
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Communication Hierarchy-aware Graph Engine for Distributed
Model Training

ABSTRACT

Efficient processing of large-scale graphs with billions to trillions of
edges is essential for training graph-based large language models
(LLMs) in web-scale systems. The increasing complexity and size of
these models create significant communication challenges due to
the extensive message exchanges required across distributed nodes.
Current graph engines struggle to effectively scale across hundreds
of computing nodes because they often overlook variations in com-
munication costs within the interconnection hierarchy. To address
this challenge, we introduce TuComm, a communication hierarchy-
aware engine specifically designed to optimize distributed training
of graph-based LLMs. By leveraging hierarchical network topol-
ogy, TuComm dynamically aggregates and transfers messages, fully
accounting for the underlying communication domains, thereby
enhancing the efficiency of distributed model training across large-
scale systems. We implemented TuComm on top of the message
passing interface (MPI), incorporating innovations such as dynamic
buffer expansion and active buffer switching to enhance scalabil-
ity. Evaluations conducted on synthetic and real-world datasets,
utilizing up to 79,024 nodes and over 1.2 million processor cores,
demonstrate that TuComm surpasses leading graph-parallel sys-
tems and state-of-the-art counterparts in both throughput and scal-
ability. Moreover, we have deployed TuComm on a production
supercomputer, where it consistently outperforms top solutions
on the Graph500 list. These results highlight TuComm’s potential
to significantly enhance the efficiency of distributed large-scale
graph-based LLM training by optimizing communication among
distributed systems, making it an invaluable communication engine
for web-scale model training.

CCS CONCEPTS

• Computing methodologies→ Distributed algorithms; Mas-
sively parallel algorithms.

KEYWORDS

communication hierarchy, message aggregation, communication
domain, graph-LLM training, Graph500

1 INTRODUCTION

Recent advances in distributed model training, particularly for
graph-based large language models (LLMs) [6, 8, 35, 63, 74, 77],
have increasingly relied on efficient graph processing techniques.
As models grow larger and more complex, the amount of data they
require has expanded significantly, often in the form of massive
graphs representing web-scale information [33, 62, 69], social net-
works [56, 74, 85], or structured data [3, 22, 23, 48, 86, 87]. These
graphs, comprising hundreds of billions to trillions of vertices and
edges [20, 23], present unique challenges for distributed comput-
ing systems. Training models with such vast datasets demands
the use of parallel and distributed infrastructures that can effi-
ciently process and communicate between thousands of computing

��� ���
� ��	�
 �����
��

���

	��

��

������

C o m p u t a t i o n
I n t r a - d o m a i n c o m m u n i c a t i o n
S y n c h r o n i z a t i o n & s t a l l
I n t e r - d o m a i n c o m m u n i c a t i o n

Figure 1: The breakdown for BFS execution time.

nodes (CNs1). This paradigm shift in distributed model training
which characterized by the need to process ever-expanding graphs
underscores the importance of scalable graph engines capable of
handling this computational complexity. Large-scale distributed
systems, such as supercomputers with thousands of CNs, play a piv-
otal role in managing these enormous graphs. As we approach the
era of 100 trillion parameters [45], a distributed computing system
of this magnitude typically comprises hundreds even thousands of
CNs. For example, TaihuLight [48, 87] successfully processes the
Sogou graph [84] with over 271.8 billion vertices and 12.3 trillion
edges, while the Fugaku supercomputer handles Kronecker graphs
with 70.4 trillion edges across 152,064 nodes [32]. These achieve-
ments illustrate the potential for distributed systems to scale to the
demands of exascale graph processing [22, 23, 48].

In the realm of distributed training for graph-based LLMs, model
training time can be divided into three aspects [20, 21]: 1) com-
putation; 2) communication; 3) synchronization&stall. Moreover,
communication can be further classified as intra- and inter-domain
communications. Computation time is accumulated from all the
computing nodes during computation. Intra-domain communica-
tion is communicating time between the CNs attached to the same
routing cell (RC2), and inter-domain communication is commu-
nicating time between two connected RCs in two different com-
munication domains. Figure 1 offers a breakdown of large-scale
graphs running on thousands of CNs with hierarchical communi-
cation domains. We can observe that communication becomes a
bottleneck in graph computing with thousands of CNs. Further,
we can also observe the occupation of inter-domain communica-
tion increases as the number of CNs increases, i.e., the percent-
age of inter-domain communication increases from ca. 70% to ca.
80% as the number of CNs increases from 8192 to 65536. Such a
trend underscores the significant variability of inter-domain com-
munication costs across different domains. Therefore, large-scale
graph-based LLMs training rely heavily on distributed communi-
cation optimization for their success [7, 23–26, 48, 49, 86, 87]. As
such, various graph communication strategies have been proposed

1A CN may have one or multiple CPUs or accelerators[22, 75].
2 It is responsible for connecting CNs, e.g., routers [20].

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

[1, 16, 17, 25, 38, 39, 53, 55, 59, 60, 67, 87]. Indeed, all parallel graph
processing systems utilize some form of graph communication op-
timization to leverage architectural advantages [22, 23, 48, 87] for
better performance. This emphasizes the need for sophisticated com-
munication engines that can address the unique challenges posed
by large-scale graph training in LLMs, ensuring that computation,
communication, and synchronization are effectively balanced to en-
hance performance and aligns with the theme of distributed model
training, connecting the challenges in communication with the
need to optimize the training of LLMs.

Unfortunately, current graph processing engines always assume
consistent communication overhead between any two CNs. This is
because the existing graph engines are cluster-based systems with
only tens of CNs, which makes them inadequate for training LLMs
with large graphs containing trillions of edges and vertices across
thousands of distributed CNs. Even in configurations involving hun-
dreds of CNs organized into hierarchical communication domains
where groups of CNs are interconnected via dedicated networks,
the variability in communication overhead across different RCs
remains substantial. This variability can be observed in the analysis
presented in Figure 1.

To effectively manage communication in large-scale distributed
LLM training, it is crucial to develop a robust message library
that leverages the hierarchical communication domains present
in high-performance computing (HPC) systems, such as super-
computers. For instance, the state-of-the-art Active Messages Li-
brary (AML) [27] supports each source node to aggregate messages
that are targeted to the same domain. However, the communication
cost of AML is still overwhelming when processing trillion-scale
graphs on exascale clusters, which severely affects the graph search-
ing performance and the reasons are listed as follows. (i) AML
aggregates messages only at the source nodes, and ignores oppor-
tunities of aggregating messages in higher level communication
domains; and (ii) AML only supports static buffer management,
which not only lowers the graph processing performance but also
is vulnerable to a buffer overflow when aggregating large numbers
of messages. That is because there are numerous inter-domain (i.e.,
across RNs) communications for AML running in large-scale clus-
ters and inter-domain communication is more expensive than intra-
domain communications, i.e., by up to orders of magnitude [23].
An advanced MST [19] based on TianheGraph [22] is proposed for
aggressive aggregation, but it lacks awareness of communication
hierarchies. Furthermore, both MST and AML only support static
buffer management. As such, it is essential to build an efficient
message transfer engine, by taking advantage of hierarchical com-
munication domains within large-scale HPC systems with efficient
buffer configuration.

In AML-like communication libraries, inter-domain message
transfers are not only frequent but also significantly more expensive
than intra-domain communications. This cost disparity often arises
from the physical network architecture of large-scale HPC systems.
Typically, intra-domain communication, where nodes within the
same domain exchange messages, is relatively fast due to shorter
communication paths and reduced latency, often taking as little as
0.1𝜇𝑠 . However, when communicationmust occur between different
domains, inter-domain transfers introduce much higher latency,
sometimes as much as 1𝜇𝑠 or more. This is because inter-domain

C1(b)Row-column linkN1N3N4N2…………InterconnectionN1N3N4N2…………InterconnectionN1N3N4N2…………InterconnectionN9N11N12N10…………InterconnectionN9N11N12N10…………InterconnectionN9N11N12N10…………InterconnectionHigher-levelInterconnectionC2C4C3N13N15N16N14…………InterconnectionN13N15N16N14…………InterconnectionN13N15N16N14…………InterconnectionN5N7N8N6…………InterconnectionN5N7N8N6…………InterconnectionN5N7N8N6…………InterconnectionNodeSwitching cellLocal switch...Rack 1Shelf 1Blade 1SystemCMU 1......128...Rack 1Shelf 1......Blade 1SystemCMU 1......128Rack 2Rack nShelf 2Shelf 8Blade 2Blade 8CMU 2CPUCPUCPUCPUCPU18......

communication often traverses additional network layers or even
entirely different network segments, increasing the time it takes
for messages to reach their destination.

