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ABSTRACT

In this paper, we focus on effective learning over a collaborative research network
involving multiple clients. Each client has its own sample population which may
not be shared with other clients due to privacy concerns. The goal is to learn a
model for each client, which behaves better than the one learned from its own
data, through secure collaborations with other clients in the network. Due to the
discrepancies of the sample distributions across different clients, it is not necessarily
that collaborating with everyone will lead to the best local models. We propose
a learning to collaborate framework, where each client can choose to collaborate
with certain members in the network to achieve a “collaboration equilibrium",
where smaller collaboration coalitions are formed within the network so that each
client can obtain the model with the best utility. We propose the concept of
benefit graph which describes how each client can benefit from collaborating with
other clients and develop a Pareto optimization approach to obtain it. Finally the
collaboration coalitions can be derived from it based on graph operations. Our
framework provides a new way of setting up collaborations in a research network.
Experiments on both synthetic and real world data sets are provided to demonstrate
the effectiveness of our method.

1 INTRODUCTION

Effective learning of machine learning models over a collaborative network of data clients has drawn
considerable interest in recent years. Frequently, due to privacy concerns, we cannot simultaneously
access the raw data residing on different clients. Therefore, distributed (L1 et al., | 2014)) or federated
learning (McMahan et al.,[2017) strategies have been proposed, where typically model parameters
are updated locally at each client with its own data and the parameter updates, such as gradients, are
transmitted out and communicate with other clients. During this process, it is usually assumed that
the participation in the network comes at no cost, i.e., every client is willing to participate in the
collaboration. However, this is not always true in reality.

One example is the clinical research network (CRN) involving multiple hospitals (Fleurence et al.,
2014). Each hospital has its own patient population. The patient data are sensitive and cannot be
shared with other hospitals. If we want to build a risk prediction model with the patient data within
this network in a privacy-preserving way, the expectation from each hospital is that a better model can
be obtained through participating in the CRN compared to the one built from its own data collected
from various clinical practice with big efforts. In this scenario, there has been a prior study showing
that the model performance can decrease when collaborating with hospitals with very distinct patient
populations due to negative transfer induced by sample distribution discrepancies (Wang et al, 2019;
Pan & Yang|, 2009).

With these considerations, in this paper, we propose a novel learning to collaborate framework. We
allow the participating clients in a large collaborative network to form non-overlapping collaboration
coalitions. Each coalition includes a subset of clients such that the collaboration among them can
benefit their respective model performance. We aim at identifying the collaboration coalitions that
can lead to a collaboration equilibrium, i.e., there are no other coalition settings that any of the
individual clients can benefit more (i.e., achieve better model performance).

To obtain the coalitions that can lead to a collaboration equilibrium, we propose a Pareto optimization
framework to identify the necessary collaborators for each client in the network to achieve its
maximum utility. In particular, we optimize a local model associated with a specific client on the
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Figure 1: (a) The benefit graph on all clients; (b) Finding all stable coalitions and remove them;
(c) reconstruct the benefit graph on the remaining clients; after I3 is removed, I* re-identifies its
necessary collaborators in {I*, 1%, 16} which is {I°} as the added the red arrow from I° to I* in the
figure; (d) iterate (b) and (c) until achieving collaboration equilibrium.

Pareto front of the learning objectives of all clients. Through the analysis of the geometric location
of such an optimal model on the Pareto front, we can identify the necessary collaborators of each
client. The relationships between each client and its necessary collaborators can be encoded in a
benefit graph, in which each node denotes a client and the edge from I7 to I’ represents I/ is one of
the necessary collaborators for I?, as exemplified in Figure (a). Then we can derive the coalitions
corresponding to the collaboration equilibrium through an iterative process introduced as follows.
Specifically, we define a stable coalition as the minimum set such that its all involved clients can
achieve its maximal utility. From the perspective of graph theory, these stable coalitions are actuall
the strongly connected components of the benefit graph. For example, C' = {I V12T 3} in Figure
(b) is a stable coalition as all clients can achieve their best performance by collaborating with the
clients in C (compared with collaborating with other clients in the network). By removing the stable
coalitions and re-building the benefit graph of the remaining client iteratively as shown in Figure|[T]
(b) and (c), we can identify all coalitions as in Figure E] (d) and prove that the obtained coalitions can
lead to a collaboration equilibrium.

We empirically evaluate our method on synthetic data, UCI adult (Kohavi, [1996), a classical FL
benchmark data set CIFAR10 (Krizhevsky et al., 2009), and a real-world electronic health record
(EHR) data repository eICU (Pollard et al.,[2018]), which includes patient EHR data in ICU from
multiple hospitals. The results show our method significantly outperforms existing relevant methods.
The experiments on eICU data demonstrate that our algorithm is able to derive a good collaboration
strategy for the hospitals to collaborate.

2 RELATED WORK

2.1 FEDERATED LEARNING

Federated learning (FL) (McMahan et al.| 2017) refers to the paradigm of learning from fragmented
data without sacrificing privacy. In a typical FL setting, a global model is learned from the data
residing in multiple distinct local clients. However, a single global model may lead to performance
degradation on certain clients due to data heterogeneity. Personalized federated learning (PFL) (Kulka-
i et al.| 2020), which aims at learning a customized model for each client in the federation, has
been proposed to tackle this challenge. For example, [Zhang et al.| (2020) proposes to adjust the
weight of the objectives corresponding to all clients dynamically; [Fallah et al.|(2020) proposes a
meta-learning based method for achieving an effectively shared initialization of all local models
followed by a fine-tuning procedure; |Shamsian et al.|(2021)) proposes to learn a central hypernetwork
which can generate a set of customized models for each client. FL assumes all clients are willing to
participate in the collaboration and existing methods have not considered whether the collaboration
can really benefit each client or not. Without benefit, a local client could be reluctant to participate in
the collaboration, which is a realistic scenario we investigate in this paper. One specific FL setup
that is relevant to our work is clustered federated learning (Sattler et al., 2020; Mansour et al., [2020),
which groups the clients with similar data distributions and trains a model for each client group. The
scenario we are considering in this paper is to form collaboration coalitions based on the performance
gain each client can get for its corresponding model, rather than sample distribution similarities.

2.2 MULTI-TASK LEARNING AND NEGATIVE TRANSFER

Multi-task learning (Caruana, |1997) (MTL) aims at learning shared knowledge across multiple inter-
related tasks for mutual benefits. Typical examples include hard model parameter sharing (Kokkinos|
2017), soft parameter sharing (Lu et al.,|2017), and neural architecture search (NAS) for a shared
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model architecture (Real et al.l 2019). However, sharing representations of model structures cannot
guarantee model performance gain due to the existence of negative transfer, while we directly consider
forming collaboration coalitions according to individual model performance benefits. In addition,
MTL usually assumes the data from all tasks are accessible, while our goal is to learn a personalized
model for each client through collaborating with other clients without directly accessing their raw data.
It is worth mentioning that there are also clustered MTL approaches (Standley et al., 2020; [Zamir
et al.| 2018)) which assume the models for the tasks within the same group are similar to each other,
while we want the clients within each coalition can benefit each other through collaboration when
learning their respective models. Some works extend MTL to a multi-source domain adaptation (Wen
et al.| 2020} Duan et al., 2009) setting in which unlabeled data exist in some tasks. See detailed
discussions in Appendix.

