denoted LLAMA-3.2-ORIG) (Grattafiori et al., 2024) with IndicSuperTokenizer (referred as
LLaMA-3.2-IST). Let Vorig and VIST denote their corresponding vocabularies. For a token t ∈ VIST,
we initialize its embedding Einit(t) as: if t ∈ Vorig ∩ VIST, then Einit(t) = Eorig(t), its embed-
ding from the pretrained model, otherwise, if t ∈ VIST \ Vorig and decomposes under the original

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

tokenizer into (t1, . . . , tk), then Einit(t) = 1
k

∑k
i=1 Eorig(ti). We then continually pretrained the

LLaMA-3.2-IST model, keeping just the embedding and LM head layers trainable, on a 40B-token
corpus comprising English, Indic, code, and mathematics (see Appendix for details). As seen in
Table 11, the LLaMA-3.2-IST model performs competitively with the original LLaMA-3.2-ORIG.
This suggests that, in addition to pretraining-from-scratch settings, an optimized multilingual tok-
enizer, such as IndicSuperTokenizer, could also be leveraged in opensource models through CPT
(Continual Pretraining (Chen et al., 2024)) leading to significant throughput gains (as seen in Ta-
ble 5) while maintaining the original model quality.

Table 11: Performance comparison English (left) and Indic benchmarks (right).

English Benchmarks Indic Benchmarks

Dataset LLaMA-3.2-ORIG LLaMA-3.2-IST Dataset LLaMA-3.2-ORIG LLaMA-3.2-IST

Winogrande 0.60 0.61 Indic COPA 0.58 0.56
GSM8K 0.05 0.05 Indic Sentiment 0.82 0.85
ARC Challenge 0.40 0.39 Indic XNLI 0.35 0.34
MMLU 0.32 0.29 Indic Paraphrase 0.57 0.53

Average 0.34 0.34 Average 0.58 0.57

5 ABLATION STUDIES

Two-Stage vs. One-Stage: Controlling Vocabulary Recently, BoundlessBPE (Schmidt et al.,
2024) also explored a one-stage training paradigm in which pre-tokenization is governed by a fixed
regular expression, enabling the direct learning of multiword units in a single pass. While effective in
capturing frequent expressions, this strategy can also overfit to arbitrary character sequences lacking
semantic value, ultimately reducing vocabulary efficiency. Our approach instead introduces a two-
stage procedure. We replicate the one-stage setup of BoundlessBPE using its released regex (ref-
fered as IST-BR) and compare against our two-stage tokenizer. As shown in Table 12, our method
consistently achieves lower fertility across the top 10 Indic languages and English, indicating more
compact and semantically grounded vocabularies. Overall, the comparison highlights a clear trade-
off: while one-stage methods capture surface-level patterns indiscriminately, our two-stage design
balances efficiency and linguistic integrity by decoupling subword and multiword learning.

Table 12: Fertility score (↓) comparison between one-stage and two-stage IST tokenizers.

Tokenizer as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

IST-BR (200K) 1.86 1.76 2.05 1.75 1.62 1.37 2.20 1.86 1.39 1.39 2.19 1.61 2.29 2.30 1.66 1.67 1.69 1.49 2.68 3.61 1.56 2.12 1.88 1.54
IST (180K/200K) 1.85 1.74 2.04 1.47 1.45 1.12 2.17 1.77 1.23 1.21 2.19 1.58 2.30 2.28 1.63 1.62 1.65 1.39 2.59 3.72 1.45 2.12 1.88 1.44

Table 13: Ablation of tokenizer training data size and its impact on fertility score (↓).

Size as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd Average

1G 3.02 2.32 2.71 1.62 1.64 1.33 1.97 1.62 1.50 1.43 2.16 1.85 2.83 2.62 1.72 2.13 1.68 1.50 2.46 13.02 1.43 1.92 1.82 1.91 2.42
5G 1.71 1.93 2.58 1.63 1.58 1.33 2.18 1.72 1.40 1.36 2.04 1.57 2.43 2.28 1.68 1.48 1.61 1.57 2.48 4.74 1.30 2.02 1.87 1.43 1.91
10G 1.83 1.74 1.99 1.54 1.56 1.33 2.17 1.83 1.36 1.36 2.15 1.56 2.24 2.27 1.61 1.59 1.65 1.47 2.51 3.60 1.45 2.08 1.83 1.47 1.80
25G 1.75 1.84 2.56 1.62 1.57 1.33 2.15 1.78 1.39 1.36 2.04 1.56 2.32 2.23 1.67 1.47 1.63 1.55 2.45 3.92 1.31 2.01 1.86 1.34 1.86
30G 1.76 1.84 2.32 1.62 1.57 1.33 2.13 1.78 1.39 1.36 2.03 1.57 2.31 2.24 1.67 1.47 1.63 1.54 2.45 4.02 1.31 2.00 1.87 1.35 1.86
50G 1.72 1.82 2.25 1.60 1.57 1.34 2.14 1.82 1.39 1.36 2.03 1.58 2.28 2.22 1.69 1.49 1.64 1.52 2.44 4.54 1.31 2.01 1.87 1.34 1.87

Dataset Size Similar to (Reddy et al., 2025), we study the effects of scaling training data, however
only in Stage 1 of our training. Figure 13 shows that our performance plateaus after 10G of data.

