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Abstract
Translation-based strategies for cross-lingual001
transfer (XLT) such as translate-train—002
training on noisy target-language data trans-003
lated from the source language—and translate-004
test—evaluating on noisy source-language data005
translated from the target language—are com-006
petitive XLT baselines. In XLT for token classi-007
fication tasks, however, these strategies include008
label projection, the challenging step of map-009
ping the labels from each token in the original010
sentence to its counterpart(s) in the translation.011
Although word aligners (WAs) are commonly012
used for label projection, their low-level de-013
sign decisions have not been systematically in-014
vestigated in translation-based XLT. Moreover,015
recent marker-based methods, which project016
labels by inserting tags around spans before017
(after) translation, claim to outperform WAs018
in label projection for XLT. In this work, we019
revisit WAs for label projection, systematically020
investigating the effects that low-level design021
decisions have on token-level XLT, namely:022
(i) the algorithm for projecting labels between023
(multi-)token spans, (ii) filtering strategy for024
reducing the proportion of noisy data, and (iii)025
pre-tokenization of the translated sentence. We026
find that all of these have a substantial impact027
on downstream XLT performance and show028
that, with optimal choices, WA offers XLT per-029
formance comparable to that of marker-based030
methods. We then introduce a new projec-031
tion strategy that ensembles translate-train and032
translate-test predictions and show that it sub-033
stantially outperforms the marker-based projec-034
tion. Crucially, we show that this ensembling035
also reduces sensitivity to low-level WA design036
choices, resulting in more robust XLT for token037
classification tasks.038

1 Introduction039

In recent years, multilingual language models040

(mLMs) have de facto become the main vehicle041

of cross-lingual transfer (XLT): fine-tuned on la-042

beled task data in a high-resource source language,043

mLMs can make predictions in target languages 044

with few (few-shot XLT) to no (zero-shot XLT) la- 045

beled task instances (Wu and Dredze, 2019; Wang 046

et al., 2019; Lauscher et al., 2020; Schmidt et al., 047

2022). While both encoder-only (Devlin et al., 048

2019; Conneau et al., 2020; He et al., 2023) and 049

decoder-only (Team et al., 2024; Hui et al., 2024; 050

Grattafiori et al., 2024) mLMs have demonstrated 051

strong XLT performance for sequence classifica- 052

tion tasks, in XLT for token classification tasks the 053

comparatively smaller encoder-only mLMs, like 054

XLM-R (Conneau et al., 2020), continue to outper- 055

form the much larger decoder LLMs (Ahuja et al., 056

2023; Le et al., 2024; Parekh et al., 2024). 057

Much of the above work points to translation- 058

based XLT strategies—–where a machine transla- 059

tion (MT) model is used to either (1) gather noisy 060

target language data by translating the clean source 061

language data prior to training, known as translate- 062

train (T-Train) or (2) translate clean target lan- 063

guage instances into the (noisy) source language be- 064

fore inference, known as translate-test (T-Test)— 065

as competitive approaches for XLT (Hu et al., 2020; 066

Ruder et al., 2021; Ebrahimi et al., 2022; Aggar- 067

wal et al., 2022). More elaborate translation-based 068

XLT strategies have recently been shown to further 069

improve the transfer performance (Artetxe et al., 070

2023; Ebing and Glavaš, 2024). 071

The effectiveness of translation-based XLT, 072

however, has predominantly been showcased on 073

sequence-level classification tasks (Ruder et al., 074

2021; Oh et al., 2022; Artetxe et al., 2023). This is 075

in part due to the fact that translation-based XLT 076

for token classification tasks entails the (difficult) 077

step of label projection. Traditionally, label pro- 078

jection is tackled with word aligners (WAs) (Och 079

and Ney, 2003; Dyer et al., 2013; Dou and Neu- 080

big, 2021), which map each token in the source 081

sequence to a corresponding token in the target se- 082

quence. Recent WA work leverages contextualized 083

embeddings from mLMs (e.g., mBERT) to produce 084
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token alignments (Jalili Sabet et al., 2020; Dou and085

Neubig, 2021; Wang et al., 2022). Although WA086

research has a long-standing track record in NLP087

(Och and Ney, 2003; Dyer et al., 2013; Jalili Sabet088

et al., 2020; Dou and Neubig, 2021; Wang et al.,089

2022), standard WA evaluation protocols do not090

include translation-based XLT for token classifica-091

tion tasks. Because of this, a range of low-level092

design decisions related to token-level XLT us-093

ing WAs—such as (i) the algorithm for project-094

ing the labels, (ii) filtering techniques to reduce095

the number of noisily mapped labels, and (iii) the096

pre-tokenization applied to the translated target sen-097

tence before it can be aligned to the clean source098

sentence—remain largely uninvestigated.099

In the meantime, marker-based label projection100

(Chen et al., 2023; Le et al., 2024) has largely re-101

placed WA as the default approach for label pro-102

jection for token-level XLT. These approaches in-103

sert tags (e.g., "[", "]") around entities of inter-104

est, either (i) before translation to preserve the105

markers throughout the translation process and re-106

cover the spans afterward (Chen et al., 2023), or107

(ii) post-translation by means of constrained de-108

coding (Le et al., 2024). In this line of work,109

token-level translation-based XLT is explicitly eval-110

uated, demonstrating strong performance for both111

T-Train and T-Test, rendering WA-based XLT112

for token classification tasks inferior (Chen et al.,113

2023; Le et al., 2024). While these efforts pro-114

vide code and technical details for their proposed115

marker-based methods, they do not provide the low-116

level design decisions and implementation details117

for label projection with WAs: as such, they possi-118

bly underestimate the token-level translation-based119

XLT with WAs due to suboptimal design choices.120

Contributions. Because of this, we (1) systemat-121

ically investigate WA for token-level translation-122

based XLT. We start by evaluating the effect of123

low-level design decisions including (i) the exact124

algorithm for mapping the labels from the clean125

source sentence to the translated target sentence126

based on word alignments; (ii) filtering strategies to127

identify noisy label projections in the translated tar-128

get sentences; and (iii) the pre-tokenization of the129

translated sentences, which is required to align the130

tokens to their counterparts in the clean source sen-131

tence. We show that these design choices can have132

a tremendous impact on translation-based XLT for133

token-level tasks. For example, using a language-134

specific pre-tokenizer instead of simple whitespace135

pre-tokenization improves performance of T-Test 136

by up to 13.2% (details in Sec. 2). Generally, we 137

find T-Test to be more sensitive than T-Train 138

to low-level design decisions of WA. (2) We then 139

extensively compare WA-based label projection— 140

with what we found to be optimal low-level design 141

choices—against state-of-the-art marker-based la- 142

bel projection methods in token-level XLT on 3 143

established benchmarks encompassing 35 topolog- 144

ically diverse languages. Contrary to prior claims 145

(Chen et al., 2023; Le et al., 2024; Parekh et al., 146

2024), we show that “optimal” WA-based label 147

projection matches or surpasses the performance 148

of marker-based approaches in translation-based 149

XLT on token-level tasks. (3) Moreover, we pro- 150

pose a more sophisticated method for token-level 151

translation-based XLT with WAs based on ensem- 152

bling T-Train and T-Test (Oh et al., 2022). For 153

each token, we average the corresponding prob- 154

ability distributions over the labels produced by 155

T-Train and T-Test. Our proposed ensemble 156

(ETT) improves the transfer performance, substan- 157

tially outperforming state-of-the-art marker-based 158

approaches. More importantly, ETT drastically re- 159

duces the sensitivity of T-Train and T-Test to 160

low-level WA design decisions. (4) Finally, we 161

show that our findings hold for different choices of 162

(i) MT model (i.e., impact of translation quality), 163

(ii) WA model, and (iii) base mLM (i.e., encoder 164

vs. decoder models) 165

2 Token-Level XLT via Word Alignment 166

We first detail the low-level design decisions of 167

WA-based label projection that we investigate: span 168

mapping, filtering strategies, and pre-tokenization, 169

and then describe our new label projection ap- 170

proach that ensembles T-Train and T-Test. 171

2.1 Label Projection with WA: Design Choices 172

Span Mapping. Translation-based XLT for token- 173

level tasks requires mapping labeled spans of 174

tokens—named entities, answer spans in question 175

answering, or slot-values in task-oriented dialog— 176

from the source language input to the (spans of) 177

tokens in the translation. Instead of simply project- 178

ing the token-level labels based on the alignments 179

produced by a WA model, we propose a more ro- 180

bust, span-based label projection, as illustrated in 181

Figure 1. We start from a pre-tokenized source sen- 182
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Source Labels 𝒍