TuComm3 offers application programming interfaces (APIs) for
fundamental graph processing operations, including breadth-first-
search (BFS), single source shortest paths (SSSP), connected com-
ponent (CC) [18], betweenness centrality (BC) [9, 78], page rank-
ing (PR) [82], and community detection with label propagation
(CDLP) [50]. It has been deployed on the production environment
of the Tianhe-Exa supercomputer [51] and has supported a diverse
range of graph applications.

We evaluate TuComm by applying it to representative graph
operations, including BFS, SSSP, CC, BC, PR and CDLP. Our evalu-
ations use three famous supercomputers with varying scales, us-
ing up to 79,024 nodes and over 1.2 million processor cores. We
show that TuComm consistently outperforms state-of-the-art AML-
like libraries and graph systems [1, 2, 14, 37, 39, 40, 43, 59, 60, 87]
on different graph scales and hardware setups. Specifically, Tu-
Comm achieves 162,494 and 23,021 giga-traversed edges per second
(GTEPS), respectively, for BFS and SSSP according to the Graph500
specification [32]. These results are translated to a 1.19× and 1.5×
improvement for BFS and SSSP over the top-ranked system on the
Graph500 ranking (Nov. 2023). We also test TuComm on real-world
graphs, for which it outperforms three state-of-the-art graph pro-
cessing engines, GraphScope [14], Gluon [11] and GraphCube [20],
with a speedup of up to 27.34×.

This paper makes the following contributions:
• It offers analytical formulas tomodel communication cost of

large-scale HPC systems with hierarchical communication
topology (Sec. 4);

• It proposes an interconnection hierarchy-awaremessage ag-
gregation method designed to minimize cross-domain com-
munications, thereby enhancing efficiency in distributed
graph-based LLM training environments (Sec. 5).

2 BACKGROUND

2.1 Communication Hierarchies of HPC

Large-scale HPC systems often implement a hierarchical communi-
cation topology [12, 46, 75, 80] and use RCs to link different CNs.
We use Tianhe-Exa [51], the main evaluation system of this work, to
highlight the differences in the communication latency at different
levels of the topology. Tianhe-Exa is an upgrade of Tianhe-2A [68].
The interconnection architecture of Tianhe-Exa is similar to that
of many of today’s large-scale HPC systems [75, 80].

Similar to other large-scale HPC systems [4, 12, 20, 22, 23, 48,
61, 70, 71, 81], Tianhe-Exa implements a hierarchical interconnect
topology with varying communication latencies. CPUs are con-
nected via an onboard network mesh with nanosecond-level access
latency at the CMU level. Blades within a shelf use an in-cabinet
switch with microsecond-level data transfer latency. CMUs are
linked across shelves using a customized networking router with
sub-millisecond-level latency. Racks are connected by top-level
switches, providing millisecond-level communication latency. Com-
munication among nodes across shelves is about twice as slow as

3Code available at https://anonymous.4open.science/r/graph-com-2499/README.md

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Communication Hierarchy-aware Graph Engine for Distributed Model Training
Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

R* Routing Node

C* Computing Node

Domain

Message Communication

𝐷!! 𝐷"! 𝐷#! 𝐷$!

𝐷!" 𝐷""

𝐷!#

𝑅!! 𝑅"! 𝑅#! 𝑅$!

𝑅!" 𝑅""

𝑅!#

Figure 2: A model of the hierarchical communication topol-

ogy of large-scale HPC system with 3-level communication

domain.

within the same shelf, and across racks, the latency increases to
around 15 times that within a shelf [5, 20, 46, 61, 75].

2.2 Graph Processing & Graph500

Graph processing algorithms are usually communication-intensive [13,
28, 36, 52, 54, 65, 66, 79, 83, 87] in that huge numbers of small
messages are transferred through the interconnection network.
Graph500 [32] is the de facto standard for benchmarking and rank-
ing the graph processing performance of large-scale HPC systems
(e.g., supercomputers), using the TEPS (traversed edges per sec-
ond) metric. Currently, Graph500 has two separate ranking lists
respectively measuring the BFS and SSSP performance [32].

Following Graph500 [32], we report the graph processing per-
formance using the GTEPS metric by counting the number of
TEPS. This is a higher-is-better metric. Note that Graph500 is of-
ten used to evaluate HPC system performance for data-intensive
workloads [20, 22, 47, 48, 57, 71, 73].

3 PRELIMINARIES

3.1 Definitions

Definition 3.1. Communication Domain. A communication
domain, 𝐷 , is a set of CNs that are attached to the same RC, which
can be represented as 𝐷 = {𝑅,𝐶1,𝐶2, · · · ,𝐶𝑛}, where 𝑛 is the total
number of CNs (denoted as 𝐶𝑠) in 𝐷 , and 𝑅 is the RC that all the
CNs are connected with. The communication domain can be further
classified into the leaf domain and high-level domain, respectively. A
leaf domain is attached to a leaf RC that is directly responsible for a set
of CNs. For example, in Figure 2, leaf domain 𝐷0

0 =
{
𝑅00,𝐶1,𝐶2,𝐶3

}
because 𝐶1,𝐶2,𝐶3 are attached to 𝑅00 . While the parent domain (i.e.,
high-level domain) includes a set of CNs attached to the same high-
level RC. For example, 𝐷1

0 =
{
𝑅10,𝐶1,𝐶2,𝐶3,𝐶4,𝐶5,𝐶6

}
, since all the

CNs are attached to 𝑅10 .

Definition 3.2. Communication Cost. The communication
cost (ComCost) between two nodes, e.g., 𝐶𝑖 and 𝐶 𝑗 , can be defined as
𝐶𝑜𝑚𝐶𝑜𝑠𝑡 (𝐶𝑖,𝐶 𝑗) = 𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑟𝑎

𝑖
+𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑟𝑎

𝑗
+∑ℎ

𝑙=1𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟
𝑖 (𝑙−1,𝑙)

+∑ℎ
𝑙=1𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟

𝑗 (𝑙−1,𝑙)
, where𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑟𝑎

𝑖
is the intra-domain com-

munication cost among the 𝑅𝐶 that 𝐶𝑖 belongs to, 𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟
𝑖 (𝑙−1,𝑙)

is
the inter-domain communication cost between the (𝑙 − 1)−th level

communication domain 𝐷𝑙−1 and the 𝑙−th level communication do-
main 𝐷𝑙 that 𝐶𝑖 belongs to, and ℎ is the lowest domain level where
both 𝐶𝑖 and 𝐶 𝑗 are located at.

Figure 2 gives an example of a large-scale HPC system with a
3-level communication domain. In this example, we have 12 CNs
and 7 RCs, which are separated into 7 communication domains,
i.e., 𝐷0

0 , 𝐷
0
1 , 𝐷

0
2 , 𝐷

0
3 , 𝐷

1
0 , 𝐷

1
1 , 𝐷

2
0 , where 𝐷

𝑗
∗ denotes the 𝑗-th level

domain and we call 𝐷0
∗ the leaf domain. Each communication do-

main 𝐷
𝑗
𝑖
is associated with one RC, denoted as 𝑅 𝑗

𝑖
, so the domains

can be represented as 𝐷0
0 = {𝑅00,𝐶1,𝐶2,𝐶3}, 𝐷

0
1 = {𝑅01,𝐶4,𝐶5,𝐶6},

and 𝐷1
0 = {𝑅10,𝐶1,𝐶2,𝐶3,𝐶4,𝐶5,𝐶6}. We can observe that 𝐶1 and

𝐶4 are in different leaf domains, i.e., 𝐷0
0 and 𝐷0

1 , but they are in
the same high-level communication domain 𝐷1

0 , i.e., the 1−𝑠𝑡 level
communication domain. In practice, the communication costs dif-
fer a lot between intra- and inter-domain communications. For
example, the intra-domain communication cost can be 1 unit4, i.e.,
𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑟𝑎∗ = 1U, while the inter-domain communication cost
between 𝐷0

∗ and 𝐷1
∗ can be 10U, i.e., 𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟∗(0,1) = 10U.

3.2 Problem Formulation

Given a graph G = (𝑉 , 𝐸) distributed into a target large-scale HPC
system (a.k.a., Exa). A communication engine aims to exchange
messages among CNs by minimizing the total message communi-
cation costs from all vertices, which can be formulated as follows.

min
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗),

subject to 𝑣𝑖 , 𝑣 𝑗 ∈ Exa.CNs.
(1)

where 𝑁 is the total vertices in G, and Exa.CNs refers to the com-
puting node set belonging to Exa. 𝐶𝑜𝑚𝐶𝑜𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗) is the message
communication cost between 𝑣𝑖 and 𝑣 𝑗 which are distributed into
CNs equipped in the Exa.