Transition Point We ablate the transition point t (Section 3.1) at which training shifts from sub-
word to cross-word merges. Varying t reveals a clear trade-off: early transitions favor frequent mul-
tiword expressions but weaken morphological coverage, while late transitions preserve subwords at
the cost of longer sequences. Across Indic and non-Indic languages, intermediate values of 90% t
yield the best balance, improving token efficiency and cross-lingual consistency (Table 14).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 14: Impact of varying transition point (as a % of vocab size 200K) on fertility (↓).

Transition (%) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

60 1.91 1.80 2.05 1.39 1.38 1.04 2.16 1.77 1.16 1.15 2.17 1.53 2.30 2.29 1.56 1.58 1.68 1.39 2.48 3.89 1.43 2.11 1.86 1.45
75 1.91 1.79 2.05 1.41 1.38 1.04 2.16 1.77 1.16 1.15 2.16 1.53 2.30 2.28 1.56 1.58 1.68 1.39 2.47 3.91 1.43 2.10 1.86 1.45
80 1.89 1.78 2.03 1.41 1.38 1.05 2.15 1.77 1.16 1.16 2.14 1.53 2.28 2.26 1.56 1.57 1.67 1.39 2.46 3.83 1.42 2.08 1.83 1.44
85 1.87 1.77 2.01 1.43 1.39 1.06 2.13 1.76 1.17 1.16 2.13 1.53 2.26 2.25 1.56 1.56 1.66 1.39 2.46 3.78 1.42 2.07 1.82 1.44
90 1.85 1.74 2.04 1.47 1.45 1.12 2.17 1.77 1.23 1.21 2.19 1.58 2.30 2.28 1.63 1.62 1.65 1.39 2.59 3.72 1.45 2.12 1.88 1.44
95 1.85 1.75 1.98 1.47 1.42 1.10 2.13 1.74 1.21 1.20 2.12 1.53 2.23 2.24 1.56 1.56 1.66 1.41 2.46 3.68 1.43 2.06 1.81 1.44

Vocabulary Size Vocabulary size strongly influences tokenization-model efficiency with trade-
offs. Smaller vocabularies yield finer subword units that generalize well to unseen words but
lengthen sequences, raising compute costs. Larger vocabularies shorten sequences by encoding
frequent forms as single tokens, but waste capacity on rare items, inflate embeddings and softmax
layers (Shazeer et al., 2017), and bias toward high-resource languages, hurting multilingual balance.
With the same transition point at 90%, we found no significant impact on fertility scores beyond
200K (Table 15).

Table 15: Ablation on vocab size (t = 90%) and its impact on fertility (↓) scores.

Vocab Size as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

162K/180K 1.89 1.78 2.08 1.48 1.47 1.13 2.21 1.80 1.24 1.22 2.22 1.60 2.35 2.27 1.65 1.65 1.68 1.42 2.62 3.84 1.48 2.16 1.91 1.47
180K/200K 1.85 1.74 2.04 1.47 1.45 1.12 2.17 1.77 1.23 1.21 2.19 1.58 2.30 2.27 1.63 1.62 1.65 1.39 2.59 3.72 1.45 2.12 1.88 1.44
202K/225K 1.81 1.70 1.99 1.44 1.43 1.10 2.14 1.72 1.20 1.19 2.14 1.55 2.24 2.21 1.59 1.59 1.60 1.36 2.55 3.59 1.41 2.08 1.82 1.41
225K/250K 1.78 1.67 1.95 1.42 1.42 1.09 2.11 1.69 1.19 1.17 2.10 1.53 2.20 2.17 1.57 1.57 1.57 1.34 2.52 3.45 1.38 2.04 1.77 1.38

Effect of Normalization in Multilingual Tokenization Unicode normalization is crucial for mul-
tilingual settings (Karthika et al., 2025b), particularly for Indic languages, where a single grapheme
can be represented by multiple Unicode sequences (e.g., pre-composed characters vs. base-plus-
diacritic sequences), causing token fragmentation and inflated vocabulary size. Table 16 shows that
NFKC yielded marginal but consistent gains by unifying character forms. Accordingly, we adopt
NFKC to reduce variability and improve tokenizer robustness.

Table 16: Fertility scores with NFC, NFD, NFKC normalization for all languages.

