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ABSTRACT

Tokenizers play a crucial role in determining the performance, training efficiency,
and the inference cost of Large Language Models (LLMs). Designing effec-
tive tokenizers for multilingual LLMs is particularly challenging due to diverse
scripts and rich morphological variation. While subword methods such as Byte
Pair Encoding (BPE) are widely adopted, their effectiveness in multilingual set-
tings remains underexplored. We present IndicSuperTokenizer, a tokenizer for
Indic multilingual LLMs, that combines both subword and multi-word tokeniza-
tion, along with language-specific pre-tokenization, leading to more linguistically
aligned tokens and achieving a new state-of-the-art in fertility score. Evaluated
across English, 22 Indian languages and code data, our tokenizer improves the av-
erage fertility score by 39.5% over LLaMA4 and by 18% over Sutra (the current
best). This translates to 44% improvement in inference throughput over LLaMA4
while maintaining comparable performance on English and Indic benchmarks. We
also present detailed ablations across tokenizer training data size, vocabulary size,
merging techniques, and pre-tokenization strategies, demonstrating the robustness
of our design choices.

1 INTRODUCTION

Large Language Models (LLMs) (Touvron et al., 2023; Grattafiori et al., 2024; Abdin et al., 2025;
Guo et al., 2025; Yang et al., 2025; Team et al., 2025) rely on the crucial step of tokenization, the
process of converting raw text into discrete units called tokens. A key metric for evaluating tokeniz-
ers is the “fertility score” (or token-to-word ratio) (Ali et al., 2024) where, a lower fertility score
is desirable due to more efficient (and hence cheaper) LLM training and inference. Among the
many proposed approaches, subword tokenization schemes such as BPE (Sennrich et al., 2016a),
Unigram (Kudo, 2018), WordPiece (Song et al., 2021), and their byte-level extensions have become
the de facto choice. However, tokenization remains an understudied topic within the LLM litera-
ture (Dagan et al., 2024; Mielke et al., 2021), especially in multilingual settings (Petrov et al., 2023),
where, skewed fertility scores across languages, often lead to concerns around fairness, high infer-
ence latency, cost and context size. With 22 constitutionally recognized languages1, these issues are
especially pronounced for Indic languages comprising multiple scripts and a rich morphology. Our
analysis suggests that tokenizers of popular multilingual tokenizers, largely designed for English,
could produce fertility scores as high as 10.5 (LLaMA-4 tokenizer for Oriya; Table 3) for Indic
languages, far worse than the near-ideal scores achieved for English. This leads to longer token
sequences, higher compute overheads, and poor alignment with linguistic units like morphemes and
compounds.

Designing an efficient tokenizer involves making careful choices around the size of the vocabulary
(of tokens), tokenizer training data, the tokenization approach, and, doing this across languages is
nontrivial. Our work concerns the broader problem of training an effective multilingual tokenizer
where we address five core research questions: i). How can we improve low-resource language
performance without degrading high-resource performance? ii). Should we train language-specific
tokenizers and merge them, or adopt a unified joint training paradigm? iii). How do we determine
an appropriate multilingual training data distribution? iv). What is the role of pre-tokenization in

1https://en.wikipedia.org/wiki/Languages_with_official_recognition_in_
India
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Figure 1: IndicSuperTokenizer (IST) captures superwords (e.g. “wake up”, “in the morning”) and
avoids fragmenting Indic words (see for e.g. Bengali, Tamil).

multilingual tokenizer training? v). Do multi-word expressions provide measurable benefits when
incorporated into the tokenizer vocabulary and what is the effective way to learn these multi-words?
Through our controlled experiments and ablations, we provide a systematic recipe for training equi-
table and culturally inclusive multilingual tokenizers.

In this work, we present IndicSuperTokenizer, an efficient tokenizer for Indic LLMs, that achieves
state-of-the-art fertility scores across 22 Indic languages, English, and code. Our design choices are
grounded in detailed ablations and our tokenizer combines linguistically grounded pre-tokenization
with a two-stage subword–superword learning process (Liu et al., 2025b), yielding a more compact
and semantically faithful vocabulary. Figure 1 illustrates some examples where our approach avoids
fragmenting common words or idiomatic phrases into unnatural subunits across different languages.
We make the following contributions:

• We present IndicSuperTokenizer, a state-of-the-art tokenizer for Indic LLMs, systemati-
cally benchmarking it against popular multilingual baselines.

• We study the impact of vocabulary size, training data, and language-specific pre-
tokenization choices on fertility score, showing that careful pre-tokenization outweighs
naive vocabulary scaling.

• To the best of our knowledge, we are the first to carry out a comprehensive benchmarking
of a tokenizer across multiple intrinsic quality measures, as well as to study its downstream
impact on task performance and LLM inference efficiency in both pretraining from scratch
as well as continual pretraining settings.

2 RELATED WORK

Tokenization Algorithms. Tokenization strategies differ in both theory and practice. While al-
ternate sub-word tokenization algorithms have been explored in the past such as WordPiece (Song
et al., 2021), Unigram LM (Kudo & Richardson, 2018), Byte Pair Encoding (BPE) remains the
most widely adopted. Originally developed for compression (Gage, 1994) and later adapted for
neural MT (Sennrich et al., 2016b), BPE merges frequent character pairs to balance coverage with
efficiency. Its variants aim to address inefficiencies: PickyBPE (Chizhov et al., 2024) discards un-
informative merges to improve vocabulary utility, while Scaffold-BPE (Lian et al., 2024) iteratively
prunes low-frequency scaffold tokens to reduce imbalance and enhance downstream performance.
Recent extensions like SuperBPE (Liu et al., 2025a) expand beyond word boundaries, jointly learn-
ing subwords and multi-word “superwords” yielding improved compression and inference efficiency
in a 2-stage curriculum. BoundlessBPE (Schmidt et al., 2024), another contemporary work, relaxes
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the Pre-tokenization word boundary constraint in an single stage learning step. Our work compares
these two recent approaches and show that two-stage curriculum preserves subword coverage while
capturing larger semantic units in morphologically rich Indian languages.

Multilingual Tokenizers. Multilingual tokenization faces challenges from script diversity, mor-
phology, and structural variation. Comparative studies show that vocabulary size and construction
strategies strongly affect performance for morphologically rich languages (Karthika et al., 2025a),
while inefficiencies in underrepresented ones, such as Ukrainian, translate to higher fertility and
computational costs (Maksymenko & Turuta, 2025). Tokenization also influences how multilin-
gual models encode morphology, as demonstrated in mT5 vs. ByT5 (Dang et al., 2024). For Indic
languages, tailored resources (Kakwani et al., 2020) and IndicBERT (AI4Bharat, 2022) highlight
the value of domain-specific tokenization. Recent benchmarks further reveal economic implica-
tions, with BLOOM’s tokenizer achieving the best cost efficiency among popular multilingual LLMs
(ADA Sci, 2024). Together, these studies show that current multilingual tokenizers fragment low-
resource and morphologically rich languages, motivating approaches like ours that combine normal-
ization, language-tailored pre-tokenization, and multi-word learning to achieve better efficiency and
fairness in Indic languages. Tokenization for Indic languages presents unique challenges due to their
linguistic diversity, rich morphology, and script multiplicity.

