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Abstract

Vision-language Models (VLMs) have demon-
strated remarkable capabilities in processing
and generating content across multiple data
modalities. However, a significant drawback
of VLMs is their reliance on static training
data, leading to outdated information and lim-
ited contextual awareness. This static nature
hampers their ability to provide accurate and
up-to-date responses, particularly in dynamic
or rapidly evolving contexts. To address these
limitations, we propose RagVL, a novel frame-
work with knowledge-enhanced reranking and
noise-injected training. We instruction-tune the
VLM with a simple yet effective instruction
template to induce its ranking ability and serve
it as a reranker to precisely filter the top-k re-
trieved images. For generation, we inject visual
noise during training at the data and token lev-
els to enhance the generator’s robustness. Ex-
tensive experiments on four datasets verify the
effectiveness of our method. Code and models
are available at https://anonymous.4open.
science/r/RagVL-F694.

1 Introduction

As an attempt towards Artificial General Intel-
ligence (AGI), Large Language Models (LLMs)
have made significant strides in language under-
standing and human-like text generation (Brown
et al., 2020; Achiam et al., 2023; Touvron et al.,
2023). However, true AGI requires more than
just linguistic capabilities. It necessitates a com-
prehensive understanding and interaction with the
world, encompassing multiple modalities beyond
text. Thus, the recent progress of Vision-language
Models (VLMs) in handling multimodal informa-
tion has attracted the community. By processing
and generating content across different modalities,
VLMs aim to create a more holistic and nuanced
understanding of the world, closer to how humans
perceive and interpret information. This integra-
tion of modalities enables VLMs to perform tasks

that require contextual understanding from mul-
tiple data sources, such as Visual Question An-
swering (VQA) (Goyal et al., 2017; Hudson and
Manning, 2019; Marino et al., 2019), Table Ques-
tion Answering (Lu et al., 2022), Text-to-image
Generation (Ramesh et al., 2021; Yu et al., 2022;
Aghajanyan et al., 2022), etc.

Nevertheless, the promising performance of
language models primarily relies on the knowl-
edge implicitly stored in their massive parameters,
leading to several issues such as long-tail knowl-
edge gaps (Asai et al., 2024), generating halluci-
nations (Ye and Durrett, 2022), and poor model
interpretability. To better adapt to knowledge-
intensive tasks and real-world scenarios, Retrieval-
augmented Language Models (RALM) (Lewis
et al., 2020; Lin et al., 2023; Izacard and Grave,
2020; Karpukhin et al., 2020) employ a dense re-
triever to retrieve up-to-date knowledge from ex-
ternal memories for grounded generation. Simi-
larly, Multimodal Retrieval-augmented Generation
(Multimodal RAG) enhances VLMs by dynami-
cally retrieving relevant information from external
multimodal data sources before generation. This
allows the models to incorporate real-time, con-
textually accurate visual information, significantly
improving the factuality and accuracy of their out-
puts.

As illustrated in Figure 1, to answer the
information-seeking query, the model must retrieve
and reason over external visual knowledge, which
differs from traditional VQA on the left and is non-
trivial. To solve this, MuRAG (Chen et al., 2022)
makes the first endeavor to extend RAG to multiple
modalities. It is built upon ViT (Dosovitskiy et al.,
2020) and T5 (Raffel et al., 2020) and pre-trained
to encode image-text pairs for both answer genera-
tion and retrieval. MuRAG embeds items into an
external memory and handles queries for retrieving
multimodal knowledge from the same memory.

However, integrating multimodal RAG would in-
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Figure 1: Difference between traditional VQA and multimodal knowledge-seeking question answering. An example
from WebQA (Chang et al., 2022) reveals the challenge of multi-granularity noisy correspondence (MNC).

evitably introduce the multi-granularity noisy cor-
respondence problem (MNC) (Huang et al., 2021).
As shown in Figure 1, MNC refers to the noise
at two different granularities: (I) Coarse-grained
noise (query-caption). During the retrieval stage,
coarse-grained captions result in retrieving similar
but negative images. (II) Fine-grained noise (query-
image). The retriever and generator must distin-
guish fine-grained visual elements to formulate the
responses. Any discrepancies between the images
and the question can introduce noise, compromis-
ing the accuracy. In this scenario, CLIP (Radford
et al., 2021) struggles to match the query with the
image during the retrieval phase (see in Table 1).
Also, identifying the correct correspondence amidst
the fine-grained noise to provide an answer to the
query is a challenge.