4 OVERVIEW OF TUCOMM

TuComm is designed to optimize large-scale graph processing on
thousands or more computing nodes. It explicitly considers the
interconnection hierarchy during graph communication. This is
accomplished by using analytical models to aggressively perform
interconnection hierarchy-aware message aggregation where mes-
sages are gathered within the domain at each level and scattered in
the target domains, aiming to reduce the communication latency
by transmitting expensive inter-domain into cheap intra-domain
communication. This is completely different from traditional com-
munication mechanisms, such as the message aggregation of AML
and MST, where they first gather messages across domains and
then scatter them within a domain [5, 20, 22, 27, 29, 61].
Implementation. We have implemented TuComm as a library
in around 20K lines of C/C++ code. It provides APIs for common
graph operations, including those evaluated in this work.

4.1 Preliminaries

We approximate the communication delay (i.e., communication
cost), 𝑑𝑖, 𝑗 , of two computation nodes, 𝑛𝑖 and 𝑛 𝑗 , as:

4A U maybe one microsecond, millisecond or second depending on the target system.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

{
𝑑𝑖,𝑗 = 𝑑𝑖0 + 𝑑

𝑗

0 +
∑ℎ
𝑙=1 𝑑

ℎ
𝑙

𝑑ℎ
𝑙
= 𝑑𝑘0 +

∑𝐻
ℎ=𝑘+1 𝑑ℎ

(2)

where 𝑑𝑖0 (or 𝑑
𝑗

0) is the communication latency of 𝐶𝑖 (or 𝐶 𝑗) within
the local domain, 𝑑ℎ is the latency at a high-level domain (if cross-
domain communication is required between 𝐶𝑖 and 𝐶 𝑗), and 𝐻 is
the top-level of communication required. The latency of communi-
cation at each interconnection level is affected by the number of
hops needed to transfer messages among computing nodes [5, 61].

4.2 Modeling Communication Latency

Solving Eq. 1 is in NP. Its NP-hardness could be validated by reduc-
tion from the set partition problem [15, 30, 42]. Thus, our ultimate
objective is to approximate the accumulative communication delay
between any two CNs as shown in Eq. 3. This can be formulated as:

min
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗) = 𝑑0 + 𝑑ℎ𝑙 (3)

According to the definitions in the subsection 3.1, 𝑑0 and 𝑑ℎ𝑙 are
the intra-domain and inter-domain communication costs via RCs,
respectively. They can be further formulated as:

𝑑0 =
𝑁∑
𝑖=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 int𝑟𝑎
𝑖
+

𝑁∑
𝑗=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 int𝑟𝑎
𝑗

𝑑ℎ
𝑙
=

∑ℎ
𝑙=1

(
𝑁∑
𝑖=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 int𝑒𝑟
𝑖 (𝑙−1,𝑙) +

𝑁∑
𝑗=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 int𝑒𝑟
𝑗 (𝑙−1,𝑙)

) (4)

Clearly, the 𝑑ℎ
𝑙
, i.e., cross-domain communication takes a major-

ity of the accumulative communication costs and dominates the
communication cost for large-scale graph processing on large-scale
HPC systems according to Eq. 4. That is because (i) inter-domain
communication delay is orders of magnitude higher than that of
intra-domain and (ii) there are a vast number of cross-domain
(i.e., inter-domain) communications in large-scale graph processing
within hierarchical communication domains [20, 23, 48, 71].

To mitigate cross-domain communication, we present TuComm,
an aggressive message aggregation strategy designed to maximize
the benefits of hierarchical communication topology by substitut-
ing costly inter-domain communication with cost-effective intra-
domain communication. In order to facilitate message aggregation,
we equip TuComm with flexible buffer management including ac-
tive buffer switching and dynamic buffer expansion for further
advancing large-scale graph processing.

5 HIERARCHY-AWARE AGGREGATION

Huge performance gap between intra-/inter-domain communi-
cation motivates us to significantly reduce the number of cross-
domain messages. Specifically, TuComm proposes an interconnec-
tion hierarchy-aware message aggregation mechanism where mes-
sages are gathered in the source domains and scattered in the target
domains.

In practice, AML refines a (global) communication into two sub-
communications: an inter-domain communication (comm_inter)
which happens between two nodes in the same row of different do-
mains, followed by an intra-domain communication (comm_intra)
which happens between two nodes in the same column (i.e., inside
the same domain). Figure 3(a) illustrates the global communication
of AML. A message from node 4 to node 2 will first be transferred
to the target domain, i.e., from node 4 to node 0 in the same row

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

message, but it does not behavior well on Tianhe super-
computers. So we rewrite one-sided message according to
proprietary interconnect built in Tianhe supercomputers.

0

1

2

3

4

5

6

7

8

9

10

11

comm_intra

comm_out

Figure 3. Communication domain division in AML

In AML, the global communication would be refined
into two sub-communications including comm-intra and
comm again. The processes with the same IP are painted
with the same color, and then processes in the global com-
munication domain are divided into a communication do-
main comm-intra according to this color. Moreover, pro-
cesses with the same local process rank in each comm-intra
are divided into a communication domain comm-inter, as
illustrated in Figure 3. If all processes are regarded as a ma-
trix, the processes on comm-intra form a column, and pro-
cesses with the same local rank on each comm form a row.
In the com, the group id of each process is its internal ID in
the comm communication domain.

According to framework from communication domain
division, AML drafts principle of one-sided message, in
which message firstly transfer across comm sub-communi-
cations domain, and then forwarding in comm-intra sub-
communications domain. Taking an example, regarding
rank_id as process with rank=4, so rank_4 send message to
rank_2 with color brown; and rank_1 transfer message to
rank_11 painted color green, as shown in Figure 4.

0

1

2

3

4

5

6

7

8

9

10

11

comm_intra
0

1

2

3

4

5

6

7

8

9

10

11

comm_intra

comm_inter

(a) AML (b) TuComm

Figure 4. One-sided message in AML

As illustrated in Figure 4, message from rank_4 to
rank_2 should firstly be sent to rank_0 across comm_intra
sub-communications domain or in comm sub-communica-

tions domain, then rank_0 would forward message to des-
tination rank_2 in comm_intra sub-communications do-
main, and so on, message from rank_1 to rank_11 should
firstly be sent to rank_9 across comm_intra or in comm,
then rank_9 would forward message to destination
rank_11 in comm_intra sub-communications domain. In
above message transfer flow from one-sided message,
message firstly should be transfered across comm_intra,
secondly would be forwarded in comm_intra, in other
words, inter-node communication comm must before in-
tra-node communication comm_intra. Obviously, sending
and receiving message in comm_tra is superior to transfer-
ring message in comm. one-sided message in AML is a sur-
prising mode that rejects what is close and seeks what is
far. Accordingly, the MST is proposed, in which one-sided
message mode is opposite to message transferring flow for
AML.

Different from AML, in MST messages firstly should
gather in comm_intra sub-communications domain, and
then forward to destination across comm_intra or in
comm_inter that is similar to comm in AML, as demon-
strated in Figure 5.

0

1

2

3

4

5

6

7

8

9

10

11

comm_intra

comm_inter

Figure 5. One-sided message in MST

Similarily, marking rank_id as process with rank=4, in Fig-
ure 5, there are two messages from rank_4 to rank_2 and
from rank_1 to rank_11, respectively in Figure 5. message
from rank_4 to rank_2 is advisable to firstly send message
to rank_6 in same comm_intra, then rank_6 would forward
message to rank_2 instead of opposite message flow in
AML, and so on, message from ank_1 to rank_11 should
firstly send to rank_3 in same comm_intra, and then
rank_3 would forward message to rank_11.

Comparing AML and MST, it is easy to conclude that
the main difference between MST and AML is message
transferring flow, in which sending message across comm
firsly then forwarding message in comm_intra from AML,
while in MST sending message in comm_intra before for-
warding message in comm_inter. Hence, both theoretical
design an pratical work, the performace of MST is rather
better than that of AML.

comm_inter

Figure 3: Comparison of global communication in AML and

TuComm. TuComm is more aggressive inmessage aggregation

in that it aggregates messages in the source domains.

(comm_inter), and then transferred from node 0 to node 2 in the
same column (comm_intra). Similarly, a message from node 1 to
node 11 will first be transferred from node 1 to node 9 (comm_inter),
and then transferred from node 9 to node 11 (comm_intra). Al-
though AML’s communication paradigm (comm_inter followed by
comm_intra) facilitates its per-node message aggregation, it pre-
vents aggregation of messages from different nodes in the same
domain. This limitation makes it inefficient for large-scale graph
processing on large-scale systems.

