
Under review as submission to TMLR

Graph Harmony: Denoising and Nuclear-Norm Wasser-
stein Adaptation for Enhanced Domain Transfer in Graph-
Structured Data

Anonymous authors
Paper under double-blind review

Abstract

Graph-structured data can be found in numerous domains, yet the scarcity of labeled in-
stances hinders its effective utilization of deep learning in many scenarios. Traditional un-
supervised domain adaptation (UDA) strategies for graphs primarily hinge on adversarial
learning and pseudo-labeling. These approaches fail to effectively leverage graph discrimi-
native features, leading to class mismatching and unreliable label quality. To address these
obstacles, we developed the Denoising and Nuclear-Norm Wasserstein Adaptation Network
(DNAN). DNAN employs the Nuclear-norm Wasserstein discrepancy (NWD), which can si-
multaneously achieve domain alignment and class distinction. It also integrates a denoising
mechanism via a Variational Graph Autoencoder. This denoising mechanism helps capture
essential features of both source and target domains, improving the robustness of the domain
adaptation process. Our comprehensive experiments demonstrate that DNAN outperforms
state-of-the-art methods on standard UDA benchmarks for graph classification.

1 Introduction

While deep learning has made substantial progress in handling graph-structured data, it shares a drawback
with other methods in the same category—a heavy reliance on labeled data. This requirement presents a
significant obstacle in real-world applications, where the gathering and annotating of graph-structured data
come with a steep price tag, both in terms of time and resources. Obtaining detailed labels for graph-
structured data, such as chemical molecules, is a considerable challenge because chemical molecules are
incredibly complex, comprising a large number of atoms connected in various ways through different kinds of
bonds. Collecting annotated graph-structured data like social networks is also challenging due to the need to
protect personal and sensitive information and the continual changes in network relationships. The scarcity of
labels makes it difficult to derive meaningful insights and hinders the development of strategies and solutions
based on deep learning. Therefore, it is highly desirable to relax the need for extensive graph-structured
data annotation to replicate the success of deep learning in applications.

To navigate the challenge of label scarcity, Unsupervised Domain Adaptation (UDA) (Ganin & Lempitsky,
2015) has emerged as a promising frontier, aiming to leverage labeled data from a related source domain
to inform an unlabeled target domain. The challenge of label scarcity necessitates Unsupervised Domain
Adaptation (UDA) due to the absence of labels in the target domain. The target domain is our primary
area of interest. To overcome this challenge, we utilize a source dataset rich in labels to train our model.
However, the inherent differences between the source and target datasets require the application of domain
adaptation strategies. These strategies enable the effective application of models trained on the well-labeled
source data to achieve high performance in the target domain, despite its lack of labels. The principle of
UDA is to align the data distributions between the two domains within a common embedding space, allowing
a classifier trained on the source domain to perform competently in the target domain.

While UDA has been extensively applied to array-structured data (Long et al., 2016; Kang et al., 2019), its
translation to graph-structured data remains underexplored. Graph samples exhibit a wide range of struc-
tural variations, including differences in connectivity patterns, node degrees, and subgraph structures. The

1

Under review as submission to TMLR

primary challenge in applying UDA to graph classification is the domain shift in structural patterns, or sim-
ply, the structural variations between the source and target domain graphs. These structural variations make
it challenging for models to identify and leverage invariant features across domains. Pioneering methods,
such as DANE (Zhang et al., 2019a), integrate generative adversarial networks (GANs) with graph convo-
lutional networks (GCNs) to align the domains. Others, like the approach by Wu et al. (2020), introduce
attention mechanisms to reconcile global and local consistencies, again employing GANs for cross-domain
node embedding extraction. However, these GAN-based methods have the drawback of class mismatching,
lacking clear separability between features from different classes, as they align target and source domain
features irrespective of their classes. In addition, these methods are designed for node classification. The
UDA strategy for graph classification has not been well explored.

In this paper, we focus on the UDA setting for graph classification. We propose the Denoising and Nuclear-
Norm Wasserstein Adaptation Network (DNAN) to address the primary challenges in graph UDA tasks
and problems in previous GAN-based methods. Our DNAN benefits from the denoising mechanism with
a Variational Graph Autoencoder (VGAE) and the Nuclear-Norm Wasserstein Discrepancy. By leveraging
the Nuclear-Norm Wasserstein Discrepancy, it tackles the class mismatch issue in existing graph-based UDA
methods. Unlike previous GAN-based methods, DNAN performs a refined, class-specific alignment of source
and target domain distributions within a shared embedding space, preserving the distinct separability of
features across classes. The inclusion of the denoising mechanism is motivated by the structural variations
between source and target domain graphs for the graph UDA setting. The denoising mechanism of VGAE
reconstructs clean adjacency matrices from corrupted versions. This process forces the model to learn robust
features that are more invariant to structural variations and helps the model focus on the underlying structure
and features relevant to the classification task. Thus, we believe the denoising mechanism could help handle
the domain shift in UDA tasks for graph classification. By using these two components, DNAN performs
competitively and achieves state-of-the-art performance on major UDA benchmarks for graph classification.

Our contributions mainly lie in applying existing techniques to a new problem and introducing an effective
combination of existing approaches. Our first contribution is translating the denoising criteria of variational
autoencoders to variational graph autoencoders and applying denoising techniques to address the domain
shift in structural patterns in the graph UDA problem. This translation and utilization of the denoising
mechanism are not trivial. We believe we are the first to discuss the denoising criteria of VGAEs and apply
this mechanism to address the domain shift in the structural patterns of graphs. Our second contribution is
integrating Nuclear-Norm Wasserstein Discrepancy (NWD) with VGAE. Typically, VGAEs are used together
with a domain classifier in previous domain adaptation methods. We use NWD to remove the domain
classifier and incorporate the domain adaptation directly into our class classifier. This integration hasn’t
been proposed before.

2 Related Work

Unsupervised Domain Adaptation A foundational approach within UDA is to reduce the discrepancy
between the source and target domain distributions using adversarial learning. A representative method
in this space, the Domain Adversarial Neural Network (DANN) (Ganin & Lempitsky, 2015), employs an
adversarial training framework to align domain representations by confusing a domain classifier in a shared
embedding space. This strategy is adapted from generative adversarial networks (GANs) (Goodfellow et al.,
2020), tailored for domain adaptation purposes. Expanding on this adversarial methodology, the FGDA
technique (Gao et al., 2021) uses a discriminator to discern the gradient distribution of features, thereby
achieving better performance in mitigating domain discrepancy. Furthermore, DADA (Tang & Jia, 2020)
proposed an innovative strategy by integrating the domain-specific classifier with the domain discriminator
to align the joint distributions of two domains more effectively.

Adversarial approaches are complemented by statistical discrepancy measures like Maximum Mean Discrep-
ancy (MMD), utilized in the Joint Distribution Optimal Transport (JDOT) model (Courty et al., 2017b).
Wasserstein Distance (WD) has been leveraged for distribution alignment in UDA methods (Courty et al.,
2017a; Damodaran et al., 2018), with Redko et al. (2017) providing theoretical foundations for model general-
ization in the target domain when employing WD. However, the practical application of WD is computation-

2

Under review as submission to TMLR

ally intensive due to the absence of a closed-form solution. The Sliced Wasserstein Distance (SWD) (Rabin
et al., 2011; Bonneel et al., 2015) offers a computationally feasible alternative. Reconstruction-based ob-
jectives constitute another research direction, enforcing feature invariance across domains by reconstructing
source domain data from target domain features, as demonstrated in the work by Ghifary et al. (2016). Ad-
ditionally, the application of Variational Autoencoders (VAEs) Kingma & Welling (2013) to UDA, such as in
the Variational Fair Autoencoder (Louizos et al., 2015), showcases the capabilities of probabilistic generative
models in domain-invariant feature learning. Our proposed method draws inspiration from the Variational
Autoencoder’s framework. Other notable approaches like ToAlign (Wei et al., 2021), SDAT (Rangwani
et al., 2022), and BIWAA (Westfechtel et al., 2023), mark recent advancements in UDA, surpassing previous
models in performance. These three approaches are detailed in the experiment sections as our references
for current state-of-the-art methods. However, extending these existing methods to graph-structured data
is often non-trivial.