To this end, we propose RagVL, a novel frame-
work with knowledge-enhanced reranking and
noise-injected training, to mitigate MNC in multi-
modal RAG. In the retrieval stage, we instruction-
tune the VLM with a simple yet effective instruc-
tion template to induce its ranking ability. Given
that VLMs are inherently capable of understanding
cross-modal information, we employ the fine-tuned
model as a reranker to evaluate the relevance be-
tween the query and the image, which precisely
selects top-N candidates that are more related to
the query semantically. Subsequently, we apply an
adaptive threshold to filter the candidates, collabo-
rating with the reranker to alleviate the fine-grained
mismatches. To further mitigate the impact of fine-
grained mismatches during the generation phase,
we introduce noise at both data and token levels in
the training process. Specifically, at the data level,

we perform negative sampling for single-image
input questions within the single/multiple-image
interleaved dataset, supplementing them with ref-
erences from hard negative images. At the token
level, we introduce additional visual uncertainty to
images through Gaussian noise and reassign train-
ing loss weights by comparing the logits of the
distorted and original inputs.

In a nutshell, the main contributions of this work
are as follows: (I) We achieve effective and robust
multimodal retrieval-augmented generation with a
three-stage pipeline. Additionally, we address the
inherent multi-granularity noisy correspondence
(MNC) problem in multimodal retrieval-augmented
generation. (II) We introduce the knowledge-
enhanced reranking and noise-injected training
technique to mitigate the coarse-grained and fine-
grained noise from MNC. (III) Extensive experi-
ments on multimodal knowledge-seeking QA and
retrieval tasks demonstrate the effectiveness of the
proposed framework.

2 Related Work

2.1 Vision-language Model

Recent advances in VLMs have demonstrated im-
pressive performances in handling multi-format in-
formation (Driess et al., 2023; Huang et al., 2024;
Achiam et al., 2023). VLMs are generally built
upon existing LL.Ms and integrating visual infor-
mation as input tokens by utilizing an additional
vision encoder and a bridging connector. For in-
stance, LLaVA (Liu et al., 2024b,a) adopts one/two
linear MLP to project visual tokens and align the
feature dimension with word embeddings, while
BLIP-2 (Li et al., 2023) leverages a group of learn-



: Frozen Parameters ¢ : Tuned Parameters

Text
Encoder

Image
Encoder

®: MIPS

CLIP-retrieved Top-K Images

Query

Memory

Is this image relevant to the question?
Answer 'Yes' or 'No'.

Ranking Task
Instruction Tuning

Knowledge-enhanced Reranking

Reranked Top-N Images

' Adaptive Threshold | H B

Query —>

 Ea— -
Asg | v

------ [ VLM & | '
............... I | Generator | ! !

1 : ; T v :
VLM
Generator

| |

Generated Output

Logits Contrasting
&
Loss Reweight !

Noise-injected Training

Figure 2: Overview of our proposed RagVL. In the retrieval stage, we utilize the CLIP model and faiss to find the
top- K most relevant images through Maximum Inner Product Search (MIPS) (Guo et al., 2020). Subsequently, the
highly similar top-K images are reranked into top-/N' with the fine-tuned VLM reranker. Finally, the top-/V images
are fed into the VLM generator along with the query for accurate generation.

able query tokens to extract information in a query-
based manner. Despite these advances, VLMs tend
to underperform in knowledge-intensive tasks (e.g.
WebQA and MultimodalQA (Talmor et al., 2021))
that require seeking up-to-date information. Since
the knowledge stored in their massive parameters
is currently limited, VLMs must resort to external
memories for grounded generation.

2.2 Multimodal Retrieval-augmented
Generation

Enhancing language models by incorporating rele-
vant information from diverse knowledge sources
has been shown to improve performance across var-
ious NLP tasks (Borgeaud et al., 2022; Lewis et al.,
2020). REALM (Guu et al., 2020) and RAG (Lewis
et al., 2020) treat the retrieved passages as la-
tent variables and train the retriever-generator sys-
tem jointly, leading to more effective retrieval-
augmented generation models. Inspired by textual
RAG, Plug-and-play (Tiong et al., 2022) retrieves
relevant image patches using GradCAM (Selvaraju
et al., 2017) to localize relevant parts based on the
query. MuRAG (Chen et al., 2022) proposes the
first multimodal retrieval-augmented Transformer,
which accesses an external non-parametric multi-
modal memory to augment language generation.
Sun et al. (2024) emphasize high-quality dataset
construction, where positive and negative labels are
pre-generated by VLMs. During inference, their
retriever directly passes Top-K candidates to the
generator without reranking. However, none of
these works specifically focus on MNC in multi-

modal RAG, which is primary in our research.