3 COLLABORATION LEARNING PROBLEM

We first introduce the necessary notations and definitions in Section [3.1] and then define the collabo-
ration equilibrium we aim to achieve in Section [3.2]

3.1 DEFINITIONS AND NOTATIONS

Suppose there are N clients I = { I Z}¢:1 in a collaborative network and each client is associated
with a specific learning task 7 based on its own data D' = {X*,Y*} ;i € {1,2,...,N}, where
the input space X* and the output space Y* may or may not share across all NV clients. Each client
pursues collaboration with others to learn a personalized model M* by maximizing its utility (i.e.,
model performance) without sacrificing data privacy. There is no guarantee that one client can always
benefit from the collaboration with others, and the client would be reluctant to participate in the
collaboration if there is no benefit. In the following, we describe this through a concrete example.

No benefit, no collaboration. Suppose the local data { D'}, i € {1,2,..., N} owned by different
clients satisfy the following conditions: 1) all local data are from the same distribution D? ~ P; 2)
D' ¢ D? ¢ D3,...,c DY. Since D" contains more data than other clients, I cannot benefit
from collaboration with any other clients, so IV will learn a local model using its own data. Once
I™ refuses to collaboration, IV~ will also work on its own as IV ! can only improve its utility by
collaborating with I, IV =2 will learn individually out of the same concerns. Finally, there is no
collaboration among any clients.

Due to the discrepancies of the sample distributions across different clients, the best local model for
a specific client is very likely to come from collaborating with a subset of clients rather than all of
them. Suppose U (I?, C) denotes the model utility of client I* when collaborating with the clients
in client set C. In the following, we define U,y 4. (1 iC ) as the maximum model utility that T i can
achieve when collaborating with different subsets of C.

Definition 1 (Maximum Achievable Utility (MAU)). This is the maximum model utility for a specific
client I' to collaborate with different subsets of client set C: Unpar(I',C) = maxcrcc U(I", C").

From Deﬁnition MAU satisfies U,qz (1%, C") < Upae (1%, C) if C' is a subset of C. Each client
I'" € T aims to identify its “optimal set" of collaborators from I to maximize its local utility, which is
defined as follows.

Definition 2 (Optimal Collaborator Set (OCS)). A client set C'7" "(I') C I is an optimal collaborator
set for I' if and only if C§**(I') satisfies

VC c I, U(I',CP (1Y) > U(TY, C); (la)
VO G O, U, CPH(Ih) > U(I', C"). (1b)

Eq.(@ means that I can achieve its maximal utility when collaborating with cr t([ ¢) and Eq.
means that all clients in C7” t(I %) are necessary. In this way, the relationships between any client

I'" € I and its optimal collaborator set C7” t(I %) can be represented by a graph which is called

the benefit graph (BG). Specifically, for a given client set C C I, we use BG(C) to denote its
corresponding BG. For the example in Figure(a), an arrow from 17 to I* means I7 € C3P*(I7),
e.g., I' — I* means I' € C"*(I®). For a client set C, if every member can achieve its maximum
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model utility through the collaboration with other members within C' (without collaboration with
other members outside ('), then we call C' a coalition.

Forming coalitions for maximizing the local model utilities
Figure shows an example BG with 6 clients. I can achieve its
optimal model utility by collaborating with I'. Similarly, I* and
I? can achieve their optimal model utility through collaborating
with I2 and I3. In this case, C' = {Il, 12, IS} denotes a collab-
oration coalition, and each client achieves its optimal utility by
collaborating with other clients in C. If I'! is taken out from C,
Figure 2: Forming coalitions for I3 will leave C' as well because it cannot gain any benefit through
maximizing the local utility collaboration with others, and then I? will leave for the same

reason. With this ring structure of C', none of the clients in C' can
achieve its best performance without collaborating with the clients in C.

3.2 PROBLEM SETUP

As each client in I aims to maximize its local model utility by forming a collaboration coalition with
others, all clients in I can form several non-overlapping collaboration coalitions. In order to derive
those coalitions, we propose the concept of collaboration equilibrium (CE) as follows.

Suppose we have a set of coalitions S = {C?, C?,...C* } such that Ur_, C* = I and C* N Ck2 =
() for Vky # ko, then we say S reaches CE if it satisfies the following two axioms.

Axiom 1 (Inner Agreement). All collaboration coalitions satisfy inner agreement, i.e.,
VC € S, VC' G O, 3I' € ', s.t., Unaz(I', C") < Uppau (1%, C) (2)

From Axiom [I] inner agreement emphasizes that the clients of each coalition agree to form this
coalition. It gives the necessary condition for a collaboration coalition to be formed such that any of
the subset C” & C' can benefit from the collaboration with C\C'’. Eq.(2) tells us that there always
exists a client in C” that opposes leaving C' because its utility will go down if C” is split from C. In
this way, inner agreement guarantees that all coalitions will not fall apart or the clients involved will
suffer. For example, S = {{I*, 12,13 1*} ,{I°,I°}} in Figure|2|does not satisfy inner agreement,
because the clients in the subset C' = {I SVEN | 3} achieves their optimal utility in C” and can leave
C = {I',I?,I*,I*} without any loss.

Axiom 2 (Outer Agreement). The collaboration strategy should satisfy outer agreement, i.e.,
VO ¢ S, I € C', s.t. Upae (I, C") < Uppae(I',C) (I' € C € S) (3)

From Axiom[2] outer agreement guarantees that there is no other coalition C’ which can benefit each
client involved more than S achieves. Eq. tells us that if C’ is a coalition not from S, there always
exists a client I and a coalition in C' € S such that I* can benefit more. The collaboration strategy
S = {{Il, 12713} , {14} , {15, 16}} in Figureis a CE in which the clients in {Il, I2,I3} and
{I°,1°} achieve their optimal model utility. Though I* does not achieve its maximum model utility
in {I*}, there is no other coalitions which can attract I? and I° to form a new coalition with I*.
Therefore, all clients have no better choice but agree upon this collaboration strategy.

Our goal is to obtain a collaboration strategy to achieve CE which satisfies Axiom [IJand Axiom 2}
so that all clients achieve their optimal model utilities in the collaboration coalition. For the nature
of CE, we also share our extended discussions in Appendix. In the next section, we introduce our
algorithm in detail on 1) how to derive a collaboration strategy that can achieve CE from the benefit
graph and 2) how to construct the benefit graph.

4 COLLABORATION EQUILIBRIUM

In this section, we will introduce our framework on learning to collaborate. Firstly, we propose an
iterative graph-theory-based method to achieve CE based on a given benefit graph.
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4.1 ACHIEVING COLLABORATION EQUILIBRIUM GIVEN THE BENEFIT GRAPH

In theory, there are By collaboration strategies for partitioning N clients into several coalitions,
where By is the Bell number which denotes how many solutions for partitioning a set with N
elements (Bell, |1934). While exhaustive trying all partitions has exponential time complexity, in this
section, we propose an iterative method for deriving a collaboration strategy that achieves CE with
polynomial time complexity. Specifically, at each iteration, we search for a stable coalition which is
formally defined in Definition E]below, then we remove the clients in the stable coalition and re-build
the benefit graph for the remaining clients. The iterations will continue until all clients are able to
identify their own coalitions.