Graph Representation Learning Graph representation learning (GRL) has emerged as an important
approach in machine learning, tasked with distilling complex graph-structured data into a tractable, low-
dimensional vector space to enable the use of architectures developed for array-structured data. Previously,
spectral methods laid the foundation, leveraging graph Laplacian matrices to capture the topological struc-
tures of graphs despite limitations in scalability for larger graphs (Belkin & Niyogi, 2003; Chung, 1997).
The field then evolved with algorithms such as DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover &
Leskovec, 2016), which utilized random walks to encode local neighborhood structures into node embeddings,
balancing the preservation of local and global graph characteristics. The introduction of Graph Neural Net-
works (GNNs) marked a significant advancement in GRL. GNNs, specifically Graph Convolutional Networks
(GCNs), offer a way to generalize neural network approaches to graph data, integrating neighborhood in-
formation into node embeddings (Kipf & Welling, 2016a). This was further refined by GraphSAGE, which
scaled GNNs by learning a function to sample and aggregate local neighborhood features (Hamilton et al.,
2017b;a). Moreover, Graph Attention Networks (GATs) introduced an attention mechanism, enabling the
model to adaptively prioritize information from different parts of a node’s neighborhood, thus enhancing the
expressiveness of the embeddings (Velickovic et al., 2017). These advances, along with the development of
graph autoencoders like VGAEs that focus on graph reconstruction from embeddings, have broadened the
applications of GRL and continue to shape its trajectory (Kipf & Welling, 2016b). For a fair comparison,
when we compare methods originally not proposed for graph domain adaptation, we replace their feature
extraction backbones with GAT, as GAT is the graph encoder we use in our approach.

Denoising Diffusion Models Generative models (Ruthotto & Haber, 2021) have increasingly incorporated
denoising mechanisms to enhance the clarity and fidelity of synthesized data, bridging the gap between
artificial and real-world data samples. Within this framework, diffusion models stand out by iteratively
applying denoising steps, transforming random noise into detailed and coherent outputs, and exemplifying the
synergy between generative capabilities and denoising techniques. Denoising Diffusion Probabilistic Models
(DDPMs) have revolutionized the field of generative modeling by leveraging principles from nonequilibrium
thermodynamics, connecting diffusion probabilistic models with denoising score matching and Langevin
dynamics to achieve high-quality image synthesis (Ho et al., 2020). Nichol & Dhariwal (2021) improved
DDPMs not only to produce exceptional samples but also to refine them to attain competitive log-likelihoods
while maintaining sample quality. Innovations such as the SinDDM framework demonstrate the capability
of DDMs to train on single images by exploiting internal statistics through a multi-scale diffusion process
(Kulikov et al., 2023). However, the computational intensity of training and evaluating these models presents
a challenge. This obstacle is addressed by the introduction of a pyramidal diffusion model that streamlines
the generation of high-resolution images from coarser ones (Ryu & Ye, 2022). Additionally, the Star-Shaped
DDPM (SS-DDPM) introduces a star-shaped diffusion process that simplifies the computation of transition
probabilities and posteriors, enhancing the model’s efficiency and applicability (Okhotin et al., 2024). Despite
their success in image generation, applying diffusion models to image denoising has been less straightforward
due to difficulties in controlling noise placement, leading to the development of a novel diffusion process
with linear interpolation (Yang et al., 2023). A multitude of diffusion model techniques for image-related
tasks have been adapted for graph-related tasks (Chamberlain et al., 2021; Barbe et al., 2021; Kong et al.,
2023; Li et al., 2023). Although the denoising mechanism of graph generative models is closely related to
diffusion models, our work does not utilize diffusion models. In this paper, we employ a variational graph

3

Under review as submission to TMLR

autoencoder as the generative model and extend the denoising mechanism of the variational autoencoder,
as described by (Im Im et al., 2017), to the domain of variational graph autoencoders.

3 Problem Description

We operate under the assumption that there is a source domain with labeled data and a target domain
with unlabeled data. In both domains, each input instance is a graph-structured data sample. Our primary
objective is to develop a predictive model for the target domain by transferring knowledge from the source
domain.

Graph Classification We focus on a graph classification task, where a graph sample can be represented
as G = (X,A). X ∈ Rn×F, where n represents the number of nodes in G and F represents the dimension
of the features for each node. Note that the number of nodes may vary across different graphs. xi ∈ X
corresponds to the feature associated with a node vi. A ∈ Rn×n is the adjacency matrix. The adjacency
matrix A encapsulates the topological structure of G. Each graph is associated with a class, and we use y
to denote the ground truth label of the graph sample G. The goal is to train a model capable of classifying
graphs effectively and accurately.

Source Domain Dataset We consider a fully labeled source domain dataset as (Ds, Ys) = ({Gks}, {yks }),
where Gks is the kth batch of graph samples in Ds and yks are the ground truth labels of Gks .

Target Domain Dataset We consider that only an unlabeled target domain dataset Dt = {Gkt } is acces-
sible, where Gkt is the kth batch of graph samples in the target dataset Dt.

UDA for Graph Classification The comprehensive pipeline of a UDA model for graph classification begins
by leveraging a neural network to extract relevant features from the input graph samples. Then, it aligns
the domains by utilizing either a distance metric to minimize the discrepancy between the source and target
feature distributions or employing adversarial techniques to achieve domain-invariant feature representations.
Subsequently, the classification task is performed using the aligned features. Usually, the classifier for the
classification task is trained with source labels, but different UDA models may have different strategies for
training the classifier. The performance of the UDA model is evaluated based on how well it performs the
classification task on the test portion of the target domain dataset.

4 Proposed Method

Figure 1 visualizes a high-level description of our proposed pipeline. Our algorithm benefits from a denoising
mechanism via a Variational Graph Autoencoder (VGAE) and the Nuclear-norm Wasserstein discrepancy
for distribution alignment. In a nutshell, our method embeds the graph-structured data from both domains
into a shared feature space via a VGAE with a denoising mechanism. Then, we align the distributions of
both domains in this shared feature space by minimizing the Nuclear-norm Wasserstein discrepancy.

4.1 Latent Variables Construction with Denoising Mechanism

We start this section by introducing variational inference. In a system composed of the random variables X
and Z, X denotes the observed variable, while Z is the latent variable. The conditional probability density
P (X|Z) is known as the likelihood. From Bayes’ theorem, we can compute the posterior probability density
P (Z|X) as

P (Z|X) = P (X|Z)P (Z)
P (X) (1)

The marginal probability density P (X) can be computed as

P (X) =
∫
Z

P (X|Z)P (Z) dZ (2)

The marginal probability density P (X) is known as the evidence, and p(Z) is termed the prior probability
density, as it encapsulates the prior information regarding Z.

4

Under review as submission to TMLR

Figure 1: The block-diagram visualization of DNAN: Inputs are the source batch Gs and target batch Gt.
We first add noise to the graph samples of the source and target batches by applying data augmentation
to their adjacency matrices As and At, using masks Mdrop

t , Mdrop
s , Madd

s , and Madd
t . Then, the graph

encoder of the VGAE produces the latent variables Zs and Zt from node features Xs, Xt and augmented
adjacency matrices Aos, Aot . We train a class classifier using a cross-entropy loss LCE between the outputs of
the label classifier and the ground-truth labels. To align the latent variables of both domains, we compute a
Nuclear-norm Wasserstein discrepancy (NWD) using Zs, Zt, and the label classifier. The graph decoder of
VGAE reconstructs the original adjacency matrices As, At from Zs, Zt. Then, the Ldvgae loss is computed
based on the outputs of the graph encoder and the original and reconstructed adjacency matrices. Lastly,
the model applies maximum entropy regularization Le to the latent variables Zt, Zs.

Variational inference (Blei et al., 2017) is an estimation technique aimed at approximating the complex,
often intractable posterior distribution P (Z|X) with a more computationally manageable parameterized
distribution qϕ(Z). A Variational Autoencoder (VAE) is a type of generative model that uses variational
inference within a probabilistic framework to encode input data into a latent space and reconstruct outputs
from this space. This process allows for the generation of new data points that are similar to the original
inputs. In a VAE, the model defines an approximate distribution, qϕ(Z|X), which is conditioned on an input
observationX. This distribution typically takes the form of a neural network, whereX serves as the input and
the latent variable Z as the output. The parameters ϕ, representing the neural network’s weights, are shared
across all input observations X. This neural network, known as the inference network, essentially learns
to encode the input data into a latent representation. Conversely, the model also defines a parameterized
distribution Pθ(X|Z) that models the probability of observing X given the latent variable Z. Pθ(X|Z) is
also typically chosen as a neural network with Z as the input and a distribution over possible values of X
as the output. The weights of this neural network are denoted by θ, and this network is referred to as the
generative network. The generative network decodes latent representations back into data points, thereby
enabling the generation of new data points by sampling from the latent space. The prior distribution for the
latent variable Z, denoted as P (Z), is typically chosen to be an isotropic Gaussian distribution, expressed
as N (0, σI). To train a VAE, we maximize the following lower bound, known as the evidence lower bound
(ELBO), with respect to the parameters θ and ϕ:

LELBO = Eqϕ(Z|X)

[
logPθ(X,Z)
qϕ(Z|X)

]
= Eqϕ(Z|X) [logPθ(X|Z)] − KL (qϕ(Z|X) ||P (Z)) (3)

where KL represents the Kullback-Leibler divergence.