To improve communication efficiency, TuComm leverages the
topology information of interconnection networks to perform domain-
level (rather than node-level) message aggregation, where messages
destined for the same target domain are aggregated in the source
domain before transmission. To achieve this, messages have to be
transferred in a different way from AML. Figure 3(b) shows the
message transmission based on TuComm: a message from node 4
to node 2 will first be transferred to the source domain, i.e., from
node 4 to node 6 in the same column (comm_intra), and then from
node 6 to node 2 in the same row (comm_inter); and a message
from node 1 to node 11 will first be transferred from node 1 to
node 3 (comm_intra), and then transferred from node 3 to node 11
(comm_inter).

Accordingly, TuComm realizes domain-level message aggrega-
tion through the following steps. First, the monitor node of the
source domain gathers small messages within the same target do-
main (intra-domain communication) and packs them into a long
message. Second, the monitor node in the source domain transmits
the aggregated long message to the monitor node in the target
domain (inter-domain communication). Third, the monitor node
in the target domain scatters the messages to their target nodes
(intra-domain communication).

6 TUCOMM IMPLEMENTATION

We have implemented TuComm on top of MPI (version 3.2.1). Tu-
Comm provides the standard MPI interface for message transmis-
sion with support for different type and size of messages.

6.1 Hierarchy-aware Message Aggregation

Algorithm 1 outlines communication hierarchy-aware message ag-
gregation for huge messages when processing large-scale graphs.
The algorithm operates on a list of allocated computing nodes, de-
noted by N, which contains the node IDs. TuComm considers both

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Communication Hierarchy-aware Graph Engine for Distributed Model Training
Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1: Communication hierarchy-aware Aggrega-
tion
Input: Sorted vertex list,𝑉 , a list of computing nodes, N, clustering distance

threshold, ℎ
// Build communication hierarchy and return the level of

communication hierarchy

1 Organize computing nodes into a communication hierarchy with hierarchical
communication domains according to the communication topology of
target systems;

2 L← ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 (N)
3 i = L
4 while 𝑖 ≥ 0 do
5 grouping the communication domains as D (𝐿−𝑖) from bottom to up

according to Figure 2;
6 i=i-1;
7 end

8 MPI initialization
9 Create buffers at receivers and senders, respectively

10 Vote monitors for communication domains
11 Wait for msgs of intra/inter domains at monitors
12 while !𝑒𝑚𝑝𝑡𝑦 (𝑉) do
13 𝑣←𝑉 .𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
14 Aggregation(𝑣)
15 end

16 Function Aggregation(vertex 𝑣)
17 ℭ𝑣=[]
18 for (i=0; i<L; i++) do

// Calling Algorithm 2.

19 ℭ𝑖
𝑣 ← Gathering(𝑣, 𝑖)

20 Scattering ℭ𝑖
𝑣 to intra-domain target nodes

21 end

22 while !𝑒𝑚𝑝𝑡𝑦 (ℭ𝑣) do
23 i=0;
24 while 𝑖 < 𝐿 do

25 do ℭ𝑚𝑎𝑥 ← max(ℭ𝑣)
26 Scattering messages in ℭ𝑚𝑎𝑥 among nodes attached to 𝐷 (𝑖) ;

i=i+1;
27 end

28

29 end

30 end

the locality of graph and communication differences across commu-
nication hierarchies together to reduce communication overheads
and effectively utilize the bandwidth.

TuComm (Algorithm 1) first builds a communication topology
for target large-scale HPC systems, grouping computing nodes
into communication domains according to the interconnection hi-
erarchy of the target HPC systems and getting the total levels of
communication hierarchy (lines 1∼7). Following, the MPI library
is initialized (Line 8). Then the receiver and sender nodes create
recv/send buffers, and each communication domain selects one
monitor, which serves as the domain’s gateway waiting for cross-
domain communication (Lines 9∼11).

The aggregation function selects the vertex in V with the high-
est degree and utilizes the given vertex to group small messages
into a cluster, ℭ, of which the messages are assigned to computing
nodes recursively to adapt to the target communication hierar-
chies. This method prioritizes node placement within the same
communication domain or domains at the same level. To aggre-
gate messages based on the communication domain, we specify a
communication level, denoted as 𝐿. We then generate a list of 𝐿
clusters, ℭ𝑣 = ℭ1

𝑣 ,ℭ
2
𝑣 , . . . ,ℭ

𝐿
𝑣 , where each cluster ℭ𝑖

𝑣 corresponds
to a communication level of 𝑖 (1 ≤ 𝑖 ≤ 𝐿) from the highest-degree

Algorithm 2:MPI-based message gathering
Input: vertex 𝑠 and specified communication hierarchy ℎ
Output: ℭ: gathering small messages at communication

domain for 𝑣0
1 Function Gathering(𝑣0, ℎ)
2 while msg received at monitor do
3 if msg from the same intra-domain then

4 buffer[𝑖]← msg; // According to targets

5 if buffer[𝑖].size ≥ threshold then

6 Aggregate messages in buffer[𝑖];
7 barrier;
8 Switch active/reserved buffers.
9 Let the remote monitor corresponding to the

switched buffer call TuComm
_register_handler;

10 end

11 end

12 end

13 return ℭ

14 end

vertex 𝑣 that has not been processed yet, to scatter messages into
intra-domain nodes (lines 16∼20). TuComm recursively starts from
the lowest level of the communication hierarchy available and
scatters messages to a higher level than the current level, if the
communication domain cannot hold all messages in ℭ.

6.2 Message Transfer

The pseudo-code of the basic implementation of message transfer
is summarized in Algorithm 2. After a monitor is configured at
each communication domain, it serves as the domain’s gateway
waiting for inter-domain communication. If the monitor receives
a message from within its domain that needs to be transmitted to
another domain, then it adds the message to a send buffer according
to the target domain (Lines 2∼4). Once the buffer size reaches the
threshold, messages targeted to the same domain will be gathered
as an aggregate message, which will be transmitted to the monitor
node in the target domain (i.e., inter-domain communication at
Lines 5∼7). Once the messages in the buffer are transmitted, the
monitor switches the empty buffer with a waiting buffer for another
domain (Line 8). The remote monitor corresponding to the switched
buffer then calls TuComm _register_handler() to register the
handler function for the new target domain (Line 9).

6.3 TuComm-based BFS on Tianhe-Exa

This subsection briefly introduces how we leverage TuComm to
realize the BFS test of Graph500 on Tianhe series supercomputers.
Other TuComm-based graph operators including SSSP, CC, BC, PR
and CDLP are realized similarly to BFS and thus are omitted due to
space limitation.

Kronecker-generated graphs are skewed in vertex degree dis-
tribution: a small proportion of vertices have very high degrees.
High-degree vertices (a.k.a., heavy vertices) need buffering, because

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Hardware systems used in our evaluation

System CPU Max

#Comp.

Nodes

RAM per node Top-level

bandwidth

Tianhe-Exa 16-core FT-
2000 ARMv8
CPU @ 2.2
GHz

79,024 16G 200Gbps

Intel Cluster 12-core Intel
Xeon CPU
@ 2.93 GHz

512 64G 160Gbps

WuzhenLight 64-core
HG2 7285H
(AMD x86
ISA) CPU @
2.5 GHz

1,024 256G 100Gbps

the workload and communication traffic are higher for heavy ver-
tices than for low-degree vertices. Therefore, we sort all vertices
with buffering in the preprocessing stage, assigning ID 0 to the
vertex with the highest degree. We maintain a mapping for each
vertex between its new ID (according to its degree) and original ID.

To adapt graph processing to the network topology, we refactor-
ize graphs with fusion and fission [86] when storing graph vertices
and edges. Specifically, fusion organizes a set of neighboring low-
degree vertices into a super-vertex, and fission splits a high-degree
vertex into a set of sibling sub-vertices. The vertices and edges of
the refactorized graphs are assigned to the nodes according to the
proximity of the multi-dimensional tree topology.

To shorten the communication paths of BFS messages, we or-
ganized the CNs attached to the same HFR-E controller into one
group (i.e., communication domain). Owing to HFR-E’s highly opti-
mized on-chip routing mechanism, the overhead of intra-domain
communication is much lower than that of inter-domain communi-
cation. This enables TuComm to perform topology-aware message
aggregation to minimize the expected total number of hops in the
BFS search.

Each communication domain has a responsible node (i.e., moni-
tor) which gathers messages from the same domain for transmission
to other domains and receives messages from other domains for
scattering within the same domain. The selection of monitors is
performed as follows. First, monitors should contain heavy vertices
(for locality). Second, place as many monitors as possible in the
same HFR-E controller’s routing table (for efficient mapping).

