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Communication Hierarchy-aware Graph Engine for Distributed
Model Training

ABSTRACT

Efficient processing of large-scale graphs with billions to trillions of
edges is essential for training graph-based large language models
(LLMs) in web-scale systems. The increasing complexity and size of
these models create significant communication challenges due to
the extensive message exchanges required across distributed nodes.
Current graph engines struggle to effectively scale across hundreds
of computing nodes because they often overlook variations in com-
munication costs within the interconnection hierarchy. To address
this challenge, we introduce TuComm, a communication hierarchy-
aware engine specifically designed to optimize distributed training
of graph-based LLMs. By leveraging hierarchical network topol-
ogy, TuComm dynamically aggregates and transfers messages, fully
accounting for the underlying communication domains, thereby
enhancing the efficiency of distributed model training across large-
scale systems. We implemented TuComm on top of the message
passing interface (MPI), incorporating innovations such as dynamic
buffer expansion and active buffer switching to enhance scalabil-
ity. Evaluations conducted on synthetic and real-world datasets,
utilizing up to 79,024 nodes and over 1.2 million processor cores,
demonstrate that TuComm surpasses leading graph-parallel sys-
tems and state-of-the-art counterparts in both throughput and scal-
ability. Moreover, we have deployed TuComm on a production
supercomputer, where it consistently outperforms top solutions
on the Graph500 list. These results highlight TuComm’s potential
to significantly enhance the efficiency of distributed large-scale
graph-based LLM training by optimizing communication among
distributed systems, making it an invaluable communication engine
for web-scale model training.

CCS CONCEPTS

• Computing methodologies→ Distributed algorithms; Mas-
sively parallel algorithms.

KEYWORDS

communication hierarchy, message aggregation, communication
domain, graph-LLM training, Graph500

1 INTRODUCTION

Recent advances in distributed model training, particularly for
graph-based large language models (LLMs) [6, 8, 35, 63, 74, 77],
have increasingly relied on efficient graph processing techniques.
As models grow larger and more complex, the amount of data they
require has expanded significantly, often in the form of massive
graphs representing web-scale information [33, 62, 69], social net-
works [56, 74, 85], or structured data [3, 22, 23, 48, 86, 87]. These
graphs, comprising hundreds of billions to trillions of vertices and
edges [20, 23], present unique challenges for distributed comput-
ing systems. Training models with such vast datasets demands
the use of parallel and distributed infrastructures that can effi-
ciently process and communicate between thousands of computing
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Figure 1: The breakdown for BFS execution time.

nodes (CNs1). This paradigm shift in distributed model training
which characterized by the need to process ever-expanding graphs
underscores the importance of scalable graph engines capable of
handling this computational complexity. Large-scale distributed
systems, such as supercomputers with thousands of CNs, play a piv-
otal role in managing these enormous graphs. As we approach the
era of 100 trillion parameters [45], a distributed computing system
of this magnitude typically comprises hundreds even thousands of
CNs. For example, TaihuLight [48, 87] successfully processes the
Sogou graph [84] with over 271.8 billion vertices and 12.3 trillion
edges, while the Fugaku supercomputer handles Kronecker graphs
with 70.4 trillion edges across 152,064 nodes [32]. These achieve-
ments illustrate the potential for distributed systems to scale to the
demands of exascale graph processing [22, 23, 48].

In the realm of distributed training for graph-based LLMs, model
training time can be divided into three aspects [20, 21]: 1) com-
putation; 2) communication; 3) synchronization&stall. Moreover,
communication can be further classified as intra- and inter-domain
communications. Computation time is accumulated from all the
computing nodes during computation. Intra-domain communica-
tion is communicating time between the CNs attached to the same
routing cell (RC2), and inter-domain communication is commu-
nicating time between two connected RCs in two different com-
munication domains. Figure 1 offers a breakdown of large-scale
graphs running on thousands of CNs with hierarchical communi-
cation domains. We can observe that communication becomes a
bottleneck in graph computing with thousands of CNs. Further,
we can also observe the occupation of inter-domain communica-
tion increases as the number of CNs increases, i.e., the percent-
age of inter-domain communication increases from ca. 70% to ca.
80% as the number of CNs increases from 8192 to 65536. Such a
trend underscores the significant variability of inter-domain com-
munication costs across different domains. Therefore, large-scale
graph-based LLMs training rely heavily on distributed communi-
cation optimization for their success [7, 23–26, 48, 49, 86, 87]. As
such, various graph communication strategies have been proposed

1A CN may have one or multiple CPUs or accelerators[22, 75].
2 It is responsible for connecting CNs, e.g., routers [20].
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[1, 16, 17, 25, 38, 39, 53, 55, 59, 60, 67, 87]. Indeed, all parallel graph
processing systems utilize some form of graph communication op-
timization to leverage architectural advantages [22, 23, 48, 87] for
better performance. This emphasizes the need for sophisticated com-
munication engines that can address the unique challenges posed
by large-scale graph training in LLMs, ensuring that computation,
communication, and synchronization are effectively balanced to en-
hance performance and aligns with the theme of distributed model
training, connecting the challenges in communication with the
need to optimize the training of LLMs.

Unfortunately, current graph processing engines always assume
consistent communication overhead between any two CNs. This is
because the existing graph engines are cluster-based systems with
only tens of CNs, which makes them inadequate for training LLMs
with large graphs containing trillions of edges and vertices across
thousands of distributed CNs. Even in configurations involving hun-
dreds of CNs organized into hierarchical communication domains
where groups of CNs are interconnected via dedicated networks,
the variability in communication overhead across different RCs
remains substantial. This variability can be observed in the analysis
presented in Figure 1.