Pre-tokenization. Pre-tokenization plays a pivotal role in shaping token boundaries, directly in-
fluencing both compression efficiency and reasoning performance (Xue et al., 2024). Sentence-
Piece (Kudo & Richardson, 2018) introduced a language-agnostic approach by treating input as
raw streams, effective for languages without whitespace boundaries. More recent approaches like
BoundlessBPE (Schmidt et al., 2024) relax pre-token constraints to improve frequency distributions,
while regex-based designs continue to prove crucial for capturing script-specific structures.

3 INDICSUPERTOKENIZER (IST)

Language modeling involves estimating the probability distribution over text sequences, P (S),
where S may represent a sentence, paragraph, or document. To achieve this, the text is first
converted into a sequence of discrete tokens through a tokenization function g(S) = X =
(X1, X2, . . . , Xn) ∈ V n, where V denotes the vocabulary and n the sequence length. Tokeniz-
ers can be open-vocabulary, ensuring any string can be represented (e.g., byte-level), or closed-
vocabulary, where unseen text maps to an out-of-vocabulary symbol (e.g., word lists) (Rae et al.,
2021). In our work, we adopt an open-vocabulary approach that combines byte-pair encoding (BPE)
with a UTF-8 byte fallback, following Radford et al. (2018). In this section, we describe our tok-
enizer training and evaluation approach.

3.1 TOKENIZER TRAINING

With the aim of improving fertility in Indic languages and scripts, we follow the curriculum princi-
ples as in Liu et al. (2025a). Specifically, we have:

Stage 1 (Subword Learning): Training begins with standard byte-pair encoding (BPE) applied after
whitespace pre-tokenization. This ensures that merges occur only within word boundaries, allowing
the tokenizer to learn fine-grained subword units such as roots, affixes, and common morphemes.
Stage 1 continues until the vocabulary reaches a pre-defined transition point t (< |V |).
Stage 2 (Superword Learning): After reaching t, training resumes without whitespace constraints,
allowing BPE to merge across word boundaries. This enables the formation of superwords, frequent
multiword expressions or collocations (e.g., “one of the”, “number of”), improving compression and
reducing token counts for common phrases.

This two-stage tokenizer training is particularly effective for morphologically rich languages and
scripts with complex variations where, meaningful subwords are first anchored and then composed
into frequent multiword units.

3
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3.2 PRE-TOKENIZATION

Pre-tokenization segments raw text before subword learning to improve token consistency and
efficiency. We combine regex-based, Unicode normalization, and morphology-aware strategies.
Unicode-aware regex separates punctuation, handles numeric groups, and aligns tokens with seman-
tic units. NFKC normalization standardizes visually identical characters, reducing sparsity (Table
16 illustrates the effect of normalization). Morphology-aware segmentation decomposes words into
roots and affixes to capture recurring morphemes. While we experimented with morphology-aware
segmentation, including them in tokenization without impacting the latency is non-trivial (Refer to
Appendix C.2 for details). In contrast to SuperBPE, in our Stage 1 pre-tokenization step we replace
GPT-2 rules with LLaMA-4 regex for script-agnostic segmentation, improving token-to-word ratios
by 38–40% (See Table 1) on Indic scripts. Stage 2 relaxes whitespace constraints to form multiword
tokens capturing collocations and idioms. This design produces a script-robust tokenizer that effi-
ciently supports multiword learning across English and Indic languages. However, unconstrained
merging risks producing tokens that cross sentence boundaries,which destabilizes generation and
distorts end-of-sentence probabilities. To mitigate this, we introduce sentence-level boundary con-
straints: merges are free within sentences but are disallowed across sentence delimiters.

Table 1: Fertility scores showing LLaMA-4 regex outperforms GPT-2 in stage-1 tokenizer training.

Regex as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

GPT-2 4.36 4.72 4.67 1.57 2.88 1.32 3.95 4.12 3.47 2.47 5.95 3.17 7.08 3.30 4.86 4.37 4.44 3.28 5.97 2.71 1.30 6.53 5.61 1.29
LLaMA-4 1.83 1.74 1.99 1.54 1.56 1.33 2.17 1.83 1.36 1.36 2.15 1.56 2.24 2.27 1.61 1.59 1.65 1.47 2.51 3.60 1.45 2.07 1.83 1.47

3.3 TRAINING DATA AND VOCABULARY

Training a multilingual tokenizer involves careful design choices on the vocabulary size, language
(or language script)-wise vocabulary distribution, and training data mix. We evaluate different vo-
cabulary allocation strategies (Section 4.4) and conduct detailed ablations (Section 5) to inform
these design choices. The final IndicSuperTokenizer that we train uses a shared vocabulary of 200K
tokens, distributed across language scripts (Figure 2), and is trained on 10GB of multilingual high
quality data curated from OLMo (OLMo et al., 2025), Wikipedia2, books, PDFs, Common Crawl,
and the Sangraha dataset (Khan et al., 2024).

Figure 2: Vocabulary size distribution across language scripts. See Appendix A.1 for script details.

3.4 BASELINES

We benchmark against 9 tokenizers, comprising: i) Indic-focused tokenizers: tokenizers designed
primarily for Indian languages: Sutra (Tamang & Bora, 2024) and Sarvam-2B (Team, 2024b) (re-
ferred as Sarvam). ii) Good Indic support tokenizers: multilingual tokenizers with demonstrated
capabilities for Indic languages: Gemma-3-27B-it (Team et al., 2025) (referred as Gemma-3), GPT-
oss (OpenAI, 2025) and LLaMA-4 (AI, 2025b). iii) General tokenizers: tokenizers of widely-used
general-purpose LLMs: Qwen3-32B (Team, 2024a) (referred as Qwen-3), LLaMA-3.2-1B (Dubey
et al., 2024), Mistral-Nemo (AI, 2024) and DeepSeek-R1 (AI, 2025a).

3.5 METRICS

We employ four intrinsic metrics capturing different aspects of token efficiency and informativeness:
(i) Fertility score (Rust et al., 2021; Scao et al., 2022), measuring vocabulary granularity; (ii) Nor-
malized Sequence Length (NSL) (Dagan et al., 2024), quantifying sequence compression relative

2https://en.wikipedia.org/wiki/
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to a base tokenizer; (iii) Rényi’s entropy and efficiency (Zouhar et al., 2023), assessing information
density; and (iv) Bytes per token (Kocetkov et al., 2022), reflecting memory and storage efficiency.
We report micro-average per line at the language level. More details on the metrics and definitions
in Section D in Appendix.

3.6 EVALUATION FRAMEWORK

We construct an evaluation set spanning 22 Indic languages, English, and code, curated from the
same sources as the training corpus. Table 2 reports dataset statistics: text volume, number of lines,
and average words per line per language. All metrics are computed at the line level and aggregated
to the language level.

We also develop a modular evaluation framework supporting HuggingFace3, SentencePiece4, and
TikToken5 tokenizers along with a comprehensive set of intrinsic metrics, including, Fertility score,
normalized sequence length (NSL), Rényi entropy and efficiency, and bytes per token. We will
release both the evaluation dataset and the framework for reproducible benchmarking and fair com-
parison of multilingual tokenizers.