7 EXPERIMENTAL SETUP

7.1 Hardware Platforms & Graph Data

TuComm was tested on three HPC systems (Table 1) with different
CPU architectures and interconnection components. We evaluated
TuComm using six widely-used graph algorithms: BFS, SSSP, CC,
BC, PR, and CDLP. Although our discussion primarily focuses on
BFS, the other algorithms exhibited similar performance improve-
ments. To thoroughly assess the scalability of TuComm, we used
both synthetic and real-world datasets. The synthetic data was gen-
erated using the Graph500 tool, which creates large-scale graphs
by taking two parameters: the graph factor (𝑚) and edge factor
(𝑛). The generator produces a graph with 2𝑚 vertices and 𝑛 × 2𝑚
edges. In our experiments, we varied the graph factor from 26 to
41 while keeping the default edge factor of 16, to create graphs of

Table 2: Synthetic graph data used in our evaluation

scale
5

#Vertices #Edges #Comp. Nodes

26 64 M 1 B 1
27 128 M 2 B 2
28 256 M 4 B 4
29 512 M 8 B 8
30 1 B 16 B 16
32 4 B 64 B 64
34 16 B 256 B 256
36 64 B 1 Tri 1,024
37 128 B 2 Tri 2,048
38 256 B 4 Tri 4,096
41 2 Tri 32 Tri 79,024

Table 3: Real graph data used in our evaluation

dataset #Vertices #Edges #Comp. Nodes

com-Friendster [10] 1.1 B 91.8 B 16
clueweb12 [72] 987 M 42.6 B 16
twitter-2010 [34] 4.2 M 1.5 B 16

different sizes. Details of the synthetic and real-world datasets used
are listed in Table 2 and Table 3. These graphs were stored in the
compressed sparse row (CSR) format to reduce memory usage.

7.2 Competing Baselines

We compare TuComm to two representative graph communication
strategies: MST [19] and AML [27]. AML is a state-of-the-art mes-
sage library for graph processing and it is built in the Graph500
implementation by default [27, 32]. MST is an optimized version
of AML. We also compare TuComm with the representative parti-
tioning schemes. In addition, we also compare TuComm with three
state-of-the-art graph processing engines, namely GraphCube [20],
GraphScope [14], and Gluon [11], using the engineer-tuned algo-
rithm implementations provided by the frameworks.

8 EXPERIMENTAL RESULTS

8.1 Benchmarking Graph500

We have deployed TuComm to benchmark Graph500 BFS and SSSP
on Tianhe-Exa. In our experiments, we used 79,024 computing
nodes (1,264,384 cores) for BFS and 8,192 nodes (131,072 cores) for
SSSP. We did not evaluate SSSP on a larger scale due to financial
constraints. Our implementation and evaluation fully comply with
the Graph500 specification.

The Graph500 ranking published in Nov. 2023, places Fugaku
and Wuhan Supercomputer as the top performers for BFS and SSSP,
respectively. However, TuComm on Tianhe-Exa successfully out-
performs these top-ranking systems for both benchmarks, demon-
strating the efficacy and competitiveness of TuComm.

TuComm achieved a throughput of 164,949GTEPS using 1,264,384
processor cores for BFS, translating into more than 18.8% improve-
ment over Fugaku’s 138,867 GTEPS using 7.3 million cores (i.e.,
5.8× more cores than TuComm). The advantages of TuComm come
from the interconnection hierarchy-aware message aggregation
and active buffer management. Our evaluation shows that message
aggregation alone gives around 5× improvement over the standard,

5Edge factor of synthetic graphs is fixed at 16 [32].

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Communication Hierarchy-aware Graph Engine for Distributed Model Training
Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

� ��		���	������
	
����
���
���
���
���
���
���

�
�
�
�
�

	

�
�
�
�
�
�
�

�������#�

� � �		���	����

�"$�������!

� � �		���	���

��!�����" !��

N o d e s

����� MST �"����

Figure 4: BFS throughput given by different communication strategies.

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8 4 0 9 61 0 - 11 0 01 0 11 0 21 0 31 0 41 0 5

XXXX

Lo
g-S

ca
le

GT
EP

S

T i a n h e - E x a

X X X X
1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

W u z h e n L i g h t

N o d e s 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2

I n t e l C l u s t e r
 G l u o n G r a p h Cube T u C o m mGraphScope

Figure 5: BFS throughput delivered by graph processing engines and TuComm.

parallel BFS implementation based on AML, and active buffer man-
agement gives a further 3× improvement over the standard BFS
implementation.

For SSSP, TuComm achieved 23,021 GTEPS using 131,072 cores,
representing a 50.1% improvement over the Wuhan Supercom-
puter’s performance of 15,335.9 GTEPS. It is worth noting that
Wuhan Supercomputer utilizes more cores (6,999,552) and has
more memory per shared-memory node (2TB) compared to Tianhe-
Exa (16GB per node). Wuhan Supercomputer is designed for data-
analytic workloads with ample memory resources, enabling it to
handle more vertices per node and optimize distributed graph pro-
cessing challenges. In contrast, Tianhe-Exa has significantly less
memory per shared-memory node and incurs more expensive com-
munication overhead. Hence, TuComm’s enhancements for SSSP
are significant, given the considerable hardware advantages of the
Wuhan Supercomputer.

8.2 Compare with Baseline Methods

Figure 4 compares TuComm to state-of-the-art graph communica-
tion strategies, namely AML and MST. Figure 5 compares TuComm
against three graph processing engines: GraphScope, Gluon and
GraphCube. The experiment used up to 4,096 Tianhe-Exa nodes to
execute BFS. Some methods led to a runtime error and are marked
as X, since they failed to exploit the discrepancy in hierarchical
communication and incur huge communication overhead.

TuComm outperforms all baselines, particularly as the number
of computing nodes increases. For instance, when processing a
graph scale of 38 using 4,096 Tianhe-Exa nodes, TuComm delivers
22,490.17 GTEPS, 9.7× and 28.7× improvements over AML andMST,
respectively. We also obtain similar results on SSSP, PR, CC, BC and
CDLP, where TuComm respectively gives 27.2×, 29.1×, 25.6× and
19.7× throughput improvements over the best-performing baseline
when using 4,096 Tianhe-Exa nodes.

8.3 Preprocessing Overhead

Before graph algorithms ingress, typical graph processing involves
a preprocessing that performs tasks such as discarding isolated
vertices, counting degrees, and sorting vertices by edge degrees.
Figure 6 reports the time spent on the preprocessing. Generally, as

the size of the graph and the number of computing nodes increases,
the preprocessing overhead also grows. However, we observe that
TuComm has the lowest preprocessing overhead compared to other
methods. In contrast, GraphScope, which requires significant pre-
processing of the input graph, incurs 70.15× longer processing time
than TuComm.

8.4 Communication Volume & Time

Since communication takes most of the overall time for large-scale
graph processing, we compare the communication volume reduc-
tion and communication time of TuComm over AML for BFS on
Tianhe-Exa.

In Figure 7(a), we can observe that TuComm is much better than
that of the state-of-the-art AML and MST for communication reduc-
tions, which indicates that TuComm could trade cheap intra-domain
communications for expensive inter-domain communications. We
further examine the communication volume reductions varying
nodes from 128 to 1,024, whose results are shown in Figure 7(b),
where TuComm significantly outperforms other baselines. The ad-
vantage grows significantly as the number of computing nodes or
graph size increases.

8.5 Scalability of TuComm

Figure 8 shows the scalability of TuComm against various state-of-
the-art AML andMST running BFS on Tianhe-Exa. In contrast, prior
solutions struggle to scale beyond 256 nodes because they overlook
the communication variation within multi-level communication
hierarchies. However, TuComm delivers higher throughput than
baselines and scales well beyond 4,096 nodes.

8.6 Graph Operations on Real-world Data

We finally test TuComm on public datasets in Table 2 using 16
Tianhe-Exa nodes across two blades. Figure 9 compares TuComm
with GraphScope, Gluon, and GraphCube, which offer engineer-
optimized implementations for the test algorithms. TuComm con-
sistently outperforms GraphScope, Gluon, and GraphCube in all
test cases during the graph computation stage, achieving a speedup
of up to 18.92×, 23.56× and 27.34× over GraphScope, Gluon, and
GraphCube, respectively.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8 4 0 9 61 0 - 11 0 01 0 11 0 21 0 31 0 4

X X X

tim
e(/

s)
T i a n h e - E x a

X X X X
1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

X

W u z h e n L i g h t

N o d e s 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2

I n t e l C l u s t e r
P

re
pr

oc
es

si
ng

 G r a p h Cube TuC o m m G l u o n GraphScope

Figure 6: Graph preprocessing overhead (lower-is-better).