To effectively manage communication in large-scale distributed
LLM training, it is crucial to develop a robust message library
that leverages the hierarchical communication domains present
in high-performance computing (HPC) systems, such as super-
computers. For instance, the state-of-the-art Active Messages Li-
brary (AML) [27] supports each source node to aggregate messages
that are targeted to the same domain. However, the communication
cost of AML is still overwhelming when processing trillion-scale
graphs on exascale clusters, which severely affects the graph search-
ing performance and the reasons are listed as follows. (i) AML
aggregates messages only at the source nodes, and ignores oppor-
tunities of aggregating messages in higher level communication
domains; and (ii) AML only supports static buffer management,
which not only lowers the graph processing performance but also
is vulnerable to a buffer overflow when aggregating large numbers
of messages. That is because there are numerous inter-domain (i.e.,
across RNs) communications for AML running in large-scale clus-
ters and inter-domain communication is more expensive than intra-
domain communications, i.e., by up to orders of magnitude [23].
An advanced MST [19] based on TianheGraph [22] is proposed for
aggressive aggregation, but it lacks awareness of communication
hierarchies. Furthermore, both MST and AML only support static
buffer management. As such, it is essential to build an efficient
message transfer engine, by taking advantage of hierarchical com-
munication domains within large-scale HPC systems with efficient
buffer configuration.

In AML-like communication libraries, inter-domain message
transfers are not only frequent but also significantly more expensive
than intra-domain communications. This cost disparity often arises
from the physical network architecture of large-scale HPC systems.
Typically, intra-domain communication, where nodes within the
same domain exchange messages, is relatively fast due to shorter
communication paths and reduced latency, often taking as little as
0.1𝜇𝑠 . However, when communicationmust occur between different
domains, inter-domain transfers introduce much higher latency,
sometimes as much as 1𝜇𝑠 or more. This is because inter-domain

C1(b)Row-column linkN1N3N4N2…………InterconnectionN1N3N4N2…………InterconnectionN1N3N4N2…………InterconnectionN9N11N12N10…………InterconnectionN9N11N12N10…………InterconnectionN9N11N12N10…………InterconnectionHigher-levelInterconnectionC2C4C3N13N15N16N14…………InterconnectionN13N15N16N14…………InterconnectionN13N15N16N14…………InterconnectionN5N7N8N6…………InterconnectionN5N7N8N6…………InterconnectionN5N7N8N6…………InterconnectionNodeSwitching cellLocal switch...Rack 1Shelf 1Blade 1SystemCMU 1......128...Rack 1Shelf 1......Blade 1SystemCMU 1......128Rack 2Rack nShelf 2Shelf 8Blade 2Blade 8CMU 2CPUCPUCPUCPUCPU18......

communication often traverses additional network layers or even
entirely different network segments, increasing the time it takes
for messages to reach their destination.

TuComm3 offers application programming interfaces (APIs) for
fundamental graph processing operations, including breadth-first-
search (BFS), single source shortest paths (SSSP), connected com-
ponent (CC) [18], betweenness centrality (BC) [9, 78], page rank-
ing (PR) [82], and community detection with label propagation
(CDLP) [50]. It has been deployed on the production environment
of the Tianhe-Exa supercomputer [51] and has supported a diverse
range of graph applications.

We evaluate TuComm by applying it to representative graph
operations, including BFS, SSSP, CC, BC, PR and CDLP. Our evalu-
ations use three famous supercomputers with varying scales, us-
ing up to 79,024 nodes and over 1.2 million processor cores. We
show that TuComm consistently outperforms state-of-the-art AML-
like libraries and graph systems [1, 2, 14, 37, 39, 40, 43, 59, 60, 87]
on different graph scales and hardware setups. Specifically, Tu-
Comm achieves 162,494 and 23,021 giga-traversed edges per second
(GTEPS), respectively, for BFS and SSSP according to the Graph500
specification [32]. These results are translated to a 1.19× and 1.5×
improvement for BFS and SSSP over the top-ranked system on the
Graph500 ranking (Nov. 2023). We also test TuComm on real-world
graphs, for which it outperforms three state-of-the-art graph pro-
cessing engines, GraphScope [14], Gluon [11] and GraphCube [20],
with a speedup of up to 27.34×.

This paper makes the following contributions:
• It offers analytical formulas tomodel communication cost of

large-scale HPC systems with hierarchical communication
topology (Sec. 4);

• It proposes an interconnection hierarchy-awaremessage ag-
gregation method designed to minimize cross-domain com-
munications, thereby enhancing efficiency in distributed
graph-based LLM training environments (Sec. 5).

2 BACKGROUND

2.1 Communication Hierarchies of HPC

Large-scale HPC systems often implement a hierarchical communi-
cation topology [12, 46, 75, 80] and use RCs to link different CNs.
We use Tianhe-Exa [51], the main evaluation system of this work, to
highlight the differences in the communication latency at different
levels of the topology. Tianhe-Exa is an upgrade of Tianhe-2A [68].
The interconnection architecture of Tianhe-Exa is similar to that
of many of today’s large-scale HPC systems [75, 80].