3 Methodology

3.1 Preliminaries

The traditional RALM acquires knowledge from
the external memory M and utilizes the knowledge
in grounded outputs to promote accurate and ex-
plainable generation. The retriever R first retrieves
the top-K most relevant contexts C = {cy, -+ ,cx}
from M for the given question ¢. Subsequently,
the autoregressive language model generates an-
swers based on these retrieved contexts. Under the
multimodal setting, the retriever needs to compare
the textual queries with the multimodal documents
and find the best matches for the generator G.

3.2 Multimodal Retriever

We follow the dual-encoder architecture based on
CLIP text encoder P, and image encoder Py .
Before the retrieval stage, given image-query pairs
(v, q) from the dataset D, we first apply the image
encoder ®;,,, to encode each image and build the
image memory M using faiss (Douze et al., 2024).
From the external memory M, the retriever aims
to retrieve a small set of images that support the
textual query gq. Specifically, we encode the query
with the text encoder ®;.,; and use MIPS over all
of the image candidates v € M as follows,

M = TopK (M|q) = TO]/?\{(( DPreat(q) - Pimg(v).
ve

ey
The top- K images with the highest inner product
scores, i.e. the nearest top-K neighbors M =



{v1,v9,- -+ , vy}, are retrieved as the candidate im-
ages for answer generation.

3.3 Inducing Ranking Ability of VLMs

CLIP stands out across a wide range of multimodal
representations and retrieval tasks as a powerful
and highly transferable model. However, when en-
countering long-tail distribution or domain-specific
terms, CLIP fails to match the proper pairs across
text and images. To mitigate this, we resort to
VLMs for their capabilities of semantic under-
standing. In general, VLMs are pre-trained on
vast image-text pairs for feature alignment and
fine-tuned on language-image instruction-tuning
datasets for instruction following. With this pre-
injected multimodal knowledge, they are inherently
capable of understanding semantically relevant con-
tents across both visual and textual modalities at a
deeper level. Therefore, to mitigate the bottleneck
challenge of multimodal RAG, we introduce the
flexible knowledge-enhanced reranking to induce
the ranking ability of VLMs.

Ranking Data Construction We construct the
instruction-following data based on WebQA and
MultimodalQA and design two tasks requiring the
model to generate "Yes" for the relevant pairs and
"No" for the irrelevant pairs. We treat each query
and the ground truth images as relevant, while the
hard negative images are irrelevant. Intuitively, the
caption-aware style brings additional knowledge to
the model to distinguish the relevance between the
image and query. Therefore, we train the reranker
with the caption-aware ranking task. See the details
of the instruction template in Table 8.

Knowledge-enhanced Reranking By asking the
question "Based on the image and its caption, is the
image relevant to the question? Answer ‘Yes’ or
‘No’.", we measure the relevance between the im-
age and query with the probability p of generating
"Yes" on the first token calculated from the output
logits. Thus, reranking the top-K candidates into
top-IV can be formulated as follows,

M = TopN (M|¢p) = TopN py(v,c,q), (2)
(U,C)EM

exp(o("Yes"|v, ¢, q))
exp(o("Yes"|v, ¢, q)) + exp(o("No"|v, ¢, q))’
3)

P (v,c,q) =

where v, ¢, ¢, and o denote the image, correspond-
ing caption, query, and logit respectively. ¢ is the
weight of the reranker.

Adaptive Threshold The reranked images may
still exhibit low relevance p to the query, which
could adversely impact the generation of answers.
Consequently, their inclusion might lead to poorer
performance compared to scenarios where the im-
ages are not included at all. To further improve
the retrieval accuracy, we apply an adaptive thresh-
old n to filter out candidates when p < 7. We
set two types of thresholds: the natural threshold
and the adaptive threshold. The natural threshold
refers to = 0.5, which is the natural boundary
for our binary classification ranking. For more pre-
cise retrieval, we experiment on the validation set
and utilize the intersection point of the interpolated
curve of exact match and mismatch as the adaptive
threshold. In this way, the model can avoid the
distractions from irrelevant images.