Definition 3 (Stable Coalition). Given a client set I, a coalition C* is stable if it satisfies

1. Each client in C* achieves its maximal model utility, i.e.,
Umaze(I',C%) = Upae(I', ) VI' € C*°. 4)

2. Any sub coalition C' C C?® cannot achieve the maximal utility for all clients in C', i.e.,
VC' G C%, 3T € O, sty Upar(I',C') < Uppaz (11, C%). 6)

From Definition 3} Eq.(#) means that any client in a stable coalition cannot improve its model utility
further. Eq. states that this coalition is stable as any sub coalition C’ can benefit from C*\C".
Therefore any sub coalition has no motivation to leave C**. Eq.(@) implies that a stable coalition will
not welcome any other clients to join as others will not benefit the clients in C'* further. In Figure
{I L2 T 5} and {I 5.1 6} are the two stable coalitions. In order to identify the stable coalitions from
the benefit graph, we first introduce the concept of strongly connected component in a directed graph.

Definition 4 (Strongly Connected Component (Tarjan,|1972)). A subgraph G’ is a strongly connected
component of a given directed graph G if it satisfies: 1) It is strongly connected, which means that
there is a path in each direction between each pair of vertices in G'; 2) It is maximal, which means
no additional vertices from G can be included in G' without breaking the property of being strongly
connected.

Then we derive a graph-based method to obtain the collaboration coalitions that can achieve collabo-
ration equilibrium by identifying all stable coalitions iteratively according to Theorem [I]below.

Theorem 1. (Proof in Appendix) Given a client set I and its BG(I), the stable coalitions are
strongly connected components of BG(I).

With Theorem we need to identify all strongly connected components of BG(I'), which can be
achieved using the Tarjan algorithm (Tarjan, [1972) with time complexity O(V + E), where V is
the number of nodes and E is the number of edges. Then following Eq.(@), we judge whether a
strongly connected component is a stable coalition by checking whether all clients have achieved
their maximal model utility. A stable coalition C*® has no interest to collaborate with other clients, so
C* will be removed and the remaining clients I\ C* will continue to seek collaborations until all N
clients find their coalitions. In this way, we can achieve a partitioning strategy, with the details shown
in Algorithm 1 in the Appendix.

Theorem 2. (Proof in Appendix) The collaboration strategy obtained above achieves collaboration
equilibrium.

The clients in all stable coalitions found in each iteration cannot improve their model utility further and
will not collaborate with others because there are no additional benefits. Therefore, the collaboration
strategy is approved by all clients. The iterative method achieves CE considering the BG varies in
each iteration after removing the stable coalitions, which can be time-consuming because we need to
redefine BG in each iteration by re-learning an optimal personalized model for each remaining client.

Assumption 1. The benefit graph of a subset C' C I (BG(C)) is the subgraph of the BG(I).

Assumption claims that the benefit graph of the remaining clients I\ C'® keeps unchanged when the
subgraph BG(C?) is split from BG (I). It implies that for each pair of clients I* and I/, whether I
is one of the optimal collaborators for I/ will not be affected by other clients. In this case, we do not
need to re-build the benefit graph and have the following corollary.

Corollary 1. (proof in Appendix) When Assumption|l|holds, the strongly connected components of
BG(I) leads to a collaboration equilibrium.
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4.2 DETERMINE THE BENEFIT GRAPH BY SPECIFIC PARETO OPTIMIZATION

The benefit graph of IV clients consists of the clients and their corresponding OCS. However, each
client has 2V~ collaborator sets and it’s hard to determine which one is the OCS. Exhaustive trying
all sets to determine the OCS may be impractical, especially when there are many clients. To identify
the OCS effectively and efficiently, we propose Specific Pareto Optimization (SPO) to alternately
perform the following two steps: 1). learn a Pareto model (defined below) given the weight of all
clients d; 2). optimize the weight vector d to search for a best model M *(I*) by gradient descent.

Definition 5 (Pareto Solution and Pareto Front). We consider n objectives corresponding to n
clients: 1; : R — Ry i = {1,2,...,n}. Given a learned hypothesis h, suppose the loss vector
l(h) = [l1,ls, ..., 1,,] represents the utility loss on n clients with hypothesis h € H, we say h is a
Pareto Solution if there is no hypothesis h' that dominates h, often called Pareto optimality, i.e.,

B € H, st Vil (B) <li(h)and 35 : 1; (B') < 1;(h).

In a collaboration network with N clients {Ii Z-]\Ll, as each client has its own learning task which
can be formulated as a specific objective, we use P({I L C L }) to represent the Pareto Front
(PF) of the client set {I° i]\il formed by all Pareto hypothesis.

Learning a best model and identify the OCS by SPO To search for an optimal model M *(I*
for I*, we propose to firstly learn the empirical Pareto Front by a hypernetwork denoted as H N
As each client owns its objective, given the weight of all clients (objectives), the learned PT by H N
outputs a Pareto model M,

M = HN(d), ©)

where d = [d', d?, ..., d"] satisfying Zf\; d’ = 1 and d° denotes the weight of the objective I;.
Each d corresponds to a specific Pareto model M, and all Pareto models M satisfy Pareto optimality
that the losses on the training data of all clients cannot be further optimized.

Though the Pareto models maximize the utilization of the training data from all clients, they may not
be the best models on the true (test) data distribution. For example, H N (d,) achieves a minimum
loss on the training data of ' shown in Figure [3| (b), but it is not the optimal model on the true data
distribution of I' shown in Figure [3|(c). Therefore, we propose to search for a best Pareto model that
achieves the best performance on the true (validation) data set of the target client / i e.,

M*(I') = HN(d*), where d* = arg max Per(HN(d), I"), @)

where Per(H N (d), I') denotes the performance of HN(d) on the validation data set of I*. We
identify the OCS of I’ based on the optimized weight of all clients d*. For example shown in
Figurec), the best model is h} for client 7' and the corresponding optimized weight d* = d3 =
[0.7,0.3,0]. So the OCS of I" consists of the clients with non-zero weights, which is {I*, I?}.

I3

Iy
L @ P({l1,12,13}) (o) P({l1,12}) (c) performances on true
(testing) distribution

Figure 3: (a) the loss plane of P({l1,l2,l3}) learned from training data of {I', 1% I3}; (b) the
loss curve of P({ly,l>}) learned from training data of {I*, 1%} is embedded in the loss plane of
P({l1,12,13}); d1,d2, ., d4 are 4 vectors corresponding to 4 Pareto models in P({l1,12}); (3) the
performances of the models h € P({l1,l2}) on true (testing) distributions and h; (h3) achieves the
optimal performance on client I' (I?) corresponding to ds (dz) in (b).