The Variational Graph Autoencoders (Kipf & Welling, 2016b) are based on Variational Autoencoder concepts
and are designed specifically for graph-structured data. Given a graph sample G = (X,A) with n nodes,
the graph encoder (inference network) in VGAE generates a corresponding latent variable Z. qϕ(Z|A,X) is

5

Under review as submission to TMLR

used to denote the graph encoder, characterized by the parameter ϕ. qϕ(Z|A) aims to approximate the real
posterior distribution P (Z|A). The graph decoder (generative network) of a standard VGAE is represented
as Pθ(A|Z), defined by parameters θ. The prior distribution is denoted by P (Z), assumed to be a normal
distribution, specifically P (Z) ∼ N (0, I). The ELBO for standard VGAE is given as:

LELBO = Eqϕ(Z|A,X)[logPθ(A|Z)] − KL(qϕ(Z|A,X)||P (Z)) (4)

The standard VGAE is trained through maximizing the LELBO. Instead of using plain VGAE, we propose
to use VGAE with a denoising mechanism. Particularly, we adopt the denoising criterion of Denoising
Variational Autoencoders (DVAE) (Im Im et al., 2017) and translate it to variational graph autoencoders.
Like DVAE, the VGAE with a denoising mechanism reconstructs clean graph data from inputs perturbed
with noise. Similar to the training process of VGAE, however, we have some variations. Given a graph
sample G = (X,A), we train the VGAE on both G = (X,A) and Go = (X,Ao), where Ao is the adjacency
matrix with noise. We implement data augmentation to add noise to the adjacency matrices. Specifically, we
benefit from a random manipulation-based approach (Cai et al., 2021). To this end, edges are dropped and
added randomly by modifying the values in the adjacency matrix A of the original graph. Ao is constructed
as follows:

Ao = Mdrop ⊙A+Madd, madd
ij ∼ Bernoulli(padd · pedge), mdrop

ij ∼ Bernoulli(pdrop) (5)

where padd, pedge, and pdrop denote the edge addition rate, the sparsity of the adjacency matrix A, and the
edge dropping rate. ⊙ represents the element-wise multiplication between two matrices. Mdrop and Madd

represent mask matrices with the same dimensions as A. For each element madd
ij ∈ Madd or mdrop

ij ∈ Mdrop,
we sample its value from a Bernoulli distribution.

We’re using similar logic from the DVAE paper to explain how the denoising mechanism can be applied to
the variational graph autoencoder. In the following explanation, we use "corruption" to refer to the noise
addition procedure. We start with how the denoising mechanism will affect the inference process of the
variational graph autoencoder. We first translate Proposition 1 from the DVAE paper to the VGAE setting
as follows.

Proposition 1. Let qϕ(Z|Ao, X) = N (Z|µϕ(Ao, X), σϕ(Ao, X)) be a Gaussian distribution, where
µϕ(Ao, X) and σϕ(Ao, X) are non-linear functions of (Ao, X). Let P (Ao|A) be a corruption distribution
around A and Ao be the corrupt adjaceny matrix. Then,

EP (Ao|A)[qϕ(Z|Ao, X)] =
∫
Ao
qϕ(Z|Ao, X)P (Ao|A) dAo (6)

is a mixture of Gaussian.

If the distribution is over a discrete variable, the integral in Equation 6 can be replaced by a summation.
It’s instructive to examine the distribution in the discrete domain to understand that Equation 6 takes on
the form of a Gaussian mixture. Essentially, for each instance Ao drawn from P (Ao|A), substituting it into
qϕ(Z|Ao, X) results in a Gaussian distribution. In our scenario, given that each element within the adjacency
matrix can only be 0 or 1, P (Ao|A) is a discrete distribution. Thus, we can formulate our case as follows.

Example 1. Let A ∈ {0, 1}n×n be the adjacency matrix of graph G that has n nodes, and consider a
corruption distribution Pπ(Ao|A) = Bernoulli(π) around A and Ao is corrupted adjacency matrix. Then,

EPπ(Ao|A)[qϕ(Z|Ao, X)] =
2n×n∑
i=1

qϕ(Z|Aoi , X)Pπ(Aoi |A) (7)

has the form of a finite mixture of Gaussian and the number of mixture components is 2n×n.

From the DVAE paper, the corruption process at the input can be viewed as adding a stochastic layer at
the bottom of the inference network (qϕ). Specifically, Pπ(Ao|A) can be seen as a neural network, with π as
its weights. Pπ(Ao|A) takes A as input and outputs the corruption distribution. In the following, we first

6

Under review as submission to TMLR

present Lemma 0, a result we will use in the later proof. Following Lemma 0, we present the variational
lower bound when an extra stochastic layer is included, in Lemma 1.

Lemma 0. For all nonnegative measurable functions f, g : R → [0,∞) that satisfies
∫ ∞

−∞ f(X) dX = 1,∫ ∞

−∞
f(X) log g(X) dX ≤

∫ ∞

−∞
f(X) log f(X) dX

Proof. Let X be a random variable with f(X) be its probability density function. Consider the random
variable log

[
f(X)
g(X)

]
with Ef(X)

[
log g(X)

f(X)

]
= −Ef(X)

[
log f(X)

g(X)

]
. By Jensen’s inequality,

Ef(X)

[
log g(X)

f(X)

]
≤ logEf(X)

[
g(X)
f(X)

]
= log

(∫ ∞

−∞
g(X) dX

)
= 0

Therefore, Ef(X) [log g(X)] ≤ Ef(X) [log f(X)].

Lemma 1. Consider an approximate posterior distribution of the following form:

qΦ(Z|A,X) =
∫
Ao
qϕ(Z|Ao, X)qψ(Ao|A) dAo (8)

Here, qψ(Ao|A) represents the stochastic layer for the corruption process. We use Φ = {ϕ, ψ}. Then, given
Pθ(A,Z) = Pθ(A|Z)P (Z), we obtain the following inequality:

logPθ(A) ≥ EqΦ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
≥ EqΦ(Z|A,X)

[
log Pθ(A,Z)

qΦ(Z|A,X)

]
(9)

Proof. By Jensen’s inequality, we have

EqΦ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
= Eqψ(Ao|A)

[
Eqϕ(Z|Ao,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]]
Eqψ(Ao|A)

[
Eqϕ(Z|Ao,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]]
≤ log

(
Eqψ(Ao|A)

[
Eqϕ(Z|Ao,X)

[
Pθ(A,Z)

qϕ(Z|Ao, X)

]])
= log

(
Eqψ(Ao|A)

[∫
Z

Pθ(A,Z)
qϕ(Z|Ao, X)qϕ(Z|Ao, X) dZ

])
= log

(
Eqψ(Ao|A)

[∫
Z

Pθ(A,Z) dZ
])

= log
(∫

Ao
Pθ(A)qψ(Ao|A) dAo

)
= log

(
Pθ(A) ·

∫
Ao
qψ(Ao|A) dAo

)
= logPθ(A)

Therefore, the left inequality of Equation 9 holds, and now, for the right inequality,

EqΦ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
= EqΦ(Z|A,X)[logPθ(A,Z)] − EqΦ(Z|A,X)[log qϕ(Z|Ao, X)]

Applying Lemma 0 to the second term, we have

EqΦ(Z|A,X)[log qϕ(Z|Ao, X)] =
∫
Z

log qϕ(Z|Ao, X)qΦ(Z|A,X) dZ ≤
∫
Z

log qΦ(Z|A,X)qΦ(Z|A,X) dZ

Hence,
EqΦ(Z|A,X)[log qϕ(Z|Ao, X)] ≤ EqΦ(Z|A,X)[log qΦ(Z|A,X)]

7

Under review as submission to TMLR

Then, we have

EqΦ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
= EqΦ(Z|A,X)[logPθ(A,Z)] − EqΦ(Z|A,X)[log qϕ(Z|Ao, X)]

≥ EqΦ(Z|A,X)[logPθ(A,Z)] − EqΦ(Z|A,X)[log qΦ(Z|A,X)]

= EqΦ(Z|A,X)

[
log Pθ(A,Z)

qΦ(Z|A,X)

]
Therefore, we obtain

logPθ(A) ≥ EqΦ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
≥ EqΦ(Z|A,X)

[
log Pθ(A,Z)

qΦ(Z|A,X)

]
Recalling Example 1, our approximate distribution can be defined as follows.

q̃ϕ(Z|A,X) =
2n×n∑
i=1

qϕ(Z|Aoi , X)P (Aoi |A)

By treating adding noise via including one stochastic layer parameterized by ψ, we have:

q̃ϕ(Z|A,X) =
2n×n∑
i=1

qϕ(Z|Aoi , X)Pψ(Aoi |A)

We now can apply Lemma 1 to obtain our denoising variational lower bound for VGAE. The standard
variational lower bound Lsvgae for the approximation distribution q̃ϕ(Z|A,X) is:

logPθ(A) ≥ Eq̃ϕ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
≥ Eq̃ϕ(Z|A,X)

[
log Pθ(A,Z)

q̃ϕ(Z|A,X)

]
= Lsvgae (10)

We define the denoising variational lower bound Ldvgae as:

logPθ(A) ≥ Eq̃ϕ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
def= Ldvgae ≥ Lsvgae (11)

From Equation 11, Ldvgae is a tighter lower boud of logPθ(A) than standard variational lower bound Lsvgae.
Thus, we need to check whether Ldvgae is a valid lower bound. To check whether Ldvgae is valid, we
need to examine what is achieved by maximizing Ldvgae. In fact, maximizing Ldvgae can minimize the
expectation of the KL divergence between the true posterior distribution (P (Z|A)) and the approximate
posterior distribution for each noised input (qϕ(Z|Ao, X)). This is an effective objective as the inference
network tries to map the noise-perturbed training data points to the true posterior distribution. In Theorem
1, we prove that maximizing Ldvgae achieves this goal.