3.4 Noise-injected Training

Compared to providing a fixed number of images
each time, the task with single/multiple images in-
terleaved is more aligned with real-world scenarios.
It is challenging to determine the optimal number
of images to refer to each time and extract relevant
information from the images, while irrelevant ones
still inevitably disturb the accurate generation.

Inspired by VCD (Leng et al., 2024): visual
uncertainty can amplify language priors, and con-
trasting the logits from the enhanced priors with the
original ones can better highlight visual relevance '.
We propose injecting visual noise during training at
the data and token level to enhance robustness: (I)
For single-image/multi-image interleaved tasks, we
sample randomly from the hard negatives to ensure
that each instruction-following data has the same
amount of image input. (II) We introduce Gaussian
noise as additional visual uncertainty and contrast
the logits to reweight the loss for each token.

Noise-injected Data Construction We standard-
ize the number of image inputs for each sample
in the instruction-following data to the maximum
number needed for any question. In the case of We-
bQA, where each question requires 1-2 images for
answering, we randomly sample 1 image from the
hard negatives as an injected noise for the single-
image query. The model is required to distinguish
relevant visual information, which strengthens its
capability of visual understanding.

'Refer to Appendix A for the comparison of motivations
and implementation details between VCD and RagVL.
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Figure 3: Generalizability of caption-aware instruction
tuning. (a) compares the reranker fine-tuned on WebQA
with the one fine-tuned on MultimodalQA, evaluated
on MultimodalQA. (b) visualizes the changes in the
probability distribution of correctly recalled items and
the recall of the reranker under low-resource settings.

Noise-injected Logits Contrasting To inject
noise at the token level, we employ forward dif-
fusion (Ho et al., 2020) to distort the image:

fog|vemr) =N (Ut; vVi1- ’VUtfl,’YI) G

Hf (ve | ve—1) &)

f (vr | vo)

where I and vg denote an identity matrix and the
original image, respectively. We gradually distort
the original image by adding the Gaussian noise for
T steps and y controls the amount of noise added
in each step. Subsequently, to guide the model
in more effectively learning the visual relevance
highlighted in the contrasted logits, we propose
reweighting the training loss by contrasting vanilla
and noisy logits to highlight the visual relevance.
Given a textual query z and an image input v, the
model generates two logit distributions conditioned
on different visual posteriors: the original v and
distorted v*. By contrasting the logit distributions
obtained from these two conditions, we can get
the contrastive probability distribution of the i-th

sample at time step ¢ as follows,

Wit = Ao(Yit|vi, v}, i, Yi,<t) (6)
= 0g(Yit|vi) — o (yitlvy), (7

where y; ; and y; <; denote the token at time step ¢
and the generated tokens sequence up to the time
step t — 1 of the i-th sample, respectively. Subse-
quently, we reassign the weight of each token in
the vanilla MLE loss as follows,

Lot Wit
INJ = Z

k=1 Wik

-1logpe (i t|vi, Ti, Yi<t)s
(8)

where [ and w represent the length of textual tokens
and the smooth weight, respectively.

4 Experiments and Analysis

4.1 Experiment Setup

Datasets and Evaluation Metrics For evalua-
tion, we consider the image-related subsets of
two multimodal QA datasets WebQA and Mul-
timodalQA. Since the test set labels from both
datasets are not publicly available, the training and
validation sets in our work are subsets of the orig-
inal training data, while the test sets are sourced
from the original validation sets. Each query is
associated with a set of hard negative distractors
so that two evaluation setups can be used, namely
distractor and full-wiki. We only consider the full-
wiki setting to demonstrate the superiority of our
proposed pipeline. Additionally, we conduct more
experiments on Flickr30K (Young et al., 2014) and
MS-COCO (Lin et al., 2014) to evaluate the perfor-
mance on caption-to-image retrieval tasks. More
details can be found in Appendix B, C and G.