Source Span Indices 𝒆

Source Tokens 𝒔

Translated Target Tokens 𝒔𝑴𝑻

Translated Target Span Indices 𝒆𝑴𝑻

Projected Target Labels 𝒍𝑴𝑻

O B-ORG I-ORG I-ORG I-ORG O

0 1 2 3 4 5

The Department of US Agriculture was

Das US - Landwirtschaftsministerium wurde

0 1 2 3 4

O B-ORG I-ORG I-ORG O

Default Label min(𝑒𝑀𝑇) 2 ≤ max(𝑒𝑀𝑇) 3 ≤ max(𝑒𝑀𝑇) Default LabelReason for Label

Word Alignment 𝒂

Figure 1: Schematic overview of our word alignment-based label projection for T-Train.

tence, i.e., the sequence of (pre-)tokens s1 and their183

corresponding labels l. We then concatenate the184

tokens in s and translate the resulting sentence into185

the target language with an MT model. We then186

pre-tokenize the translation, obtaining the sequence187

of (pre-)tokens sMT . We then feed s and sMT into188

the WA, obtaining the set of alignment pairs ai,j189

(denoting that the i-th token in s is aligned to the190

j-th token in sMT ). We next carry out span-based191

label projection, i.e., establish the sequence of la-192

bels lMT , on the basis of these alignments.193

Let e = {m, . . . , n} be the set of token indices194

of one labeled span in s (e.g., “Department of US195

Agriculture” spanning indices 1-4 in Fig. 1). Us-196

ing the alignments produced by the WA model,197

we then collect the set of corresponding indices198

eMT = {k, . . . , l} from sMT (e.g., indices {1, 3}199

of the tokens “US” and “Landwirtschaftsminis-200

terium”, see Fig. 1). We then project the labels201

based on e and eMT as follows. We assume a202

standard BIO scheme in which the first token in a203

span is labeled with a different tag (B-Tag) from204

all other tokens of the span (I-Tag). We thus205

project the B-Tag label to the token in sMT at in-206

dex min(eMT ) (i.e., the smallest index among all207

tokens in sMT that WA aligned to any of the source208

tokens with indices in e). We next assume that the209

span has to be contiguous in the translation too and210

assign the respective I-Tag to all tokens in sMT211

between indices min(eMT ) + 1 and max(eMT ).2212

We also experimented with the simple approach213

of naively projecting the labels based on the to-214

ken alignments: based on the alignment ai,j , we215

1Most datasets for token classification tasks come pre-
tokenized with labels assigned to these predefined (typically
word-level) tokens. For a source text that is not pre-tokenized
(e.g., see TyDiQA in §3), we tokenize it with the same pre-
tokenization as for the translated text.

2If there is only one labeled span per instance, as in the
case of TyDiQA (see 3), then there is no need to differentiate
between B-Tag and I-Tag, so we conflate the two.

copy the label from the i-token in s to the j-th 216

token in sMT .3 This simple projection strategy, 217

however, consistently yielded worse results in our 218

initial experiments: we thus ran the full evaluation 219

using only our span mapping strategy described 220

above. We believe that the simple projection along 221

word alignments performs poorly due to frequent 222

changes in word order between languages (as ex- 223

emplarily illustrated in Figure 1). For T-Train, 224

we additionally experimented with string matching 225

(STR-MAT) between the source language and trans- 226

lated target language spans, as certain spans like 227

dates (e.g., 1997) or names (e.g., Michael Jordan) 228

are often fully preserved in translation.4 229

The span mapping for T-Test follows the same 230

procedure, only in reverse. We translate the target- 231

language sentence with MT into the source lan- 232

guage and then predict the labels with the fine- 233

tuned mLM. We then run the WA and project the 234

predicted labels to the original target-language sen- 235

tence using our span-based projection approach. 236

Filtering Strategies. The success of the above 237

span mapping directly depends on the quality of 238

WA for a concrete language pair, which is affected 239

by (i) the amount of parallel data for the pair used in 240

WA training, (ii) the amount of monolingual data 241

for the languages in question seen by the WA’s 242

underlying mLM in pretraining (Dou and Neubig, 243

2021; Wang et al., 2022), and (iii) the linguistic 244

proximity between the two languages (and in partic- 245

ular whether they have similar word order). To mit- 246

igate the impact of imperfect word alignment, we 247

propose several strategies for detecting and elimi- 248

nating instances with low-quality word alignment. 249

Complete Source (COM-SRC). We test if all indices 250

of a span e = {m, ..., n} have an alignment in 251

3If the j-th sMT token is aligned to multiple tokens in s,
we randomly select from which to project the label.

4We quantify the impact of STR-MAT in App G.
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a, i.e., whether the corresponding tokens in s are252

aligned to at least one token in sMT . Figure 1 il-253

lustrates an example of an incomplete source align-254

ment: the token “of” in s is not aligned to any255

token in the translation sMT . We assume that if e256

is partially unaligned, then eMT is more likely to257

be incomplete and thus incorrect.258

Complete Target (COM-TGT). The motivation for259

this filter is analogous to COM-SRC: we select only260

the instances for which all span tokens in the trans-261

lated sentence are aligned to at least one token in262

the original source-language sentence. But since263

we do not have ground truth spans for the trans-264

lation, we apply the following proxy: we retain265

only the instances for which the indices in eMT266

constitute a continuous span. The example in267

Figure 1 does not satisfy this filter either, since268

eMT = {1, 3} is discontinuous.269

Correct Scheme (COR-SCH). In this case we keep270

only the instances in which the mapped span in the271

target sentence adheres to the BIO scheme after272

projection, namely that the first token is assigned273

the B-Tag and all other tokens an I-Tag.274

Complete Instance (COM-INS). Following Chen275

et al. (2023), we verify that the number and type of276

spans in l and lMT match (e.g., if l has two spans277

with label LOC and one with label PER then lMT278

must also have two LOC spans and one PER span).279

We apply our filtering strategies to both T-Train280

and T-Test, with some exceptions: (i) we do not281

use COR-SCH for T-Train, as our span mapping al-282

ready ensures BIO correctness; (ii) COM-INS cannot283

be applied to T-Test as it would require accessing284

gold labels. If a filter is not satisfied, in T-Train285

we simply remove the translated training instance;286

in T-Test, we do not project the labels for the cor-287

responding span and assign the default label “O”.288

Pre-Tokenization. To apply word alignment for289

token-level tasks, both the original sentence and290

the translation need to be pre-tokenized. While291

the original sentence s is usually given in a pre-292

tokenized format, we still need to pre-tokenize the293

translation sMT . We compare language-agnostic294

whitespace pre-tokenization (WS-TOK) against295

language-specific pre-tokenization (SP-TOK).5 It296

is worth noting that it is more challenging to297

pre-tokenize target-language sentences in T-Train298

than English translations in T-Test.299

5For brevity, we provide the details on the language-
specific tokenizers in App. F.

2.2 Ensembling T-Train and T-Test (ETT) 300

Ensembling is an effective strategy for improving 301

the predictions of two or more models by reducing 302

the impact of individual errors (Wortsman et al., 303

2022). We next propose a translation-based strat- 304

egy for token-level XLT that ensembles the pre- 305

dictions of T-Train and T-Test as follows. At 306

inference time, the T-Train model produces class 307

logits for each token si in the target-language sen- 308

tence s. In contrast, the T-Test model outputs 309

class logits over each token sMT
j in the translated 310

source-language sentence sMT . We then use the 311

alignments ai,j between s and sMT produced by 312

the WA model, and average the class logits between 313

the aligned tokens si and sMT
j . If a token in sMT

j 314

is not aligned to any token in si, we only use the 315

T-Train prediction. Similarly, for tokens of spans 316

that violate some filter (e.g., if COM-SRC is not sat- 317

isfied), we default to the T-Train prediction. 318

In span extraction formulation of token-level 319

tasks (i.e., no BIO scheme, see TyDiQA in §3), this 320

approach has to be slightly modified because we 321

do not have a vector of class logits for each token; 322

instead, there are two logit distributions across all 323

tokens—one for the span start and one for the span 324

end. Here, we average the projected start/end logits 325

produced by the T-Test model and the start/end 326

logits predicted by the T-Train model. 327

3 Experimental Setup 328

Machine Translation. For translation, we utilize 329

the state-of-the-art massively multilingual NLLB 330

model with 3.3B parameters (Team et al., 2022). 331

Following prior work (Artetxe et al., 2023; Ebing 332

and Glavaš, 2024), we decode using beam search 333

with a beam size of 5. 334

Evaluation Tasks. We evaluate on three estab- 335

lished token classification tasks, covering both 336

shallow understanding in short sequences (named 337

entity recognition and slot filling) and complex 338

reasoning over longer text (extractive QA). Our 339

experiments span 35 diverse languages, ranging 340

from high-resource languages, represented well in 341

the pretraining corpus of the base mLM to low- 342

resource languages unseen by the mLM. In all ex- 343

periments, English is the source XLT language.6 344

Named Entity Recognition (NER). Our evaluation 345

includes 18 of 20 languages from MasakhaNER 346

2.0 (Masakha) (Adelani et al., 2022) supported by 347

6We provide the complete list of languages in App. F.
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the NLLB model used for translation. Masakha348