Theorem 1. Maximizing Ldvgae is equivalent to minimizing the following objective

EPψ(Ao|A) [KL (qϕ(Z|Ao, X)||P (Z|A))] (12)
In other words,

logPθ(A) = Ldvgae + EPψ(Ao|A) [KL (qϕ(Z|Ao, X)||P (Z|A))]
Proof. Let us consider θ being fixed just for the sake of simpler analysis.

logPθ(A) − Ldvgae = logPθ(A) − Eq̃ϕ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
= Eq̃ϕ(Z|A,X)[logPθ(A)] − Eq̃ϕ(Z|A,X)

[
log P (Z|A)Pθ(A)

qϕ(Z|Ao, X)

]
= Eq̃ϕ(Z|A,X)

[
log qϕ(Z|Ao, X)

P (Z|A)

]
= EPψ(Ao|A)

[
Eqϕ(Z|Ao,X)

[
log qϕ(Z|Ao, X)

P (Z|A)

]]
= EPψ(Ao|A) [KL(qϕ(Z|Ao, X)||P (Z|A))]

8

Under review as submission to TMLR

Now we prove that Ldvgae is a valid variational lower bound. To train the VGAE with Ldvgae, in the DVAE
paper, the authors adopt Monte Carlo sampling. In Monte Carlo sampling, we randomly select points from
the domain of a function and compute the function’s values at these points. We then calculate the average
of these values to estimate the expected value of the function. Essentially, it involves taking the mean of the
function’s values at the sampled points. The authors in the DVAE paper apply Monte Carlo sampling twice:
once to the inner expectation EPψ(Ao|A) and once to the outer expectation Eqϕ(Z|A,X). Their approximation
is shown below.

Ldvgae = Eq̃ϕ(Z|A,X)

[
log Pθ(A,Z)

qϕ(Z|Ao, X)

]
= Eqϕ(Z|Ao,X)

[
EPψ(Ao|A)

[
Pθ(A,Z)

qϕ(Z|Ao, X)

]]

Ldvgae = Eqϕ(Z|Ao,X)

[
EPψ(Ao|A)

[
Pθ(A,Z)

qϕ(Z|Ao, X)

]]
≈ 1
JM

J∑
j=1

M∑
m=1

log Pθ(A,Z(k|m))
qϕ(Z(k|m)|Aom, X) (13)

where Aom ∼ Pψ(Ao|A), Z(j|m) ∼ qϕ(Z|Aom, X), and J,M are Monte Carlo sample sizes. We also use Monte
Carlo sampling in our scenario, but only for the inner expectation EPψ(Ao|A), since we adopt the procedure
used to train the regular VGAE: (i) sample a corrupted input (Ao, X), (ii) sample a latent variable from
qϕ(Z|Ao, X), (iii) reconstruct the original adjacency matrix A. As the authors of DVAE state in their section
3.2 (Training Procedure), our procedure can be viewed as a special case of Equation 13. Our estimation is
shown as follows.

Ldvgae = Eqϕ(Z|Ao,X)

[
EPψ(Ao|A)

[
Pθ(A,Z)

qϕ(Z|Ao, X)

]]
≈ 1
M

M∑
m=1

Eqϕ(Z|Aom,X)

[
log Pθ(A,Z)

qϕ(Z|Aom, X)

]

= 1
M

M∑
m=1

Eqϕ(Z|Aom,X)

[
log Pθ(A|Z)P (Z)

qϕ(Z|Aom, X)

]

= 1
M

M∑
m=1

Eqϕ(Z|Aom,X) [logPθ(A|Z)] + Eqϕ(Z|Aom,X)

[
log P (Z)

qϕ(Z|Aom, X)

]

= 1
M

M∑
m=1

Eqϕ(Z|Aom,X) [logPθ(A|Z)] − KL(qϕ(Z|Aom, X)||P (Z))

Ldvgae ≈ 1
M

M∑
m=1

Eqϕ(Z|Aom,X) [logPθ(A|Z)] − KL(qϕ(Z|Aom, X)||P (Z)) (14)

With this approximation and setting the Monte Carlo sample size to 1, the training procedure becomes
similar to how the regular VGAE is trained, except that the input is corrupted by a noise distribution. For
clean inputs, we train VGAE with Equation 4, and for corrupted inputs, we train VGAE with 14.

For the structure of VGAE, we utilize Graph Attention Networks (GAT) as the graph encoder qϕ of the
VGAE. The encoding equations when the input is Ao are given as follows:

µ = GATµ(Ao, X)
log σ = GATσ(Ao, X)

zi = µi+εi · σi, εi ∼ N (0, 1)
qϕ(zi|Ao, X) = N (zi|µi,diag(σ2

i))

qϕ(Z|Ao, X) =
n∏
i=1

qϕ(zi|Ao, X)

(15)

The element zi corresponds to the ith row of Z. This same row-wise correspondence applies to µi and log σi
as well. Using the reparameterization trick, we transform the generated µi and σi into the latent variable zi.

9

Under review as submission to TMLR

To achieve a cleaner construction of the latent variable, we apply an element-wise maximum entropy loss,
Le, as a regularization term. This maximum entropy loss helps remove irrelevant information from the latent
variable, enhancing its clarity and effectiveness. The specifics of the maximum entropy loss are described
below:

Le = 1
N train

∑
Gk∈(Ds,Dt)

ME(Zk)

ME(Zk) = 1
nk × Dh

nk∑
i=1

Dh∑
j=1

σ(zij) log σ(zij)
(16)

where nk is the number of nodes in the graph sample Gk and Dh denotes the dimension of Gk’s latent variable
Zk. N train is the number of training samples in the training dataset. After obtaining the latent variable Z, an
inner product decoder Pθ(A|Z) is applied to Z to reconstruct the adjacency matrix before data augmentation.
This decoder translates each pair of node representations into a binary value, indicating whether an edge
exists in the reconstructed adjacency matrix Ao. Specifically, we first use an MLP (multilayer perceptron)
described by parameters {W0,W1} to improve the expressive capacity of the latent variable Z. Then, we
compute the dot product for each node representation pair as:

H = ReLU((Z ·W0) ·W1)
p(Aoij = 1|hi, hj) = σ(hTi hj)

p(Ao|Z) =
n∏
i=1

n∏
j=1

p(Aoij |hi, hj)
(17)

where hi represents the ith row of H and Aoij is an element of reconstructed adjacency matrix Ao. The
parameter θ describes the graph decoder includes {W0,W1}.

4.2 Distribution Alignment

By using Ldvgae, the graph encoder of VGAE is better equipped to grasp the essential features. However, we
still face a crucial challenge: addressing the performance degradation that occurs when a model trained on
data from a source domain is applied to a target domain with a different data distribution. As mentioned
in the previous sections, traditional approaches in unsupervised domain adaptation often use a domain
discriminator that engages in a min-max game with a feature extractor to produce domain-invariant features.
However, these methods primarily focus on confusing features at the domain level, which might negatively
impact class-level information and lead to the mode collapse problem (Kurmi & Namboodiri, 2019; Tang &
Jia, 2020). To address these challenges, our approach integrates the Nuclear-norm Wasserstein discrepancy
(NWD) (Chen et al., 2022) to effectively align the source and target domains’ feature representations while
maintaining class-level discrimination by considering it as a loss function. We begin explaining NWD by
discussing intra-class and inter-class correlations.

From Intra-class and Inter-class Correlations to Domain Discrepancy Consider a prediction ma-
trix P ∈ Rb×c predicted by classifier C, where b represents the number of samples and c represents the
number of classes. P has the following properties:

c∑
j=1

Pij = 1, Pij ≥ 0, ∀i ∈ {1, 2, ...b} (18)

The self-correlation matrix R ∈ Rc×c can then be computed by R = PTP . The intra-class correlation Ia is
defined as the sum of the main diagonal elements in R, and the inter-class correlation Ie is defined as the
sum of the off-diagonal elements in R:

Ia =
c∑

i,j=1
Rij , Ie =

c∑
i̸=j

Rij (19)

10

Under review as submission to TMLR

The Ia and Ie are very different for source and target domains. For the source domain, the Ia is large while
the Ie is relatively small, as we train with labels available so that most samples are correctly classified. For
the target domain, the Ia is small while the Ie is relatively large due to the lack of supervised training. Based
on linear algebra, we can represent Ia = ∥P∥F , the Frobenius norm of P , and

Ia − Ie = 2∥P∥F − b (20)

For the source domain, Ia−Ie will be large; for the target domain, Ia−Ie will be small. Therefore, Ia−Ie can
represent the discrepancy between two domains. Since the prediction matrix P is generated by the classifier
C, we can rewrite Ps = C(Zs), Pt = C(Zt), where Zs is the feature representation of a batch of samples
from the source domain and Zt is the feature representation of a batch of samples from the target domain.
With inspiration from WGAN (Arjovsky et al., 2017) and 1-Wasserstein distance, the domain discrepancy
can be formally formulated as

WF (Ds, Dt) = sup
∥∥C∥F ∥L≤KL

EZs∼Ds [∥C(Zs)∥F] − EZt∼Dt [∥C(Zt)∥F] (21)

We call WF (Ds, Dt) the Frobenius norm-based 1-Wasserstein distance, where Ds denotes the source domain,
Dt denotes the target domain, ∥ · ∥L denotes the Lipschitz semi-norm (Villani et al., 2009), and KL denotes
the Lipschitz constant.