�
��

���

����

�����

������(m
s) A M L T u C o m m

(b) C o m m u n i c a t i o n v o l u m e r e d u c t i o n
��� ��� ��� ����

��

���

���

���

���

Co
mm

uni
cat

ion
 red

uct
ion

 (%
)

N o d e s

A M L T u C o m mMST

� �� �� �������

C
om

m
un

ic
at

io
n

tim
e

N o d e s(a) C o m munication co s t

� � �� ���������
��

���

����

�����

������

Co
mp

ute
 tim

e (
ms

)

N o d e s

A M L M P I T u C o m m

(a) C o m p u t a t i o n C o s t (b) C o m m u n i c a t i o n v o l u m e r e d u c t i o n
��� ��� ��� ����

��

���

���

���

���

Co
mm

uni
cat

ion
 red

uct
ion

 (%
)

N o d e s

M T u C o m mST

Figure 7: Communication time in (a) and (b) shows the com-

munication volume reduction against AML.

1 4 1 6 6 4 2 5 6 1 0 2 4 4 0 9 60 . 2 52
1 61 2 81 0 2 48 1 9 2

Lo
g-s

ca
le

GT
EP

S

N o d e s

 T u C o m m A M L MST

Figure 8: The scalability of TuComm vs. MST and AML when

running BFS on Tianhe-Exa.

9 RELATEDWORK

Communication is of particular importance for training graph-
based LLMs on HPC systems, like exascale supercomputers, where
AML is the de facto standard communication library. AML-based
communication libraries have beenwidely adopted to communication-
intensive scenarios, such as parallel activemessage interface (PAMI[41])
and low-level applications programming interface (LAPI[64]) for
IBM series supercomputers and K series computers[58], and MPI-3
RMA for TACC Stampede [44]. Hasanov et al. redesign the collec-
tive communication for operations of Reduce and Allreduce built in
MPI, which effectively reduces the communication cost of clusters
with a two-level hierarchy [31].

However, those MPI-based optimizations cannot adapt to graph
processing on large-scale HPC systems like supercomputers, as the
processing of graphs is quite different from traditional computation-
intensive applications [20, 22, 48, 70, 71, 87].

c l u e w e b 1 2 t w i t t e r - 2 0 1 0 c o m - F r i e n d s t e r���

�

��

���

����

������

Ru
nni

ng
Tim

e(/
s)

c l u e w e b 1 2 t w i t t e r - 2 0 1 0 c o m - F r i e n d s t e r�

��

���

����

�������

Ru
nni

ng
Tim

e(/
s)

c l u e w e b 1 2 t w i t t e r - 2 0 1 0 c o m - F r i e n d s t e r���

�

��

���

����

�����

Ru
nni

ng
Tim

e(/
s)

c l u e w e b 1 2 t w i t t e r - 2 0 1 0 c o m - F r i e n d s t e r���

�

��

���

����

�����

Ru
nni

ng
Tim

e(/
s)

c l u e w e b 1 2 t w i t t e r - 2 0 1 0 c o m - F r i e n d s t e r���

�

��

���

����

�����

Ru
nni

ng
Tim

e(/
s)

c l u e w e b 1 2 t w i t t e r - 2 0 1 0 c o m - F r i e n d s t e r���

�

��

���

����

�������

Ru
nni

ng
Tim

e(/
s)

G r a p h S c o p e - p r o v i d e d - p r o v i d e d TuC o m m- b a s e d G l u o n - b a s e dGraphCube

Figure 9: Performance comparison on real-world graphs.

To address this problem, the Graph500 community implements
the AML for large-scale graph traversal. AML improves commu-
nication efficiency via per-node message aggregation, where each
source node aggregates messages if they are sent to the same lowest-
level target domain. However, when processing trillion-scale graphs
on large-scale HPC systems with hierarchical communication do-
mains, the communication cost of AML remains overwhelming and
thus severely affects the graph processing performance. TRAM [76]
is another communication library for communication-intensive
applications of supercomputers, which routes messages along the
dimensions of a virtual topology using intermediate relay nodes
to dynamically combine the messages having the same destina-
tions. Similar to AML, TRAM has no optimization for cross-domain
communication. Unlike prior communication optimizations and
message libraries, TuComm is presented to reduce cross-domain
communications.

10 CONCLUSION

We have presented TuComm, a communication engine designed
to accelerate training graph-based LLMs using hierarchical HPC
systems. By modeling latency across the communication hierarchy,
TuComm performs more aggressive message aggregation than AML
to reduce cross-domain communication. Extensive evaluations of
TuComm involved the Graph500 benchmark and fundamental graph
operations across three renowned large-scale HPC systems, utiliz-
ing over 79K CNs and more than 1.2 million processor cores. The
results demonstrate that TuComm consistently surpasses state-of-
the-art baselines and other graph processing systems, highlighting
its potential to significantly improve performance in distributed
training graph-based LLMs.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Communication Hierarchy-aware Graph Engine for Distributed Model Training
Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] ZainabAbbas, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. 2018. Stream-
ing graph partitioning: an experimental study. Proceedings of the VLDB Endow-
ment 11, 11 (2018), 1590–1603.

[2] Soramichi Akiyama. 2020. Assessing Impact of Data Partitioning for Approximate
Memory in C/C++ Code. arXiv preprint arXiv:2004.01637 (2020).

[3] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing
breadth-first search. In SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–10.

[4] Huanqi Cao, Yuanwei Wang, Haojie Wang, Heng Lin, Zixuan Ma, Wanwang Yin,
and Wenguang Chen. 2022. Scaling graph traversal to 281 trillion edges with 40
million cores. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 234–245.

[5] Jijun Cao, Liquan Xiao, Zhengbin Pang, Kefei Wang, and Jiaqing Xu. 2016. The
efficient in-band management for interconnect network in Tianhe-2 system.
In 2016 24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP). IEEE, 18–26.

[6] Emanuele Cavalleri, Mauricio Soto-Gomez, Ali Pashaeibarough, Dario Malchiodi,
Harry Caufield, Justin Reese, Christopher J Mungall, Peter N Robinson, Elena
Casiraghi, Giorgio Valentini, et al. 2024. SPIREX: Improving LLM-based relation
extraction from RNA-focused scientific literature using graph machine learning.
Proceedings of the VLDB Endowment. ISSN 2150 (2024), 8097.

[7] R. Chen, J. Shi, Y. Chen, and H. Chen. 2015. Powerlyra: Differentiated graph com-
putation and partitioning on skewed graphs. European Conference on Computer
Systems (2015), 1–15.

[8] Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei,
Shuaiqiang Wang, Dawei Yin, Wenqi Fan, Hui Liu, et al. 2024. Exploring the
potential of large language models (llms) in learning on graphs. ACM SIGKDD
Explorations Newsletter 25, 2 (2024), 42–61.

[9] Mondikathi Chiranjeevi, V Sateeshkrishna Dhuli, Murali Krishna Enduri,
Kooduru Hajarathaiah, and Linga Reddy Cenkeramaddi. 2024. Quantifying
Node Influence in Networks: Isolating-Betweenness Centrality for Improved
Ranking. IEEE Access (2024).

[10] com Friendster. 2023. https://snap.stanford.edu/data/com-Friendster.html Last
accessed 03 December 2023.

[11] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A communication-
optimizing substrate for distributed heterogeneous graph analytics. In Proceed-
ings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 752–768.

[12] Jack Dongarra. 2020. Report on the Fujitsu Fugaku system. University of
Tennessee-Knoxville Innovative Computing Laboratory, Tech. Rep. ICLUT-20-06
(2020).

[13] Ayush Dubey, Greg D Hill, Robert Escriva, and Emin Gün Sirer. 2016. Weaver: a
high-performance, transactional graph database based on refinable timestamps.
PVLDB 9, 11 (2016), 852–863.

[14] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian,
Chao Tian, Lei Wang, Jingbo Xu, et al. 2021. GraphScope: a unified engine for big
graph processing. Proceedings of the VLDB Endowment 14, 12 (2021), 2879–2892.

[15] Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Xiaojian Luo, Ruiqi Xu, Qiang
Yin, Wenyuan Yu, and Jingren Zhou. 2020. Application driven graph partitioning.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1765–1779.

[16] Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. 2020. Incremen-
talization of graph partitioning algorithms. Proceedings of the VLDB Endowment
13, 8 (2020), 1261–1274.

[17] Wenfei Fan, Ruiqi Xu, Qiang Yin, Wenyuan Yu, and Jingren Zhou. 2022.
Application-driven graph partitioning. The VLDB Journal (2022), 1–24.