4.2 Evaluation on Multimodal
Knowledge-seeking

Results of Retrieval Table 1 shows the perfor-
mance on MulitmodalQA and WebQA. The re-
triever performs weakly regarding precise recall
(R@1 and R@2) on both datasets, making it diffi-
cult for accurate generation. Since the captions
from the two datasets are names of objects or
places, it is not trivial to adapt to the scenarios
using vanilla contrastive learning, as proven in the
table. After inducing the ranking abilities of VLMs,
our proposed method effectively improves perfor-
mance by a large margin. Specifically, with five
VLMs, our method consistently improves R@2 on
WebQA by an average of 40%. The results of four



Methods MultimodalQA WebQA
R@1 R@5 R@10 R@2 R@5 R@10
CLIP-ViT-L/14-336px 84.78 94.35 95.65 57.10 71.96 84.86
w/ SFT 83.04 94.35 94.78 55.09 73.23 81.94
Vis-BGE-base 49.57 74.78 82.61 28.78 43.62 54.56
Vis-BGE-m3 43.48 66.52 72.17 26.69 40.75 51.14
InternVL-C 82.17 95.65 96.96 64.90 81.22 88.09
InternVL-G 82.17 95.22 97.39 64.90 80.23 88.28
Reranking Top-K from CLIP-ViT-L/14-336px
LLaVA-v1.5-13B 72.61 90.87 95.22 45.35 65.87 80.56
w/ caption-aware 1T 98.26 98.26 98.26 79.74 88.14 89.77
mPLUG-OwI2 67.83 87.39 93.91 43.26 63.80 79.38
w/ caption-aware 1T 90.87 96.09 97.39 71.27 85.08 88.97
Qwen-VL-Chat 68.26 89.57 92.61 47.64 67.22 80.42
w/ caption-aware 1T 91.30 95.65 97.39 80.12 88.53 89.96
InternVL2-1B 47.39 84.78 93.91 34.99 57.49 74.72
w/ caption-aware 1T 98.26 98.26 98.26 82.00 88.78 89.94
InternVL2-2B 66.52 88.70 93.91 42.79 62.48 77.97
w/ caption-aware 1T 98.26 98.26 98.26 81.91 88.94 89.94
Reranking Top-K from Different Retrievers
LLaVA-v1.5-13B
w/ Vis-BGE-base 88.70 88.70 88.70 59.61 64.71 65.70
w/ Vis-BGE-m3 84.78 84.78 84.78 57.57 62.26 63.03
w/ InternVL-C 98.70 98.70 98.70 82.08 90.79 92.72
w/ InternVL-G 97.83 97.83 97.83 81.91 90.24 92.31

Table 1: Performance of rerankers on multimodal knowledge-seeking. The reranking is conducted based on the top
20 candidates from the retrievers (see details in Appendix B). The best scores in each setting are in bold.

different retrievers are significantly improved af-
ter reranking the Top-K candidates. Notably, on
MultimodalQA, it reaches the upper bound of Re-
call@20 (98.26%) from CLIP on LLaVA-v1.5-13B
and InternVL2-1/2B.

Generalizability of Caption-aware Instruction
Tuning To further validate the generalizability
of our method, on one hand, we test the reranker,
which is fine-tuned on WebQA, on MultimodalQA.
As shown in Figure 3a, the reranker trained on
WebQA exhibits competitive performances and
even matches the original reranker’s performance
with InternVL2-1/2B. On the other hand, we se-
lect different portions of data from WebQA to train
InternVL2-2B in a low-resource setting, and ob-
tain the probability distribution of the reranker out-
putting "Yes" for correctly recalled images. Fig-
ure 3b shows the robust performance of our pro-
posed method under the low-resource settings.
With only 2.5% of the original data, the reranker
significantly outperforms the strong retriever base-
line, InternVL-G, in R@2. As the data scale in-
creases, the probability of correctly recalling im-
ages also improves, stabilizing around 20%, and the

recall follows a similar trend. In summary, these
two points fully demonstrate the strong generaliz-
ability of our proposed method, making it easily
adaptable to more scenarios. We make a further
discussion in Appendix H.

4.3 Evaluation on Multimodal RAG

Reranking Performance with Thresholds
Since the reranker performs excellently in low-
resource settings, we train InternVL2-1/2B as the
rerankers using only 20% of the data, considering
efficiency. As shown in Figure 4, we collect the
relevance of the image candidates after reranking.
Among all sets, the probabilities of correct recalls
are concentrated in the highest range. For WebQA,
since there is still a portion of erroneous recalls,
we plot the interpolated curves of correct recalls
and erroneous recalls on the validation set and take
the x-coordinate of their intersection point as the
adaptive threshold. For MultimodalQA, we set
the adaptive threshold to 0.5 because the results in
Table 2 suggest that it already performs strongly
without the need for further tuning.