From Frobenius Norm to Nuclear Norm From the domain discrepancy formulated above, we can see
that the classifier C works like a discriminator in a GAN. Therefore, we can perform adversarial training
to train the feature encoder via WF (Ds, Dt). However, adversarial training with WF (Ds, Dt) limits the
diversity of predictions. This is because it tends to push the samples in a class with fewer samples near
the decision boundary closer to a neighboring class with a significantly larger number of samples far from
the decision boundary (Cui et al., 2021). To address this limitation, the author of NWD proposes using
the nuclear norm instead of the Frobenius norm. The nuclear norm has been shown to be bound by the
Frobenius norm (Chen et al., 2022). In addition, maximizing the nuclear norm maximizes the rank of the
prediction matrix P when ∥·∥F is near

√
b (Cui et al., 2020; 2021). Consequently, the diversity of predictions

will be enhanced. Thus, the domain discrepancy can be improved to be:

WN (Ds, Dt) = sup
∥∥C∥∗∥L≤KL

EZs∼Ds [∥C(Zs)∥∗] − EZt∼Dt [∥C(Zt)∥∗] (22)

WN (Ds, Dt) is called the Nuclear-norm 1-Wasserstein discrepancy (NWD). To integrate NWD into imple-
mentation, we can approximate the WN by maximizing Lnwd that is defined below:

Lnwd = 1
N train
s

Ntrain
s∑
k=1

∥C(Zks)∥∗ − 1
N train
t

Ntrain
t∑
k=1

∥C(Zkt)∥∗, WN (Ds, Dt) ≈ max Lnwd (23)

where Zks represents the latent variables for the k-th batch of graph samples Gks and Zkt represents the
latent variables for the k-th batch of graph samples Gkt . ∥ · ∥∗ denotes the Nuclear norm. To avoid complex
alternating updates, we employ a Gradient Reverse Layer (GRL) (Ganin et al., 2016), which allows for
updating in a single backpropagation step. The distribution alignment is achieved through a min-max game,
optimized as:

min
ϕ

max
θc

Lnwd (24)

The NWD addresses the class mismatch issue by incorporating class information into the domain adaptation
process. The class classifier not only performs class classification but also serves as a domain discriminator.
The class classifier is capable of identifying correlations both within and among different classes. These
correlations vary between the source domain data and the target domain data. To achieve domain alignment,
NWD aligns the correlations within and between classes in the target domain with those in the source domain.
This alignment ensures consistency of classes across different domains, so the class mismatch problem is
mitigated.

11

Under review as submission to TMLR

Algorithm 1 DNAN Method
Input: (Ds, Ys), Dt

Parameters: VGAE parameters {ϕ (Graph Encoder), θ (Graph Decoder)}, Classifier parameter {θc}
Output: Trained Parameters ϕ, θ, θc

1: Randomly sample a batch of {(Gks , yks)}
2: Randomly sample a batch of {Gtk}
3: Forward Propagation
4: Update ϕ, θ, θc based on Equation (26)
5: Add noise to {Gks}, {Gkt } based on Equation (5)
6: Forward Propagation
7: Update ϕ, θ, θc based on Equation (26)
8: return ϕ, θ, θc

4.3 Algorithm Summary

In addition to distribution alignment, to ensure accurate classification, we optimize the graph encoder in
VGAE and the classifier C using a supervised classification loss Lcls for the source domain:

Lcls = 1
N train
s

Ntrain
s∑
k=1

LCE(C(Zks , yks)) (25)

Then, by combining all the losses described in the previous sections, our total optimization object is formu-
lated as follows:

min
ϕ,θ,θc

{
Lcls − LELBO(or Ldvgae) + λeLe

}
+ min

ϕ
max
θc

Lnwd, (26)

where ϕ is the parameter of the graph encoder of the VGAE, θ is the parameter of the graph decoder of the
VGAE, θc is the parameter of the classifier, and λe is a hyperparameter that weighs the maximum entropy
loss Le. It is worth noting that we balance the supervised classification loss and the NWD loss equally.
In this case, our model effectively learns transferable and distinct features, leading to accurate and diverse
predictions in the target domain. The complete procedures of our UDA approach for graph-structured data
are summarized in Algorithm 1.

5 Experimental Validation

We validate our algorithm using two graph classification benchmarks. Our code is provided as a supplement.

5.1 Experimental Setup

Datasets We use the IMDB&REDDIT Dataset (Yanardag & Vishwanathan, 2015) and the Ego-network
Dataset (Qiu et al., 2018) in our experiments. Following previous works, we include Coreness (Batagelj & Za-
versnik, 2003), Pagerank (Page et al., 1999), Eigenvector Centrality (Bonacich, 1987), Clustering Coefficient
(Watts & Strogatz, 1998), and Degree/Rarity (Adamic & Adar, 2003) as node features for both datasets.

IMDB&REDDIT Dataset IMDB&REDDIT consists of the IMDB-BINARY (1000 samples) and
REDDIT-BINARY (2000 samples) datasets, each denoting a single domain. We use "I to R" to denote
that IMDB-BINARY is the source domain and REDDIT-BINARY is the target domain. Conversely, "R to
I" indicates that REDDIT-BINARY is the source domain and IMDB-BINARY is the target domain.

• IMDB-BINARY Each graph in this dataset represents an ego network for an actor/actress. Nodes
correspond to actors/actresses. There will be an edge between two actors/actresses who appear in
the same movie. A graph is generated from either romance or action movies. The task is to classify
the graph into romance or action genres.

12

Under review as submission to TMLR

• REDDIT-BINARY Each graph represents an online discussion thread. Nodes correspond to users.
If one user has responded to another’s comments, then an edge exists between them. The discussion
threads are drawn from four communities: AskREDDIT and IAmA are question/answer-based com-
munities; Atheism and TrollXChromosomes are discussion-based communities. The classification
task is to classify a graph into discussion-based or question/answer-based communities.

Ego-network Dataset The Ego-network dataset comprises data from four social network platforms: Digg,
OAG, Twitter, and Weibo, each representing a domain. We pair two domains to form twelve tasks, and we
test our model on these twelve tasks. Each network in these four domains is modeled as a graph. Each graph
consists of 50 nodes, with nodes representing users. Every graph includes an ego user. An edge is drawn
between two nodes if a social connection occurs between two users. The definitions of social connections for
these four social network platforms are different. We extract the descriptions of social connections and social
actions for each social network according to Qiu et al. (2018):

• Digg: Users can vote for web content such as stories and news (up or down). The social connection
represents users’ friendship, and the social action is voting for content.

• OAG: Generated from AMiner and Microsoft Academic Graph, the social connection is represented
as co-authorship among users, and the social action is citation behavior.

• Twitter: Currently known as X, the social connection on Twitter represents users’ friendships, and
the social action is posting tweets related to the Higgs boson, a particle discovered in 2012.

• Weibo: Similar to Twitter, the Weibo dataset includes posting logs between September 28th, 2012,
and October 29th, 2012, among 1,776,950 users. The social connection is defined as users’ friendships
and the social action is reposting messages on Weibo.

All the graphs in the four domains are labeled as active or inactive, indicating the ego user’s action status.
If the user takes the social action, then the user is active. The task is to classify whether the ego users
are active or inactive. In addition to the previously referenced node features, the Ego-network dataset also
contains DeepWalk embeddings for each node (Perozzi et al., 2014), the number/ratio of active neighbors
(Backstrom et al., 2006), the density of the subnetwork induced by active neighbors (Ugander et al., 2012),
and the number of connected components formed by active neighbors (Ugander et al., 2012).

Baselines for Comparison There is a limited number of UDA algorithms specifically designed for graph
classification tasks. As a result, we conduct a comparative analysis between our proposed method and
updated versions of several representative methods (DANN, MDD, DIVA) as well as current state-of-the-art
UDA methods (SDAT, BIWAA, ToAlign) for array-structured data. To facilitate the adaptation of these
algorithms to graph-structured data, and consistent with the structure of our VGAE’s graph encoder, we
replace the feature extraction backbones, originally designed for array-structured data, with GATs. Below,
these methods are explained:

• Sources: Plain GATs trained without domain adaptation techniques.