Tokenizer as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

NFC 1.8520 1.7449 2.0412 1.4658 1.4520 1.1167 2.1741 1.7664 1.2250 1.2042 2.1845 1.5761 2.3025 2.2421 1.6273 1.6241 1.6464 1.3915 2.5859 3.7170 1.4515 2.1226 1.8754 1.4371
NFD 1.8518 1.7454 2.0413 1.4665 1.4521 1.1168 2.1661 1.7667 1.2252 1.2044 2.1905 1.5765 2.3019 2.2487 1.6274 1.6246 1.6465 1.3917 2.5864 3.7170 1.4523 2.1227 1.8757 1.4377
NFKC 1.8512 1.7430 2.0409 1.4647 1.4520 1.1155 2.1738 1.7644 1.2239 1.2041 2.1812 1.5762 2.2991 2.2327 1.6258 1.6234 1.6420 1.3884 2.5855 3.7172 1.4505 2.1200 1.8724 1.4369

6 CONCLUSION

In this work, we revisit tokenization as a central design choice for multilingual LLMs, focusing on
Indic languages that expose the limitations of existing subword methods. Our proposed IndicSuper-
Tokenizer combines linguistically grounded pre-tokenization with a two-stage subword–superword
learning process, yielding more compact and semantically faithful vocabularies. Experiments across
intrinsic metrics, downstream task performance, ablations, and inference latency demonstrate con-
sistent gains in efficiency, morphological alignment, and deployment cost, establishing tokenization
as a key lever for building equitable and scalable multilingual models.

ETHICS AND REPRODUCIBILITY STATEMENT

Ethics Statement This work focuses on the responsible development of multilingual tokenization
methods for Indian languages. We did not collect or utilize any sensitive or Personally Identifiable
Information (PII). All external datasets, libraries, and tools employed in this work are appropriately
acknowledged through citations. Since the study did not involve personal, medical, or otherwise
sensitive information, formal IRB approval was not required. Throughout the process, we aimed to
minimize biases that could disadvantage low-resource languages. We provide our exhaustive study
to advance the development of inclusive and efficient multilingual language models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement To promote transparency and reproducibility, we will release the ar-
tifacts publicly to benchmark performance of Indian tokenizers, along with detailed documentation.
Detailed records of experimental setups, hyperparameters, and evaluation protocols are maintained
to allow replication of our results with the implementation details in the Appendix. In addition, we
provide ablation studies to facilitate fair benchmarking and enable future research on Indian and
multilingual tokenization.

REFERENCES

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning
technical report. arXiv preprint arXiv:2504.21318, 2025.

ADA Sci. Multilingual tokenization efficiency in large language models: A study on Indian lan-
guages. Lattice, 5(2), 2024.

DeepSeek AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
https://github.com/deepseek-ai/DeepSeek-R1, 2025a.

Meta AI. The llama 4 herd: The beginning of a new era of natively multimodal intelligence. https:
//ai.meta.com/blog/llama-4-multimodal-intelligence/, 2025b.

Mistral AI. Mistral nemo. https://mistral.ai/news/mistral-nemo, 2024.

AI4Bharat. IndicBERT: A multilingual ALBERT model for Indian languages. https://
huggingface.co/ai4bharat/indic-bert, 2022.

Mehdi Ali, Michael Fromm, Klaudia Thellmann, Richard Rutmann, Max Lübbering, Johannes Lev-
eling, Katrin Klug, Jan Ebert, Niclas Doll, Jasper Buschhoff, et al. Tokenizer choice for llm
training: Negligible or crucial? In Findings of the Association for Computational Linguistics:
NAACL 2024, pp. 3907–3924, 2024.

Maharaj Brahma, NJ Karthika, Atul Singh, Devaraj Adiga, Smruti Bhate, Ganesh Ramakrishnan,
Rohit Saluja, and Maunendra Sankar Desarkar. Morphtok: Morphologically grounded tokeniza-
tion for indian languages. arXiv preprint arXiv:2504.10335, 2025.

Jie Chen, Zhipeng Chen, Jiapeng Wang, Kun Zhou, Yutao Zhu, Jinhao Jiang, Yingqian Min,
Wayne Xin Zhao, Zhicheng Dou, Jiaxin Mao, et al. Towards effective and efficient continual
pre-training of large language models. arXiv preprint arXiv:2407.18743, 2024.

Pavel Chizhov, Catherine Arnett, Elizaveta Korotkova, and Ivan P. Yamshchikov. BPE gets picky:
Efficient vocabulary refinement during tokenizer training. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 16587–16604. Association for
Computational Linguistics, 2024.

Gautier Dagan, Gabriel Synnaeve, and Baptiste Roziere. Getting the most out of your tokenizer for
pre-training and domain adaptation. arXiv preprint arXiv:2402.01035, 2024.

Anh Dang, Limor Raviv, and Lukas Galke. Tokenization and morphology in multilingual language
models: A comparative analysis of mT5 and ByT5. arXiv preprint arXiv:2410.11627, 2024.