As demonstrated in Table 2, our proposed
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Figure 4: Density distribution of the relevance probability of correct and incorrect recalls on WebQA after reranking
with the InternVL2-2B reranker.

Methods MultimodalQA WebQA
P R F1 P R F1
CLIP Top-N 84.78 84.78 84.78 41.24 57.10 47.89
Caption-aware Instruction Tuning
CLIP Top-K + Reranker 98.26 98.26 98.26 59.26 82.05 68.82
w/ Natural Threshold 100.00 97.83 98.90 74.89 80.59 77.64
w/ Adaptive Threshold 100.00 97.83 98.90 88.34 68.29 77.03

Table 2: Performance of InternVL2-2B reranker on two benchmark datasets. P and R denote precision and recall,
respectively. The best scores in each setting are in bold.

knowledge-enhanced reranking demonstrates supe-
rior performances. We achieve better performance
across all metrics compared to directly using CLIP
for top-V retrieval. When the adaptive threshold
7 is activated, the model accurately filters out ir-
relevant images, improving accuracy and F1 score.
Specifically, in WebQA, when 7 is set to an intu-
itively reasonable value of 0.5, the corresponding
F1 score increases by 29.75%. In MultimodalQA,
the reranker successfully identifies all ground truth
images from the retrieved top- K candidates when
7 is set to 0.5, proving the strong capability of our
proposed method in retrieval reranking.

figurations on InternVL2-1B and InternVL2-2B
demonstrate excellent performance, approaching
or even surpassing Oracle. When the natural thresh-
old is activated, there is a significant increase in the
accuracy of recalling the correct images (as shown
in Table 2), leading to substantial improvements in
all metrics. Moreover, this improvement is more
evident in the single-image scenario. This is be-
cause we fixed the number of images recalled each
time, and setting the threshold allows filtering out
erroneously recalled images, resulting in a consis-
tent performance enhancement. However, when
adopting adaptive thresholds, the improvement in
results is not as significant as with natural thresh-
olds. This can be seen from Table 2, where, despite
a substantial increase in accuracy, there is a signif-
icant drop in recall. Therefore, natural thresholds
are a better and more efficient choice for RAG.

Results of RAG Table 3 displays the results on
multimodal question answering which requires re-
trieving images. The baselines without retrieval
show limited performance, even the powerful GPT-
3.5 fails to answer the knowledge-intensive ques-
tions. Notably, the backbone LL.Ms of InternVL2-
1/2B (Qwen2-0.5B-Instruct and internlm2-chat-
1_8b) perform poorly while their multimodal coun-
terparts are improved. This phenomenon indicates
that VLMs can indeed learn world knowledge from
different modalities and RAG offers the potential
for a more timely and flexible knowledge integra-
tion in VLMs.

After applying our proposed pipeline, all con-

Ablation Studies To validate the efficacy of each
component in our proposed method, we conduct
a set of ablation experiments on WebQA with
InternVL2-2B, and the results are reported in Ta-
ble 4. For "w/o Reranker", we directly retrieve Top-
2 images with CLIP in the inference stage. The use
of the reranker in RagVL shows an improvement
in all metrics compared to "w/o Reranker". For
"w/o ND", we replace the noise-injected dataset



Methods MultimodalQA WebQA
EM Single. Multi. Overall
w/o Retrieval-augmented Generation
Qwen2-0.5B-Instruct 10.43 17.29 19.33 18.20
internlm2-chat-1_8b 10.43 23.25 32.58 27.40
gpt-3.5-turbo-0125 25.22 40.80 54.49 46.88
InternVL2-1B 19.57 26.10 43.57 33.86
InternVL2-2B 25.22 30.37 48.20 38.29
InternVL2-1B w/ Retrieval-augmented Generation
InternVL2-1B
w/ CLIP Top-N 50.87 35.98 48.65 41.61
w/ InternVL-G Top-N 49.57 38.88 49.11 43.43
RagVL w/o NIT 54.78 38.09 50.91 43.79
w/ Natural Threshold 54.78 40.43 50.96 45.11
w/ Adaptive Threshold 54.78 40.64 50.98 45.23
RagVL w/ NIT 68.26 53.07 72.53 61.72
w/ Natural Threshold 68.70 56.68 72.49 63.71
w/ Adaptive Threshold 68.70 56.71 72.60 63.78
Oracle 69.13 60.09 73.23 65.93
InternVL2-2B w/ Retrieval-augmented Generation
InternVL2-2B
w/ CLIP Top-N 61.30 40.80 48.88 44.39
w/ InternVL-G Top-N 60.00 41.92 48.45 44.82
RagVL w/o NIT 64.78 41.68 48.40 44.67
w/ Natural Threshold 65.65 44.71 48.97 46.60
w/ Adaptive Threshold 65.65 44.37 48.98 46.42
RagVL w/ NIT 73.04 53.91 72.62 62.23
w/ Natural Threshold 73.48 57.25 73.01 64.25
w/ Adaptive Threshold 73.48 57.94 72.47 64.40
Oracle 73.48 60.66 73.59 66.41