• DANN: Domain Adversarial Neural Network (DANN) (Ganin et al., 2016) adopts an adversarial
learning strategy. It contains a domain classifier. The domain classifier tries to distinguish the
samples from which domain and the feature extractor aims to confuse the domain classifier.

• MDD: Margin Disparity Discrepancy (MDD) (Zhang et al., 2019b) is first proposed for computer
vision tasks. It measures the distribution discrepancy and is tailored to the minimax optimization
for training.

• DIVA: Domain Invariant Variational Autoencoders (DIVA) (Ilse et al., 2020) disentangles the inputs
into three latent variables, domain latent variables, semantic latent variables, and residual variations
latent variables. It is proposed to solve problems in fields such as medical imaging.

13

Under review as submission to TMLR

• SDAT: Smooth Domain Adversarial Training (SDAT) (Rangwani et al., 2022) focuses on achieving
smooth minima with respect to classification loss, which stabilizes adversarial training and improves
the performance on the target domain.

• BIWAA: Backprop Induced Feature Weighting for Adversarial Domain Adaptation with Itera-
tive Label Distribution Alignment (BIWAA) (Westfechtel et al., 2023) employs a classifier-based
backprop-induced weighting of the feature space, allowing the domain classifier to concentrate on
features that are important for classification and coupling the classification and adversarial branch
more closely.

• ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation (ToAlign) (Wei et al.,
2021) decomposes features in the source domain into classification task-related and classification
task-irrelevant parts under the guidance of classification meta-knowledge, ensuring that the domain
adaptation is beneficial for the performance on the classification task.

Evaluation Metrics Following the literature (Cai et al., 2021), the F1-Score is employed as a metric for
the quantitative assessment of all methods. This score is the harmonic mean of precision and recall. The
formula for the F1-Score is as follows:

F1 = 2 · Precision · Recall
Precision + Recall (27)

Training Scheme In our evaluation, we rigorously train five models for each baseline method by employing
five distinct random seeds for parameter initialization and either dropping or adding edges during the data
augmentation phase. We report both the average performance and standard deviation of the obtained F1
scores. To ensure a fair comparison across all methods, we maintain the same seed for data shuffling. The
optimization process utilizes the Adam (Kingma & Ba, 2014) optimizer. Please refer to Section A in the
Appendix for a comprehensive description of our training scheme.

5.2 Performance Results and Comparison

Tables 1 and 2 present our performance results. The bold font denotes the highest performance in each
column.

Table 1: Performance results on Ego-network dataset

Method O→T O→W O→D T→O T→W T→D W→O W→T W→D D→O D→T D→W Avg

Source 40.0±0.0 40.4±0.3 43.8±2.4 40.2±0.0 48.0±1.2 41.3±0.0 40.2±0.0 46.6±0.9 41.3±0.1 40.2±0.0 40.0±0.0 39.8±0.0 41.8
DANN 42.0±0.6 41.7±0.6 51.3±0.8 40.7±0.7 42.0±0.9 49.9±1.7 40.3±0.1 41.3±0.6 50.9±0.4 40.3±0.0 40.4±0.3 42.5±0.7 43.6
MMD 40.2±0.1 41.2±1.1 48.0±3.2 40.2±0.0 45.5±1.5 41.3±0.0 40.2±0.0 46.2±2.9 41.9±1.3 40.2±0.0 40.1±0.1 40.0±0.2 42.1
DIVA 42.1±0.5 42.4±1.4 48.9±0.7 40.3±0.2 42.0±0.4 50.3±0.5 40.4±0.3 41.2±0.3 48.7±0.9 40.6±0.5 41.3±0.4 42.5±0.5 43.4
SDAT 40.2±0.1 40.1±0.5 42.2±1.6 40.2±0.0 41.6±1.3 42.9±3.2 40.3±0.2 41.1±0.7 43.1±2.8 40.2±0.0 40.1±0.1 39.9±0.1 41.0
BIWAA 40.1±0.2 41.5±0.2 45.1±1.3 40.3±0.2 48.0±2.9 43.3±3.0 40.2±0.0 50.4±0.5 45.7±3.8 40.3±0.1 41.0±0.9 43.1±0.3 43.2
ToAlign 36.5±13.343.0±0.9 49.1±1.4 40.8±0.3 43.1±1.1 50.2±0.5 40.7±0.4 42.8±1.3 48.4±3.2 40.5±0.2 43.4±0.9 42.6±1.6 43.4

DNAN 42.9±1.6 43.4±1.2 53.7±0.6 40.8±0.2 45.3±3.0 53.9±1.0 40.8±0.4 48.6±0.8 53.4±2.9 40.6±0.2 44.1±1.5 42.8±0.9 45.9

Table 2: Perofmrance results on IMDB&REDDIT dataset
Task Source DANN MMD DIVA SDAT BIWAA ToAlign DNAN

I→R 63.4±0.2 63.9±0.8 63.7±0.4 63.6±0.5 63.6±0.6 64.0±0.8 63.3±0.2 64.2±0.6
R→I 72.3±1.7 72.0±1.7 73.6±1.7 71.1±0.3 74.1±2.0 71.4±1.0 73.4±0.8 74.9±2.0

Avg 67.8 68.0 67.3 68.0 68.8 67.7 68.3 69.6

14

Under review as submission to TMLR

Ego-network Results Results for this dataset are presented in Table 1. In this benchmark, twelve UDA
tasks can be defined by pairing the four domains. Our experimental results indicate that DNAN performs
the best on average and achieves state-of-the-art performance on nine tasks: O to T, O to W, O to D, T to
O, T to D, W to O, W to D, D to O, and D to T. DNAN has good performances on T to W and W to T,
and achieves SOTA performance on D to T and T to D tasks, showing that DNAN can successfully handle
similar domains, as Digg, Twitter, and Weibo are similar content-sharing platforms. Notably, it exceeds the
second-best methods by about 4% on T to D and about 3% on W to D. Additionally, DNAN can also achieve
SOTA performance when there is a large distribution gap between domains, such as on tasks between OAG
and Twitter or OAG and Weibo. It is important to underscore that no single method can achieve the best
performance on all tasks, likely due to the diverse range of domain gaps.

IMDB&REDDIT Results Results for this dataset are presented in Table 2. We note that the experi-
ments demonstrate that all UDA methods perform better on the REDDIT to IMDB task (R to I) than on
the IMDB to REDDIT task (I to R), indicating that the two tasks are not equally challenging. We hypoth-
esize that the smaller size of IMDB-BINARY compared to REDDIT-BINARY may result in performance
degradation when testing on the larger REDDIT-BINARY dataset, as less knowledge can be transferred
to the target domain. Our experimental results show that DNAN outperforms all other methods on both
the R to I and I to R tasks, leading to state-of-the-art results on average. On the I to R task, we observe
that all methods perform similarly. Although DNAN does not outperform other methods by a large margin
on the I to R task, the results still indicate that DNAN has competitive performance compared to other
methods. It is worth noting that the performance of a UDA algorithm may vary to some extent based on
hyperparameter tuning. Therefore, when comparing two UDA algorithms with similar performance, they
should be considered equally competitive. Based on this consideration, we can conclude that our proposed
method performs competitively on all the UDA tasks and outperforms other UDA methods on average.
These findings suggest that DNAN can serve as a robust UDA algorithm.

5.3 Analytic and Ablative and Experiments

We first perform analytic experiments to offer deeper insight into our approach. We then perform an
ablative experiment to demonstrate that all components in our algorithm are important for achieving optimal
performance.

The effect of DNAN on data representations in the output space of the classifier To evaluate the
effectiveness of our proposed approach, we analyze how DNAN influences the target domain’s distribution
in the classifier’s output space on the Oag to Weibo task (O to W). We chose this task to demonstrate the
effect of our model because it is challenging; Weibo and Oag are very dissimilar platforms, one connected by
co-authorship and the other by friendship. We utilize the UMAP (McInnes et al., 2018) visualization tool
and compare the representations of the source domain’s test data, the target domain’s test data before using
DNAN, and the target domain’s test data after applying DNAN. In Figure 2, each point represents a single
data point in the output space of the classifier before the softmax activation. Blue and red colors denote
the two classes. In Figure 2, the middle plot shows that the classifier does not work well with the target
domain data before adaptation. It is hard to distinguish the class boundary as red dots are mixed with
blue ones. However, after applying DNAN, the class boundary becomes clearer, and the data representation
distribution of the target domain matches well with the source domain. This is evident in the left and right
plots of Figure 2, where the patterns of dots are consistent. These visualization results demonstrate that
DNAN successfully mitigates the performance degradation caused by the domain shift.

Ablative study The ablation experiments were conducted to demonstrate the effectiveness of the two main
ideas we used to develop DNAN, as well as the auxiliary maximum entropy regularization. To achieve this,
we removed one of the three components at a time and reported our performance. We denote the ablated
versions of DNAN as: (i) DNAN-D: We exclude the denoising mechanism and apply only the NWD loss
and the maximum entropy loss. (ii) DNAN-N: We exclude the NWD loss and apply only the denoising
mechanism and the maximum entropy loss. (iii) DNAN-L: We exclude the maximum entropy loss and
apply only the NWD loss and the denoising mechanism.