Sumanth Doddapaneni, Rahul Aralikatte, Gowtham Ramesh, Shreya Goyal, Mitesh M. Khapra,
Anoop Kunchukuttan, and Pratyush Kumar. Towards leaving no indic language behind: Build-
ing monolingual corpora, benchmark and models for indic languages, 2023. URL https:
//arxiv.org/abs/2212.05409.

Abhimanyu Dubey et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38, 1994.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

10

https://github.com/deepseek-ai/DeepSeek-R1
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://mistral.ai/news/mistral-nemo
https://huggingface.co/ai4bharat/indic-bert
https://huggingface.co/ai4bharat/indic-bert
https://arxiv.org/abs/2212.05409
https://arxiv.org/abs/2212.05409
https://zenodo.org/records/12608602

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah, Yuxin Wen, and Tom Goldstein. Coercing
llms to do and reveal (almost) anything. arXiv preprint arXiv:2402.14020, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Shuhao Gu, Mengdi Zhao, Bowen Zhang, Liangdong Wang, Jijie Li, and Guang Liu. Retok:
Replacing tokenizer to enhance representation efficiency in large language model, 2024. URL
https://arxiv.org/abs/2410.04335.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shashank Mohan Jain. Hugging face. In Introduction to transformers for NLP: With the hugging
face library and models to solve problems, pp. 51–67. Springer, 2022.

Divyanshu Kakwani et al. Monolingual corpora, evaluation benchmarks and pre-trained models
for 11 major Indian languages. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 4948–4961, 2020.

N J Karthika, Maharaj Brahma, Rohit Saluja, Ganesh Ramakrishnan, and Maunendra Sankar De-
sarkar. Multilingual tokenization through the lens of indian languages: Challenges and insights.
arXiv preprint arXiv:2506.17789, 2025a.

N J Karthika, Maharaj Brahma, Rohit Saluja, Ganesh Ramakrishnan, and Maunendra Sankar De-
sarkar. Multilingual tokenization through the lens of indian languages: Challenges and insights,
2025b. URL https://arxiv.org/abs/2506.17789.

Mohammed Safi Ur Rahman Khan, Priyam Mehta, Ananth Sankar, Umashankar Kumaravelan,
Sumanth Doddapaneni, Suriyaprasaad G, Varun Balan G, Sparsh Jain, Anoop Kunchukuttan,
Pratyush Kumar, Raj Dabre, and Mitesh M. Khapra. Indicllmsuite: A blueprint for creating pre-
training and fine-tuning datasets for indian languages. arXiv preprint arXiv: 2403.06350, 2024.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferran-
dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of
permissively licensed source code. Transactions on Machine Learning Research, 2022.

Taku Kudo. Subword regularization: Improving neural network translation models with multi-
ple subword candidates. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 66–75, Melbourne, Australia, July
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1007. URL https:
//aclanthology.org/P18-1007.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pp. 66–71, 2018.

Anoop Kunchukuttan. The IndicNLP Library. https://github.com/
anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.
pdf, 2020.

Sander Land and Max Bartolo. Fishing for magikarp: Automatically detecting under-trained tokens
in large language models, 2024. URL https://arxiv.org/abs/2405.05417.

Haoran Lian, Yizhe Xiong, Jianwei Niu, Shasha Mo, Zhenpeng Su, Zijia Lin, Hui Chen, Peng Liu,
Jungong Han, and Guiguang Ding. Scaffold-BPE: Enhancing byte pair encoding for large lan-
guage models with simple and effective scaffold token removal. arXiv preprint arXiv:2404.17808,
2024.

Alisa Liu, Jonathan Hayase, Valentin Hofmann, Sewoong Oh, Noah A. Smith, and Yejin Choi.
SuperBPE: Space travel for language models. arXiv preprint arXiv:2503.13423, 2025a.

11

https://arxiv.org/abs/2410.04335
https://arxiv.org/abs/2506.17789
https://aclanthology.org/P18-1007
https://aclanthology.org/P18-1007
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://arxiv.org/abs/2405.05417

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alisa Liu, Jonathan Hayase, Valentin Hofmann, Sewoong Oh, Noah A. Smith, and Yejin Choi. Su-
perbpe: Space travel for language models, 2025b. URL https://arxiv.org/abs/2503.
13423.

Daniil Maksymenko and Oleksii Turuta. Tokenization efficiency of current foundational large lan-
guage models for the Ukrainian language. PMC Digital Health, 12380774, 2025.

Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias Gallé, Arun
Raja, Chenglei Si, Wilson Y Lee, Benoı̂t Sagot, et al. Between words and characters: A brief
history of open-vocabulary modeling and tokenization in nlp. arXiv preprint arXiv:2112.10508,
2021.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
gia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,
Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha
Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William
Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-
atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,
Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2
olmo 2 furious, 2025. URL https://arxiv.org/abs/2501.00656.

OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/
2508.10925.

Aleksandar Petrov, Emanuele La Malfa, Philip Torr, and Adel Bibi. Language model tokenizers
introduce unfairness between languages. Advances in neural information processing systems, 36:
36963–36990, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. TODO, 2018.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Varshini Reddy, Craig W Schmidt, Yuval Pinter, and Chris Tanner. How much is enough? the
diminishing returns of tokenization training data. arXiv preprint arXiv:2502.20273, 2025.

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych. How good is your to-
kenizer? on the monolingual performance of multilingual language models. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 3118–3135,
2021.

Sarvam AI. Arc-challenge-indic. https://huggingface.co/datasets/sarvamai/
arc-challenge-indic, 2025.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Craig W. Schmidt, Varshini Reddy, Chris Tanner, and Yuval Pinter. Boundless byte pair encoding:
Breaking the pre-tokenization barrier. arXiv preprint arXiv:2504.00178, 2024.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August
2016a. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https:
//aclanthology.org/P16-1162.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, 2016b.

12

https://arxiv.org/abs/2503.13423
https://arxiv.org/abs/2503.13423
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://huggingface.co/datasets/sarvamai/arc-challenge-indic
https://huggingface.co/datasets/sarvamai/arc-challenge-indic
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
2017. URL https://arxiv.org/abs/1701.06538.

Xinying Song, Alex Salcianu, Yang Song, Dave Dopson, and Denny Zhou. Fast WordPiece tok-
enization. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 2089–2103. Association for Computational Linguistics, 2021.

Sagar Tamang and Dibya Jyoti Bora. Evaluating tokenizer performance of large language models
across official indian languages. arXiv preprint arXiv:2411.12240, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Qwen Team. Qwen3 technical report. https://qwenlm.github.io/blog/qwen3/,
2024a.

Sarvam AI Team. Sarvam-1: A 2b parameter language model optimized for indian languages.
https://www.sarvam.ai/blogs/sarvam-1, 2024b.

Hugo Touvron et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

Sshubam Verma, Mohammed Safi Ur Rahman Khan, Vishwajeet Kumar, Rudra Murthy, and Jay-
deep Sen. Milu: A multi-task indic language understanding benchmark. arXiv preprint arXiv:
2411.02538, 2024.

Wenhao Xue et al. Getting the most out of your tokenizer for pre-training and domain adaptation.
arXiv preprint arXiv:2402.01035, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Vilém Zouhar, Clara Meister, Juan Luis Gastaldi, Li Du, Mrinmaya Sachan, and Ryan Cotterell.
Tokenization and the noiseless channel. In Proceedings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pp. 5184–5207, 2023.

13

https://arxiv.org/abs/1701.06538
https://qwenlm.github.io/blog/qwen3/
https://www.sarvam.ai/blogs/sarvam-1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LANGUAGE DETAILS

Table 17: Linguistic composition of the 22 scheduled Indian languages analyzed in this work, with
their corresponding scripts.

Family Script Languages

Indo-Aryan Devanagari Hindi, Marathi, Maithili, Dogri, Konkani, Sanskrit, Nepali, Kashmiri
Bengali (bn) Assamese, Bengali
Gurmukhi (pa) Punjabi
Arabic (ar) Urdu, Sindhi

Dravidian Kannada (kn) Kannada
Malayalam (ml) Malayalam
Tamil (ta) Tamil
Telugu (te) Telugu

Tibeto-Burman Devanagari Bodo
Meitei Mayek Manipuri (Meitei Mayek script)

Austroasiatic Ol Chiki (sat) Santali

Table 18: Mapping of ISO codes to corresponding 22 Indic languages.

Code Language Code Language Code Language

as Assamese bn Bengali brx Bodo
doi Dogri gu Gujarati hi Hindi
kn Kannada ks Kashmiri gom Konkani
mai Maithili ml Malayalam mni Manipuri
mr Marathi ne Nepali or Odia
pa Punjabi san Sanskrit sat Santali
snd Sindhi ta Tamil te Telugu
ur Urdu

B IMPLEMENTATION

B.1 TOKENIZER IMPLEMENTATION

We based our training code for the tokenizer on the open implementation of SuperBPE7 using Hug-
gingFace library (Jain, 2022). We also explored merging tokenizers based on the default priority
based BPE in SentencePiece8. While we explored implementing the multi-word two stage cur-
riculum in the SentencePiece, we found that it was not trivial. On the other hand, HuggingFace
showed issues with the merging strategy. We thus relied on different implementations for different
approaches.