"More information please refer to (Navon et al.} 2020)
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Proposition 1 (Pareto Front Embedding Property). (proof in Appendix) Suppose U'* = [I;(h'*)],i €
C'and 1* = [I;(h*)],i € C are the loss vectors achieved by the PFs P(C") and P(C') where C' C C,
then

VR € P(C'), 3h* € P(C), s.t. Li(k™) = ;(h*) Vi € C". ®)

From Proposition[I] the loss vectors achieved by the PF of a sub-coalition are embedded in the loss
vectors of the full coalition, such as the loss curve of P({l1,l2}) is in the loss plane of P({l1,l2,13})
shown in Figure 3] (a) and (b).

Explanation of SPO from a geometric point of view Intuitively, if the best model M*(I%)
searched on the PF of all clients P(I') belongs to the PF of a sub coalition P(C') simultaneously, i.e.,

M*(I'y € P(C) and M*(I') € P(I), )

then the clients I\C are not necessary for obtaining M*(I*). However, exhaustively trying the PF of
all sub-coalitions can have exponential time complexity. From Proposition [T} the PF of full coalition
I contains the PF of all sub-coalitions. Therefore, we propose SPO to search for a best model M™*(I*)
on the PF of full coalition I, and identify whether M *(I?) belongs to the PF of a sub-coalition
using the optimized weight vector d. For example, suppose there are three clients and the three
corresponding objectives achieved by the PF are shown in Figure[3(a). The model A} in Figure [3(a)
is on the PF P({l1,[2,13}). Since the corresponding weight d = [0.7, 0.3, 0], from Figure 3(b), i}
is also on the PF P({l1,l2}), so I® is not a necessary client and the OCS of I' is {l1,l,}. More
discussion about optimality and implementation details are in Appendix.

5 EXPERIMENTS

To intuitively demonstrate the motivation of collaboration equilibrium and the effectiveness of SPO,
we conduct experiments on synthetic data, a real-world UCI dataset Adult (Kohavi, |1996) and a
benchmark data set CIFAR10 (LeCun et al., [1998)). Moreover, we verify the practicability of our
framework on a real-world multiple hospitals collaboration network using the electronic health
record (EHR) data set eICU (Pollard et al.,2018). As SPO aims to achieve an optimal model utility
by optimizing the personalized model on the PF of all clients, we use SPO to denote the model
utility achieved by SPO. According to the OCS determined by SPO we achieve a CE for all clients
and the model utility of each client in the CE can be different from the utility achieved by SPO.
We use CE to denote the model utility achieved in the CE without causing further confusion. To
verify the practicability of our framework, we also compare the time consumption and provide more
experimental results in Appendix.

5.1 SYNTHETIC EXPERIMENTS

Synthetic data Suppose there are 6 clients in the collaboration network. The synthetic features
owned by each client I* are generated by x ~ U[—1.0, 1.0]; the ground-truth weights u; = v +r; are
samples as v ~ U[0.0, 1.0],r; ~ N (04, p?) where p? represents the client variance (if p? increases,
the data distribution discrepancy among clients will increase). Labels of the clients are observed with
i.i.d noise € ~ N (0, 02). To generate conflicting learning tasks assigned to different clients, we flip

over the label of some clients: y = u/ x +¢,i € {0,1,2} andy = —u, x +¢,i € {3,4,5} .

From Table[T} when there are fewer samples (n = 2000) and less distribution discrepancy p = 0.1
in the client set {1°, I, 1%} or {I® I*,I°} with similar label generation process, these clients
collaborate with others to achieve a low MSE. In this case, the OCS of each client is the clients with
similar learning tasks and we achieve CE as S = {{I?}2_,, {I*}?_,} as shown in the top of Figure[4]
(a). With the increase of the number of samples and the distribution discrepancy, collaboration cannot
benefit the clients and all clients will learn individually on their own data. Therefore, when n = 20000
and p = 1.0, the OCS of each client is itself and the collaboration strategy S = {{I°}, {I'},., {I°}}
leads to a CE as shown in the bottom of Figure[d] (a).

UCI adult data adult contains more than 40000 adult records and the task is to predict whether
an individual earns more than 50K/year given other features (e.g., age, gender, education, etc.).
Following the setting in (L1 et al., 2019; Mohri et al., 2019), we split the data set into two clients.
One is PhD client (I') in which all individuals are PhDs and the other is non-PhD client (I°). In this
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experiment, we implement SPO on this data set and compare the performance with existing relevant
methods AFL (Mohri et al.,[2019) and q-FFL (Li et al., 2019ﬂ

The two clients I° and I' have different data distribution and non-PhD client has more than 30000
samples while PhD client has about 500 samples. From Table [2] SPO achieves higher accuracy
compared to baselines especially on PhD clients (77.0). non-PhD client achieves an optimal accuracy
(83.5) by local training. Therefore, PhD client improves its performance by collaborating with
non-PhD client while the performance of non-PhD client declines. The benefit graph is shown in the
top of Figure 4| (b). The CE is non-collaboration as in the bottom of Figure 4{ (b) and the model of
both clients in the CE are trained individually.

5.2 BENCHMARK EXPERIMENTS

We compare our method with previous personalized federated learning (PFL) methods on CIFAR-
10 (Krizhevsky et al., 2009 Following the setting in (McMahan et al.;2016)), we simulate non-i.i.d
environment by randomly assigning two classes to each client among ten total classes. Baselines
we evaluate are as follows: (1) Local training on each client; (2) FedAvg (McMahan et al., 2016));
(3) Per-FedAvg (Fallah et al.| 2020), a meta-learning based PFL algorithm. (4) pFedMe (T Dinh
et al.,2020), a PFL approach which adds a Moreau-envelopes loss term; (5) LG-FedAvg (Liang et al.|
2020) PFL method with local feature extractor and global output layers; (6) FedPer (Arivazhagan
et al.,[2019), a PFL approach that learns personal classifier on top of a shared feature extractor; (7)
pFedHN (Shamsian et al., [2021)), a PFL approach that generates models by training a hyper-network.
In all experiments, our target network shares the same architecture as the baseline models. For each
client, we split 87% of the training data for learning a Pareto Front by collaborating with the others
and the remaining 13% of the training data for optimizing the vector d to reach an optimal model as
shown in Figure |3|(c). More implementation details are in Appendix.

Table [3|reports the results of all methods. FedAve achieves a lower accuracy (51.4) compared to local
training (86.46) which means that training a global model can hurt the performance of each client.
Compared to other PFL methods in Table 3] SPO reaches an optimal model on the PF of all objectives
and achieves a higher accuracy (92.47). As the features learned from the images are transferable
though there is a label shift among all clients, the collaboration among all clients leads to a more
efficient feature extractor for each client. Therefore, the benefit graph of this collaboration network is
a fully connected graph and the collaboration equilibrium is that all clients form a full coalition for
collaboration as shown in Figure[d (c). In this experiment, the accuracy model of each clients in CE
equals to the accuracy achieved by SPO.