15

Under review as submission to TMLR

Figure 2: UMAP visualizations show the test data representations before softmax activation for the Oag to
Weibo task. Blue and red points denote the different classes. The middle plot displays the target domain
data representations obtained from a model trained on the source dataset before adaptation. The left and
right plots show the source and target domain data representations after adaptation using DNAN.

Table 3: Ablation Study Results on Ego-network Dataset

Method O→T O→W O→D T→O T→W T→D W→O W→T W→D D→O D→T D→W Avg

DNAN-D 42.8±1.3 42.5±1.7 52.3±2.6 40.5±0.2 46.9±2.050.0±3.5 40.4±0.2 50.1±0.652.8±2.4 40.6±0.242.1±1.3 42.5±1.8 45.4
DNAN-N 44.4±2.243.1±0.7 52.6±1.0 41.0±0.345.0±2.4 52.7±2.7 40.7±0.3 46.9±2.2 53.3±2.5 40.5±0.2 43.0±1.1 43.6±0.9 45.6
DNAN-L 44.1±1.2 43.1±1.2 53.6±1.4 40.8±0.3 46.6±2.7 52.9±3.4 40.8±0.348.0±2.6 53.3±3.3 40.5±0.2 43.0±0.6 44.3±1.345.9

DNAN 42.9±1.6 43.4±1.253.7±0.640.8±0.2 45.3±3.0 53.9±1.040.8±0.448.6±0.8 53.4±2.940.6±0.244.1±1.542.8±0.9 45.9

Table 4: Ablation Study Results on IMDB&REDDIT Dataset

Task DNAN-D DNAN-N DNAN-L DNAN

I to R 63.8±0.4 64.0±0.5 64.2±0.4 64.2±0.6
R to I 72.3±2.4 74.2±1.8 73.9±2.0 74.9±2.0

Avg 68.0 69.0 69.1 69.6

Our ablation study results for the Ego-network and the IMDB&REDDIT datasets are illustrated in Tables
3 and 4, respectively. The results for the Ego-network dataset reveal that the integration of both NWD
loss and the denoising mechanism (DNAN) yields the highest average performance at 45.9%. The DNAN-
D configuration, which lacks the denoising mechanism, shows competitive performance with an average
of 45.4%. However, the DNAN-N configuration, which excludes the NWD loss, displays an even smaller
decrease in performance, with an average of 45.6%. For the IMDB&REDDIT dataset, the full DNAN model
again demonstrates superior performance with an average score of 69.6%. Interestingly, the DNAN-N variant
outperforms the DNAN-D with averages of 69.0% and 68.0%, respectively. This observation indicates that
the denoising mechanism is more critical in this context. The results from DNAN-L indicate that the entropy
term does not play as important a role as the methods we have introduced. While the average performance
on the Ego-network Dataset remains unchanged, DNAN-L falls short of state-of-the-art results in as many
tasks as DNAN. Moreover, there’s a reduction, specifically by 0.5%, in the average performance on the
IMDB&REDDIT Dataset.

The ablation study highlights the importance of both the denoising mechanism and NWD loss in our proposed
method. The cooperative effect of combining both techniques confirms the robustness of our DNAN model,
as it consistently outperforms its counterparts with either component excluded. While the NWD loss and the
denoising techniques contribute more evenly to the Ego-network dataset, the denoising mechanism proves
more beneficial for the IMDB&REDDIT dataset. This suggests that the effectiveness of each component is
context-dependent. Future work may explore this dependency in greater depth.

16

Under review as submission to TMLR

Figure 3: The performance of DNAN with different hyperparameter settings on Twitter to Digg (Blue lines)
and Digg to Twitter (Yellow lines) tasks.

5.4 Hyperparameters Sensitivity Analysis

An important concern for most algorithms is tuning the hyperparameters and measuring the performance
sensitivity with respect to them. We evaluate the sensitivity of DNAN with respect to various hyperparam-
eters on two tasks: Twitter to Digg (T to D) and Digg to Twitter (D to T). We varied the dimension of the
latent embedding space, the output dimension of the graph decoder (before taking the dot products), the
weight of the maximum entropy loss (Le), and the batch size. We present the F1-scores of the DNAN model
as a linear function of these hyperparameters in Figure 3, with the blue lines representing the T to D task
and the yellow lines representing the D to T task. Through inspecting this figure, we deduce:

• Dimension of the Latent Embedding Space: We test the performance of DNAN on five different
dimension sizes for the embedding space: 32, 64, 128, 256, and 300. The performance of DNAN
peaks at a latent variable size of 256 for the T to D task and shows a less pronounced peak on the
D to T task, indicating that a moderately large value for the dimension of the latent variable is
beneficial for capturing the salient features of the data. Performance declines when the dimension
is too small to capture the complexity or too large, potentially introducing noise or overfitting.
However, the results indicate that the performance remains relatively decent across a wide range of
embedding sizes.

• Output Dimension of the Graph Decoder: Similar to the experiments on the dimension of
the latent variable, we test the performance of DNAN on five dimension sizes: 32, 64, 128, 256, and
300. The output dimension of the graph decoder shows a performance peak at 64 for both the T
to D task and the D to T task. This observation suggests that a moderately small representation
capacity in the graph decoder is more beneficial. Compared with performances on the D to T task,
the T to D task is less sensitive to this hyperparameter.

• Weight of the Le: We test DNAN with six weights: 0.1, 0.5, 1.0, 2.0, 3.0, 5.0. The weight of the
maximum entropy loss presents a clear peak at 1.0 for both the T to D and D to T tasks, suggesting
that a balanced contribution of the entropy loss is helpful for performance.

• Batch Size: We test five batch sizes: 64, 128, 256, 512, 1024. For batch size, there is a trend of
increasing performance as the size grows, with a notable peak at a batch size of 1024 for both the
T to D and D to T tasks. This implies that the performance of DNAN benefits from larger batch
sizes, possibly due to more stable gradient estimates. Compared with the T to D task, the D to T
task is less affected by batch size variations.

The sensitivity analysis of hyperparameters for the DNAN model on the T to D and D to T tasks demonstrates
the stability of DNAN models when using different hyperparameter values, as there is moderate fluctuation
around ±3%. However, fine-tuning hyperparameters to the specific characteristics of the task and dataset
is beneficial. Although optimal performance is achieved with a latent variable dimension of 256, a decoder
output dimension of 64, an entropy loss weight of 1.0, and a batch size of 1024, tuning the hyperparameters
is not essential to achieve performance in the competitive range.

17

Under review as submission to TMLR

Table 5: Training time for IMDB&REDDIT dataset

Task DANN MMD DIVA SDAT BIWAA ToAlign DNAN

I→R 10 260 14 12 899 10 10
R→I 3 2 5 6 34 3 5

Table 6: Model complexity on IMDB&REDDIT-BINARY dataset. F represents the input feature dimension,
Dh represents the hidden dimension, and D represents the output dimension of the decoder.

DANN MMD DIVA SDAT BIWAA ToAlign DNAN

(F+3Dh+3)Dh (F+4Dh+4)Dh (F+11Dh+3D+3)Dh (F+3Dh+4)Dh (F+3Dh+3)Dh (F+2Dh+11)Dh(F+4Dh+D+2)Dh

5.5 Time Complexity and Model Complexity Analysis

In this section, we present an analysis of the training time (in minutes) and model complexity for our methods
compared to others. The time complexity is detailed in Table 5, and the model complexity is outlined in
Table 6.

• Training Time: The training times reported in Table 5 illustrate the efficiency of the DNAN model
relative to its counterparts. For the I to R task, DNAN required 10 minutes, positioning it as the
fastest in terms of training time, alongside DANN and ToAlign, compared to other methods. In
the R to I task, DNAN again demonstrated moderate efficiency with 5 minutes, with MMD being
the fastest at 2 minutes and BIWAA the slowest at 34 minutes. These results suggest that DNAN
provides a balanced trade-off between model performance and training efficiency without adding
significant computational overload.

• Model Complexity: The model complexity, as shown in Table 6, is assessed based on the number of
parameters in the models, which is a function of the input feature dimension (F), hidden dimension
(Dh), and the output dimension of the decoder before taking the dot products (D). Compared
to other methods like DANN and SDAT, which have similar forms, DNAN introduces additional
complexity due to the parameters in the graph decoder. However, it remains less complex than
DIVA, which includes an extra (7Dh+2D+1)Dh term.

We conclude that the DNAN model shows competitive training times that are significantly lower than the
most time-consuming method (BIWAA) while maintaining better performance. Model complexity analysis
reveals that DNAN, while not the simplest, avoids the higher complexity seen in more complex methods
such as DIVA. DNAN balances the computational cost with the capacity to learn and transfer knowledge
effectively for better UDA performance. This observation is important because, in certain applications, it is
crucial to perform UDA quickly due to the constant changes in the input distribution and the limited time
available to update the model.