Table 2: Evaluation corpus statistics across 22 Indic languages, English, and code. We report stan-
dard ISO codes here. See Section A.1 for the actual language name.

as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

Size (MB) 56 562 13 4 1 148 67 83 422 30 252 60 311 34 152 82 46 144 110 0.47 38 502 486 38
# Lines (K) 65 681 19 118 2 449 135 91 545 21 273 129 337 64 257 126 59 198 139 1 69 658 773 27
Avg W/Line 51 47 41 3 43 56 37 59 59 145 41 39 35 43 33 40 45 57 36 26 70 32 32 185

4 EXPERIMENTS AND RESULTS

4.1 INTRINSIC EVALUATION OF TOKENIZERS

We achieve SOTA performance across 9 tokenizers for fertility score in consideration (see Table 3
for Indic focused or good Indic support tokenizers and an extended version Table 24 in Appendix for
the rest). As shown in Table 3, IndicSuperTokenizer consistently achieves the lowest ratios across
all evaluated languages, which reflects the degree of fragmentation. Bytes-per-token (Appendix
D.2) measures the average raw text bytes per token, indicating information density and sequence
compactness. Table 7 shows that IndicSuperTokenizer achieves consistently higher values across
languages. See Appendix D.2 for details.

Table 3: Fertility score (↓) comparison for Indic focused and Good support tokenizers across lan-
guages here. IST performs best in 20 of 24 languages. An extended version in Table 24 (Appendix).

Tokenizer (↓) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

Gemma-3 2.65 1.69 2.84 1.79 1.69 1.39 2.60 2.50 1.47 1.48 3.34 1.91 3.45 2.07 2.03 2.03 4.42 2.83 3.37 5.16 2.03 2.50 2.94 1.44
GPT-OSS 2.66 2.41 3.17 1.51 1.89 1.33 2.73 2.37 1.72 1.58 3.34 2.01 3.51 2.41 2.61 2.10 6.26 2.71 3.89 13.01 1.76 3.18 3.13 1.51
LLaMA-4 4.40 2.93 3.34 1.46 2.00 1.34 2.84 3.37 1.83 1.72 4.23 2.28 4.95 2.73 2.79 2.46 10.51 3.23 4.12 9.04 2.13 5.87 4.53 1.76
Sarvam 4.24 1.91 2.92 2.14 1.85 1.66 3.01 2.11 1.53 1.91 2.53 2.11 3.19 4.60 1.94 2.35 2.43 1.67 3.78 13.07 7.62 2.49 2.63 7.93
Sutra 2.12 2.07 3.06 2.12 1.78 1.17 2.68 2.15 1.62 1.48 2.71 2.08 3.10 2.40 2.18 2.01 2.24 1.50 3.76 2.03 2.23 2.58 2.77 1.55
IST 1.85 1.74 2.04 1.47 1.45 1.12 2.17 1.77 1.23 1.21 2.19 1.58 2.30 2.28 1.63 1.62 1.65 1.39 2.59 3.72 1.45 2.12 1.88 1.44

Table 4: NSL score (↓) comparison for Indic focused and Good support tokenizers across languages
here. IST performs best in 23 of 24 languages. An extended version in Table 23 (Appendix).

Tokenizer (↓) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

Gemma-3 0.63 0.59 0.87 1.31 0.91 1.06 0.94 0.76 0.83 0.93 0.81 0.89 0.73 0.81 0.76 0.83 0.44 0.89 0.84 0.59 0.99 0.45 0.67 0.85
GPT-oss 0.63 0.83 0.95 1.03 0.96 1.00 0.96 0.71 0.94 0.95 0.79 0.90 0.72 0.89 0.94 0.85 0.60 0.85 0.94 1.43 0.83 0.56 0.71 0.88
Sutra 0.55 0.74 0.93 2.09 0.92 0.89 0.96 0.68 0.92 0.91 0.67 0.94 0.65 0.92 0.84 0.82 0.24 0.51 0.91 0.26 1.10 0.47 0.59 0.90
Sarvam 0.99 0.66 0.91 1.50 1.00 1.27 1.13 0.64 0.85 1.19 0.62 0.99 0.65 2.19 0.72 0.96 0.24 0.54 0.93 1.45 3.63 0.45 0.56 4.25
IST 0.45 0.60 0.65 0.94 0.78 0.85 0.82 0.54 0.68 0.80 0.53 0.76 0.50 0.91 0.61 0.67 0.18 0.45 0.66 0.45 0.72 0.38 0.44 0.86

3https://github.com/huggingface/tokenizers
4https://github.com/google/sentencepiece
5https://github.com/openai/tiktoken
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Normalized sequence length (Appendix D.3) quantifies tokenized sequence length relative to a
base tokenizer, indicating relative compression efficiency. Table 4 shows that IndicSuperTokenizer
achieves shorter normalized sequences across languages. Rényi’s entropy quantifies the uncertainty
of token distributions, while Rényi’s efficiency normalizes entropy by vocabulary size to assess
utilization. Table 6 shows that IndicSuperTokenizer achieves superior efficiency across languages,
reflecting effective and balanced token allocation.

Table 5: Inference latency com-
parison of 1B models trained with
LLaMA-4 and IST tokenizers.

Model TTFT (ms) ↓ OTPT (tokens/s) ↑
LLaMA-4 19.17 ± 0.15 117.99
IST 18.98 ± 0.36 169.42

Table 6: Rényi’s Entropy and Efficiency across top In-
dic tokenizers. Higher efficiency indicates better bal-
ance between vocabulary capacity and token usage.

Gemma-3 GPT-oss LLaMA-4 Sarvam Sutra IST

Entropy ↓ 20.70 20.81 21.09 20.71 20.62 20.42
Efficiency ↑ 0.22 0.19 0.14 0.21 0.23 0.28

Table 7: Bytes-per-token score (↑) comparison for Indic focused and Good support tokenizers across
languages here. IST performs best in 22 of 24 languages.

Tokenizer (↑) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

Gemma-3 6.37 10.45 5.87 2.33 6.75 4.36 5.29 6.31 9.16 7.01 6.73 6.42 7.57 6.23 8.90 8.31 3.76 4.62 6.66 2.59 3.87 9.60 6.82 5.55
GPT-oss 6.36 7.35 5.27 2.77 6.04 4.55 5.02 6.68 7.83 6.54 6.74 6.11 7.43 5.34 6.94 8.04 2.65 4.83 5.79 1.03 4.46 7.56 6.41 5.28
LLaMA-4 3.84 6.05 4.99 2.85 5.70 4.53 4.84 4.69 7.37 6.03 5.33 5.39 5.26 4.71 6.49 6.84 1.58 4.05 5.45 1.48 3.69 4.10 4.43 4.54
Sarvam-2B 3.92 9.42 5.70 1.95 6.16 3.65 4.55 7.62 8.92 5.29 9.07 5.83 8.63 2.81 9.46 7.20 7.17 7.95 6.03 1.02 1.02 9.74 8.46 1.00
Sutra 8.04 8.50 5.44 1.97 6.39 5.15 4.98 7.36 8.33 7.00 8.38 5.88 8.75 5.36 8.35 8.45 7.73 8.76 6.04 6.59 3.49 9.38 8.04 5.15
IST 9.12 10.15 8.18 2.84 7.86 5.44 6.29 8.95 11.01 8.59 10.30 7.80 11.33 5.67 11.11 10.39 10.07 9.40 8.70 3.60 5.40 11.32 10.70 5.55

4.2 EXTRINSIC EVALUATION ON DOWNSTREAM TASKS

We also evaluated the downstream model performance (see Table 8) by pretraining LLaMA-3.2 1B
models using two tokenizers: i) IndicSuperTokenizer, our proposed tokenizer optimized for morpho-
logically meaningful segmentation in Indic and multilingual settings, and (ii) LLaMA-4 tokenizer,
chosen for comparable vocabulary size and widespread use. Both models were trained on the same
dataset in iso-compute setting to ensure a fair comparison. More details in the Appendix B. We
find that our tokenizer shows competitive performance across the English and Indic benchmarks.
We additionally trained a model using the Stage-1 tokenizer, and it attains strong downstream per-
formance. As shown in Table 25 in Appendix, the Stage-1 tokenizer itself constitutes a strong and
competitive baseline.