[18] Xing Feng, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Com-
puting connected components with linear communication cost in pregel-like
systems. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE).
IEEE, 85–96.

[19] Xinbiao Gan, Tiejun Li, Feng Xiong, Bo Yang, Xinhai Chen, Chunye Gong, Shijie
Li, Kai Lu, Qiao Li, and Yiming Zhang. 2024. MST: Topology-Aware Message
Aggregation for Exascale Graph Processing of Traversal-Centric Algorithms.
ACM Transactions on Architecture and Code Optimization (2024).

[20] Xinbiao Gan, GuangWu, Shenghao Qiu, Feng Xiong, Jiaqi Si, Jianbin Fang, Dezun
Dong, Chunye Gong, Tiejun Li, and ZhengWang. 2024. GraphCube: Interconnec-
tion Hierarchy-aware Graph Processing. In Proceedings of the 29th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Programming. 160–174.

[21] Xinbiao Gan, Guang Wu, Ruigeng Zeng, Jiaqi Si, Ji Liu, Daxiang Dong, Chunye
Gong, Cong Liu, and Tiejun Li. 2023. FT-topo: Architecture-Driven Folded-
Triangle Partitioning for Communication-efficient Graph Processing.. In ICS.
240–250.

[22] Xinbiao Gan, Yiming Zhang, Ruibo Wang, Tiejun Li, Tiaojie Xiao, Ruigeng Zeng,
Jie Liu, and Kai Lu. 2021. TianheGraph: Customizing Graph Search for Graph500
on Tianhe Supercomputer. IEEE Transactions on Parallel and Distributed Systems

(2021).
[23] Xinbiao Gan, Yiming Zhang, Ruigeng Zeng, Jie Liu, Ruibo Wang, Tiejun Li, Li

Chen, and Kai Lu. 2022. XTree: Traversal-Based Partitioning for Extreme-Scale
Graph Processing on Supercomputers. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE). IEEE, 2046–2059.

[24] Sayan Ghosh, Nathan R Tallent, and Mahantesh Halappanavar. 2021. Charac-
terizing Performance of Graph Neighborhood Communication Patterns. IEEE
Transactions on Parallel and Distributed Systems 33, 4 (2021), 915–928.

[25] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: distributed graph-parallel computation on natural graphs.
In Proceedings of the 10th USENIX conference on Operating Systems Design and
Implementation. 17–30.

[26] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: graph processing in a distributed dataflow
framework. In Proceedings of the 11th USENIX conference on Operating Systems
Design and Implementation. 599–613.

[27] graph500. 2023. https://github.com/graph500/graph500/tree/newreference/aml.
(2023).

[28] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018. Making pull-
based graph processing performant. In Proceedings of the 23rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. ACM, 246–260.

[29] Yucheng Guo, Dongxu Hu, and Peng Wu. 2012. MPI-Based Heterogeneous Clus-
ter Construction Technology. In 2012 11th International Symposium on Distributed
Computing and Applications to Business, Engineering & Science. IEEE, 120–124.

[30] Juris Hartmanis. 1982. Computers and intractability: a guide to the theory of
np-completeness (michael r. garey and david s. johnson). Siam Review 24, 1
(1982), 90.

[31] Khalid Hasanov and Alexey Lastovetsky. 2017. Hierarchical redesign of classic
MPI reduction algorithms. The Journal of Supercomputing 73 (2017), 713–725.

[32] http://graph500.org/. 2021. The Graph 500 List. https://graph500.org/ Last
accessed 03 March 2022.

[33] Xuanwen Huang, Kaiqiao Han, Yang Yang, Dezheng Bao, Quanjin Tao, Ziwei
Chai, and Qi Zhu. 2024. GNNs as Adapters for LLMs on Text-Attributed Graphs.
In The Web Conference 2024.

[34] Twitter Inc. 2021. twitter-2010. https://law.di.unimi.it/webdata/twitter-2010/
Last accessed 03 December 2021.

[35] Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. 2024. Large
language models on graphs: A comprehensive survey. IEEE Transactions on
Knowledge and Data Engineering (2024).

[36] Xiaoen Ju, DanWilliams, Hani Jamjoom, and Kang G Shin. 2016. Version Traveler:
Fast and Memory-Efficient Version Switching in Graph Processing Systems. In
2016 USENIX Annual Technical Conference (USENIX ATC 16).

[37] George Karypis and Vipin Kumar. 1995. METIS–unstructured graph partitioning
and sparse matrix ordering system, version 2.0. (1995).

[38] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359–392.

[39] George Karypis, Kirk Schloegel, and Vipin Kumar. 1997. Parmetis: Parallel graph
partitioning and sparse matrix ordering library. (1997).

[40] Deyu Kong, Xike Xie, and Zhuoxu Zhang. 2022. Clustering-based Partitioning
for Large Web Graphs. arXiv preprint arXiv:2201.00472 (2022).

[41] S. Kumar, A. Mamidala, Daniel Faraj, B. Smith, M. Blocksome, B. Cernohous,
D. Miller, J. Parker, J. Ratterman, P. Heidelberger, D. Chen, and B. Steinmacher-
Burow. 2012. PAMI: A Parallel Active Message Interface for the Blue Gene/Q
Supercomputer. 2012 IEEE 26th International Parallel and Distributed Processing
Symposium (2012), 763–773.

[42] Harry R Lewis. 1983. Michael R. ΠGarey and David S. Johnson. Computers
and intractability. A guide to the theory of NP-completeness. WH Freeman and
Company, San Francisco1979, x+ 338 pp. The Journal of Symbolic Logic 48, 2
(1983), 498–500.

[43] Dongsheng Li, Yiming Zhang, Jinyan Wang, and KianLee Tan. 2019. TopoX:
Topology Refactorization for Efficient Graph Partitioning and Processing. PVLDB
12, 8 (2019), 891–905.

[44] Mingzhe Li, Xiaoyi Lu, S. Potluri, Khaled Hamidouche, J. Jose, K. Tomko, and D.
Panda. 2014. Scalable Graph500 design with MPI-3 RMA. 2014 IEEE International
Conference on Cluster Computing (CLUSTER) (2014), 230–238.

[45] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, YulongWang, YongjunHe, Honghuan
Wu, Lei Sun, Haodong Lyu, Chengjun Liu, Xing Dong, et al. 2022. Persia: An
open, hybrid system scaling deep learning-based recommenders up to 100 trillion
parameters. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 3288–3298.

[46] Xiang-Ke Liao, Zheng-Bin Pang, Ke-Fei Wang, Yu-Tong Lu, Min Xie, Jun Xia,
De-Zun Dong, and Guang Suo. 2015. High performance interconnect network
for Tianhe system. Journal of Computer Science and Technology 30, 2 (2015),
259–272.

[47] Heng Lin, Xiongchao Tang, Bowen Yu, Youwei Zhuo, Wenguang Chen, Jidong
Zhai, Wanwang Yin, and Weimin Zheng. 2017. Scalable graph traversal on
sunway taihulight with ten million cores. In 2017 IEEE International Parallel and

9

https://snap.stanford.edu/data/com-Friendster.html
https://github.com/graph500/graph500/tree/newreference/aml
https://graph500.org/
https://law.di.unimi.it/webdata/twitter-2010/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Distributed Processing Symposium (IPDPS). IEEE, 635–645.
[48] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wenguang Chen,

Lufei Zhang, Torsten Hoefler, Xiaosong Ma, Xin Liu, et al. 2018. Shentu: pro-
cessing multi-trillion edge graphs on millions of cores in seconds. In SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 706–716.

[49] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M. Hellerstein. 2012. Distributed GraphLab: A Framework for Ma-
chine Learning in the Cloud. PVLDB 5, 8 (2012), 716–727.

[50] Meilian Lu, Zhenglin Zhang, Zhihe Qu, and Yu Kang. 2018. LPANNI: Overlapping
community detection using label propagation in large-scale complex networks.
IEEE Transactions on Knowledge and Data Engineering 31, 9 (2018), 1736–1749.

[51] Yutong Lu. 2019. Paving the way for China exascale computing. CCF Transactions
on High Performance Computing 1, 2 (2019), 63–72.

[52] Lingxiao Ma, Han Chen, Jilong Xue, and Yafei Dai. [n.d.]. Garaph: Efficient GPU-
accelerated Graph Processing on a Single Machine with Balanced Replication. In
USENIX Annual Technical Conference (ATC 17). USENIX Association.

[53] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2009. Pregel: a system for large-
scale graph processing. Sigmod (2009), 135–146.

[54] Christian Mayer, Muhammad Adnan Tariq, Chen Li, and Kurt Rothermel. 2016.
GrapH: Heterogeneity-Aware Graph Computation with Adaptive Partitioning.
In Proc. of IEEE ICDCS.