Similar to other large-scale HPC systems [4, 12, 20, 22, 23, 48,
61, 70, 71, 81], Tianhe-Exa implements a hierarchical interconnect
topology with varying communication latencies. CPUs are con-
nected via an onboard network mesh with nanosecond-level access
latency at the CMU level. Blades within a shelf use an in-cabinet
switch with microsecond-level data transfer latency. CMUs are
linked across shelves using a customized networking router with
sub-millisecond-level latency. Racks are connected by top-level
switches, providing millisecond-level communication latency. Com-
munication among nodes across shelves is about twice as slow as

3Code available at https://anonymous.4open.science/r/graph-com-2499/README.md
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Figure 2: A model of the hierarchical communication topol-

ogy of large-scale HPC system with 3-level communication

domain.

within the same shelf, and across racks, the latency increases to
around 15 times that within a shelf [5, 20, 46, 61, 75].

2.2 Graph Processing & Graph500

Graph processing algorithms are usually communication-intensive [13,
28, 36, 52, 54, 65, 66, 79, 83, 87] in that huge numbers of small
messages are transferred through the interconnection network.
Graph500 [32] is the de facto standard for benchmarking and rank-
ing the graph processing performance of large-scale HPC systems
(e.g., supercomputers), using the TEPS (traversed edges per sec-
ond) metric. Currently, Graph500 has two separate ranking lists
respectively measuring the BFS and SSSP performance [32].

Following Graph500 [32], we report the graph processing per-
formance using the GTEPS metric by counting the number of
TEPS. This is a higher-is-better metric. Note that Graph500 is of-
ten used to evaluate HPC system performance for data-intensive
workloads [20, 22, 47, 48, 57, 71, 73].

3 PRELIMINARIES

3.1 Definitions

Definition 3.1. Communication Domain. A communication
domain, 𝐷 , is a set of CNs that are attached to the same RC, which
can be represented as 𝐷 = {𝑅,𝐶1,𝐶2, · · · ,𝐶𝑛}, where 𝑛 is the total
number of CNs (denoted as 𝐶𝑠) in 𝐷 , and 𝑅 is the RC that all the
CNs are connected with. The communication domain can be further
classified into the leaf domain and high-level domain, respectively. A
leaf domain is attached to a leaf RC that is directly responsible for a set
of CNs. For example, in Figure 2, leaf domain 𝐷0

0 =
{
𝑅00,𝐶1,𝐶2,𝐶3

}
because 𝐶1,𝐶2,𝐶3 are attached to 𝑅00 . While the parent domain (i.e.,
high-level domain) includes a set of CNs attached to the same high-
level RC. For example, 𝐷1

0 =
{
𝑅10,𝐶1,𝐶2,𝐶3,𝐶4,𝐶5,𝐶6

}
, since all the

CNs are attached to 𝑅10 .

Definition 3.2. Communication Cost. The communication
cost (ComCost) between two nodes, e.g., 𝐶𝑖 and 𝐶 𝑗 , can be defined as
𝐶𝑜𝑚𝐶𝑜𝑠𝑡 (𝐶𝑖,𝐶 𝑗) = 𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑟𝑎

𝑖
+𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑟𝑎

𝑗
+∑ℎ

𝑙=1𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟
𝑖 (𝑙−1,𝑙 )

+∑ℎ
𝑙=1𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟

𝑗 (𝑙−1,𝑙 )
, where𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑟𝑎

𝑖
is the intra-domain com-

munication cost among the 𝑅𝐶 that 𝐶𝑖 belongs to, 𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟
𝑖 (𝑙−1,𝑙 )

is
the inter-domain communication cost between the (𝑙 − 1)−th level

communication domain 𝐷𝑙−1 and the 𝑙−th level communication do-
main 𝐷𝑙 that 𝐶𝑖 belongs to, and ℎ is the lowest domain level where
both 𝐶𝑖 and 𝐶 𝑗 are located at.

Figure 2 gives an example of a large-scale HPC system with a
3-level communication domain. In this example, we have 12 CNs
and 7 RCs, which are separated into 7 communication domains,
i.e., 𝐷0

0 , 𝐷
0
1 , 𝐷

0
2 , 𝐷

0
3 , 𝐷

1
0 , 𝐷

1
1 , 𝐷

2
0 , where 𝐷

𝑗
∗ denotes the 𝑗-th level

domain and we call 𝐷0
∗ the leaf domain. Each communication do-

main 𝐷
𝑗
𝑖
is associated with one RC, denoted as 𝑅 𝑗

𝑖
, so the domains

can be represented as 𝐷0
0 = {𝑅00,𝐶1,𝐶2,𝐶3}, 𝐷

0
1 = {𝑅01,𝐶4,𝐶5,𝐶6},

and 𝐷1
0 = {𝑅10,𝐶1,𝐶2,𝐶3,𝐶4,𝐶5,𝐶6}. We can observe that 𝐶1 and

𝐶4 are in different leaf domains, i.e., 𝐷0
0 and 𝐷0

1 , but they are in
the same high-level communication domain 𝐷1

0 , i.e., the 1−𝑠𝑡 level
communication domain. In practice, the communication costs dif-
fer a lot between intra- and inter-domain communications. For
example, the intra-domain communication cost can be 1 unit4, i.e.,
𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑟𝑎∗ = 1U, while the inter-domain communication cost
between 𝐷0

∗ and 𝐷1
∗ can be 10U, i.e., 𝐶𝑜𝑚𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟∗(0,1) = 10U.