The pretraining corpus (Table 20 in Appendix) balances coverage and domain diversity. It combines
web-scale sources (Nemotron CC) for general context with structured data including MegaMath,
StackV2, synthetic generations, and books. Indic-language content constitutes roughly 20% of the
corpus, drawn from Indic CC, Wikipedia, and Sangraha Verified, providing sufficient signal to eval-
uate cross-lingual and morphologically rich representation quality.

4.3 HOW DOES TOKENIZER DESIGN IMPACT MODEL LATENCY AND THROUGHPUT?

Next, we evaluate how tokenization impacts end-to-end model efficiency. We trained two 1B-
parameter models under identical conditions: one with our tokenizer and one with the LLaMA
tokenizer of similar vocabulary size. We then evaluated inference efficiency over 200 samples span-
ning Indic languages and English, with varying input lengths. Latency6 was measured using standard
metrics, including Time-To-First-Token (TTFT), Output Throughput (OTPT), and Input Sequence
Length (ISL), across 200 instances ( See Appendix C.4 for details) with 5 warm-up requests and
results averaged over 10 runs. Experiments were served on 8 H100 GPUs using Triton Inference
Server as backend, with a maximum generation limit of 256 new tokens. Our tokenizer yields clear
efficiency gains (Table 5). These gains stem from improved compression: shorter token sequences
encode more information per token, thereby lowering per-request computation without compromis-
ing expressivity. Overall, this demonstrates that tokenizer design directly shapes not only pretraining
efficiency but also real-world deployment latency, making it a critical factor for practical model per-
formance.

6https://tinyurl.com/4e7nh7c8

6

https://tinyurl.com/4e7nh7c8


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 8: Performance comparison of English (left) and Indic benchmarks (right).

English Benchmarks Indic Benchmarks

Dataset LLaMA-4 IST Dataset LLaMA-4 IST

HellaSwag 0.353 0.357 Indic COPA 0.544 0.556
CommonsenseQA 0.206 0.204 Indic Sentiment 0.524 0.551
OpenBookQA 0.216 0.218 Indic XNLI 0.347 0.346
Winogrande 0.504 0.510 Indic Paraphrase 0.534 0.539
GSM8K 0.016 0.018 MILU (Indic Multi-turn LU) 0.261 0.258
ARC Easy 0.623 0.630 ARC Challenge (Indic) 0.236 0.244
ARC Challenge 0.291 0.292 TriviaQA (Indic) 0.268 0.262
MMLU 0.252 0.249
DROP 0.048 0.036

Average 0.279 0.279 Average 0.388 0.394

4.4 VOCABULARY ALLOCATION: EXPLICIT VS. CORPUS-DRIVEN

We allocate vocabulary budgets proportionally across scripts to preserve subword/multi-word granu-
larity. Budgets were derived from corpus sizes, ensuring that both high- and low-resource scripts re-
tained sufficient capacity. We compared two strategies for realizing this allocation. The first, explicit
merging, trains script-specific tokenizers and concatenates their vocabularies via a rule-stacking
procedure. While conceptually modular, this approach introduces distributional interference across
scripts, yielding higher token-to-word ratios and fragmented segmentation (Table 9). The second,
corpus-driven alignment, trains a single tokenizer on the concatenated multilingual corpus, allowing
the vocabulary to adapt naturally to language frequencies. This unified training not only mirrored
corpus composition (Table 10) but also achieved the lowest fertility scores across scripts (Table 3),
outperforming explicit merging and public baselines. While script-aware budget allocation is neces-
sary, explicit merging is inefficient; corpus-driven alignment provides a more scalable and faithful
multilingual tokenization strategy.

Table 9: Fertility comparison between individual script tokenizers and the merged tokenizer across
selected Indic languages. Lower values are better.

Tokenizer as bn hi mai mr san te

Individual 2.05 2.13 1.21 1.35 1.75 2.49 1.40
Merged 2.32 2.14 1.55 1.57 1.73 2.79 1.95

Table 10: Script-specific training data size (Total corpus size 9.4 GB) and resulting vocabulary
percentage distribution. Refer to Table 17 in Appendix for script mapping.

Metric ar bn deva en gu ka ml pa ta te
Data size (MB) 106 396 2200 3590 124 644 580 307 616 617
Percentage 1.12 4.18 23.25 37.94 1.31 6.81 6.13 3.24 6.51 6.52
Vocab perc dist 2.69 6.32 20.89 32.92 2.38 7.82 6.76 4.68 7.04 8.50

4.5 QUALITY ANALYSIS: UNDERTRAINED “GLITCH” TOKEN

We analyze under-trained tokens in our tied-embedding LLaMA-3.2-1B models trained with both
the IST tokenizer and a comparable BPE tokenizer of similar vocabulary size trained on the same
corpus. Both tokenizers share the first 90% of the vocabulary. The IST tokenizer switches to super-
word training for the last 10% whereas the base BPE tokeniser continues standard subword training.
Following Land & Bartolo (2024) to construct a reference for unused embeddings, we introduced

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

a small set of dummy tokens into the vocabulary that have zero occurrences in the training data.
Their embeddings were averaged to obtain a mean reference vector. We then retrieved the top-K
nearest neighbors (cosine distance), which represent potential “glitch” tokens (Geiping et al., 2024).
As shown in Figure 5 (in the Appendix) the IST tokenizer produces far fewer such glitch tokens
than the base BPE tokenizer. These results suggest that incorporating multi-words promotes more
efficient utilization of the vocabulary, while purely subword-based tokenizers overfit in the long tail,
yielding a higher proportion of under-trained tokens. More discussion in Appendix Section C.3.

4.6 CAN WE REPLACE OPENSOURCE MODEL TOKENIZER WITH IST?

Following ReTok (Gu et al., 2024), we replace the tokenizer of a pre-trained LLaMA-3.2-1B
model (denoted LLAMA-3.2-ORIG) (Grattafiori et al., 2024) with IndicSuperTokenizer (referred as
LLaMA-3.2-IST). Let Vorig and VIST denote their corresponding vocabularies. For a token t ∈ VIST,
we initialize its embedding Einit(t) as: if t ∈ Vorig ∩ VIST, then Einit(t) = Eorig(t), its embedding
from the pretrained model, otherwise, if t ∈ VIST \Vorig and decomposes under the original tokenizer
into (t1, . . . , tk), then Einit(t) =

1
k

∑k
i=1 Eorig(ti).

We then continually pretrained the LLaMA-3.2-IST model, keeping just the embedding and LM
head layers trainable, on a 40B-token corpus comprising English, Indic, code, and mathematics (see
Appendix for details). As seen in Table 11, the LLaMA-3.2-IST model performs competitively
with the original LLaMA-3.2-ORIG. This suggests that, in addition to pretraining-from-scratch set-
tings, an optimized multilingual tokenizer, such as IndicSuperTokenizer, could also be leveraged in
opensource models through CPT (Continual Pretraining (Chen et al., 2024)) leading to significant
throughput gains (as seen in Table 5) while maintaining the original model quality.