6 Conclusions

We developed a new UDA method specifically designed for graph-structured data. Our proposed method
includes denoising and using the NWD for domain alignment in a shared embedding space. The experiments
demonstrate that our approach is a promising method. By innovatively combining domain alignment through
NWD with a denoising mechanism via a Variational Graph Autoencoder, DNAN has outperformed state-
of-the-art methods across two major benchmarks without adding significant computational overload. The
ability of our method to handle both subtle and significant domain differences showcases its versatility
and robustness. From ablative studies, the two ideas that DNAN benefits from are proven to be crucial
for optimal performance. Future work can explore extending our approach to partial domain adaptation
scenarios or situations where the source domain data is not directly accessible.

18

Under review as submission to TMLR

References
Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):211–230, 2003.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint arXiv:1701.07875,
2017.

Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group formation in large social
networks: membership, growth, and evolution. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 44–54, 2006.

Amélie Barbe, Paulo Gonçalves, Marc Sebban, Pierre Borgnat, Rémi Gribonval, and Titouan Vayer. Opti-
mization of the diffusion time in graph diffused-wasserstein distances: Application to domain adaptation.
In 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 786–790.
IEEE, 2021.

Vladimir Batagelj and Matjaz Zaversnik. An o (m) algorithm for cores decomposition of networks. arXiv
preprint cs/0310049, 2003.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural computation, 15(6):1373–1396, 2003.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

Phillip Bonacich. Power and centrality: A family of measures. American journal of sociology, 92(5):1170–
1182, 1987.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and Radon Wasserstein barycen-
ters of measures. Journal of Mathematical Imaging and Vision, 51(1):22–45, 2015.

Ruichu Cai, Fengzhu Wu, Zijian Li, Pengfei Wei, Lingling Yi, and Kun Zhang. Graph domain adaptation:
A generative view. arXiv preprint arXiv:2106.07482, 2021.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and Emanuele
Rossi. Grand: Graph neural diffusion. In International Conference on Machine Learning, pp. 1407–1418.
PMLR, 2021.

Lin Chen, Huaian Chen, Zhixiang Wei, Xin Jin, Xiao Tan, Yi Jin, and Enhong Chen. Reusing the task-
specific classifier as a discriminator: Discriminator-free adversarial domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7181–7190, 2022.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. Optimal transport for domain adaptation. IEEE
TPAMI, 39(9):1853–1865, 2017a.

Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution optimal
transportation for domain adaptation. Advances in neural information processing systems, 30, 2017b.

Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qingming Huang, and Qi Tian. Towards discriminability
and diversity: Batch nuclear-norm maximization under label insufficient situations. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 3941–3950, 2020.

Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qingming Huang, and Qi Tian. Fast batch nuclear-norm
maximization and minimization for robust domain adaptation. arXiv preprint arXiv:2107.06154, 2021.

B. Damodaran, B. Kellenberger, R. Flamary, D. Tuia, and N. Courty. Deepjdot: Deep joint distribution
optimal transport for unsupervised domain adaptation. arXiv preprint arXiv:1803.10081, 2018.

19

Under review as submission to TMLR

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In Interna-
tional conference on machine learning, pp. 1180–1189. PMLR, 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. The journal of
machine learning research, 17(1):2096–2030, 2016.

Zhiqiang Gao, Shufei Zhang, Kaizhu Huang, Qiufeng Wang, and Chaoliang Zhong. Gradient distribution
alignment certificates better adversarial domain adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8937–8946, 2021.

Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen Li. Deep reconstruction-
classification networks for unsupervised domain adaptation. In European Conference on Computer Vision,
pp. 597–613. Springer, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Maximilian Ilse, Jakub M Tomczak, Christos Louizos, and Max Welling. Diva: Domain invariant variational
autoencoders. In Medical Imaging with Deep Learning, pp. 322–348. PMLR, 2020.

Daniel Im Im, Sungjin Ahn, Roland Memisevic, and Yoshua Bengio. Denoising criterion for variational
auto-encoding framework. In Proceedings of the AAAI conference on artificial intelligence, volume 31,
2017.

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive adaptation network for
unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4893–4902, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114,
2013.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016b.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang. Autoregres-
sive diffusion model for graph generation. In International conference on machine learning, pp. 17391–
17408. PMLR, 2023.

20

Under review as submission to TMLR

Vladimir Kulikov, Shahar Yadin, Matan Kleiner, and Tomer Michaeli. Sinddm: A single image denoising
diffusion model. In International Conference on Machine Learning, pp. 17920–17930. PMLR, 2023.

Vinod Kumar Kurmi and Vinay P Namboodiri. Looking back at labels: A class based domain adaptation
technique. In 2019 international joint conference on neural networks (IJCNN), pp. 1–8. IEEE, 2019.

Xujia Li, Yuan Li, Xueying Mo, Hebing Xiao, Yanyan Shen, and Lei Chen. Diga: Guided diffusion model
for graph recovery in anti-money laundering. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 4404–4413, 2023.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation with
residual transfer networks. Advances in neural information processing systems, 29, 2016.

Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational fair autoen-
coder. arXiv preprint arXiv:1511.00830, 2015.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Andrey Okhotin, Dmitry Molchanov, Arkhipkin Vladimir, Grigory Bartosh, Viktor Ohanesian, Aibek
Alanov, and Dmitry P Vetrov. Star-shaped denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 36, 2024.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford InfoLab, 1999.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 701–710, 2014.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social influence
prediction with deep learning. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 2110–2119, 2018.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application to
texture mixing. In International Conference on Scale Space and Variational Methods in Computer Vision,
pp. 435–446. Springer, 2011.

Harsh Rangwani, Sumukh K Aithal, Mayank Mishra, Arihant Jain, and R. Venkatesh Babu. A closer look
at smoothness in domain adversarial training. In Proceedings of the 39th International Conference on
Machine Learning, 2022.

Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with optimal
transport. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II 10, pp. 737–753. Springer,
2017.

Lars Ruthotto and Eldad Haber. An introduction to deep generative modeling. GAMM-Mitteilungen, 44(2):
e202100008, 2021.

21

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Under review as submission to TMLR

Dohoon Ryu and Jong Chul Ye. Pyramidal denoising diffusion probabilistic models. arXiv preprint
arXiv:2208.01864, 2022.

Hui Tang and Kui Jia. Discriminative adversarial domain adaptation. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 5940–5947, 2020.

Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Kleinberg. Structural diversity in social conta-
gion. Proceedings of the national academy of sciences, 109(16):5962–5966, 2012.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio, et al.
Graph attention networks. stat, 1050(20):10–48550, 2017.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393(6684):
440–442, 1998.

Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, and Zhibo Chen. Toalign: task-oriented align-
ment for unsupervised domain adaptation. Advances in Neural Information Processing Systems, 34:13834–
13846, 2021.

Thomas Westfechtel, Hao-Wei Yeh, Qier Meng, Yusuke Mukuta, and Tatsuya Harada. Backprop induced
feature weighting for adversarial domain adaptation with iterative label distribution alignment. Winter
Conference on Applications of Computer Vision (WACV), 2023.

Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain adaptive
graph convolutional networks. In Proceedings of The Web Conference 2020, pp. 1457–1467, 2020.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 1365–1374, 2015.

Cheng Yang, Lijing Liang, and Zhixun Su. Real-world denoising via diffusion model. arXiv preprint
arXiv:2305.04457, 2023.

Yizhou Zhang, Guojie Song, Lun Du, Shuwen Yang, and Yilun Jin. Dane: Domain adaptive network
embedding. arXiv preprint arXiv:1906.00684, 2019a.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm for domain
adaptation. In International Conference on Machine Learning, pp. 7404–7413. PMLR, 2019b.

22

Under review as submission to TMLR

A Implementation Details of DNAN

In this section, we present our implementations of DNAN. Our codes are in Python, mainly with PyTorch
(Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019) libraries. We train five models for every
baseline using five random seeds for parameter initialization. The five random seeds are 27, 28, 29, 30, and
31. We also conducted a hyperparameter search, described in the hyperparameter sensitivity section in the
paper, to find suitable hyperparameters for optimal performance. The hyperparameters we use to achieve
the results listed in the main paper are presented in Table 7.

Parameter Ego-network IMDB&REDDIT

Batch size 1024 64
Learning rate 0.01 0.001
Dropout rate 0.5 0.2
Encoder hidden size 256 128
Decoder output size 64 128
Learning decay rate 0.75 0.75
Entropy weight 1.0 1.0
Weight decay 0.0005 0.0005
padd 0.1 0.1
pdrop 0.1 0.1

Table 7: Hyper-parameters of DNAN

23

	Introduction
	Related Work
	Problem Description
	Proposed Method
	Latent Variables Construction with Denoising Mechanism
	Distribution Alignment
	Algorithm Summary

	Experimental Validation
	Experimental Setup
	Performance Results and Comparison
	Analytic and Ablative and Experiments
	Hyperparameters Sensitivity Analysis
	Time Complexity and Model Complexity Analysis

	Conclusions
	Implementation Details of DNAN