B.2 TRAINING DETAILS

We provide more details about our training setup as discussed in Section 4.2. Each model was trained
for 50B tokens under matched hyperparameters (learning rate, batch size, training steps), align-
ing FLOPs to isolate tokenizer effects. The evaluation was performed using lm-eval-harness

7https://github.com/PythonNut/superbpe/tree/main
8https://github.com/google/sentencepiece

14

https://github.com/PythonNut/superbpe/tree/main
https://github.com/google/sentencepiece

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(Gao et al., 2024) across standard English benchmarks (MMLU, GSM8K, Winogrande, TriviaQA,
HellaSwag, ARC, OpenBookQA, CommonsenseQA, DROP) and Indic benchmarks (IndicCOPA,
IndicSentiment, IndicXParaphrase, IndicXNLI (Doddapaneni et al., 2023), ARC Challenge Indic
(Sarvam AI, 2025), and MILU Verma et al. (2024)). We report EM for GSM8K and TriviaQA,
F1 for DROP, and Accuracy for other benchmarks. Shot settings were fixed per task: 25-shot for
ARC/ARC Challenge Indic, 10-shot for HellaSwag, 5-shot for MMLU, GSM8K, and TriviaQA, and
zero-shot for the remainder. This setup allows a direct assessment of how tokenizer design influ-
ences pretraining efficiency, semantic representation, and generalization across English and Indic
tasks.

Table 19: Pretraining configuration for different tokenizers.

Tokenizer Architecture Parameters Data Size (B) Learning Rate Train Steps Context Length Batch Size Vocab Size

LLaMA-4 LLaMA-3.2 1B 53.24 5 × 10−5 68000 4096 192 201134
IST LLaMA-3.2 1B 53.18 5 × 10−5 68000 4096 192 200008

Table 20: Pretraining corpus distribution across domains and token count. Indic content is empha-
sized to reflect multilingual objectives.

Category Sources Percentage (%) Token Count (B)
Web Nemotron CC 30 15
Math MegaMath 15 7.5
Code StackV2 15 7.5
Synthetic New Generations 10 5
Books Archive 10 5
Indic Indic CC 8 4
Indic Indic Wiki 4 2
Indic Sangraha Verified 8 4
Total 100 50

C ADDITIONAL DISCUSSION

C.1 MISMATCH BETWEEN LOSS AND TASK PERFORMANCE

Although toknizers, incorporating multi-word often show slightly higher loss(Liu et al., 2025a) dur-
ing training compared to models using traditional atomic tokenizers like SentencePiece/BPE, this
does not necessarily translate to worse downstream performance. We hypothesize that this is due to
two complementary factors. First, the introduction of longer or multi-word tokens such as “to the”
or “as well as” increases the number of semantically overlapping candidates, making the model’s
prediction space less sharply peaked. This means the model may distribute probability across several
plausible completions (e.g., “to”, “to the”, “to be”), thereby lowering the maximum assigned proba-
bility to the correct token and inflating the cross-entropy loss. In contrast, other BPE tokenizers often
yield only one atomic candidate for such function words, allowing sharper predictions with lower
loss. Second, IST tokenizes text into fewer, more meaningful units, so when computing the average
loss per token, each mistake contributes more heavily to the total. As a result, although the model
learns more compact and generalizable representations, its token-level loss appears higher. This
creates a divergence between model loss and real-world task accuracy, indicating that traditional
loss curves may underrepresent the representational efficiency and practical utility of compositional
tokenizers like IST.

C.2 MORPHOLOGICALLY GROUNDED TOKEN SPLITTING

We investigate the impact of incorporating morphological information into tokenization for Indic
languages (Brahma et al., 2025). The approach involves pre-processing text with a morphology
analyzer to segment words into morphemes prior to training. This experiment focuses on languages
in the Devanagari script.

We compare two variants: Tokenizer A, trained on raw text, and Tokenizer B, trained on morpho-
logically segmented text using morphology analyzer (Kunchukuttan, 2020). At inference time, To-
kenizer B requires the same pre-processing for consistency. Tokenizer B exhibits more semantically

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

coherent superwords, reflecting meaningful morpheme combinations (Figure 3, 4). This promotes
better generalization across related forms and reduces the raw token-to-word ratio, as morpheme-
based units are more compressible. Sample outputs (Figures 3, 4) illustrate the contrast between
surface-level splits and linguistically aligned segmentations.

Despite these gains, we do not adopt this approach in our final tokenizer. The primary limitation
is latency, as the pipeline requires both language identification and morphological analysis. Ex-
tending robust analyzers across all Indic languages also introduces engineering overhead and brittle
dependencies. Nevertheless, morphology-aware tokenization remains a promising direction if fast,
reliable analyzers become widely available.