Table 11: Performance comparison English (left) and Indic benchmarks (right).

English Benchmarks Indic Benchmarks

Dataset LLaMA-3.2-ORIG LLaMA-3.2-IST Dataset LLaMA-3.2-ORIG LLaMA-3.2-IST

Winogrande 0.60 0.61 Indic COPA 0.58 0.56
GSM8K 0.05 0.05 Indic Sentiment 0.82 0.85
ARC Challenge 0.40 0.39 Indic XNLI 0.35 0.34
MMLU 0.32 0.29 Indic Paraphrase 0.57 0.53

Average 0.34 0.34 Average 0.58 0.57

5 ABLATION STUDIES

Two-Stage vs. One-Stage: Controlling Vocabulary Recently, BoundlessBPE (Schmidt et al.,
2024) also explored a one-stage training paradigm in which pre-tokenization is governed by a fixed
regular expression, enabling the direct learning of multiword units in a single pass. While effective in
capturing frequent expressions, this strategy can also overfit to arbitrary character sequences lacking
semantic value, ultimately reducing vocabulary efficiency. Our approach instead introduces a two-
stage procedure. We replicate the one-stage setup of BoundlessBPE using its released regex (ref-
fered as IST-BR) and compare against our two-stage tokenizer. As shown in Table 12, our method
consistently achieves lower fertility across the top 10 Indic languages and English, indicating more
compact and semantically grounded vocabularies. Overall, the comparison highlights a clear trade-
off: while one-stage methods capture surface-level patterns indiscriminately, our two-stage design
balances efficiency and linguistic integrity by decoupling subword and multiword learning.

Table 12: Fertility score (↓) comparison between one-stage and two-stage IST tokenizers.

Tokenizer as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

IST-BR (200K) 1.86 1.76 2.05 1.75 1.62 1.37 2.20 1.86 1.39 1.39 2.19 1.61 2.29 2.30 1.66 1.67 1.69 1.49 2.68 3.61 1.56 2.12 1.88 1.54
IST (180K/200K) 1.85 1.74 2.04 1.47 1.45 1.12 2.17 1.77 1.23 1.21 2.19 1.58 2.30 2.28 1.63 1.62 1.65 1.39 2.59 3.72 1.45 2.12 1.88 1.44

Dataset Size Similar to (Reddy et al., 2025), we study the effects of scaling training data, however
only in Stage 1 of our training. Figure 13 shows that our performance plateaus after 10G of data.
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Table 13: Ablation of tokenizer training data size and its impact on fertility score (↓).

Size as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd Average

1G 3.02 2.32 2.71 1.62 1.64 1.33 1.97 1.62 1.50 1.43 2.16 1.85 2.83 2.62 1.72 2.13 1.68 1.50 2.46 13.02 1.43 1.92 1.82 1.91 2.42
5G 1.71 1.93 2.58 1.63 1.58 1.33 2.18 1.72 1.40 1.36 2.04 1.57 2.43 2.28 1.68 1.48 1.61 1.57 2.48 4.74 1.30 2.02 1.87 1.43 1.91
10G 1.83 1.74 1.99 1.54 1.56 1.33 2.17 1.83 1.36 1.36 2.15 1.56 2.24 2.27 1.61 1.59 1.65 1.47 2.51 3.60 1.45 2.08 1.83 1.47 1.80
25G 1.75 1.84 2.56 1.62 1.57 1.33 2.15 1.78 1.39 1.36 2.04 1.56 2.32 2.23 1.67 1.47 1.63 1.55 2.45 3.92 1.31 2.01 1.86 1.34 1.86
30G 1.76 1.84 2.32 1.62 1.57 1.33 2.13 1.78 1.39 1.36 2.03 1.57 2.31 2.24 1.67 1.47 1.63 1.54 2.45 4.02 1.31 2.00 1.87 1.35 1.86
50G 1.72 1.82 2.25 1.60 1.57 1.34 2.14 1.82 1.39 1.36 2.03 1.58 2.28 2.22 1.69 1.49 1.64 1.52 2.44 4.54 1.31 2.01 1.87 1.34 1.87

Transition Point We ablate the transition point t (Section 3.1) at which training shifts from sub-
word to cross-word merges. Varying t reveals a clear trade-off: early transitions favor frequent mul-
tiword expressions but weaken morphological coverage, while late transitions preserve subwords at
the cost of longer sequences. Across Indic and non-Indic languages, intermediate values of 90% t
yield the best balance, improving token efficiency and cross-lingual consistency (Table 14).

Table 14: Impact of varying transition point (as a % of vocab size 200K) on fertility (↓).

Transition (%) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

60 1.91 1.80 2.05 1.39 1.38 1.04 2.16 1.77 1.16 1.15 2.17 1.53 2.30 2.29 1.56 1.58 1.68 1.39 2.48 3.89 1.43 2.11 1.86 1.45
75 1.91 1.79 2.05 1.41 1.38 1.04 2.16 1.77 1.16 1.15 2.16 1.53 2.30 2.28 1.56 1.58 1.68 1.39 2.47 3.91 1.43 2.10 1.86 1.45
80 1.89 1.78 2.03 1.41 1.38 1.05 2.15 1.77 1.16 1.16 2.14 1.53 2.28 2.26 1.56 1.57 1.67 1.39 2.46 3.83 1.42 2.08 1.83 1.44
85 1.87 1.77 2.01 1.43 1.39 1.06 2.13 1.76 1.17 1.16 2.13 1.53 2.26 2.25 1.56 1.56 1.66 1.39 2.46 3.78 1.42 2.07 1.82 1.44
90 1.85 1.74 2.04 1.47 1.45 1.12 2.17 1.77 1.23 1.21 2.19 1.58 2.30 2.28 1.63 1.62 1.65 1.39 2.59 3.72 1.45 2.12 1.88 1.44
95 1.85 1.75 1.98 1.47 1.42 1.10 2.13 1.74 1.21 1.20 2.12 1.53 2.23 2.24 1.56 1.56 1.66 1.41 2.46 3.68 1.43 2.06 1.81 1.44

Vocabulary Size Vocabulary size strongly influences tokenization-model efficiency with trade-
offs. Smaller vocabularies yield finer subword units that generalize well to unseen words but
lengthen sequences, raising compute costs. Larger vocabularies shorten sequences by encoding
frequent forms as single tokens, but waste capacity on rare items, inflate embeddings and softmax
layers (Shazeer et al., 2017), and bias toward high-resource languages, hurting multilingual balance.
With the same transition point at 90%, we found no significant impact on fertility scores beyond
200K (Table 15).

Table 15: Ablation on vocab size (t = 90%) and its impact on fertility (↓) scores.