3.2 Problem Formulation

Given a graph G = (𝑉 , 𝐸) distributed into a target large-scale HPC
system (a.k.a., Exa). A communication engine aims to exchange
messages among CNs by minimizing the total message communi-
cation costs from all vertices, which can be formulated as follows.

min
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗 ),

subject to 𝑣𝑖 , 𝑣 𝑗 ∈ Exa.CNs.
(1)

where 𝑁 is the total vertices in G, and Exa.CNs refers to the com-
puting node set belonging to Exa. 𝐶𝑜𝑚𝐶𝑜𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗 ) is the message
communication cost between 𝑣𝑖 and 𝑣 𝑗 which are distributed into
CNs equipped in the Exa.

4 OVERVIEW OF TUCOMM

TuComm is designed to optimize large-scale graph processing on
thousands or more computing nodes. It explicitly considers the
interconnection hierarchy during graph communication. This is
accomplished by using analytical models to aggressively perform
interconnection hierarchy-aware message aggregation where mes-
sages are gathered within the domain at each level and scattered in
the target domains, aiming to reduce the communication latency
by transmitting expensive inter-domain into cheap intra-domain
communication. This is completely different from traditional com-
munication mechanisms, such as the message aggregation of AML
and MST, where they first gather messages across domains and
then scatter them within a domain [5, 20, 22, 27, 29, 61].
Implementation. We have implemented TuComm as a library
in around 20K lines of C/C++ code. It provides APIs for common
graph operations, including those evaluated in this work.

4.1 Preliminaries

We approximate the communication delay (i.e., communication
cost), 𝑑𝑖, 𝑗 , of two computation nodes, 𝑛𝑖 and 𝑛 𝑗 , as:

4A U maybe one microsecond, millisecond or second depending on the target system.
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{
𝑑𝑖,𝑗 = 𝑑𝑖0 + 𝑑

𝑗

0 +
∑ℎ
𝑙=1 𝑑

ℎ
𝑙

𝑑ℎ
𝑙
= 𝑑𝑘0 +

∑𝐻
ℎ=𝑘+1 𝑑ℎ

(2)

where 𝑑𝑖0 (or 𝑑
𝑗

0 ) is the communication latency of 𝐶𝑖 (or 𝐶 𝑗 ) within
the local domain, 𝑑ℎ is the latency at a high-level domain (if cross-
domain communication is required between 𝐶𝑖 and 𝐶 𝑗 ), and 𝐻 is
the top-level of communication required. The latency of communi-
cation at each interconnection level is affected by the number of
hops needed to transfer messages among computing nodes [5, 61].

4.2 Modeling Communication Latency

Solving Eq. 1 is in NP. Its NP-hardness could be validated by reduc-
tion from the set partition problem [15, 30, 42]. Thus, our ultimate
objective is to approximate the accumulative communication delay
between any two CNs as shown in Eq. 3. This can be formulated as:

min
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗 ) = 𝑑0 + 𝑑ℎ𝑙 (3)

According to the definitions in the subsection 3.1, 𝑑0 and 𝑑ℎ𝑙 are
the intra-domain and inter-domain communication costs via RCs,
respectively. They can be further formulated as:

𝑑0 =
𝑁∑
𝑖=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 int𝑟𝑎
𝑖
+

𝑁∑
𝑗=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 int𝑟𝑎
𝑗

𝑑ℎ
𝑙
=

∑ℎ
𝑙=1

(
𝑁∑
𝑖=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 int𝑒𝑟
𝑖 (𝑙−1,𝑙 ) +

𝑁∑
𝑗=1

𝐶𝑜𝑚𝐶𝑜𝑠𝑡 int𝑒𝑟
𝑗 (𝑙−1,𝑙 )

) (4)

Clearly, the 𝑑ℎ
𝑙
, i.e., cross-domain communication takes a major-

ity of the accumulative communication costs and dominates the
communication cost for large-scale graph processing on large-scale
HPC systems according to Eq. 4. That is because (i) inter-domain
communication delay is orders of magnitude higher than that of
intra-domain and (ii) there are a vast number of cross-domain
(i.e., inter-domain) communications in large-scale graph processing
within hierarchical communication domains [20, 23, 48, 71].

To mitigate cross-domain communication, we present TuComm,
an aggressive message aggregation strategy designed to maximize
the benefits of hierarchical communication topology by substitut-
ing costly inter-domain communication with cost-effective intra-
domain communication. In order to facilitate message aggregation,
we equip TuComm with flexible buffer management including ac-
tive buffer switching and dynamic buffer expansion for further
advancing large-scale graph processing.

5 HIERARCHY-AWARE AGGREGATION

Huge performance gap between intra-/inter-domain communi-
cation motivates us to significantly reduce the number of cross-
domain messages. Specifically, TuComm proposes an interconnec-
tion hierarchy-aware message aggregation mechanism where mes-
sages are gathered in the source domains and scattered in the target
domains.

In practice, AML refines a (global) communication into two sub-
communications: an inter-domain communication (comm_inter)
which happens between two nodes in the same row of different do-
mains, followed by an intra-domain communication (comm_intra)
which happens between two nodes in the same column (i.e., inside
the same domain). Figure 3(a) illustrates the global communication
of AML. A message from node 4 to node 2 will first be transferred
to the target domain, i.e., from node 4 to node 0 in the same row

4 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID

message, but it does not behavior well on Tianhe super-
computers. So we rewrite one-sided message according to 
proprietary interconnect built in Tianhe supercomputers. 
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Figure 3. Communication domain division in AML 

In AML, the global communication would be refined 
into two sub-communications including comm-intra and 
comm again. The processes with the same IP are painted 
with the same color, and then processes in the global com-
munication domain are divided into a communication do-
main comm-intra according to this color. Moreover, pro-
cesses with the same local process rank in each comm-intra 
are divided into a communication domain comm-inter, as 
illustrated in Figure 3. If all processes are regarded as a ma-
trix, the processes on comm-intra form a column, and pro-
cesses with the same local rank on each comm form a row. 
In the com, the group id of each process is its internal ID in 
the comm communication domain. 