Table 1: Synthetic Table 2: Adult Table 3: CIFARI10
. n = 2000, p = 0.1 n = 20000, p = 1.0 Accuracy methods accuracy
ocs CE(MSE)  OCS CE (MSE) methods 70 1 Local 86.46 £ 4.02
5 R - FedAve 5142 +2.41
I {1 I T } 0.240.08 {1 } le-4+.0 L 6as  a0nag  PerFedive  7665%484
I {10 112 } 0.26+0.08 {11 } le-4+.0 FedPer 87.27+1.39
. ) q-FFL 824=.1  744%9
12 {10 It 12 } 0.24£0.04 {12 } le-4+.0 pFedMe 87.69 +1.93
73 {13 74 Is} 0.26+0.07 {13 } le-d+.0 local 835+.0 669+ 1.0 LG-FedAve 89.11 £2.66
4 5 4 s 2620, 4 . SPO (ours)  828%.3  TL.0%.7 prredHN — 90.83 1.36
4 {I I T } 0.26+0.09 {I } le-420 o - SPO (ours)  92.47 £ 4.80
5 R o008 {1°) redro CE(ours)  835%.0 669+1.0  CE(ours)  92.47 480

//———~\\ //———~\\
DO 0@

N NS = / \
T T T M n=2000p=0.1 (1) Beneft Graph l@ @@)
Z30 AR AR AR A AR ZEAN 723\ ;

POBOOD ® @ DOC

(2)yn = 20000,p = 1.0 (2) no collaboration (1) full collaboration

(a) (b) (c)
Figure 4: Collaboration equilibrium on synthetic data, Adult and CIFAR10.

BO®.

5.3 HOSPITAL COLLABORATION

elCU (Pollard et al., 2018]) is a clinical data set collecting the patients about their admissions to ICUs
with hospital information. Each instance is a specific ICU stay. We follow the data pre-processing

2The results of baselines are from (Li et al.l[2019)
3The results of baselines are from (Shamsian et al.,2021)
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procedure in (Sheikhalishahi et al.,2019) and naturally treat different hospitals as local clients. We
conduct the task of predicting in-hospital mortality which is defined as the patient’s outcome at the
hospital discharge. This is a binary classification task, where each data sample spans a 1-hour window.

In this experiment, we select 5 hospitals with more patient samples (about 1000) {I i}?:() and 5
hospitals with less patient samples {I i}?zs. Due to label imbalance (more than 90% samples have
negative labels), we use AUC to measure the utility for each client as in (Sheikhalishahi et al., 2019).

For all methods, we use the ANN as the network structure as in (Sheikhalishahi et al., [2019)).

Table 4: eICU
AUC

methods

1° It I? & I I’ I I I8 I
Local 66.89 85.03 61.83 68.83 8231 59.65 67.78 40.00 61.90 70.00
FedAve 7192 89.36 81.00 73.89 80.23 70.18 5222 40.00 61.90 75.00
SPO (ours) 76.35 91.80 8028 70.52 8693 8246 7111 40.00 7619 83.33
CE (ours) 77.93 8728 7047 70.64 8348 6492 68.89 4500 61.90 70.00

The model AUC of each hospital is reported in Table [d] Because of the lack of patient data for
each hospital, Local achieves a relatively lower AUC compared to FedAve and SPO. While patient
populations vary substantially from hospital to hospital, SPO learns a personalized model for each
hospital and outperforms FedAve from Table 4]

1
|
\\@ /// \@/1
NG S N
\\/ @
(a) benefit graph (b) strongly connected (c) collaboration equi-
grap gly q
components of (a) librium

Figure 5: Collaboration Equilibrium of 10 real hospitals

Collaboration Equilibrium The benefit graph of all hospitals determined by SPO and its corre-
sponding strongly connected components are shown in Figure and From Figure I°
and I3 are the unique necessary collaborator for each other, CT = {I ,I°} is the first identified
stable coalition as shown in Figure 1Y is a tiny clinic that cannot contribute to any hospitals,
so no hospital is willing to collaborate with it and I° learns a local model with its own data by
forming a simple coalition C? = {I 9}. The benefit graph of the remaining clients are shown in
Figure m On the one hand they cannot benefit I3 or I° so they cannot form coalitions with
them, on the other hand they refuse to contribute I° without any charge. They choose form the
coalition C3 = {I*, 1% I*,I°,16,17, 1%} to maximize their AUC. Therefore, the CE in this hospital
collaboration network is achieved by the collaboration strategy S = {C', C?,C3} and the model
AUC of each client in the CE is in Table 4

Comparing Figure [5(b)|and the strongly connected components of the benefit graph leads to a
CE. This empirically verifies that Assumption|[I]is reasonable. Meanwhile, CE guarantees that every
client in its coalition will not collaborate with harmful clients, so the client may achieve a higher
utility in a CE compared to collaborating with everyone such as the AUC of I" in CE (77.93) is
higher than in SPO (76.35).

6 CONCLUSION

In this paper, we propose a learning to collaborate framework to achieve collaboration equilibrium
such that any of the individual clients cannot improve their performance further. Comprehensive
experiments on benchmark and real-world data sets demonstrated the validity of our proposed
framework. In our study, some small clients could be isolated as they cannot benefit others. Our
framework can quantify both the benefit to and the contribution from each client in a network. In
practice, such information can be utilized to either provide incentives or to impose charges on each
client, to facilitate and enhance the foundation of the network or coalition.
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REPRODUCIBILITY STATEMENT
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A  PROOFS OF ALL THEORETICAL RESULTS

A.1 PROOF OF THEOREM 1

To prove Theorem [T} we first prove that the benefit graph of a stable coalition is strongly connected
shown in Lemmal[Il

Lemma 1. Fora given client set I, the benefit graph of each stable coalition C* is strongly connected,
which means that there is a path in each direction between each pair of vertices in BG(C?).

Proof. We will prove the Lemma [I] by contradiction. Given a stable coalition C**, suppose there
exsits a pair of vertices 1!, I2 € BG(C*®) such that there is no path from I to 12, which is denoted
as fp, s.t., I' — I? for expressive clearly. We split C* into two sub-coalitions ¢’ and C*\C’
depending on whether the clients have paths to I2. The clients in C’ have no path to 1%, and the
clients in C*\C" have paths to I°.

VIt e ' Pp, st, It — I?

_ . 10
VIt e C\C’,3p, st I' — I2. (10)

Obviously, C" and C*\C" are not empty because /' € C’ and and I* € C*\C’. From Eq.(5) in the
main text in the Definition of stable coalition, each client I* € C® achieves its maximal utility by
collaborating with others in C'* which means that

VIt € C%, VI € CPHIY), IV € CF. (11)

From the Definition of Optimal Collaborator Set (OCS), each client I ? in the OCS of I? has an edge
from I to 12, ‘ ‘
VIt € O (1%, Fp, s, TP — I (12)

Therefore, because each client I' € C7P*(I?) is in C*\C’, I? can achieve its maximal utility in
C*\C'. Morever, we can prove that I* € C"*(I?) achieves its maximal utiltiy in C*\C" because
each client I* € C57*(1?) and its corresponding OCS are in C*\ (",

VIt € O (1%, YIP € O9PH(IY), Fp, TV — I, (13a)
VI' € OFPH(1%), Fp, s, IT — 12, (13b)
= VI' e CPHI%), VI € CPM(TY), 3p, P = 1" — I? (13c)

12
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From Eq., the clients in the OCS of I* (I € C§P(I?)) are in C*\C" and I* can achieve its
optimal utility. Based on the same analysis, for each client I* € C*\(C’, its OCS C7" “(I') is in
C*\C" because all clients in C¢**(I?) have a path to I. So we have the conclusion that all clients in
C*\C" achieves its optimal utility by collaborating with others in C*\C”. However, this contradicts
Eq.(6) in the main text in the Definition of stable coalition. Therefore, we prove that the benefit graph
BG(C?) of the stable coalition C* is strongly connected as in Lemma O

From Lemmall] the BG(C*) is strongly connected, then we will prove that BG(C*®) is a strongly
connected component of BG(I) by pointing out that BG(C?®) is maximal which means that no
additional vertices from I can be included in BG(C'*®) without breaking the property of being strongly
connected.