consists of underrepresented languages spoken in349

Sub-Saharan Africa. As source data, we use the350

English training (14k instances) and validation por-351

tions (3250 instances) of CoNLL (Tjong Kim Sang352

and De Meulder, 2003). We add a simple softmax353

classifier on top of the mLM to predict the class for354

each token.355

Slot Filling (SL). We use the xSID dataset (van der356

Goot et al., 2021), which covers 10 diverse lan-357

guages and dialects. xSID comprises only evalua-358

tion data, so we follow van der Goot et al. (2021)359

and use their publicly released English data for360

training and validation. The utterances are sourced361

from the Snips (Coucke et al., 2018) and Facebook362

(Schuster et al., 2019) SL datasets. After deduplica-363

tion, we end up with over 36k instances for training364

and 300 for validation. As for NER, we simply add365

a softmax classifier on top of the mLM.366

Extractive Question Answering (QA). For extrac-367

tive QA, we resort to TyDiQA-GoldP (TyDiQA)368

(Clark et al., 2020). TyDiQA covers 8 typologically369

diverse languages with different scripts. We use370

the English training (3696 training) and validation371

portion (440 validation) as our source-language372

data. We jointly encode the question-context pair373

and—as common for tasks formulated as span374

extraction—feed the transformed sequence into a375

feed-forward classifier that predicts the start and376

end of the answer span.377

Label Projection. We compare our WA label378

projection approaches against two state-of-the-art379

“marker-based” methods that tag the labeled spans380

and preserve the tags during translation.381

Word Alignment (WA). In our main experiments,382

we resort to AccAlign (Wang et al., 2022), a state-383

of-the-art WA based on the multilingual sentence384

encoder LaBSE (Feng et al., 2022).7385

EasyProject (Easy). We first compare our WA-386

based approach against the marker-based label pro-387

jection method of Chen et al. (2023). Prior to trans-388

lation, Easy inserts tags ("[", "]") around labeled389

spans (e.g., named entities). The MT is expected to390

preserve the tags in the translation, allowing for a391

trivial reconstruction of the labels. Note that Easy392

can only be used in T-Train and not in T-Test.393

Let t be the target-language sentence at inference394

time; in T-Test, the model will make predictions395

on its English translation s; Easy would then insert396

7We adopt the hyperparameters proposed by the authors.

Masakha xSID Avg

Translate-Train

NO-FILT 65.5±1.2 82.8±0.6 74.2±1.0

COM-INS 65.8±1.3 82.8±0.5 74.3±1.0

+ COM-TGT 66.0±1.7 82.0±0.7 74.0±1.3

+ COM-TGT + COM-SRC 66.6±1.1 82.0±0.9 74.3±1.0

Translate-Test

NO-FILT 51.2±0.4 67.8±0.4 59.5±0.4

COR-SCH 58.2±0.4 74.9±0.4 66.6±0.4

+ COM-TGT 58.1±0.5 74.3±0.5 66.2±0.5

+ COM-TGT + COM-SRC 58.3±0.5 73.3±0.5 65.8±0.5

Table 1: Results on the validation data for WA-based
XLT with various filtering strategies. NO-FILT indicates
that no filtering was applied. Results with XLM-R.

markers into s and back-translate to the target lan- 397

guage, obtaining t′; but t′ will generally differ from 398

t, which is the actual sentence we need to label. 399

Codec. Our experiments further include Codec 400

(Le et al., 2024), a label projection method that 401

leverages constrained decoding as part of a two- 402

step translation procedure. In the first step, the 403

source sentence is simply translated into the target 404

language (e.g., from English: “This is New York” 405

to German: “Das ist New York”). Then, in step two, 406

tags are inserted around the labeled spans in the 407

source sentence (English: “This is [ New York ]”) 408

and now the marked sentence is fed again as input 409

to the MT model: during decoding, the MT model 410

is allowed to generate only the tokens from the 411

translation obtained in the first step (“Das”, “ist”, 412

“New”, “York”) or a tag (“[”, “]”). 413

Downstream Fine-Tuning. We use XLM-R 414

Large (Conneau et al., 2020) as our base mLM. 415

For T-Test, we also experiment with DeBER- 416

TaV3 Large (He et al., 2023) and LLM2Vec 417

(BehnamGhader et al., 2024) as English-centric 418

models. In T-Train, we fine-tune on both the clean 419

English data and translated target-language data, 420

following Ebing and Glavaš (2024) who show that 421

this is better than training only on translations. In 422

T-Test, we train the models only on the clean En- 423

glish data. We run all experiments with 3 random 424

seeds and report the mean F1 score and standard de- 425

viation. We provide full training details in App F). 426

427

4 Results and Discussion 428

First, using the validation portions of the respective 429

datasets, we assess the impact of low-level WA de- 430

sign choices on token-level translation-based XLT 431
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(§4.1). Based on these findings, we compare the432

most effective WA variant against the two state-of-433

the-art marker-based approaches, Easy and Codec,434

on test portions of all three datasets (§4.2). Fi-435

nally, we provide further ablations in §4.3, analyz-436

ing the impact of the underlying mLM, WA, and437

MT model on the XLT performance.438

4.1 WA Design Choices439

Filtering Strategies. Our preliminary experiments440

(Table 1) reveal that instance filtering has a neg-441

ligible effect on performance in T-Train: on av-442

erage (between Masakha and xSID) none of the443

filtering strategies yields gains (i.e., over NO-FILT).444

This finding is positive, as finding an optimal fil-445

tering strategy for T-Train is costly: it requires446

(re-)training language-specific models for every447

change in the filtering strategy. In stark contrast,448

filtering, based on the correct scheme (COR-SCH),449

brings a substantial (+7.1% over NO-FILT) for450

T-Test. We find COR-SCH to be the most suc-451

cessful strategy for T-Test—adding additional fil-452

ters (COM-TGT and/or COM-SRC) does not bring453

gains.8454

Pre-Tokenization. Figure 2 summarizes the re-455

sults for different pre-tokenization approaches.456

The results mirror the filtering findings: the pre-457

tokenization strategy has (1) little impact on the458

T-Train performance (language agnostic whites-459

pace tokenization, WS-TOK, is marginally better for460

Masakha and xSID and language-specific tokeniza-461

tion, SP-TOK, brings marginal gains on TyDiQA);462

(2) much larger impact on T-Test: SP-TOK out-463

performs WS-TOK by 13.2% on Masakha, 5.9% on464

xSID and 3.2% on TyDiQA. Our findings are in465

line with prior work (Artetxe et al., 2023; Ebing466

and Glavaš, 2024), which showed that T-Test is467

more affected by translation quality than T-Test:468

our results extend this finding also to filtering and469

pre-tokenization strategies.470

4.2 Main Results471

We now compare the optimal WA-based config-472

urations for T-Train and T-Test, respectively,473

against the state-of-the-art marker-based label pro-474

jection methods Easy and Codec.475

Translate-Train. We first note that T-Train, re-476

gardless of the label projection strategy (WA, Easy,477

or Codec), substantially outperforms zero-shot478

8As filters available for the span extraction formulation of
the task differ, we present the results for TyDiQA in App. G.

Masakha xSID TyDiQA

WS

2.5

5

7.5

10

12.5

-0.5 -0.4

0.3

13.2

5.9

3.2

Translate-Train: SP
Translate-Test: SP

Figure 2: Transfer performance with WA for language-
specific (SP) pre-tokenization relative to whitespace
(WS) pre-tokenization. Results with XLM-R.

Masakha xSID TyDiQA Avg

Zero-Shot

X 52.9±1.8 76.8±1.4 74.0±1.0 67.9±1.5

Translate-Train

Easy X 66.0±0.9 83.6±0.9 75.5±1.0 75.0±0.8

Codec X 66.9±1.6 83.4±0.8 - -
WA X 67.1±1.1 82.7±0.8 75.2±1.0 75.0±1.0

Translate-Test

Codec X 72.0±0.5 79.4±0.3 - -
Codec D 72.4±0.4 79.5±0.4 - -
WA X 72.5±0.5 80.2±0.3 63.8±1.1 72.2±0.8

WA D 72.9±0.4 80.2±0.4 67.6±1.0 73.6±0.7

Ensemble-Train-Test

Easy + WA X/D 71.7±0.7 83.8±0.7 76.3±0.9 77.3±0.7

Codec + WA X/D 72.3±0.7 82.8±0.7 - -
WA + WA X/D 72.6±0.6 83.4±0.9 76.2±0.9 77.4±0.8

Table 2: Main results for translation-based XLT for
token-level tasks. Results with XLM-R (X) and De-
BERTa (D).