Vocab Size as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

162K/180K 1.89 1.78 2.08 1.48 1.47 1.13 2.21 1.80 1.24 1.22 2.22 1.60 2.35 2.27 1.65 1.65 1.68 1.42 2.62 3.84 1.48 2.16 1.91 1.47
180K/200K 1.85 1.74 2.04 1.47 1.45 1.12 2.17 1.77 1.23 1.21 2.19 1.58 2.30 2.27 1.63 1.62 1.65 1.39 2.59 3.72 1.45 2.12 1.88 1.44
202K/225K 1.81 1.70 1.99 1.44 1.43 1.10 2.14 1.72 1.20 1.19 2.14 1.55 2.24 2.21 1.59 1.59 1.60 1.36 2.55 3.59 1.41 2.08 1.82 1.41
225K/250K 1.78 1.67 1.95 1.42 1.42 1.09 2.11 1.69 1.19 1.17 2.10 1.53 2.20 2.17 1.57 1.57 1.57 1.34 2.52 3.45 1.38 2.04 1.77 1.38

Effect of Normalization in Multilingual Tokenization Unicode normalization is crucial for mul-
tilingual settings (Karthika et al., 2025b), particularly for Indic languages, where a single grapheme
can be represented by multiple Unicode sequences (e.g., pre-composed characters vs. base-plus-
diacritic sequences), causing token fragmentation and inflated vocabulary size. Table 16 shows that
NFKC yielded marginal but consistent gains by unifying character forms. Accordingly, we adopt
NFKC to reduce variability and improve tokenizer robustness.

6 CONCLUSION

In this work, we revisit tokenization as a central design choice for multilingual LLMs, focusing on
Indic languages that expose the limitations of existing subword methods. Our proposed IndicSuper-
Tokenizer combines linguistically grounded pre-tokenization with a two-stage subword–superword
learning process, yielding more compact and semantically faithful vocabularies. Experiments across
intrinsic metrics, downstream task performance, ablations, and inference latency demonstrate con-
sistent gains in efficiency, morphological alignment, and deployment cost, establishing tokenization
as a key lever for building equitable and scalable multilingual models.
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Table 16: Fertility scores with NFC, NFD, NFKC normalization for all languages.

Tokenizer as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

NFC 1.8520 1.7449 2.0412 1.4658 1.4520 1.1167 2.1741 1.7664 1.2250 1.2042 2.1845 1.5761 2.3025 2.2421 1.6273 1.6241 1.6464 1.3915 2.5859 3.7170 1.4515 2.1226 1.8754 1.4371
NFD 1.8518 1.7454 2.0413 1.4665 1.4521 1.1168 2.1661 1.7667 1.2252 1.2044 2.1905 1.5765 2.3019 2.2487 1.6274 1.6246 1.6465 1.3917 2.5864 3.7170 1.4523 2.1227 1.8757 1.4377
NFKC 1.8512 1.7430 2.0409 1.4647 1.4520 1.1155 2.1738 1.7644 1.2239 1.2041 2.1812 1.5762 2.2991 2.2327 1.6258 1.6234 1.6420 1.3884 2.5855 3.7172 1.4505 2.1200 1.8724 1.4369
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A APPENDIX

A.1 LANGUAGE DETAILS

Table 17: Linguistic composition of the 22 scheduled Indian languages analyzed in this work, with
their corresponding scripts.

Family Script Languages

Indo-Aryan Devanagari Hindi, Marathi, Maithili, Dogri, Konkani, Sanskrit, Nepali, Kashmiri
Bengali (bn) Assamese, Bengali
Gurmukhi (pa) Punjabi
Arabic (ar) Urdu, Sindhi

Dravidian Kannada (kn) Kannada
Malayalam (ml) Malayalam
Tamil (ta) Tamil
Telugu (te) Telugu

Tibeto-Burman Devanagari Bodo
Meitei Mayek Manipuri (Meitei Mayek script)

Austroasiatic Ol Chiki (sat) Santali

Table 18: Mapping of ISO codes to corresponding 22 Indic languages.

Code Language Code Language Code Language

as Assamese bn Bengali brx Bodo
doi Dogri gu Gujarati hi Hindi
kn Kannada ks Kashmiri gom Konkani
mai Maithili ml Malayalam mni Manipuri
mr Marathi ne Nepali or Odia
pa Punjabi san Sanskrit sat Santali
snd Sindhi ta Tamil te Telugu
ur Urdu

B IMPLEMENTATION

B.1 TOKENIZER IMPLEMENTATION

We based our training code for the tokenizer on the open implementation of SuperBPE7 using Hug-
gingFace library (Jain, 2022). We also explored merging tokenizers based on the default priority
based BPE in SentencePiece8. While we explored implementing the multi-word two stage cur-
riculum in the SentencePiece, we found that it was not trivial. On the other hand, HuggingFace
showed issues with the merging strategy. We thus relied on different implementations for different
approaches.

B.2 TRAINING DETAILS

We provide more details about our training setup as discussed in Section 4.2. Each model was trained
for 50B tokens under matched hyperparameters (learning rate, batch size, training steps), align-
ing FLOPs to isolate tokenizer effects. The evaluation was performed using lm-eval-harness

7https://github.com/PythonNut/superbpe/tree/main
8https://github.com/google/sentencepiece
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(Gao et al., 2024) across standard English benchmarks (MMLU, GSM8K, Winogrande, TriviaQA,
HellaSwag, ARC, OpenBookQA, CommonsenseQA, DROP) and Indic benchmarks (IndicCOPA,
IndicSentiment, IndicXParaphrase, IndicXNLI (Doddapaneni et al., 2023), ARC Challenge Indic
(Sarvam AI, 2025), and MILU Verma et al. (2024)). We report EM for GSM8K and TriviaQA,
F1 for DROP, and Accuracy for other benchmarks. Shot settings were fixed per task: 25-shot for
ARC/ARC Challenge Indic, 10-shot for HellaSwag, 5-shot for MMLU, GSM8K, and TriviaQA, and
zero-shot for the remainder. This setup allows a direct assessment of how tokenizer design influ-
ences pretraining efficiency, semantic representation, and generalization across English and Indic
tasks.

Table 19: Pretraining configuration for different tokenizers.

Tokenizer Architecture Parameters Data Size (B ) Learning Rate Train Steps Context Length Batch Size Vocab Size

LLaMA-4 LLaMA-3.2 1B 53.24 5 × 10−5 68000 4096 192 201134
IST LLaMA-3.2 1B 53.18 5 × 10−5 68000 4096 192 200008

Table 20: Pretraining corpus distribution across domains and token count. Indic content is empha-
sized to reflect multilingual objectives.

Category Sources Percentage (%) Token Count (B)
Web Nemotron CC 30 15
Math MegaMath 15 7.5
Code StackV2 15 7.5
Synthetic New Generations 10 5
Books Archive 10 5
Indic Indic CC 8 4
Indic Indic Wiki 4 2
Indic Sangraha Verified 8 4
Total 100 50

C ADDITIONAL DISCUSSION

C.1 MISMATCH BETWEEN LOSS AND TASK PERFORMANCE

Although toknizers, incorporating multi-word often show slightly higher loss (Liu et al., 2025a) dur-
ing training compared to models using traditional atomic tokenizers like SentencePiece/BPE, this
does not necessarily translate to worse downstream performance. We hypothesize that this is due to
two complementary factors. First, the introduction of longer or multi-word tokens such as “to the”
or “as well as” increases the number of semantically overlapping candidates, making the model’s
prediction space less sharply peaked. This means the model may distribute probability across several
plausible completions (e.g., “to”, “to the”, “to be”), thereby lowering the maximum assigned proba-
bility to the correct token and inflating the cross-entropy loss. In contrast, other BPE tokenizers often
yield only one atomic candidate for such function words, allowing sharper predictions with lower
loss. Second, IST tokenizes text into fewer, more meaningful units, so when computing the average
loss per token, each mistake contributes more heavily to the total. As a result, although the model
learns more compact and generalizable representations, its token-level loss appears higher. This
creates a divergence between model loss and real-world task accuracy, indicating that traditional
loss curves may underrepresent the representational efficiency and practical utility of compositional
tokenizers like IST.