Proof. We will prove that BG(C*®) is maximal by contradiction. Suppose there is another client
I° € I\C*® which can be added in BG(C*®) without breaking the property of being strongly connected.
Therefore, there exists I* € C* which has an edge from I to I*. This means that I” is one of the
necessary collaborators of 1? (10 € C'f**(I%)) and I° cannot achieve its optimal utility in C** without
collaborating with I°. However, this contradicts Eq.(5) in the main text in the Definition of stable
coalition that all clients in C*® can achieve its optimal utility by collaborating with others in C*.
Therefore, we prove that BG(C?) is a strongly connected component as stated in Theorem O

A.2 PROOF OF THEOREM 2

Proof. 1. All coalitions in S = {C°,C', ..., C*} satisfies Inner Agreement as in Axiom 1.

As each coalition C* € S is a stable coalition, from Eq.(6) of the Definition of stable coalition, we
have

VC' € S, VC' G C', 3N € O, sty Unaz (I, C') < Uppau (I, CY). (14)
Then Eq.(T4) is the definition of Inner Agreement in Eq.(3) in the main text. Therefore, we prove that
all collaboration coalitions in S satisfy inner agreement.
2. The collaboration strategy S satisfies Outer Agreement as in Axiom 2.

We will prove it by contradiction. Suppose there exists a new nonempty coalition ¢/ =
0

{1, 1", ..., 1"} ¢ S which satisfies

VI' € C', Upau(I',C") > Upae(I1, C7) (I' € C7 € S). (15)

Suppose that C? denotes the coalition in the first iteration. Then VI? € C°, I achieves its maximal
utility in the client set I and cannot increase its model utility further. So we have

VI'te ', I' ¢ C°. (16)

The clients in the coalition C° € S identified in the first iteration have no interest in collaborating
with others and will be removed. Suppose C'! denotes the coalition in the first iteration. VI* € C1, I’
achieves its maximal utility in the client set I'\C and cannot increase its model utility further. So we
have

VIte ', I' ¢ C*. (17)

Then C! will be removed and we have VI* € C’, I* ¢ I°.. Based on the same analysis, we finally

have ) ) ) .
VI'e C',VC? € S, I ¢ (9,

18
= C' =0 (18)

Therefore, we prove that there is no nonempty C” satisfying Eq.(15) and S satisfies Outer Agreement.
O

13
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A.3 PROOF OF COROLLARY 1

Firstly, we prove that all strongly connected components are disjoint as in Lemma 2]

Lemma 2. Given a directed graph G and all its strongly connected components {CO,...C*}, each
pair of its strongly connected components C* and C? satisfies C* N C? = (.

Proof. We will prove it by contradiction. Suppose there exists a pair of the strongly connected
components which satisfies I° € (C* N C7) and C = C* U C?. For each pair of vertices I*, I/, we
have

Ip, I' - 1° > [,
Ip, ' - 1° = I
From Eq.(T9), C is strongly connected which conflicts the definition of strongly connected compo-
nents that each strongly connected component is maximal. Therefore, we prove that C*NC7 = (. 0O

19)

Theorem [2] states that the collaboration coalitions identified iteratively leads to a collaboration
equilibrium. To prove the Corollary [I] we will demostrate that the collaboration coalitions identified
iteratively are all strongly connected components of BG(I) when Assumption holds.

Proof. Suppose the coalitions strategy S = {C° C*,...C*} is determined iteratively and C* is
identified in the i-th iteration. From Theorem |1, C” is one of the strongly connected components
of BG(I). C* is a stable coalition which is one of the strongly connected componts of BG(I\C?).
When Assumptionholds, BG(I\C") is the subgraph of BG(I) and any edge in BG(I\C?) is also
the edge in BG(I) and vice versa. Therefore, BG(C") is strongly connected in BG(I). Suppose
BG(CY) is not a strongly connected component of BG(I) and there exists an additional client I?
which can be added in C'! without breaking the strongly connected property. From Lemma I
cannot be from another strongly connected component, so we have

I' ¢ C°. (20)

If I is from I'\(C°UC") and can be added into C'* without breaking the strongly connected property,
it conflicts the definition that C'* is a strongly connected component of I\C?. So we have

I'¢ 1\(c°uch). 1)
From Eq.(20) and Eq.(21), there is no additional I* which can be added in C'* without breaking
the strongly connected property. So Clis a strongly connected component of BG(I). For the
same analysis, we can prove that VC* € S, C" is a strongly connected component of BG(I) when
Assumptionholds. Therefore, we prove that the strongly connected components of BG(I) are the

stable coalitions {C?, C, ...C*} identified iteratively by Algorithm and these strongly connected
components lead to a CE. O

A.4 PROOF OF PROPOSITION 1
Proof. For any hypothesis h'* € P(C"), h'* satisfies
W eH, st.VieC L (W) <L(W*)and 35 : I; (W) < 1;(h"*). (22)
1) If h* € P(C) which satisfies
B e, st.VieC:l; () <li(h)and 3j : I; (B') < 1;(h), (23)

then we let * = h’* in Eq.(8) so Eq.(8) holds;
2)if h'* ¢ P(C), there exists b’ € P(C) which satisfies

14
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Vie Ol () <Li(h'*)and 35 : I (W) < L;(h'™), (24)

combining Eq.(22)), we have

Vie C 1 (W) = L(h*) and 3j € C\C" : I; (W) < L;(h'™). (25)

then we let h* = 1/ in Eq.(8) so Eq.(8) holds.

B IMPLEMENTATION

In this section, we will introduce how to learn the Pareto Front of all objectives corresponding to all
clients. Then, we will describe how to determine the optimal collaborator set for each client.

B.1 LEARNING PARETO FRONT

Multi-objective optimization (MOO) problems have a set of optimal solutions, and these optimal
solutions form the Pareto front, where each point on the front represents a different trade-off among
possibly conflicting objectives. We construct a personalized model for each client which we call
target network and it has the same architecture as the baselines. To determine the parameters of the
target network of each client, in our experiments, we learn the entire Pareto Front simultaneously
using a hypernetwork which receives as input a vector d and returns all parameters of the target
network. The input vector is N-dimension bmd in which each entry d’ corresponds to the client I*
and is sampled from the convex hull D,

N
D:{d,|w,1gigzv,dizo, and Zdi:1}. (26)

i=1

Specifically, we construct the hypernetwork following in the architecture introduced in (Navon et al.,
2020). By a n-layer (n < 3) MLP network with the activation function ReLU, we inference the
parameters of the target network. Then the obtained parameters will be assigned to the target network.
We evaluate the performance of the parameters on the training set and the gradient information will
be returned for updating the hypernetwork.