XLT with the mLM (e.g., by 14.2% on Masakha 479

for WA-based projection). Contrary to the results 480

of prior work that reported translation-based XLT 481

with WAs inferior to Easy (Chen et al., 2023) and 482

Codec (Le et al., 2024), we find that—when op- 483

timally configured—WA yields competitive per- 484

formance: On TyDiQA and xSID, optimal WA- 485

based T-Train lags marker-based transfer by less 486

than 1%; and on Masakha WA-based transfer even 487

slightly outperforms both Easy and Codec. 488

Translate-Test. Irrespective of the label projec- 489

tion approach, T-Test outperforms zero-shot XLT 490

on Masakha and xSID (as well as T-Train on 491

Masakha). On TydiQA, however, T-Test (with 492

WA) yields substantially lower performance than 493

T-Train; we did not evaluate Codec on TyDiQA 494

for reasons provided in App. D. Again we ob- 495
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Masakha xSID TyDiQA Avg

Zero-Shot

X 52.9±1.8 76.8±14 74.0±1.0 67.9±1.5

Translate-Test

WS-TOK D 60.1±0.3 73.3±0.4 64.0±0.8 65.8±0.5

SP-TOK D 72.9±0.4 80.2±0.4 67.6±1.0 73.6±0.7

Ensemble-Train-Test

WS-TOK X/D 72.0±0.7 81.2±1.0 75.8±0.9 76.3±0.9

SP-TOK X/D 72.6±0.6 83.4±0.9 76.2±0.9 77.4±0.8

Table 3: Results for translation-based XLT utilizing dif-
ferent pre-tokenizations for T-Test—whitespace (WS-
TOK) and language-specific (SP-TOK). Results with
XLM-R (X) and DeBERTa (D).

serve that the “optimal” WA-based label projec-496

tion matches (in fact, slightly surpasses) the perfor-497

mance of the marker-based Codec on Masakha and498

xSID. This is encouraging because the label pro-499

jection with Codec—due to its two-step translation500

procedure—is computationally much more expen-501

sive (i.e., slower) than WA. Further, consistent with502

findings of Artetxe et al. (2023) for sentence-level503

tasks, we observe that models solely trained on504

English (i.e., DeBERTa) offer gains over compara-505

ble mLMs (i.e., XLM-R). On TyDiQa, DeBERTa506

outperforms XLM-R by 3.8%, but the two offer507

comparable performance on Masakha and xSID.508

We speculate that this is because NER and slot509

labeling do not require advanced language under-510

standing abilities and thus the monolingual English511

ability of an mLM suffices for these tasks.512

Ensemble-Train-Test. On average, our proposed513

ensemble ETT improves over T-Train and T-Test514

by 2.4% and 3.8%, respectively. ETT even improves515

translation-based performance on TyDiQA, where516

T-Test substantially trails zero-shot XLT. We sum-517

marize our observations as follows: (i) in scenarios518

where T-Train performs better than T-Test, ETT519

achieves additional gains over T-Train by lever-520

aging the complementary strengths of T-Test; (ii)521

in scenarios where T-Train performance is worse522

than T-Test, utilizing ETT does not harm because523

it results in similar performance as T-Test.524

Robustness via Ensembling. Our preliminary525

studies on WA-related low-level design choices526

(§4.1) revealed notable performance variation, es-527

pecially for T-Test. We now show that our pro-528

posed ensemble ETT not only improves perfor-529

mance over both T-Train and T-Test but also530

makes the performance much less sensitive to de-531

sign details of WA. Table 3 compares T-Test and 532

ETT with WA-based label projection for the two pre- 533

tokenization strategies (WS-TOK and SP-TOK). For 534

ETT, we modify the pre-tokenization only for the 535

T-Test part of the ensemble and keep the T-Train 536

pre-tokenization unchanged. For T-Test, WS-TOK 537

underperforms SP-TOK by 7.8% on average (and 538

even trails zero-shot XLT by 2.1%). In contrast, 539

ETT almost completely closes the gap between the 540

two (WS-TOK is behind SP-TOK by only 1.1%), mak- 541

ing the choice of pre-tokenizer much less conse- 542

quential for the final performance. 543

4.3 Further Findings 544

LLMs as Encoders. Prior work rendered decoder- 545

only LLMs inferior to smaller encoder-only models 546

(Ahuja et al., 2023; Le et al., 2024; Dukić and Sna- 547

jder, 2024), but more recent efforts suggest that au- 548

toregressive LLMs can be post-hoc turned into com- 549

petitive bidirectional encoders (BehnamGhader 550

et al., 2024; Wang et al., 2024). We thus compare a 551

state-of-the-art decoder-turned-encoder LLM2Vec 552

(based on Llama-3-8B) (BehnamGhader et al., 553

2024) against the encoder models in translation- 554

based XLT for token classification. Following orig- 555

inal work, we add a linear classifier with dropout 556

on top of LLM2Vec, fine-tuning only the classi- 557

fier. Figure 3 summarizes the results.9 We ob- 558

serve that much smaller DeBERTa is superior to 559

LLM2Vec in T-Test (e.g., +11.4% on Masakha) 560

and that T-Test with LLM2Vec even trails zero- 561

shot transfer with XLM-R on xSID. In ETT (with 562

XLM-R-based T-Train component), LLM2Vec be- 563

comes much more competitive and lags DeBERTa 564

by only 2% on average, which further emphasizes 565

the robustness that our ensembling (ETT) brings to 566

translation-based XLT for token-level tasks. 567

Choice of Word Aligner. We next ablate the 568

impact of the WA model on downstream trans- 569

fer performance. We compare the widely used 570

Awesome (Dou and Neubig, 2021; van der Goot 571

et al., 2021; Chen et al., 2023; Le et al., 2024), 572

based on mBERT, with the more recent AccAlign 573

(Wang et al., 2022), which resorts to the multi- 574

lingual sentence encoder LaBSE. Both WAs are 575

released in the vanilla and fine-tuned variants. For 576

the latter, the underlying mLM is explicitly fine- 577

tuned with word-alignment objectives on parallel 578

data (Dou and Neubig, 2021; Wang et al., 2022). 579

9We did not run LLM2Vec experiments on TyDiQA as
LLMs yield better performance by solving QA generatively.
We provide detailed LLM2Vec results in App. I
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Figure 3: Results for translation-based XLT with
LLM2Vec (L) vs. DeBERTa (D), relative to zero-shot
XLT performance with XLM-R (X).

Masakha xSID TyDiQA Avg

Zero-Shot

52.9±1.8 76.8±1.4 74.0±1.0 67.9±1.5

Translate-Train

AccAlign 67.1±1.2 82.7±0.8 75.2±1.0 75.0±1.0

AccAlginnoft 66.7±1.1 82.9±0.5 75.0±1.1 74.9±1.0

Awesomenoft 64.4±1.3 79.8±0.8 73.8±1.4 72.7±1.2

Translate-Test

AccAlign 72.5±0.5 80.2±0.3 63.8±1.1 72.2±0.8

AccAlginnoft 70.5±0.5 79.7±0.3 62.1±1.1 70.8±0.7

Awesomenoft 65.3±0.4 74.8±0.3 62.8±1.1 67.6±0.7

Table 4: Comparison of translation-based XLT with
different WAs. Results with XLM-R; noft denotes
vanilla WAs, without WA-specific fine-tuning.

Table 4 shows the results of the WA comparison.580

Without WA-specific fine-tuning, AccAlign outper-581

forms Awesome by 2.2% for T-Train and 3.2% for582

T-Test, respectively. The results are mixed w.r.t.583

explicit WA fine-tuning: the fine-tuned AccAlign584

yields virtually no gains in T-Train, it does bring585

small performance boost (1.4%) in T-Test. This is586

in line with findings from Chen et al. (2023), who587

report similar behavior for Awesome. We hypoth-588

esize that the limited size and language diversity589

of WA fine-tuning limits the generalization to a590

broader set of (low-resource) languages, as evalu-591

ated in our work.592

Translation Quality. Commercial MT models593

are typically considered to produce superior trans-594

lation quality compared to their publicly avail-595

able counterparts. To evaluate the impact of the596

MT model on token-level translation-based XLT,597

we generate translations using Google Translate598

(GT), which serves as a representative example of599

a commercial MT model. We report results for600

T-Test and ETT only (Table 5) as prior work al-601

Masakha xSID TyDiQA Avg

Zero-Shot

X 50.8±1.2 76.8±1.4 74.0±1.0 67.2±1.2

Translate-Test

NLLB D 73.4±0.5 80.2±0.4 67.6±1.0 73.7±0.7

GT D 75.0±0.4 81.2±0.3 70.1±1.2 75.4±0.8

Ensemble-Train-Test

NLLB X/D 73.0±0.6 83.4±0.9 76.2±0.9 77.5±0.8

GT X/D 73.0±0.6 83.2±0.9 76.9±0.7 77.7±0.8

Table 5: Results for translation-based XLT utilizing
different translation models for T-Test—NLLB and
Google Translate (GT). Results with XLM-R (X) and
DeBERTa (D).