According to framework from communication domain 
division, AML drafts principle of one-sided message, in 
which message firstly transfer across comm sub-communi-
cations domain, and then forwarding in comm-intra sub-
communications domain. Taking an example, regarding 
rank_id as process with rank=4, so rank_4 send message to 
rank_2 with color brown; and rank_1 transfer message to 
rank_11 painted color green, as shown in Figure 4. 
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Figure 4. One-sided message in AML 

As illustrated in Figure 4, message from rank_4 to 
rank_2 should firstly be sent to rank_0 across comm_intra 
sub-communications domain or in comm sub-communica-

tions domain, then rank_0 would forward message to des-
tination rank_2 in comm_intra sub-communications do-
main, and so on, message from rank_1 to rank_11 should 
firstly be sent to rank_9 across comm_intra or in comm, 
then rank_9 would forward message to destination
rank_11 in comm_intra sub-communications domain. In 
above message transfer flow from one-sided message, 
message firstly should be transfered across comm_intra, 
secondly would be forwarded in comm_intra, in other 
words, inter-node communication comm must before in-
tra-node communication comm_intra. Obviously, sending
and receiving message in comm_tra is superior to transfer-
ring message in comm. one-sided message in AML is a sur-
prising mode that rejects what is close and seeks what is 
far. Accordingly, the MST is proposed, in which one-sided 
message mode is opposite to message transferring flow for 
AML. 

Different from AML, in MST messages firstly should
gather in comm_intra sub-communications domain, and 
then forward to destination across comm_intra or in 
comm_inter that is similar to comm in AML, as demon-
strated in Figure 5. 
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Figure 5. One-sided message in MST 

Similarily, marking rank_id as process with rank=4, in Fig-
ure 5, there are two messages from rank_4 to rank_2 and 
from rank_1 to rank_11, respectively in Figure 5. message 
from rank_4 to rank_2 is advisable to firstly send message 
to rank_6 in same comm_intra, then rank_6 would forward 
message to rank_2 instead of opposite message flow in
AML, and so on, message from ank_1 to rank_11 should 
firstly send to rank_3 in same comm_intra, and then
rank_3 would forward message to rank_11. 

Comparing AML and MST, it is easy to conclude that 
the main difference between MST and AML is message 
transferring flow, in which sending message across comm 
firsly then forwarding message in comm_intra from AML, 
while in MST sending message in comm_intra before for-
warding message in comm_inter. Hence, both theoretical 
design an pratical work, the performace of MST is rather
better than that of AML. 

comm_inter

Figure 3: Comparison of global communication in AML and

TuComm. TuComm is more aggressive inmessage aggregation

in that it aggregates messages in the source domains.

(comm_inter), and then transferred from node 0 to node 2 in the
same column (comm_intra). Similarly, a message from node 1 to
node 11 will first be transferred from node 1 to node 9 (comm_inter),
and then transferred from node 9 to node 11 (comm_intra). Al-
though AML’s communication paradigm (comm_inter followed by
comm_intra) facilitates its per-node message aggregation, it pre-
vents aggregation of messages from different nodes in the same
domain. This limitation makes it inefficient for large-scale graph
processing on large-scale systems.

To improve communication efficiency, TuComm leverages the
topology information of interconnection networks to perform domain-
level (rather than node-level) message aggregation, where messages
destined for the same target domain are aggregated in the source
domain before transmission. To achieve this, messages have to be
transferred in a different way from AML. Figure 3(b) shows the
message transmission based on TuComm: a message from node 4
to node 2 will first be transferred to the source domain, i.e., from
node 4 to node 6 in the same column (comm_intra), and then from
node 6 to node 2 in the same row (comm_inter); and a message
from node 1 to node 11 will first be transferred from node 1 to
node 3 (comm_intra), and then transferred from node 3 to node 11
(comm_inter).

Accordingly, TuComm realizes domain-level message aggrega-
tion through the following steps. First, the monitor node of the
source domain gathers small messages within the same target do-
main (intra-domain communication) and packs them into a long
message. Second, the monitor node in the source domain transmits
the aggregated long message to the monitor node in the target
domain (inter-domain communication). Third, the monitor node
in the target domain scatters the messages to their target nodes
(intra-domain communication).

6 TUCOMM IMPLEMENTATION

We have implemented TuComm on top of MPI (version 3.2.1). Tu-
Comm provides the standard MPI interface for message transmis-
sion with support for different type and size of messages.

6.1 Hierarchy-aware Message Aggregation

Algorithm 1 outlines communication hierarchy-aware message ag-
gregation for huge messages when processing large-scale graphs.
The algorithm operates on a list of allocated computing nodes, de-
noted by N, which contains the node IDs. TuComm considers both
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Algorithm 1: Communication hierarchy-aware Aggrega-
tion
Input: Sorted vertex list,𝑉 , a list of computing nodes, N, clustering distance

threshold, ℎ
// Build communication hierarchy and return the level of

communication hierarchy

1 Organize computing nodes into a communication hierarchy with hierarchical
communication domains according to the communication topology of
target systems;

2 L← ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 (N)
3 i = L
4 while 𝑖 ≥ 0 do
5 grouping the communication domains as D (𝐿−𝑖 ) from bottom to up

according to Figure 2;
6 i=i-1;
7 end

8 MPI initialization
9 Create buffers at receivers and senders, respectively

10 Vote monitors for communication domains
11 Wait for msgs of intra/inter domains at monitors
12 while !𝑒𝑚𝑝𝑡𝑦 (𝑉 ) do
13 𝑣←𝑉 .𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ( )
14 Aggregation(𝑣)
15 end

16 Function Aggregation(vertex 𝑣)
17 ℭ𝑣=[]
18 for (i=0; i<L; i++) do

// Calling Algorithm 2.