C.2 MORPHOLOGICALLY GROUNDED TOKEN SPLITTING

We investigate the impact of incorporating morphological information into tokenization for Indic
languages (Brahma et al., 2025). The approach involves pre-processing text with a morphology
analyzer to segment words into morphemes prior to training. This experiment focuses on languages
in the Devanagari script.

We compare two variants: Tokenizer A, trained on raw text, and Tokenizer B, trained on morpho-
logically segmented text using morphology analyzer (Kunchukuttan, 2020). At inference time, To-
kenizer B requires the same pre-processing for consistency. Tokenizer B exhibits more semantically
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coherent superwords, reflecting meaningful morpheme combinations (Figure 3, 4). This promotes
better generalization across related forms and reduces the raw token-to-word ratio, as morpheme-
based units are more compressible. Sample outputs (Figures 3, 4) illustrate the contrast between
surface-level splits and linguistically aligned segmentations.

Despite these gains, we do not adopt this approach in our final tokenizer. The primary limitation
is latency, as the pipeline requires both language identification and morphological analysis. For
completeness, we evaluated a Hindi morphology-aware tokenizer augmented with a morphological
analyzer (Kunchukuttan, 2020) combined with language identification (LID)9. We performed infer-
ence on approximately 4-5 MB of Hindi text and measured throughput over 10 runs (with 5 warm-up
runs), comparing against our IST tokenizer. Our tokenizer achieved 194K tokens/sec, whereas the
morphology-aware tokenizer achieved 90K tokens/sec, representing a 53.28% reduction in through-
put. This slowdown arises entirely from the additional LID and morphology-analysis stages, under-
scoring the efficiency advantages of our approach even when compared to linguistically informed
baselines. Extending robust analyzers across all Indic languages also introduces engineering over-
head and brittle dependencies. Nevertheless, morphology-aware tokenization remains a promising
direction if fast, reliable analyzers become widely available.

Figure 3: Tokenized output of morph-aware to-
kenizer

Figure 4: Tokenized output of non morph-aware
tokenizer

Figure 5: Trend of potential glitch tokens in upper 20K of vocabulary for different K.

C.3 MORE ON GLITCH TOKENS

For each tokenizer, we vary K ∈ {10, 50, 100, 150, . . . , 400} to select the top-K embeddings closest
to a reference vector derived from artificially unused tokens in the vocabulary (Land & Bartolo,
2024; Geiping et al., 2024). For the IST tokenizer, we count the number of multi-word tokens
within the top-K. For the BPE variant, we count tokens with IDs > 180,000, which corresponds
to the upper 20K of the vocabulary. Both tokenizers share the first 180K IDs; the difference lies in
how the final 20K IDs are utilized: IST allocates this space for frequent multi-word tokens, while
the BPE tokenizer continues learning subwords. This design choice allows IST to more effectively

9https://pypi.org/project/langdetect/
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utilize the tail of the vocabulary for meaningful units, whereas the BPE tokenizer exhibits overfitting
in low-frequency subwords. The trend of these counts across different top-K values is visualized in
Figure 5. As K increases, the fraction of multi-word tokens in IST remains low but stable, while the
BPE variant consistently shows a higher fraction of under-trained subwords, indicating overfitting
in the residual vocabulary space.

C.4 MORE ON LATENCY AND THROUGHPUT EVALUATION

To obtain reliable latency and throughput measurements, we constructed a 200-example multilingual
inference set intended to approximate realistic LLM workloads. The set contains diverse sentence-
completion style prompts representative of common generation patterns. We include 20 inputs per
language across English and nine major Indic languages, ensuring balanced coverage of script di-
versity, lexical variation, and syntactic complexity. Table 21 presents the token-length distribution
of these examples under both the LLaMA-4 tokenizer and our IndicSuperTokenizer, allowing a con-
trolled comparison of inference efficiency across tokenization schemes.

Table 21: Token-length statistics for the 200-example inference set. We report min, p75, p90, p99,
maximum, and average token lengths.

Tokenizer min p75 p90 p99 max avg

Llama-4 288 805 1157 2583 2869 784
IndicSuperTokenizer 178 440 541 654 676 379

C.5 DETAILS ABOUT BASELINE TOKENIZERS

Tokenizer fertility is shaped by multiple factors including training data distribution, vocabulary con-
struction, and underlying algorithmic choices, yet publicly available documentation on these as-
pects is often limited. Table 22 summarizes the vocabulary sizes, training methodologies, and any
disclosed data distributions for all baseline tokenizers considered in our study.

Table 22: Summary of baseline tokenizers and publicly available training details.

Tokenizer Vocab Size Training Algorithm / Framework Data Distribution

DeepSeek-R1 128K BPE (undisclosed variant) Not publicly disclosed
Gemma-3 262K SentencePiece 140+ languages
GPT-OSS 200K o200k harmony (TikToken variant) Not publicly disclosed
LLaMA-3.2-1B 128K BPE / SentencePiece-based Not publicly disclosed
LLaMA-4 200K BPE Not fully disclosed
Mistral-Nemo 131K Tekken tokenizer (TikToken-based) 100+ languages; multilingual + code
Qwen-3 151K Byte-level BPE Not publicly disclosed
Sarvam 68K Not publicly disclosed Not publicly disclosed
Sutra 256K SentencePiece (unigram/BPE hybrid) Balanced multilingual; uniform sampling

D METRICS DEFINITIONS

Here, we discuss the different intrinsic metrics used in our evaluation framework.

D.1 TOKEN-TO-WORD RATIO

The Token-to-word ratio measures the average number of tokens required to represent a single word.
It captures the degree of segmentation induced by a tokenizer and is particularly informative for mor-
phologically rich languages where excessive fragmentation increases sequence length. We report
this metric to evaluate whether tokenizers balance compact representations with sufficient linguistic
coverage.
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D.2 BYTES-PER-TOKEN

Bytes-per-token quantifies the average number of raw text bytes contained in a token. Since scripts
differ substantially in character set size and encoding, this metric provides a language-agnostic mea-
sure of efficiency. Higher values indicate that tokens encode more information per unit, which
reduces sequence length. We include this metric to enable direct comparison of tokenizers across
writing systems.

D.3 NORMALIZED SEQUENCE LENGTH

Normalized sequence length measures the average length of tokenized sequences relative to a chosen
base tokenizer. Instead of reporting absolute sequence lengths, this metric highlights how much
longer or shorter sequences become when compared to an established reference. It enables fairer
cross-tokenizer comparisons since raw lengths can vary significantly across languages and corpora.
A normalized value greater than one indicates that the tokenizer produces longer sequences than the
baseline, while a value less than one reflects more compact tokenization. We include this metric to
directly assess relative efficiency in sequence compression.