ready demonstrated that translation quality has a 602

less pronounced impact on T-Train (Artetxe et al., 603

2023; Ebing and Glavaš, 2024). For T-Test, we 604

find that GT outperforms NLLB by 1.7% on aver- 605

age. Nevertheless, the gains obtained by a more 606

powerful MT model still trail the performance 607

improvements introduced by using our ensemble 608

(ETT) with NLLB only. ETT—regardless the MT 609

model—outperforms T-Test with GT by more 610

than 2%. Additionally, the difference in ETT perfor- 611

mance between GT and NLLB is negligible (0.2%), 612

which once more points to the robustness that ETT 613

brings to XLT for token classification tasks. 614

5 Conclusion 615

In this work, we thoroughly investigated the role 616

of word aligners (WAs) in translation-based cross- 617

lingual transfer for token classification tasks. Our 618

experimentation on three established benchmarks 619

covering 35 languages, revealed that low-level de- 620

sign decisions related to label projection via WA 621

can have a substantial effect on translation-based 622

XLT strategies, in particular translate-test. We then 623

show that “optimal” WA-based label projection can 624

match or even surpass the transfer performance of 625

recent marker-based approaches (Chen et al., 2023; 626

Le et al., 2024), contrary to their findings. Fur- 627

ther, we proposed a more sophisticated WA-based 628

transfer approach that ensembles predictions of 629

translate-train and translate-test. We demonstrated 630

that the proposed ensemble not only substantially 631

increases transfer performance but also reduces the 632

sensitivity of transfer performance to low-level de- 633

sign decisions of WA-based label projection. 634
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6 Limitations635

We focused on systematically exploring the design636

choices relevant for translation-based XLT using637

WA. However, our study is limited by the preva-638

lent practice of creating new evaluation datasets by639

translating the data from an existing high-resource640

language to the desired (new) language. This ap-641

plies to xSID and some languages of Masakha. The642

resulting data may contain distinct characteristics643

that stem from the translation process often referred644

to as translationese. Prior work (Artetxe et al.,645

2020) stated that translation-based XLT strategies646

might lead to the exploitation of translationese,647

slightly overestimating the true performance.648
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A Translation Data973

For TyDiQa (Clark et al., 2020), we translate974

the questions and the context independently. To975

achieve higher translation quality, we split each976

context into sentences prior to translation and977

merge them back together afterwards. We utilize978

wtpsplit (Minixhofer et al., 2023) for sentence seg-979

mentation. For Masakha (Adelani et al., 2022) and980

xSID (van der Goot et al., 2021), we join the pre-981

tokenized input on white space before translation.982

We deviate for the Chinese data in xSID, where we983

merge neighboring Chinese tokens without white984

space. Additionally, the dialect South Tyrol (de-st)985

in xSID is not supported by NLLB. We translate986

the dialect pretending it to be German (i.e., using987

the German language code) as it is closely related988

to the latter. Further, the Serbian (sr) data in xSID989

is written in Latin script, whereas NLLB only sup-990

ports the Cyrillic script. We accessed all datasets991

through the Hugging Face datasets library and en-992

sured compliance with the licenses.993

B Word Alignment994

For our main experiments, we use the neural995

word aligner AccAlign (Wang et al., 2022),996

accessed through the following repository:997

https://github.com/sufenlp/AccAlign. Addition-998

ally, we employ Awesome (Dou and Neubig, 2021)999

with the code provided in the following repository:1000

https://github.com/neulab/awesome-align. We1001

follow the hyperparameter configuration proposed1002

by the authors. We ensure compliance with the1003

license for Awesome (BSD 3-Clause). We could1004

not find licensing information for AccAlign.1005

C Easy1006

The code and data of Easy is released under the1007

MIT license. We used the publicly released data for1008

Masakha and TyDiQA. For xSID, we produced our1009

own translated data by adopting the existing code.1010

We followed their implementation for Masakha1011

closely. Easy (Chen et al., 2023) requires fine-1012

tuning NLLB on preserving inserted markers (i.e.,1013

preserving "[" and "]" around entity mentions).1014

Hence, we leverage the publicly released 3.3B pa-1015

rameter checkpoint from Chen et al. (2023) for1016

translation. We accessed it through the Hugging1017

Face transformers library.1018

D Codec 1019

The authors of Codec did not release the translated 1020

data but published the source code instead. We 1021

created our own translated data for Masakha fol- 1022

lowing their implementation. Further, we extended 1023

their implementation to produce the translated data 1024

for xSID. We adhered to the hyperparameters in 1025

their repository and followed the existing imple- 1026

mentation closely. We did not extend their work 1027

to TyDiQA. First, since TyDiQA does not follow 1028

the BIO scheme, adjusting the existing code base 1029

would have been an excessive effort. Second, we 1030

already observed lengthy decoding times for the 1031

constrained decoding step on Masakha. Consid- 1032

ering that the input for TyDiQA is significantly 1033

longer, we did not further pursue an implementa- 1034

tion for TyDiQA. The translations for Codec are ob- 1035

tained using standard (i.e., non fine-tuned) NLLB. 1036

However, the constrained decoding (i.e., inserting 1037

the markers post-translation) requires a fine-tuned 1038

NLLB that is able to preserve/insert markers. For 1039

constrained decoding, we follow Le et al. (2024) 1040

using the fine-tuned 600M parameter version of 1041

NLLB released by Chen et al. (2023). We could 1042

not find licensing information for Codec. 1043

E Implementation Details: TyDiQa 1044

Before translation, we preprocessed the TyDiQA 1045

dataset by removing duplicated whitespaces and 1046

ensuring that a whitespace follows every sentence 1047

boundary. We adjusted the start index of the answer 1048

spans accordingly. For the evaluation metric, we 1049

follow the F1 implementation used by the SQuAD 1050

(Rajpurkar et al., 2016) dataset. Before the metric 1051

computation, the script removes Latin punctuation, 1052

we extend it to also remove language-specific punc- 1053

tuation (e.g., for Arabic or Bengali). For Korean, 1054

we additionally remove particles from the answer 1055

spans. Particles are suffixes that follow a noun or 1056

pronoun, which are usually not part of the minimal 1057

answer span in TyDiQA. We also apply these steps 1058

to our baselines, ensuring a fair comparison. For 1059

downstream evaluation on the target languages, we 1060

use the publicly released validation sets as our test 1061

data and randomly sample 10% of instances from 1062

the target language training data as our new valida- 1063

tion sets. Additionally, we feed the evaluation data 1064

pre-tokenized to foster consistent word alignments 1065

for T-Test and ETT. 1066
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Masakha xSID TyDiQA

Task NER SL QA
Epochs 10 10 3
Eff. Batch Size 32 32 16
Learning Rate 1e-5 1e-5 1e-5
Weight Decay 0.01 0.01 0.01

Table 6: Hyperparameters for downstream fine-tuning.