19 ℭ𝑖
𝑣 ← Gathering(𝑣, 𝑖)

20 Scattering ℭ𝑖
𝑣 to intra-domain target nodes

21 end

22 while !𝑒𝑚𝑝𝑡𝑦 (ℭ𝑣 ) do
23 i=0;
24 while 𝑖 < 𝐿 do

25 do ℭ𝑚𝑎𝑥 ← max(ℭ𝑣 )
26 Scattering messages in ℭ𝑚𝑎𝑥 among nodes attached to 𝐷 (𝑖 ) ;

i=i+1;
27 end

28

29 end

30 end

the locality of graph and communication differences across commu-
nication hierarchies together to reduce communication overheads
and effectively utilize the bandwidth.

TuComm (Algorithm 1) first builds a communication topology
for target large-scale HPC systems, grouping computing nodes
into communication domains according to the interconnection hi-
erarchy of the target HPC systems and getting the total levels of
communication hierarchy (lines 1∼7). Following, the MPI library
is initialized (Line 8). Then the receiver and sender nodes create
recv/send buffers, and each communication domain selects one
monitor, which serves as the domain’s gateway waiting for cross-
domain communication (Lines 9∼11).

The aggregation function selects the vertex in V with the high-
est degree and utilizes the given vertex to group small messages
into a cluster, ℭ, of which the messages are assigned to computing
nodes recursively to adapt to the target communication hierar-
chies. This method prioritizes node placement within the same
communication domain or domains at the same level. To aggre-
gate messages based on the communication domain, we specify a
communication level, denoted as 𝐿. We then generate a list of 𝐿
clusters, ℭ𝑣 = ℭ1

𝑣 ,ℭ
2
𝑣 , . . . ,ℭ

𝐿
𝑣 , where each cluster ℭ𝑖

𝑣 corresponds
to a communication level of 𝑖 (1 ≤ 𝑖 ≤ 𝐿) from the highest-degree

Algorithm 2:MPI-based message gathering
Input: vertex 𝑠 and specified communication hierarchy ℎ
Output: ℭ: gathering small messages at communication

domain for 𝑣0
1 Function Gathering(𝑣0, ℎ)
2 while msg received at monitor do
3 if msg from the same intra-domain then

4 buffer[𝑖]← msg; // According to targets

5 if buffer[𝑖].size ≥ threshold then

6 Aggregate messages in buffer[𝑖];
7 barrier;
8 Switch active/reserved buffers.
9 Let the remote monitor corresponding to the

switched buffer call TuComm
_register_handler;

10 end

11 end

12 end

13 return ℭ

14 end

vertex 𝑣 that has not been processed yet, to scatter messages into
intra-domain nodes (lines 16∼20). TuComm recursively starts from
the lowest level of the communication hierarchy available and
scatters messages to a higher level than the current level, if the
communication domain cannot hold all messages in ℭ.

6.2 Message Transfer

The pseudo-code of the basic implementation of message transfer
is summarized in Algorithm 2. After a monitor is configured at
each communication domain, it serves as the domain’s gateway
waiting for inter-domain communication. If the monitor receives
a message from within its domain that needs to be transmitted to
another domain, then it adds the message to a send buffer according
to the target domain (Lines 2∼4). Once the buffer size reaches the
threshold, messages targeted to the same domain will be gathered
as an aggregate message, which will be transmitted to the monitor
node in the target domain (i.e., inter-domain communication at
Lines 5∼7). Once the messages in the buffer are transmitted, the
monitor switches the empty buffer with a waiting buffer for another
domain (Line 8). The remote monitor corresponding to the switched
buffer then calls TuComm _register_handler() to register the
handler function for the new target domain (Line 9).

6.3 TuComm-based BFS on Tianhe-Exa

This subsection briefly introduces how we leverage TuComm to
realize the BFS test of Graph500 on Tianhe series supercomputers.
Other TuComm-based graph operators including SSSP, CC, BC, PR
and CDLP are realized similarly to BFS and thus are omitted due to
space limitation.

Kronecker-generated graphs are skewed in vertex degree dis-
tribution: a small proportion of vertices have very high degrees.
High-degree vertices (a.k.a., heavy vertices) need buffering, because
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Table 1: Hardware systems used in our evaluation

System CPU Max

#Comp.

Nodes

RAM per node Top-level

bandwidth

Tianhe-Exa 16-core FT-
2000 ARMv8
CPU @ 2.2
GHz

79,024 16G 200Gbps

Intel Cluster 12-core Intel
Xeon CPU
@ 2.93 GHz

512 64G 160Gbps

WuzhenLight 64-core
HG2 7285H
(AMD x86
ISA) CPU @
2.5 GHz

1,024 256G 100Gbps

the workload and communication traffic are higher for heavy ver-
tices than for low-degree vertices. Therefore, we sort all vertices
with buffering in the preprocessing stage, assigning ID 0 to the
vertex with the highest degree. We maintain a mapping for each
vertex between its new ID (according to its degree) and original ID.