Figure 3: Tokenized output of morph-aware to-
kenizer

Figure 4: Tokenized output of non morph-aware
tokenizer

C.3 MORE ON GLITCH TOKENS

For each tokenizer, we vary K ∈ {10, 50, 100, 150, . . . , 400} to select the top-K embeddings closest
to a reference vector derived from artificially unused tokens in the vocabulary (Land & Bartolo,
2024; Geiping et al., 2024). For the IST tokenizer, we count the number of multi-word tokens
within the top-K. For the BPE variant, we count tokens with IDs > 180,000, which corresponds
to the upper 20K of the vocabulary. Both tokenizers share the first 180K IDs; the difference lies in
how the final 20K IDs are utilized: IST allocates this space for frequent multi-word tokens, while
the BPE tokenizer continues learning subwords. This design choice allows IST to more effectively
utilize the tail of the vocabulary for meaningful units, whereas the BPE tokenizer exhibits overfitting
in low-frequency subwords. The trend of these counts across different top-K values is visualized in
Figure 5. As K increases, the fraction of multi-word tokens in IST remains low but stable, while the
BPE variant consistently shows a higher fraction of under-trained subwords, indicating overfitting
in the residual vocabulary space.

Figure 5: Trend of potential glitch tokens in upper 20K of vocabulary for different K.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D EXTENDED RESULTS

In the main paper, due to space constraints, we limited the number of tokenizers presented. Here,
we provide an extended list including all of our baseline tokenizers.

Table 21: Comparison of NSL scores (Base LLaMA-4) for different tokenizers across all languages.

Tokenizer (↓) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

DeepSeek-R1 0.83 0.97 1.25 1.03 1.29 0.98 1.28 1.48 1.59 1.29 1.41 1.34 1.52 0.99 1.49 1.61 0.67 1.41 1.19 0.69 1.34 0.82 1.34 1.21
Gemma-3 0.63 0.59 0.87 1.31 0.91 1.06 0.94 0.76 0.83 0.93 0.81 0.89 0.73 0.81 0.76 0.83 0.44 0.89 0.84 0.59 0.99 0.45 0.67 0.85
GPT-oss 0.63 0.83 0.95 1.03 0.96 1.00 0.96 0.71 0.94 0.95 0.79 0.90 0.72 0.89 0.94 0.85 0.60 0.85 0.94 1.43 0.83 0.56 0.71 0.88
LLaMA-3.2-1B 1.90 2.71 1.08 1.02 1.36 0.99 1.22 2.91 1.47 1.36 3.30 1.16 3.25 1.92 1.41 1.44 1.48 2.45 1.19 1.34 1.33 2.11 3.01 1.58
LLaMA-4 1.00
Mistral-Nemo 1.00 0.95 1.06 1.15 1.07 1.06 1.09 1.09 1.12 1.08 0.91 1.08 0.95 0.95 1.13 1.21 1.57 0.98 1.04 1.34 1.20 0.63 0.64 0.95
Qwen-3 1.68 2.37 1.78 1.11 1.85 1.03 1.72 2.59 2.65 2.16 2.69 1.97 2.57 1.72 2.35 2.47 1.19 2.37 1.92 0.96 1.37 1.63 2.45 1.63
Sutra 0.55 0.74 0.93 2.09 0.92 0.89 0.96 0.68 0.92 0.91 0.67 0.94 0.65 0.92 0.84 0.82 0.24 0.51 0.91 0.26 1.10 0.47 0.59 0.90
Sarvam 0.99 0.66 0.91 1.50 1.00 1.27 1.13 0.64 0.85 1.19 0.62 0.99 0.65 2.19 0.72 0.96 0.24 0.54 0.93 1.45 3.63 0.45 0.56 4.25
IST-BR 0.45 0.61 0.66 1.28 0.89 1.04 0.84 0.57 0.77 0.91 0.54 0.80 0.50 0.94 0.63 0.69 0.18 0.48 0.70 0.45 0.78 0.38 0.44 0.92
IST 0.45 0.60 0.65 0.94 0.78 0.85 0.82 0.54 0.68 0.80 0.53 0.76 0.50 0.91 0.61 0.67 0.18 0.45 0.66 0.45 0.72 0.38 0.44 0.86

Table 22: Fertility scores across tokenizers and languages. Lower is better.