F Detailed Experimental Setup1067

Table 6 outlines the hyperparameters for down-1068

stream fine-tuning of our utilized tasks. Alongside,1069

we implement a linear schedule of 10% warm-up1070

and decay and employ mixed precision. In case1071

we can not fit the desired batch size, we utilize1072

gradient accumulation. For the LLM2Vec exper-1073

iments, we deviate from this setting as we only1074

fine-tune the classifier. Following BehnamGhader1075

et al. (2024), we change the learning rate to 5e-1076

4. We evaluate models at the last checkpoint of1077

training. We use the seqeval F1 implementation1078

for NER and SL, and the squad F1 implementation1079

for QA, accessed through the Hugging Face eval-1080

uate library. Further, we access our downstream1081

models—XLM-RoBERTa (Large), DeBERTa V31082

(Large) and LLM2Vec Llama 3B Instruct MNTP—1083

through the Hugginface transformers library. All1084

translations were run on a single A100 with 40GB1085

VRAM, and all downstream training and evalua-1086

tion runs were completed on a single V100 with1087

32GB VRAM. We estimate that the GPU time ac-1088

cumulates to 4000 hours across all translations and1089

downstream fine-tunings.1090

Languages.1091

MasakhaNER2.0. Our experiments cover the 18 out1092

of 20 languages that are supported by NLLB: Bam-1093

bara (bam), Ewé (ewe), Fon (fon), Hausa (hau),1094

Igbo (ibo), Kinyarwanda (kin), Luganda (lug), Luo1095

(luo), Mossi (most), Chichewa (nya), chiShona1096

(sna), Kiswahili (saw), Setswana (tsn), Akan/Twi1097

(twi), Wolof (wol), isiXhosa (xho), Yorùrbá (yor),1098

and isiZulu (zul).1099

xSID. We evaluate 11 languages all covered by1100

NLLB: Arabic (ar), Danish (da), German (de),1101

South-Tyrolean (de-st), Indonesian (id), Italian (it),1102

Kazakh (kk), Dutch (nl), Serbian (sr), Turkish (tr),1103

and Chinese (zh). Following Razumovskaia et al.1104

(2023), we excluded Japanese from the evaluation1105

because it only has half of the validation and test1106

instances and spans only a fraction of entities com-1107

pared to the other languages.1108

TydiQA-GoldP. Our evaluation spans the 8 lan- 1109

guages included in TyDiQA: Arabic (ar), Bengali 1110

(bn), Finnish (fi), Indonesian (id), Korean (ko), Rus- 1111

sian (ru), Swahili (sw), Telugu (te). 1112

Filtering Strategy. We use a greedy approach to 1113

explore the various design options (§4.1). We start 1114

with the selection of the filtering strategy, followed 1115

by our pre-tokenization experiments. For the explo- 1116

ration of the filtering strategy, we apply whitespace 1117

tokenization and do not use STR-MAT. 1118

Pre-Tokenization. For the per-tokenization ex- 1119

periments, we filter the translated training data 1120

based on COM-INS, COM-SRC, and COM-TGT for 1121

xSID and Masakha, and based on COM-TGT 1122

for TyDiQA. Additionally, we use STR-MAT 1123

on TyDiQA. For T-Test, we apply COR-SCH 1124

for Masakha and xSID, and NO-FILT for Ty- 1125

DiQA. Language-specific tokenization is done 1126

with the MosesTokenizer from the Sacremoses li- 1127

brary (https://github.com/hplt-project/sacremoses) 1128

for Masakha and xSID, except for Chinese, where 1129

we use jieba (https://github.com/fxsjy/jieba). Both 1130

are released under the MIT license. For TyDiQA, 1131

we utilize trankit (Nguyen et al., 2021) to pre- 1132

tokenize the target language data and the Moses- 1133

Tokenizer for the source language data (i.e., En- 1134

glish). As Bengali and Swahili are not supported by 1135

trankit, we fallback to whitespace pre-tokenization 1136

for these languages. 1137

Main Results and Further Findings. As sug- 1138

gested by the findings of our preliminary experi- 1139

ments, we apply whitespace pre-tokenization for 1140

Masakha and xSID, except for Chinese, where we 1141

use language-specific tokenization. For TyDiQA, 1142

language-specific tokenization is applied to all lan- 1143

guages for the translated training data (T-Train). 1144

For T-Test, we use language-specific tokenization 1145

for all tasks. We utilize the same filtering as for the 1146

pre-tokenization experiments. 1147
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G Detailed Results: Filtering Strategies

bam ewe fon hau ibo kin lug luo mos nya sna swa tsn twi wol xho yor zul Avg

Translate-Train

NO-FILT 43.8 78.4 72.9 66.7 62.9 70.2 79.6 69.7 58.9 65.2 72.5 84.4 69.1 57.3 63.3 63.2 33.7 67.1 65.5
COM-INS 45.5 78.4 76.0 66.5 62.8 69.5 79.4 70.2 59.9 66.1 73.1 84.1 69.0 56.6 65.8 62.8 32.9 66.5 65.8
COM-INS + COM-TGT 50.9 77.8 76.0 66.5 62.5 69.0 80.4 70.4 60.4 65.4 73.0 83.6 68.9 55.9 67.0 63.1 33.2 64.7 66.0
COM-INS + COM-TGT + COM-SRC 51.2 78.8 76.5 66.5 63.7 69.7 80.0 70.0 60.3 66.2 73.1 83.6 68.2 60.8 67.3 63.4 32.6 66.3 66.6
STR-MAT + COM-INS + COM-TGT + COM-SRC 48.9 78.9 77.5 67.1 61.1 69.4 78.7 70.4 61.4 65.9 73.3 83.4 68.5 59.1 67.2 63.5 32.7 66.0 66.3

Translate-Test

NO-FILT 27.5 58.3 39.6 58.9 49.9 61.1 67.3 56.0 38.0 59.6 57.8 64.1 57.7 53.4 48.1 39.4 33.7 51.5 51.2
COR-SCH 37.9 69.0 58.4 61.9 57.4 67.2 71.0 62.0 46.6 64.8 61.0 67.6 63.3 61.9 55.9 43.3 43.1 56.3 58.2
COM-TGT 34.6 62.6 50.7 60.4 51.6 63.0 68.8 59.4 43.2 61.1 58.1 65.0 60.8 59.4 52.1 40.3 40.3 52.2 54.6
COM-SRC 29.5 57.4 40.6 59.7 50.1 60.9 67.6 57.1 36.6 59.8 57.9 63.5 57.1 55.0 49.4 39.4 33.6 51.7 51.5
COR-SCH + COM-TGT 37.0 67.8 52.8 63.1 57.7 66.9 71.7 62.8 45.3 65.1 61.1 68.2 64.3 61.4 57.3 43.7 43.5 56.4 58.1
COR-SCH + COM-TGT + COM-SRC 39.3 66.7 53.6 63.7 58.0 66.8 71.8 63.5 43.7 65.2 61.2 67.4 63.4 63.0 58.0 43.7 43.5 56.6 58.3

Table 7: Results for translation-based XLT evaluated on the Masakha validation data utilizing different filtering
strategies. NO-FILT indicates that no filtering strategy was applied. We use XLM-R.

ar da de de-st id it kk nl sr tr zh Avg

Translate-Train

NO-FILT 85.4 81.8 88.3 60.3 86.2 89.8 70.5 94.1 85.7 85.9 - 82.8
COM-INS 85.1 82.4 88.7 58.3 86.0 90.1 70.7 93.3 84.6 88.0 - 82.7
COM-INS + COM-TGT 84.9 81.9 87.8 59.3 85.3 86.7 69.8 90.9 86.6 86.6 - 82.0
COM-INS + COM-TGT + COM-SRC 86.3 81.3 86.7 58.8 85.0 88.1 69.6 91.3 86.2 86.5 - 82.0
STR-MAT + COM-INS + COM-TGT + COM-SRC 85.6 81.4 87.6 57.0 85.3 87.6 69.7 91.4 85.3 86.2 - 81.7

Translate-Test

NO-FILT 69.8 74.7 75.0 54.4 68.0 80.1 49.8 82.4 72.3 61.1 58.7 67.8
COR-SCH 73.7 78.2 82.6 57.4 73.6 83.4 61.7 86.5 75.9 75.3 75.3 74.9
COM-TGT 70.7 75.0 80.4 56.4 69.4 79.3 59.8 82.0 73.2 73.4 74.6 72.2
COM-SRC 68.9 73.5 74.1 54.3 66.4 79.1 48.6 81.1 70.7 59.8 58.2 66.8
COR-SCH + COM-TGT 74.1 77.9 81.7 57.7 74.1 82.2 60.0 84.7 76.3 74.0 74.8 74.3
COR-SCH + COM-TGT + COM-SRC 73.3 76.8 81.0 57.4 72.5 81.6 59.2 83.9 74.6 71.9 73.7 73.3

Table 8: Results for translation-based XLT evaluated on the xSID validation data utilizing different filtering strategies.
NO-FILT indicates that no filtering strategy was applied. We use XLM-R. For T-Train, we excluded Chinese (zh)
since experiments were run with whitespace pre-tokenization (WS-TOK).

ar bn fi id ko ru sw te Avg

Translate-Train

NO-FILT 71.1 64.4 73.8 78.4 54.4 67.1 70.7 64.6 68.1
COM-TGT 70.1 68.9 72.9 78.0 58.2 66.6 70.6 68.2 69.2
COM-TGT + COM-SRC 68.1 69.4 71.0 76.7 57.2 66.3 68.8 68.9 68.3
STR-MAT + COM-TGT 69.6 69.2 73.0 78.4 56.1 66.8 70.8 69.8 69.2

Translate-Test

NO-FILT 62.1 50.7 62.6 69.7 39.4 59.8 63.2 51.0 57.3
COM-SRC 51.5 51.4 53.3 63.8 39.2 57.6 61.8 53.0 53.9
COM-TGT 54.2 49.7 55.2 63.8 39.2 57.6 61.8 53.0 54.3
COM-TGT + COM-SRC 47.5 48.9 51.8 57.0 38.8 55.3 59.4 51.9 51.3