To adapt graph processing to the network topology, we refactor-
ize graphs with fusion and fission [86] when storing graph vertices
and edges. Specifically, fusion organizes a set of neighboring low-
degree vertices into a super-vertex, and fission splits a high-degree
vertex into a set of sibling sub-vertices. The vertices and edges of
the refactorized graphs are assigned to the nodes according to the
proximity of the multi-dimensional tree topology.

To shorten the communication paths of BFS messages, we or-
ganized the CNs attached to the same HFR-E controller into one
group (i.e., communication domain). Owing to HFR-E’s highly opti-
mized on-chip routing mechanism, the overhead of intra-domain
communication is much lower than that of inter-domain communi-
cation. This enables TuComm to perform topology-aware message
aggregation to minimize the expected total number of hops in the
BFS search.

Each communication domain has a responsible node (i.e., moni-
tor) which gathers messages from the same domain for transmission
to other domains and receives messages from other domains for
scattering within the same domain. The selection of monitors is
performed as follows. First, monitors should contain heavy vertices
(for locality). Second, place as many monitors as possible in the
same HFR-E controller’s routing table (for efficient mapping).

7 EXPERIMENTAL SETUP

7.1 Hardware Platforms & Graph Data

TuComm was tested on three HPC systems (Table 1) with different
CPU architectures and interconnection components. We evaluated
TuComm using six widely-used graph algorithms: BFS, SSSP, CC,
BC, PR, and CDLP. Although our discussion primarily focuses on
BFS, the other algorithms exhibited similar performance improve-
ments. To thoroughly assess the scalability of TuComm, we used
both synthetic and real-world datasets. The synthetic data was gen-
erated using the Graph500 tool, which creates large-scale graphs
by taking two parameters: the graph factor (𝑚) and edge factor
(𝑛). The generator produces a graph with 2𝑚 vertices and 𝑛 × 2𝑚
edges. In our experiments, we varied the graph factor from 26 to
41 while keeping the default edge factor of 16, to create graphs of

Table 2: Synthetic graph data used in our evaluation

scale
5

#Vertices #Edges #Comp. Nodes

26 64 M 1 B 1
27 128 M 2 B 2
28 256 M 4 B 4
29 512 M 8 B 8
30 1 B 16 B 16
32 4 B 64 B 64
34 16 B 256 B 256
36 64 B 1 Tri 1,024
37 128 B 2 Tri 2,048
38 256 B 4 Tri 4,096
41 2 Tri 32 Tri 79,024

Table 3: Real graph data used in our evaluation

dataset #Vertices #Edges #Comp. Nodes

com-Friendster [10] 1.1 B 91.8 B 16
clueweb12 [72] 987 M 42.6 B 16
twitter-2010 [34] 4.2 M 1.5 B 16

different sizes. Details of the synthetic and real-world datasets used
are listed in Table 2 and Table 3. These graphs were stored in the
compressed sparse row (CSR) format to reduce memory usage.

7.2 Competing Baselines

We compare TuComm to two representative graph communication
strategies: MST [19] and AML [27]. AML is a state-of-the-art mes-
sage library for graph processing and it is built in the Graph500
implementation by default [27, 32]. MST is an optimized version
of AML. We also compare TuComm with the representative parti-
tioning schemes. In addition, we also compare TuComm with three
state-of-the-art graph processing engines, namely GraphCube [20],
GraphScope [14], and Gluon [11], using the engineer-tuned algo-
rithm implementations provided by the frameworks.

8 EXPERIMENTAL RESULTS

8.1 Benchmarking Graph500

We have deployed TuComm to benchmark Graph500 BFS and SSSP
on Tianhe-Exa. In our experiments, we used 79,024 computing
nodes (1,264,384 cores) for BFS and 8,192 nodes (131,072 cores) for
SSSP. We did not evaluate SSSP on a larger scale due to financial
constraints. Our implementation and evaluation fully comply with
the Graph500 specification.

The Graph500 ranking published in Nov. 2023, places Fugaku
and Wuhan Supercomputer as the top performers for BFS and SSSP,
respectively. However, TuComm on Tianhe-Exa successfully out-
performs these top-ranking systems for both benchmarks, demon-
strating the efficacy and competitiveness of TuComm.

TuComm achieved a throughput of 164,949GTEPS using 1,264,384
processor cores for BFS, translating into more than 18.8% improve-
ment over Fugaku’s 138,867 GTEPS using 7.3 million cores (i.e.,
5.8× more cores than TuComm). The advantages of TuComm come
from the interconnection hierarchy-aware message aggregation
and active buffer management. Our evaluation shows that message
aggregation alone gives around 5× improvement over the standard,

5Edge factor of synthetic graphs is fixed at 16 [32].
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Figure 4: BFS throughput given by different communication strategies.
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Figure 5: BFS throughput delivered by graph processing engines and TuComm.

parallel BFS implementation based on AML, and active buffer man-
agement gives a further 3× improvement over the standard BFS
implementation.

For SSSP, TuComm achieved 23,021 GTEPS using 131,072 cores,
representing a 50.1% improvement over the Wuhan Supercom-
puter’s performance of 15,335.9 GTEPS. It is worth noting that
Wuhan Supercomputer utilizes more cores (6,999,552) and has
more memory per shared-memory node (2TB) compared to Tianhe-
Exa (16GB per node). Wuhan Supercomputer is designed for data-
analytic workloads with ample memory resources, enabling it to
handle more vertices per node and optimize distributed graph pro-
cessing challenges. In contrast, Tianhe-Exa has significantly less
memory per shared-memory node and incurs more expensive com-
munication overhead. Hence, TuComm’s enhancements for SSSP
are significant, given the considerable hardware advantages of the
Wuhan Supercomputer.