Tokenizer (↓) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

DeepSeek-R1 3.54 2.88 4.23 1.53 2.66 1.34 3.68 4.92 3.02 2.49 6.01 3.21 7.95 2.67 4.17 3.97 7.13 4.48 5.07 6.12 2.82 4.92 6.13 2.17
Gemma3 2.65 1.69 2.84 1.79 1.69 1.39 2.60 2.50 1.47 1.48 3.34 1.91 3.45 2.07 2.03 2.03 4.42 2.83 3.37 5.16 2.03 2.50 2.94 1.44
GPT-OSS 2.66 2.41 3.17 1.51 1.89 1.33 2.73 2.37 1.72 1.58 3.34 2.01 3.51 2.41 2.61 2.10 6.26 2.71 3.89 13.01 1.76 3.18 3.13 1.51
Llama-3.2-1B 8.44 8.08 3.64 1.51 2.92 1.35 3.46 9.95 2.74 2.70 14.44 2.79 16.26 5.31 3.90 3.52 15.68 7.88 4.86 12.15 2.85 12.25 13.68 2.73
LLaMA-4 4.40 2.93 3.34 1.46 2.00 1.34 2.84 3.37 1.83 1.72 4.23 2.28 4.95 2.73 2.79 2.46 10.51 3.23 4.12 9.04 2.13 5.87 4.53 1.76
Mistral-Nemo 4.28 2.82 3.52 1.75 2.12 1.41 3.08 3.63 2.05 1.82 3.84 2.48 4.82 2.67 3.10 2.97 16.92 3.04 4.34 12.16 2.51 3.67 3.71 1.65
Qwen3-32B 7.47 7.11 6.10 1.68 4.05 1.41 5.08 8.87 4.86 3.70 11.48 4.53 12.77 4.76 6.56 6.10 12.37 7.60 8.04 8.81 2.95 9.69 11.10 2.90
Sarvam-2B 4.24 1.91 2.92 2.14 1.85 1.66 3.01 2.11 1.53 1.91 2.53 2.11 3.19 4.60 1.94 2.35 2.43 1.67 3.78 13.07 7.62 2.49 2.63 7.93
Sutra 2.12 2.07 3.06 2.12 1.78 1.17 2.68 2.15 1.62 1.48 2.71 2.08 3.10 2.40 2.18 2.01 2.24 1.50 3.76 2.03 2.23 2.58 2.77 1.55
IST-BR 1.86 1.76 2.05 1.75 1.62 1.37 2.20 1.86 1.39 1.39 2.19 1.61 2.29 2.30 1.66 1.67 1.69 1.49 2.68 3.61 1.56 2.12 1.88 1.54
IST 1.85 1.74 2.04 1.47 1.45 1.12 2.17 1.77 1.23 1.21 2.19 1.58 2.30 2.28 1.63 1.62 1.65 1.39 2.59 3.72 1.45 2.12 1.88 1.44

E METRICS

E.1 TOKEN-TO-WORD RATIO

The Token-to-word ratio measures the average number of tokens required to represent a single word.
It captures the degree of segmentation induced by a tokenizer and is particularly informative for mor-
phologically rich languages where excessive fragmentation increases sequence length. We report
this metric to evaluate whether tokenizers balance compact representations with sufficient linguistic
coverage.

E.2 BYTES-PER-TOKEN

Bytes-per-token quantifies the average number of raw text bytes contained in a token. Since scripts
differ substantially in character set size and encoding, this metric provides a language-agnostic mea-
sure of efficiency. Higher values indicate that tokens encode more information per unit, which
reduces sequence length. We include this metric to enable direct comparison of tokenizers across
writing systems.

E.3 NORMALIZED SEQUENCE LENGTH

Normalized sequence length measures the average length of tokenized sequences relative to a chosen
base tokenizer. Instead of reporting absolute sequence lengths, this metric highlights how much
longer or shorter sequences become when compared to an established reference. It enables fairer
cross-tokenizer comparisons since raw lengths can vary significantly across languages and corpora.
A normalized value greater than one indicates that the tokenizer produces longer sequences than the
baseline, while a value less than one reflects more compact tokenization. We include this metric to
directly assess relative efficiency in sequence compression.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.4 REYNI’S EFFICIENCY

Rényi’s entropy measures the uncertainty of token distributions induced by a tokenizer, extending
Shannon entropy by allowing different orders to emphasize frequent or rare tokens. A tokenizer
with a very large vocabulary may contain many infrequent tokens that are poorly utilized, while a
very small vocabulary forces overuse of common tokens. Entropy therefore reflects how effectively
the vocabulary is allocated. To complement this, Rényi’s efficiency normalizes entropy with respect
to vocabulary size, providing a scale-invariant view of how well the vocabulary capacity is utilized.
Together, these metrics characterize both the distributional balance of tokens and the comparative
efficiency of different vocabulary scales.

18

	Introduction
	Related Work
	IndicSuperTokenizer (IST)
	Tokenizer Training
	Pre-tokenization
	Training data and Vocabulary
	Baselines
	Metrics
	Evaluation Framework

	Experiments and Results
	Intrinsic Evaluation of Tokenizers
	Extrinsic Evaluation on Downstream Tasks
	How does tokenizer design impact model latency and throughput?
	Vocabulary Allocation: Explicit vs. Corpus-Driven
	Quality Analysis: Undertrained ``Glitch'' Token
	Can we replace Opensource model tokenizer with IST?

	Ablation studies
	Conclusion
	Appendix
	Language Details

	Implementation
	Tokenizer implementation
	Training details

	Additional Discussion
	Mismatch Between Loss and Task Performance
	Morphologically grounded token splitting
	More on Glitch tokens

	Extended Results
	Metrics
	Token-to-Word Ratio
	Bytes-per-token
	Normalized Sequence Length
	Reyni's Efficiency