Table 9: Results for translation-based XLT evaluated on the TyDiQA validation data utilizing different filtering
strategies. NO-FILT indicates that no filtering strategy was applied. We use XLM-R.
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H Detailed Results: Pre-Tokenization

bam ewe fon hau ibo kin lug luo mos nya sna swa tsn twi wol xho yor zul Avg

Translate-Train

WS-TOK 51.2 78.8 76.5 66.5 63.7 69.7 80.0 70.0 60.3 66.2 73.1 83.6 68.2 60.8 67.3 63.4 32.6 66.3 66.6
SP-TOK 49.4 77.9 75.3 66.7 58.4 68.8 80.2 70.7 61.3 65.9 73.7 83.4 69.8 59.2 66.9 63.8 32.3 66.8 66.1

Translate-Test

WS-TOK 37.9 69.0 58.4 61.9 57.4 67.2 71.0 62.0 46.6 64.8 61.0 67.6 63.3 61.9 55.9 43.3 43.1 56.3 58.2
SP-TOK 51.3 82.7 75.0 67.0 71.8 78.9 86.9 76.6 55.4 76.0 82.2 82.0 76.3 69.1 66.1 63.0 54.6 69.9 71.4

Table 10: Results for translation-based XLT evaluated on the Masakha validation data utilizing different pre-
tokenization strategies. We use XLM-R.

ar da de de-st id it kk nl sr tr zh Avg

Translate-Train

WS-TOK 86.3 81.3 86.7 58.8 85.0 88.1 69.6 91.3 86.2 86.5 - 82.0
SP-TOK 86.4 81.4 87.8 57.4 85.8 87.3 69.7 90.8 83.8 86.3 86.2* 81.6

Translate-Test

WS-TOK 73.7 78.2 82.6 57.4 73.6 83.4 61.7 86.5 75.9 75.3 75.3 74.9
SP-TOK 79.0 81.4 89.6 62.9 78.6 89.6 69.8 92.8 80.4 81.6 82.8 80.8

Table 11: Results for translation-based XLT evaluated on the xSID validation data utilizing different pre-tokenization
strategies. We use XLM-R. Results marked with * are excluded from the average.

ar bn fi id ko ru sw te Avg

Translate-Train

WS-TOK 69.6 69.2 73.0 78.4 56.1 66.8 70.8 69.8 69.2
SP-TOK 70.0 69.2 73.9 77.0 57.3 68.2 70.8 69.9 69.5

Translate-Test

WS-TOK 62.1 50.7 62.6 69.7 39.4 59.8 63.2 51.0 57.3
SP-TOK 64.6 50.6 65.6 72.1 47.6 62.8 63.1 57.4 60.5

Table 12: Results for translation-based XLT evaluated on the TyDiQA validation data utilizing different pre-
tokenization strategies. We use XLM-R.

15



I Detailed Results: Main Results and Further Findings

bam ewe fon hau ibo kin lug luo mos nya sna swa tsn twi wol xho yor zul Avg

ZS 43.4 72.8 61.0 73.5 49.9 46.3 64.9 55.0 56.1 51.1 34.4 88.1 51.5 49.5 56.2 22.2 35.1 41.5 52.9

Translate-Train

AccAlign X WS-TOK NLLB 49.2 74.1 72.1 73.1 72.2 58.6 76.4 63.5 58.2 66.2 70.9 83.2 76.5 64.1 63.9 69.6 40.2 75.6 67.1
AccAlign† X WS-TOK NLLB 53.3 74.0 71.3 73.6 71.0 58.8 75.5 64.2 55.6 67.6 68.7 83.6 76.1 64.5 61.9 69.4 39.3 72.6 66.7
Awesome† X WS-TOK NLLB 51.3 73.8 65.6 73.6 70.0 56.7 74.4 64.6 50.8 67.3 68.4 82.2 75.3 62.4 58.9 61.0 38.4 64.7 64.4
Easy X - NLLB 54.2 75.4 71.1 73.0 64.6 66.3 77.5 63.8 51.3 68.3 57.2 84.1 74.7 63.7 63.3 71.3 37.0 70.6 66.0
Codec X - NLLB 51.2 74.1 68.9 73.4 65.5 64.7 75.4 64.7 53.9 68.3 70.9 84.2 73.5 65.2 65.6 70.2 39.4 75.3 66.9

Translate-Test

AccAlign X SP-TOK NLLB 55.0 79.2 72.6 74.1 74.3 70.5 84.0 73.4 52.9 78.8 81.3 83.2 79.4 70.3 66.2 73.0 58.0 78.7 72.5
AccAlign† X SP-TOK NLLB 54.3 76.4 69.2 73.5 72.7 69.7 82.9 71.4 48.3 77.8 80.1 81.8 79.6 70.8 63.0 71.3 49.5 77.3 70.5
Awesome† X SP-TOK NLLB 46.5 72.5 58.8 69.5 75.6 65.0 81.7 72.3 42.6 78.6 66.4 80.0 78.5 69.2 53.6 52.3 47.8 64.5 65.3
AccAlign D SP-TOK NLLB 54.7 79.4 73.5 74.6 75.5 71.3 84.0 75.0 52.7 79.4 81.8 83.8 79.6 70.6 66.4 73.2 57.6 78.7 72.9
AccAlign X WS-TOK NLLB 45.3 69.7 55.9 63.4 60.6 58.6 72.9 60.4 41.0 68.3 60.9 68.3 63.9 61.2 55.4 62.0 46.4 62.3 59.8
AccAlign D WS-TOK NLLB 45.0 69.9 56.3 63.9 61.5 59.1 72.6 61.8 40.8 68.9 61.5 68.9 64.4 61.5 56.0 61.9 46.3 62.0 60.1
AccAlign X SP-TOK GT 61.0 79.3 - 73.4 78.1 71.8 - - - - 83.5 85.2 - 71.6 - 75.1 63.7 78.5 -
AccAlign D SP-TOK GT 60.4 79.6 - 74.1 79.2 72.4 - - - - 84.0 85.9 - 73.2 - 75.2 62.3 78.8 -
AccAlign ShL SP-TOK NLLB 50.0 66.9 62.6 61.9 59.1 58.7 67.1 61.6 43.5 70.7 64.4 71.8 70.0 59.4 57.3 59.4 44.9 60.8 60.6
AccAlign L SP-TOK NLLB 47.8 69.2 62.0 63.5 59.4 58.0 70.3 62.3 44.3 70.1 68.1 73.6 69.9 58.8 57.6 59.8 46.4 66.3 61.5
Codec X - NLLB 54.5 78.8 67.4 72.9 72.8 77.6 83.6 72.8 49.4 78.1 79.3 82.2 79.2 72.5 67.3 72.5 58.4 77.1 72.0
Codec D - NLLB 54.3 79.1 68.0 73.3 73.9 78.2 83.5 74.2 48.8 79.0 79.8 82.9 79.3 73.1 67.8 72.6 58.0 77.0 72.4

Ensembling-Translate-Train

AccAlign + AccAlign X/X WS-TOK/WS-TOK NLLB 57.3 79.1 74.2 72.6 77.7 63.5 81.8 69.7 59.6 75.0 75.6 83.7 78.5 66.3 67.6 72.1 52.7 78.7 71.4
AccAlign + AccAlign X/X WS-TOK/SP-TOK NLLB 57.3 78.5 75.6 72.8 79.0 64.1 82.5 70.3 60.2 75.3 77.1 84.2 78.9 66.8 68.0 72.4 53.5 78.8 72.0
AccAlign + AccAlign X/D WS-TOK/WS-TOK NLLB 57.3 79.5 75.3 73.3 79.1 64.2 81.7 71.4 59.3 75.6 76.4 83.9 79.3 67.5 68.4 72.8 53.0 79.1 72.0
AccAlign + AccAlign X/D WS-TOK/SP-TOK NLLB 57.1 79.1 76.4 73.5 80.6 64.7 82.7 71.9 60.2 76.0 77.5 84.2 79.9 68.3 68.8 73.0 53.9 79.0 72.6
AccAlign + AccAlign X/D WS-TOK/SP-TOK GT 61.0 79.0 - 73.7 81.1 65.0 - - - - 78.5 85.0 - 67.8 - 73.9 58.2 80.0 -
AccAlign + AccAlign X/ShL WS-TOK/SP-TOK NLLB 55.6 76.5 73.4 73.0 75.7 60.5 78.9 66.4 58.6 71.3 73.1 83.3 78.1 64.3 66.5 70.5 46.3 76.3 69.3
AccAlign + AccAlign X/L WS-TOK/SP-TOK NLLB 54.1 77.2 74.3 72.9 74.4 60.5 80.1 67.2 58.4 72.2 74.1 83.1 78.5 64.1 67.2 70.7 47.3 77.9 69.7
Easy + AccAlign X/D -/SP-TOK NLLB 58.1 79.2 74.1 73.3 76.4 64.5 83.2 71.1 56.3 77.8 72.6 85.2 78.7 68.6 68.3 73.7 53.7 76.3 71.7
Codec + AccAlign X/D -/SP-TOK NLLB 55.5 79.2 75.0 73.5 77.7 63.5 82.4 72.2 57.8 77.4 77.6 85.0 78.0 69.3 69.4 74.1 54.3 79.1 72.3