B.2 IDENTIFYING THE OPTIMAL COLLABORATOR SET

From the statement above, we train a hypernetwork H N for learning the whole Pareto front. H N
bridges the mapping from the vector d to the corresponding model parameters of the target network.
To obtain the optimal target network parameters that achieve the minimal value loss of the target
objective on the validation set, we optimize the vector d by gradient descent. Specifically, given
an initial direction dy, we firstly obtain the parameters of the target network using the learned
hypernetwork H N (dp). Like training the hypernetwork, the obtained parameters will be assigned to
the target network. Then we evaluate the performance of the generated parameters on the validation
set and compute the gradient of the input direction dj. Finally, the gradient information will be used
for updating the vector d iteratively until convergence.

dig1=d; —n- Vdil*
diy1 < Clip(dis1) 27
di+1  Normalization(d;+1),

where U denotes the learning rate, Clip(d;+1) means that we clip each values d{ 41 € dit1 to satisfy
€0 < dl,; < 1and Normalization(d;;1) is as follows,
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, &
. . / _ i+1
Vi(1<j<N)d, = W (28)
j=1%+1
Finally, we reach the optimal direction d* and its corresponding Pareto model M* = HN (d*).

For each client, we determine the optimal collaborator set by the optimal direction d* and the loss
value of all objectives I = [I1 (M ™), lo(M™*), ..., In(M*)]. From the Pareto Front Embedded property
described in Proposition[I} an ideal direction d* is a sparse vector in which the indexes of the non-zero
values in d* are the necessary collaborators for the target client. In our experiments, d* usually is not
a sparse vector, but there are values in d* which are significantly small. Therefore, we set a threshold
€ for d* to determine which clients are necessary/unnecessary.

Algorithm 1: Achieving collaboration equilibrium

Input: N institutions I = {1}, seeking collaborating with others
Set original client set C' < I;
Set collaboration strategy S < 0;
while C # 0 do
forall client I' € C do
| Determine the OCS of I’ by SPO;
end
Construct the benefit graph BG(C');
Search for all strongly connected components {C Le2, ...Ck} of BG(C) using Tarjan
algorithm;
foralli=1, 2, 3,... kdo
if C' is stable coalition then
C+«+C\C';
S« Su{C}
end
end

end
Output: collaboration strategy .S

When Assumption 1 holds, from Corollary 1 proposed in the main text, the framework for obtaining
a collaboration strategy that leads to a CE is simplified as in Algorithm 2]

Algorithm 2: Achieving collaboration equilibrium under Assumption ]|

Input: N institutions T = {1}, seeking collaborating with others

Set original client set C' «+— I;

Set collaboration strategy S < (J;

forall client I' € C do
| Determine the OCS of I? by SPO;

end

Construct the benefit graph BG(C);

Search for all strongly connected components S = {C*,C2,...C*} of BG(C) using Tarjan
algorithm;

Output: collaboration strategy S

C EXPERIMENTAL DETAILS

C.1 SYNTHETIC DATA EXPERIMENTS

The synthetic data generation process is illustrated in the main text. In this experiment, we construct
the hypernetwork using 1-layer hidden MLP for generating the target network parameters and the
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target network is a 1-layer MLP. The experiments have two settings, 1) 2000 training samples and
p = 0.1; 2) 20000 training samples and p = 1.0.

We plot the vector d = [d°, d*, d?,d?, d*, d°] varying in each iteration as we learn a personalized
model for 7°. When n = 2000, p = 0.1 and the target client is I°, from Figure {d3,d*, d°}
decrease until reach the minimum and {d°, d', d?} increase in each iteration. As p # 0, the data
in I' (I?) and I° does not satisfy i.i.d, so d° is slightly larger than d' and d?. This means that the
optimal personalized model of 1% is on PF(I°,I*, I?) and the OCS of I° is i]o, I',1?}. When
n = 20000, p = 1.0 and the target client is I°, from Figure[6(b)| {d*,d?,d?, d*, d°} decrease and
reach the minimum and d° increases in each iteration. This means that the optimal personalized
model of IV is on PF(I°) and the OCS of 1% is {I°}.

0.6 1

M
— 1
0.5 d? 0.6
—t}
0.4 —_— 0.54
d5

] //— | R
/’/— 0.3 —d*

0.2 1 // 0:2 |

0.14 / 0.14

0.71

0 2 4 6 8 10 0 2 4 6 8 10
epoch epoch

(a) n =2000,p =0.1 (b) n = 20000, p = 1.0

Figure 6: d = [d°, d*, d?,d?, d*, d°] varies in each iteration where d’ corresponds to the client I°.

After identifying all coalitions, all clients will re-learn a personalized model by collaborating with
other clients in its coalition.

C.2 UCI ADULT DATA EXPERIMENTS

UCI Adult is a public dataset (Kohavil [1996) which is split as training set and test set. We follow the
dataset preprocessing procedure as in (Li et al.,[2019; Mohri et al.||2019) and split the data into two
clients PhD client and Non-PhD client. In this experiment, we construct the hypernetwork using a
1-layer hidden MLP. The target network is a Logistic Regression model as in (L1 et al.| 2019 Mohri
et al.|[2019). We split 83% training data for learning the PF and the remaining 17% training data for
determining the optimal vector d. All hyperparameters are determined by the performance on the
validation data set.

C.3 CIFAR10 DATA EXPERIMENTS

CIFARI10 is a public dataset (LeCun et al.,|{1998) which contains 50000 images for training and 10000
images for testing. In our experiments, we following the setting in (McMahan et al.| [2016). We
split the data into 10 clients and simulate a non-i.i.d environment by randomly assigning two classes
to each client among ten total classes. The training data of each client will be divided into training
set (83%) and validation set(17%). We construct the hypernetwork using 3-layer hidden MLP for
generating the parameters of the target network and the target network is constructed following the
work (Shamsian et al., [2021). All baselines share the same target network structure for each client.
To determine the hyperparameters (e.g., learning rate), we evaluate the performance of different
hyperparameter combinations on the validation set and choose the hyperparameter combination which
achieves the optimal accuracy.