[55] Ruben Mayer and Hans-Arno Jacobsen. 2021. Hybrid edge partitioner: parti-
tioning large power-law graphs under memory constraints. In Proceedings of the
2021 International Conference on Management of Data. 1289–1302.

[56] Raphael Meier. 2024. LLM-Aided Social Media Influence Operations. Large
Language Models in Cybersecurity: Threats, Exposure and Mitigation (2024), 105–
112.

[57] Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama, and Mitsuhisa
Sato. 2020. Performance Evaluation of Supercomputer Fugaku using Breadth-
First Search Benchmark in Graph500. In 2020 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 408–409.

[58] Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama, and M. Sato.
2020. Performance Evaluation of Supercomputer Fugaku using Breadth-First
Search Benchmark in Graph500. 2020 IEEE International Conference on Cluster
Computing (CLUSTER) (2020), 408–409.

[59] Joel Nishimura and Johan Ugander. 2013. Restreaming graph partitioning: simple
versatile algorithms for advanced balancing. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining. 1106–
1114.

[60] Anil Pacaci and M Tamer Özsu. 2019. Experimental analysis of streaming algo-
rithms for graph partitioning. In Proceedings of the 2019 International Conference
on Management of Data. 1375–1392.

[61] Zhengbin Pang, Min Xie, Jun Zhang, Yi Zheng, Guibin Wang, Dezun Dong, and
Guang Suo. 2014. The TH Express high performance interconnect networks.
Frontiers of Computer Science 8 (2014), 357–366.

[62] Xubin Ren, Jiabin Tang, Dawei Yin, Nitesh Chawla, and Chao Huang. 2024. A
survey of large language models for graphs. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 6616–6626.

[63] Udari Madhushani Sehwag, Kassiani Papasotiriou, Jared Vann, and Sumitra
Ganesh. [n.d.]. In-Context Learning with Topological Information for LLM-
Based Knowledge Graph Completion. In ICML 2024 Workshop on Structured
Probabilistic Inference {\&} Generative Modeling.

[64] G. Shah, J. Nieplocha, J. Mirza, Chulho Kim, R. Harrison, R. Govindaraju, K.
Gildea, Paul DiNicola, and C. A. Bender. 1998. Performance and experience with
LAPI-a new high-performance communication library for the IBM RS/6000 SP.
Proceedings of the First Merged International Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing (1998), 260–266.

[65] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. 2016. Fast and
concurrent rdf queries with rdma-based distributed graph exploration. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).

[66] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In ACM Sigplan Notices, Vol. 48. ACM, 135–146.

[67] George M Slota, Cameron Root, Karen Devine, Kamesh Madduri, and
Sivasankaran Rajamanickam. 2020. Scalable, multi-constraint, complex-objective
graph partitioning. IEEE Transactions on Parallel and Distributed Systems 31, 12
(2020), 2789–2801.

[68] TOP500.org. 2021. TOP 500 List. https://www.top500.org/ Last accessed 01
March 2022.

[69] Anton Tsitsulin, Bryan Perozzi, Bahare Fatemi, and Jonathan J Halcrow. 2024.
Graph Reasoning with LLMs (GReaL). In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 6424–6425.

[70] Koji Ueno and Toyotaro Suzumura. 2012. Highly scalable graph search for
the graph500 benchmark. In Proceedings of the 21st international symposium on
High-Performance Parallel and Distributed Computing. 149–160.

[71] Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, and Satoshi
Matsuoka. 2016. Extreme scale breadth-first search on supercomputers. In 2016

IEEE International Conference on Big Data (Big Data). IEEE, 1040–1047.
[72] Carnegie Mellon University. 2021. ClueWeb12 Dataset. https://lemurproject.

org/clueweb12/ Last accessed 03 December 2021.
[73] Erik Vermij, Leandro Fiorin, Christoph Hagleitner, and Koen Bertels. 2017. Boost-

ing the efficiency of HPCG and Graph500 with near-data processing. In 2017
46th International Conference on Parallel Processing (ICPP). IEEE, 31–40.

[74] Fengyi Wang, Guanghui Zhu, Chunfeng Yuan, and Yihua Huang. 2024. LLM-
enhanced Cascaded Multi-level Learning on Temporal Heterogeneous Graphs.
In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 512–521.

[75] Ruibo Wang, Kai Lu, Juan Chen, Wenzhe Zhang, Jinwen Li, Yuan Yuan, Pingjing
Lu, Libo Huang, Shengguo Li, and Xiaokang Fan. 2020. Brief introduction of
TianHe exascale prototype system. Tsinghua Science and Technology 26, 3 (2020),
361–369.

[76] Lukasz Wesolowski, Ramprasad Venkataraman, Abhishek Gupta, Jae-Seung
Yeom, Keith Bisset, Yanhua Sun, Pritish Jetley, Thomas R Quinn, and Laxmikant V
Kale. 2014. Tram: Optimizing fine-grained communication with topological
routing and aggregation of messages. In 2014 43rd International Conference on
Parallel Processing. IEEE, 211–220.

[77] Songhao Wu, Quan Tu, Hong Liu, Jia Xu, Zhongyi Liu, Guannan Zhang, Ran
Wang, Xiuying Chen, and Rui Yan. 2024. Unify Graph Learning with Text:
Unleashing LLM Potentials for Session Search. In Proceedings of the ACM on Web
Conference 2024. 1509–1518.

[78] Xiaohuan Wu, Wenpu Cao, Jianying Wang, Yi Zhang, Weijun Yang, and Yu Liu.
2022. A spatial interaction incorporated betweenness centrality measure. Plos
one 17, 5 (2022), e0268203.

[79] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming Wu,
Wei Li, and Lidong Zhou. 2017. Tux2: Distributed Graph Computation for
Machine Learning. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, 669–682.

[80] Xue-Jun Yang, Xiang-Ke Liao, Kai Lu, Qing-Feng Hu, Jun-Qiang Song, and Jin-
Shu Su. 2011. The TianHe-1A supercomputer: its hardware and software. Journal
of computer science and technology 26, 3 (2011), 344–351.

[81] Xin You, Hailong Yang, Zhongzhi Luan, Yi Liu, and Depei Qian. 2019. Perfor-
mance evaluation and analysis of linear algebra kernels in the prototype tianhe-3
cluster. In Asian Conference on Supercomputing Frontiers. Springer, 86–105.

[82] Hongyang Zhang, Peter Lofgren, and Ashish Goel. 2016. Approximate person-
alized pagerank on dynamic graphs. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. 1315–1324.

[83] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and Weimin
Zheng. 2016. Exploring the hidden dimension in graph processing. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).

[84] Yiming Zhang, Kai Lu, and Wenguang Chen. 2021. Processing extreme-scale
graphs on China’s supercomputers. Commun. ACM 64, 11 (2021), 60–63.

[85] Yizhou Zhang, Karishma Sharma, Lun Du, and Yan Liu. 2024. Toward Mitigat-
ing Misinformation and Social Media Manipulation in LLM Era. In Companion
Proceedings of the ACM on Web Conference 2024. 1302–1305.

[86] Yiming Zhang, HaonanWang, Menghan Jia, JinyanWang, Dong sheng Li, Guang-
tao Xue, and K. Tan. 2020. TopoX: Topology Refactorization for Minimizing
Network Communication in Graph Computations. IEEE/ACM Transactions on
Networking 28 (2020), 2768–2782.

[87] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System. In 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2016, Savan-
nah, GA, USA, November 2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.).
USENIX Association, 301–316. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/zhu

10

https://www.top500.org/
https://lemurproject.org/clueweb12/
https://lemurproject.org/clueweb12/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu

	Abstract
	1 Introduction
	2 Background
	2.1 Communication Hierarchies of HPC
	2.2 Graph Processing & Graph500

	3 Preliminaries
	3.1 Definitions
	3.2 Problem Formulation

	4 Overview of TuComm
	4.1 Preliminaries
	4.2 Modeling Communication Latency

	5 Hierarchy-Aware Aggregation
	6 TuComm Implementation
	6.1 Hierarchy-aware Message Aggregation
	6.2 Message Transfer
	6.3 TuComm-based BFS on Tianhe-Exa

	7 Experimental Setup
	7.1 Hardware Platforms & Graph Data
	7.2 Competing Baselines

	8 Experimental Results
	8.1 Benchmarking Graph500
	8.2 Compare with Baseline Methods
	8.3 Preprocessing Overhead
	8.4 Communication Volume & Time
	8.5 Scalability of TuComm
	8.6 Graph Operations on Real-world Data

	9 Related Work
	10 Conclusion
	References