Table 13: Main results for translation-based XLT evaluated on Masakha using different WAs, pre-tokenizations, and
MT models. We use XLM-R (X), DeBERTa (D), LLM2Vec Sheared-Llama 1.3B (ShL), and LLM2Vec LLama 3
8B (L). WAs marked with † are not fine-tuned. Results for languages indicated with - are not supported by the MT
model.
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ar da de de-st id it ja kk nl sr tr zh Avg

ZS 71.5 85.6 80.8 43.9 86.8 88.2 53.9 80.8 88.8 79.0 81.5 57.4 76.8

Translate-Train

AccAlign X WS-TOK NLLB 82.6 76.0 86.1 62.2 87.4 88.1 68.1 86.0 85.5 85.0 85.3 85.1 82.7
AccAlign† X WS-TOK NLLB 81.8 76.4 87.7 63.8 82.9 87.8 57.1 85.7 85.4 86.6 87.2 86.7 82.9
Awesome† X WS-TOK NLLB 79.1 77.1 85.6 61.3 82.7 87.3 48.8 74.3 85.8 84.5 77.7 82.4 79.8
Easy X - NLLB 83.0 84.0 89.4 62.2 86.3 87.5 26.9 89.2 88.3 81.4 86.3 80.5 83.4
Codec X - NLLB 81.9 84.6 88.7 62.5 89.8 88.5 51.9 85.1 89.9 82.7 81.2 84.4 83.6

Translate-Test

AccAlign X SP-TOK NLLB 78.8 76.0 86.4 61.1 78.9 88.0 43.7 82.5 87.4 79.7 81.3 82.3 80.2
AccAlign† X SP-TOK NLLB 77.9 75.4 84.9 59.8 79.4 85.7 40.3 82.2 86.7 79.9 82.0 82.5 79.7
Awesome† X SP-TOK NLLB 73.8 75.0 84.8 59.4 71.0 84.7 35.3 63.1 87.1 77.0 70.9 76.4 74.8
AccAlign D SP-TOK NLLB 79.3 75.8 85.7 59.4 80.1 88.6 43.2 82.6 86.7 80.1 82.1 82.1 80.2
AccAlign X WS-TOK NLLB 45.3 69.7 55.9 63.4 60.6 58.6 72.9 60.4 41.0 68.3 60.9 68.3 59.8
AccAlign D WS-TOK NLLB 73.0 70.5 79.2 56.0 72.2 81.3 37.6 74.4 82.0 73.9 72.9 72.7 73.5
AccAlign X SP-TOK GT 80.6 76.4 86.5 61.9 78.6 88.2 40.0 83.8 87.0 82.0 81.6 86.0 81.1
AccAlign D SP-TOK GT 80.5 76.4 85.5 59.6 79.5 89.3 39.6 84.0 87.0 83.3 82.4 85.6 81.2
AccAlign ShL SP-TOK NLLB 68.4 68.3 76.8 51.6 68.6 77.7 41.1 72.2 78.1 70.7 72.2 73.3 70.7
AccAlign L SP-TOK NLLB 68.9 69.6 77.1 52.3 70.2 77.8 40.9 71.8 79.0 71.5 71.5 74.0 71.2
Codec X - NLLB 79.0 81.9 86.1 60.4 84.8 88.4 68.1 83.0 86.5 72.4 83.6 67.0 79.4
Codec D - NLLB 79.9 81.8 85.5 58.8 85.8 89.0 67.3 83.2 86.0 72.9 84.2 67.5 79.5

Ensembling-Translate-Train

AccAlign + AccAlign X/X WS-TOK/WS-TOK NLLB 80.9 75.1 85.9 63.1 88.1 89.2 59.4 81.4 86.3 82.7 81.5 80.5 81.3
AccAlign + AccAlign X/X WS-TOK/SP-TOK NLLB 82.0 76.3 88.2 64.6 88.7 89.6 63.7 86.5 86.4 83.0 85.0 85.0 83.2
AccAlign + AccAlign X/D WS-TOK/WS-TOK NLLB 81.2 75.0 85.9 61.8 88.1 89.9 58.5 81.1 86.6 82.6 81.7 79.7 81.2
AccAlign + AccAlign X/D WS-TOK/SP-TOK NLLB 82.4 76.2 88.2 64.3 89.0 90.0 62.6 86.6 87.3 83.1 85.3 84.8 83.4
AccAlign + AccAlign X/D WS-TOK/SP-TOK GT 82.4 75.8 87.2 64.4 87.7 89.8 61.7 86.5 86.3 84.4 84.2 86.4 83.2
AccAlign + AccAlign X/ShL WS-TOK/SP-TOK NLLB 81.2 76.2 87.4 63.6 87.7 89.6 65.5 86.0 86.1 83.7 84.7 84.5 82.8
AccAlign + AccAlign X/L WS-TOK/SP-TOK NLLB 80.0 76.4 87.1 62.4 86.2 88.7 63.2 85.5 86.1 83.3 83.5 84.2 82.1
Easy + AccAlign X/D -/SP-TOK NLLB 81.1 81.2 89.7 64.4 89.0 90.6 45.6 85.7 90.4 82.7 82.4 84.5 83.8
Codec + AccAlign X/D -/SP-TOK NLLB 82.5 75.3 89.1 62.8 87.6 88.7 28.0 87.1 89.2 81.8 85.3 81.3 82.8

Table 14: Main results for translation-based XLT evaluated on xSID using different WAs, pre-tokenizations, and
MT models. We use XLM-R (X), DeBERTa (D), LLM2Vec Sheared-Llama 1.3B (ShL), and LLM2Vec LLama 3
8B (L). WAs marked with † are not fine-tuned. For T-Train, we pre-tokenize Chinese (zh) with SP-TOK.

ar bn fi id ko ru sw te Avg

ZS 77.1 70.4 75.3 79.8 68.0 70.1 72.5 78.6 74.0

Translate-Train

AccAlign X SP-TOK NLLB 76.6 72.0 76.9 81.1 68.4 73.3 74.4 79.0 75.2
AccAlign† X SP-TOK NLLB 76.8 73.0 76.0 80.8 67.4 72.4 74.8 79.1 75.0
Awesome† X SP-TOK NLLB 74.7 71.8 75.6 79.5 64.3 73.1 73.7 78.2 73.8
Easy X - NLLB 76.6 74.8 76.0 79.8 72.0 71.9 74.8 78.4 75.5

Translate-Test

AccAlign X SP-TOK NLLB 70.5 55.9 68.3 74.6 48.5 69.0 65.2 58.4 63.8
AccAlign† X SP-TOK NLLB 67.6 53.9 67.8 73.8 44.3 67.6 64.6 57.1 62.1
Awesome† X SP-TOK NLLB 69.5 54.9 68.2 73.4 45.4 68.6 64.5 57.6 62.8
AccAlign D SP-TOK NLLB 72.2 59.8 71.1 77.5 49.9 72.5 72.8 65.1 67.6
AccAlign X WS-TOK NLLB 68.1 55.9 65.4 72.2 34.9 64.8 65.3 51.7 59.8
AccAlign D WS-TOK NLLB 69.6 59.8 67.7 76.1 37.8 68.1 72.8 60.2 64.0
AccAlign X SP-TOK GT 74.3 55.7 69.9 75.2 52.9 69.4 68.2 69.1 66.8
AccAlign D SP-TOK GT 76.7 59.4 73.1 78.3 53.5 72.9 76.5 70.5 70.1

Ensembling-Translate-Train

AccAlign X/X SP-TOK/WS-TOK NLLB 76.3 71.4 76.7 80.6 65.1 72.2 74.1 78.0 74.3
AccAlign X/X SP-TOK/SP-TOK NLLB 76.8 71.6 75.6 79.9 68.8 74.3 74.1 78.5 74.9
AccAlign X/D SP-TOK/WS-TOK NLLB 76.6 73.8 77.9 82.3 64.7 74.5 77.2 79.2 75.8
AccAlign X/D SP-TOK/SP-TOK NLLB 78.3 73.8 77.4 82.6 65.4 75.9 77.2 78.9 76.2
Easy + AccAlign X/D -/SP-TOK NLLB 78.9 75.0 77.9 81.5 66.2 75.8 76.6 78.5 76.3

Table 15: Main results for translation-based XLT evaluated on TyDiQA using different WAs, pre-tokenizations, and
MT models. We use XLM-R (X) and DeBERTa (D). WAs marked with † are not fine-tuned.
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