C.4 EICU DATA EXPERIMENTS

eICU Data Asset eICU dataset (Pollard et al.,|2018) is a dataset for which permission is required.
We followed the procedure on the website https://eicu-crd.mit .eduland got the approval
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to the dataset. In this experiment, we follow the data preprocessing as in (Sheikhalishahi et al.}|2019)
and select 10 hospitals for collaboration as introduced in the main text. As all hospitals own relatively
insufficient patient data samples (100 < n < 1300), dividing the data into training set and test set
in different ways may lead to different CE. We construct the hypernetwork by a 1-layer MLP for
training the Pareto Front of all objectives. The target network is an ANN model following the work
in (Sheikhalishahi et al.|[2019). We determine the hyperparameters by choosing the hyperparameter
combination which achieves the optimal performance on the validation set. Full experiment results
on eICU is in Table[3]

Table 5: Full experimental results on eICU dataset.

methods ave AUC

1° It 12 I3 14 I° I8 17 I8 1°
Local 6644 6689 8503 61.83 6883 8231 59.65 6778 40.00 6190 70.00
FedAve 69.57 7192 8936 81.00 73.89 80.23 70.18 5222  40.00 6190  75.00
Per-FedAve 6882 6872 89.82 71.19 7270 7496 6842 4667 4500 8571  65.00
FedPer 7253 7259 8774 8001 5637 8656 9474 7333 1500 8571  73.33
pFedMe 7068 7621 8931 7630  68.17 8750 8246 8444 1000 5238  80.00
LG-FedAve 71.07 7470 88.80 7637 6645 8640 8246 8333 1500 57.14  80.00
pFedHN 6757 5729 76.15 8467 5201 6695 4561 5778  70.00 9524  70.00
SPO (ours) 7590 7635 91.80 80.28 7052 8693 8246 71.11 4000 76.19  83.30
CE (ours) 7005 7793 8728 7047 70.64 8348 6492 68.89 4500 6190  70.00

C.5 TRAINING RESOURCES

We run our experiments on a local Linux server that has two physical CPU chips (Inter(R) Xeon(R)
CPU E5-2640 v4 @ 2.40GHz) and 32 logical kernels. We use Pytorch framework to implement our
model and train all models on GeForce RTX 2080 Ti GPUs.

D DETAILED DISCUSSIONS ABOUT MULTI-DOMAIN ADAPTATION

Multi-domain adaptation refers to the learning scenario that the target domains have no labeled data
and researchers transfer the knowledge by aligning the feature spaces between the source domains
and the target domains (Mansour et al.| 2008; Crammer et al., |2008)), while the federated learning
scenario in our work considers that all clients own labeled data and the feature spaces are shared. The
differences between the methods in federated learning and multi-domain adaptation are as follows:

1. the core goal of the methods in multi-domain adaptation is to align the feature spaces
between the source domains and the target domains (Wilson & Cook, |[2020), which may
be redundant for the problem we focus on because the feature space is shared across all
domains;

2. in the paradigm of federated learning/multi-task learning, the data of the target clients are
labeled and it allows researchers to learn an optimal model by supervised training while
methods in multi-domain adaptation cannot;

3. federated learning requires that learning a model across multi-client cannot have access to
the raw data of the local clients, while methods in multi-domain adaptation can.

E EXTENDED DISCUSSIONS

E.1 COLLABORATIVE EQUILIBRIUM

The collaboration equilibrium of a collaborated network is affected by 1) the selected model structure;
2) the data distribution of the clients. For 1), different model structures utilize the data in different
ways. For example, non-linear models can capture the non-linear mapping relations in the data
among different local clients while linear models cannot. For 2), the collaboration equilibrium is
affected by the data distribution of the clients given the model structure. The data distribution of
one client determines whether it can benefit another when learning together and this was verified
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by the experiments. From the experimental results shown in Table 1, when the data distribution
discrepancies increases ( from 0.1 to 1.0), I° and I' could not benefit 12 anymore. Therefore, the
collaboration equilibrium varies as shown in Figure f]a).

E.2 OPTIMALITY

Identifying stable coalition to reach a CE Our method guarantees the optimality of achieving
a CE given a benefit graph. In particular, the stable coalitions (or collaboration equilibrium) are
determined uniquely given the benefit graph of the client set. Based upon the constructed benefit
graph, our approach guarantees the optimality of the obtained stable coalitions theoretically as the
identified stable coalitions strictly satisfy the two conditions in Definition 3 as proved in Sec A.2 in
Appendix. Moreover, we point out that the strongly connected components of the benefit graph lead
to a CE under Assumption 1 as proved in A.3;

Constructing benefit graph by SPO Given the client set and the model structure, the true optimal
collaborator sets (OCS) of each client may be defined uniquely. However, the true OCS of each client
is actually agnostic without any prior assumption and we have to train an optimal model for each
subset and then determine the OCS by observing which model performs best. Due to its exponential
time complexity, we develop SPO to identify OCS by alternately optimizing the model and the
collaborator set for each client. Roughly speaking, this procedure is similar to the Expectation-
Maximization procedure performed in the mixture-of-experts (Masoudnia & Ebrahimpour, [2014)
approaches, in which the model for each expert and the ensemble weights for each sample are also
learned alternately. We verify its effectiveness on both synthetic and benchmark datasets. Specifically,
from the experimental results shown in Figure 4, SPO finds the true OCS on synthetic, adult and
cifarl0.

E.3 TIME COMPLEXITY
The analysis about the time complexity is as follows:

1. to find an OCS efficiently, we propose SPO to learn an optimal model by gradient descent
and identify the OCS based upon the geometric location of the learned model on the Pareto
Front according to Proposition 1, which avoids exhaustively trying;

2. to find the stable coalitions of a given client set, we propose to identify the OCS of all clients
to construct the benefit graph firstly. Then we propose a graph-based method to recognize
the stable coalitions which has O(V+E) time complexity as stated in Section 4.1;

3. to achieve a collaboration equilibrium, we propose to look for the stable coalitions and
removes them iteratively. Combining (1) and (2), our method to reach CE has polynomial
time complexity.

The run time of SPO is listed as in the following table. We also present the runtime of FedAve for

comparison. As SPO learns the Pareto Front and optimizes the vector d to search for the OCS by
gradient descent, there is no significant additional time cost compared to baselines.

Table 6: Running Time on Different Datasets

Dataset FedAve Ours
Adult 14 min 36 s 14 min 14 s
CIFARI0 1h24min52s 4h4min40s
elCU 21 min 30 s 26 min 6 s

E.4 APPLICATIONS

One cannot know which one should collaborate with unless it knows the result of the collaboration.
This requires that all clients agree to collaborate to obtain the results of the collaboration, before
finalizing the collaboration equilibrium. The premise of achieving the collaboration equilibrium is
that all clients agree to collaborate first to construct the benefit graph. In practice, we are inclined
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to the view that this would be done by an impartial and authoritative third-party (e.g., the industry
association) in the paradigm of federated learning. The approved third-party firstly determines the
benefit graphs by learning the optimal models from multiple clients without direct access to the data
of the local clients. Then the approved third-party derives the collaboration equilibrium based upon
the benefit graphs and publishes the collaboration strategies of all clients.

As our framework quantifies the benefit and the contribution of each client in a collaborative network,
on the one hand, this promotes a more equitable collaboration such as some big clients may no
longer collaborate with small clients without any charge; on the other hand, it also leads to a more
efficient collaboration as all clients will collaborate with the necessary collaborators rather than all
participants.

E.5 LIMITATIONS AND FUTURE WORK

In this work, we study the collaborative learning problem and propose the core goal that a collaboration
strategy should lead to a collaborative equilibrium (CE). In theory, it is a combinatorial optimization
problem with exponential complexity. There are plenty of works on addressing combinatorial
optimization problems by reinforcement learning (Mazyavkina et al., 2021)), though reinforcement
learning methods are mostly time-consuming and hard to obtain stable results. Though we propose
an efficient alternate-optimization method for CE in polynomial complexity, the optimality of the
OCS (or the benefit graph) is still an unsolved problem that will be explored in our future work.
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