8.2 Compare with Baseline Methods

Figure 4 compares TuComm to state-of-the-art graph communica-
tion strategies, namely AML and MST. Figure 5 compares TuComm
against three graph processing engines: GraphScope, Gluon and
GraphCube. The experiment used up to 4,096 Tianhe-Exa nodes to
execute BFS. Some methods led to a runtime error and are marked
as X, since they failed to exploit the discrepancy in hierarchical
communication and incur huge communication overhead.

TuComm outperforms all baselines, particularly as the number
of computing nodes increases. For instance, when processing a
graph scale of 38 using 4,096 Tianhe-Exa nodes, TuComm delivers
22,490.17 GTEPS, 9.7× and 28.7× improvements over AML andMST,
respectively. We also obtain similar results on SSSP, PR, CC, BC and
CDLP, where TuComm respectively gives 27.2×, 29.1×, 25.6× and
19.7× throughput improvements over the best-performing baseline
when using 4,096 Tianhe-Exa nodes.

8.3 Preprocessing Overhead

Before graph algorithms ingress, typical graph processing involves
a preprocessing that performs tasks such as discarding isolated
vertices, counting degrees, and sorting vertices by edge degrees.
Figure 6 reports the time spent on the preprocessing. Generally, as

the size of the graph and the number of computing nodes increases,
the preprocessing overhead also grows. However, we observe that
TuComm has the lowest preprocessing overhead compared to other
methods. In contrast, GraphScope, which requires significant pre-
processing of the input graph, incurs 70.15× longer processing time
than TuComm.

8.4 Communication Volume & Time

Since communication takes most of the overall time for large-scale
graph processing, we compare the communication volume reduc-
tion and communication time of TuComm over AML for BFS on
Tianhe-Exa.

In Figure 7(a), we can observe that TuComm is much better than
that of the state-of-the-art AML and MST for communication reduc-
tions, which indicates that TuComm could trade cheap intra-domain
communications for expensive inter-domain communications. We
further examine the communication volume reductions varying
nodes from 128 to 1,024, whose results are shown in Figure 7(b),
where TuComm significantly outperforms other baselines. The ad-
vantage grows significantly as the number of computing nodes or
graph size increases.

8.5 Scalability of TuComm

Figure 8 shows the scalability of TuComm against various state-of-
the-art AML andMST running BFS on Tianhe-Exa. In contrast, prior
solutions struggle to scale beyond 256 nodes because they overlook
the communication variation within multi-level communication
hierarchies. However, TuComm delivers higher throughput than
baselines and scales well beyond 4,096 nodes.

8.6 Graph Operations on Real-world Data

We finally test TuComm on public datasets in Table 2 using 16
Tianhe-Exa nodes across two blades. Figure 9 compares TuComm
with GraphScope, Gluon, and GraphCube, which offer engineer-
optimized implementations for the test algorithms. TuComm con-
sistently outperforms GraphScope, Gluon, and GraphCube in all
test cases during the graph computation stage, achieving a speedup
of up to 18.92×, 23.56× and 27.34× over GraphScope, Gluon, and
GraphCube, respectively.
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9 RELATEDWORK

Communication is of particular importance for training graph-
based LLMs on HPC systems, like exascale supercomputers, where
AML is the de facto standard communication library. AML-based
communication libraries have beenwidely adopted to communication-
intensive scenarios, such as parallel activemessage interface (PAMI[41])
and low-level applications programming interface (LAPI[64]) for
IBM series supercomputers and K series computers[58], and MPI-3
RMA for TACC Stampede [44]. Hasanov et al. redesign the collec-
tive communication for operations of Reduce and Allreduce built in
MPI, which effectively reduces the communication cost of clusters
with a two-level hierarchy [31].

However, those MPI-based optimizations cannot adapt to graph
processing on large-scale HPC systems like supercomputers, as the
processing of graphs is quite different from traditional computation-
intensive applications [20, 22, 48, 70, 71, 87].
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Figure 9: Performance comparison on real-world graphs.

To address this problem, the Graph500 community implements
the AML for large-scale graph traversal. AML improves commu-
nication efficiency via per-node message aggregation, where each
source node aggregates messages if they are sent to the same lowest-
level target domain. However, when processing trillion-scale graphs
on large-scale HPC systems with hierarchical communication do-
mains, the communication cost of AML remains overwhelming and
thus severely affects the graph processing performance. TRAM [76]
is another communication library for communication-intensive
applications of supercomputers, which routes messages along the
dimensions of a virtual topology using intermediate relay nodes
to dynamically combine the messages having the same destina-
tions. Similar to AML, TRAM has no optimization for cross-domain
communication. Unlike prior communication optimizations and
message libraries, TuComm is presented to reduce cross-domain
communications.

10 CONCLUSION

We have presented TuComm, a communication engine designed
to accelerate training graph-based LLMs using hierarchical HPC
systems. By modeling latency across the communication hierarchy,
TuComm performs more aggressive message aggregation than AML
to reduce cross-domain communication. Extensive evaluations of
TuComm involved the Graph500 benchmark and fundamental graph
operations across three renowned large-scale HPC systems, utiliz-
ing over 79K CNs and more than 1.2 million processor cores. The
results demonstrate that TuComm consistently surpasses state-of-
the-art baselines and other graph processing systems, highlighting
its potential to significantly improve performance in distributed
training graph-based LLMs.
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