D.4 REYNI’S EFFICIENCY

Rényi’s entropy measures the uncertainty of token distributions induced by a tokenizer, extending
Shannon entropy by allowing different orders to emphasize frequent or rare tokens. A tokenizer
with a very large vocabulary may contain many infrequent tokens that are poorly utilized, while a
very small vocabulary forces overuse of common tokens. Entropy therefore reflects how effectively
the vocabulary is allocated. To complement this, Rényi’s efficiency normalizes entropy with respect
to vocabulary size, providing a scale-invariant view of how well the vocabulary capacity is utilized.
Together, these metrics characterize both the distributional balance of tokens and the comparative
efficiency of different vocabulary scales.

E EXTENDED RESULTS

In the main paper, due to space constraints, we limited the number of tokenizers presented. Here,
we provide an extended list including all of our baseline tokenizers.

Table 23: Comparison of NSL scores (Base LLaMA-4) for different tokenizers across all languages.

Tokenizer (↓) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

DeepSeek-R1 0.83 0.97 1.25 1.03 1.29 0.98 1.28 1.48 1.59 1.29 1.41 1.34 1.52 0.99 1.49 1.61 0.67 1.41 1.19 0.69 1.34 0.82 1.34 1.21
Gemma-3 0.63 0.59 0.87 1.31 0.91 1.06 0.94 0.76 0.83 0.93 0.81 0.89 0.73 0.81 0.76 0.83 0.44 0.89 0.84 0.59 0.99 0.45 0.67 0.85
GPT-oss 0.63 0.83 0.95 1.03 0.96 1.00 0.96 0.71 0.94 0.95 0.79 0.90 0.72 0.89 0.94 0.85 0.60 0.85 0.94 1.43 0.83 0.56 0.71 0.88
LLaMA-3.2-1B 1.90 2.71 1.08 1.02 1.36 0.99 1.22 2.91 1.47 1.36 3.30 1.16 3.25 1.92 1.41 1.44 1.48 2.45 1.19 1.34 1.33 2.11 3.01 1.58
LLaMA-4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Mistral-Nemo 1.00 0.95 1.06 1.15 1.07 1.06 1.09 1.09 1.12 1.08 0.91 1.08 0.95 0.95 1.13 1.21 1.57 0.98 1.04 1.34 1.20 0.63 0.64 0.95
Qwen-3 1.68 2.37 1.78 1.11 1.85 1.03 1.72 2.59 2.65 2.16 2.69 1.97 2.57 1.72 2.35 2.47 1.19 2.37 1.92 0.96 1.37 1.63 2.45 1.63
Sutra 0.55 0.74 0.93 2.09 0.92 0.89 0.96 0.68 0.92 0.91 0.67 0.94 0.65 0.92 0.84 0.82 0.24 0.51 0.91 0.26 1.10 0.47 0.59 0.90
Sarvam 0.99 0.66 0.91 1.50 1.00 1.27 1.13 0.64 0.85 1.19 0.62 0.99 0.65 2.19 0.72 0.96 0.24 0.54 0.93 1.45 3.63 0.45 0.56 4.25
IST-BR 0.45 0.61 0.66 1.28 0.89 1.04 0.84 0.57 0.77 0.91 0.54 0.80 0.50 0.94 0.63 0.69 0.18 0.48 0.70 0.45 0.78 0.38 0.44 0.92
IST 0.45 0.60 0.65 0.94 0.78 0.85 0.82 0.54 0.68 0.80 0.53 0.76 0.50 0.91 0.61 0.67 0.18 0.45 0.66 0.45 0.72 0.38 0.44 0.86

Table 24: Fertility scores across tokenizers and languages. Lower is better.

Tokenizer (↓) as bn brx code doi eng gom gu hi kas kn mai ml mni mr nep or pa san sat snd ta te urd

DeepSeek-R1 3.54 2.88 4.23 1.53 2.66 1.34 3.68 4.92 3.02 2.49 6.01 3.21 7.95 2.67 4.17 3.97 7.13 4.48 5.07 6.12 2.82 4.92 6.13 2.17
Gemma3 2.65 1.69 2.84 1.79 1.69 1.39 2.60 2.50 1.47 1.48 3.34 1.91 3.45 2.07 2.03 2.03 4.42 2.83 3.37 5.16 2.03 2.50 2.94 1.44
GPT-OSS 2.66 2.41 3.17 1.51 1.89 1.33 2.73 2.37 1.72 1.58 3.34 2.01 3.51 2.41 2.61 2.10 6.26 2.71 3.89 13.01 1.76 3.18 3.13 1.51
Llama-3.2-1B 8.44 8.08 3.64 1.51 2.92 1.35 3.46 9.95 2.74 2.70 14.44 2.79 16.26 5.31 3.90 3.52 15.68 7.88 4.86 12.15 2.85 12.25 13.68 2.73
LLaMA-4 4.40 2.93 3.34 1.46 2.00 1.34 2.84 3.37 1.83 1.72 4.23 2.28 4.95 2.73 2.79 2.46 10.51 3.23 4.12 9.04 2.13 5.87 4.53 1.76
Mistral-Nemo 4.28 2.82 3.52 1.75 2.12 1.41 3.08 3.63 2.05 1.82 3.84 2.48 4.82 2.67 3.10 2.97 16.92 3.04 4.34 12.16 2.51 3.67 3.71 1.65
Qwen3-32B 7.47 7.11 6.10 1.68 4.05 1.41 5.08 8.87 4.86 3.70 11.48 4.53 12.77 4.76 6.56 6.10 12.37 7.60 8.04 8.81 2.95 9.69 11.10 2.90
Sarvam-2B 4.24 1.91 2.92 2.14 1.85 1.66 3.01 2.11 1.53 1.91 2.53 2.11 3.19 4.60 1.94 2.35 2.43 1.67 3.78 13.07 7.62 2.49 2.63 7.93
Sutra 2.12 2.07 3.06 2.12 1.78 1.17 2.68 2.15 1.62 1.48 2.71 2.08 3.10 2.40 2.18 2.01 2.24 1.50 3.76 2.03 2.23 2.58 2.77 1.55
IST-BR 1.86 1.76 2.05 1.75 1.62 1.37 2.20 1.86 1.39 1.39 2.19 1.61 2.29 2.30 1.66 1.67 1.69 1.49 2.68 3.61 1.56 2.12 1.88 1.54
IST 1.85 1.74 2.04 1.47 1.45 1.12 2.17 1.77 1.23 1.21 2.19 1.58 2.30 2.28 1.63 1.62 1.65 1.39 2.59 3.72 1.45 2.12 1.88 1.44
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Table 25: Comparison of downstream performance between IST (Stage-1) and IST (Stage-2).

English Benchmarks Indic Benchmarks

Dataset IST-Stage-1 IST-Stage-2 Dataset IST-Stage-1 IST-Stage-1

HellaSwag 0.348 0.357 Indic COPA 0.556 0.556
CommonsenseQA 0.193 0.204 Indic Sentiment 0.557 0.551
OpenBookQA 0.214 0.218 Indic XNLI 0.366 0.346
Winogrande 0.515 0.510 Indic Paraphrase 0.562 0.539
GSM8K 0.021 0.018 MILU (Indic Multi-turn LU) 0.265 0.258
ARC Easy 0.625 0.630 ARC Challenge (Indic) 0.247 0.244
ARC Challenge 0.279 0.292 TriviaQA (Indic) 0.268 0.262
MMLU 0.255 0.249
DROP 0.042 0.036

Average 0.277 0.279 Average 0.403 0.394
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