Table 3: Performance of multimodal knowledge-seeking question answering on WebQA and MultimodalQA. In
addition to the overall results, we report the accuracy of single-image and multi-image input with Single. and
Multi. for WebQA, respectively. Oracle refers to directly feeding the ground truth image to the generator after NIT
(Noise-injected Training). The best scores in each setting are in bold.

Methods WebQA
Single. Multi. Overall
RagVL (n = 0.5) 57.25 73.01 64.25
w/o Reranker 53.63 71.79 61.70
w/o ND 57.11 71.24 63.39
w/o NLC 56.42 72.40 63.52
w/o ND & NLC 56.27 70.10 62.42

Table 4: Ablation study on WebQA with InternVL2-2B.
NLC and ND refer to Noise-injected Logits Contrasting
and Noise-injected Data, respectively.

with the vanilla dataset. The results show that intro-
ducing noise at both data and token levels helps the
model distinguish relevant candidates more effec-
tively in real-world scenarios. Since NLC enhances
the model’s robustness at the token level, ablating

it leads to a decrease in all metrics. This decline
is more pronounced when both NLC and ND are
ablated, especially in multi-image inference scenar-
ios. Therefore, our proposed method, which injects
noise at the data and token levels, helps reduce the
distractions from noise and mitigate MNC.

5 Conclusion

In this paper, we present a robust framework for en-
hancing Vision-language Models (VLMs) through
knowledge-enhanced reranking and noise-injected
training to tackle the multi-granularity noisy corre-
spondence (MNC) problem in multimodal retrieval-
augmented generation. Our approach addresses
both coarse-grained and fine-grained noise, signifi-
cantly improving retrieval accuracy and generation
robustness.



Limitations

Although our approach demonstrates strong perfor-
mance in single-image and multi-image retrieval-
augmented generation scenarios, the effectiveness
in long-context situations remains unexplored. Fur-
thermore, the current retrieval mechanism is lim-
ited to images; whereas in real-world applications,
a wealth of information can be extracted from
videos or other modalities. In future work, we will
emphasize exploring retrieval-augmented genera-
tion across more modalities and extended contexts.
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A Comparison of Motivations and
Implementation Details between VCD
and RagVL

Although both our method and VCD use con-
trastive logit calculation, there are fundamental dif-
ferences in their implementation and motivation.
Our approach employs contrastive logit calculation
during fine-tuning, rather than inference. VCD, by
contrast, applies this calculation exclusively during
inference and does not involve fine-tuning. Ad-
ditionally, we introduce two types of noise dur-
ing training: token-level noise and data-level noise
(negatively sampled images). VCD only incorpo-
rates token-level noise during inference. By inject-
ing noise at both levels during training, we leverage
the Alogits as visual correlation weights to reas-
sign the loss for each token, guiding the model to
focus on relevant visual elements. Importantly, in-
ference in our method involves standard decoding,
not contrastive decoding. Our motivation extends
beyond mitigating irrelevant factors from a single
retrieved image to addressing those arising from
multiple images. In contrast, VCD focuses on bet-
ter attending to visual tokens within a single ground
truth image.

Another study (Xiao et al., 2024) also follows
VCD to highlight the visual relevance. It retrains
the VLMs from the pre-training stage aiming to
focus more on matching image-text pairs from po-
tentially mismatched datasets. In contrast, we aim
to achieve noise-resistant generation in practical
multimodal RAG scenarios. Therefore, we actively



Dataset Train Dev Test
WebQA 15K 3.7K 2.5K
MultimodalQA 2K 420 230
Flickr30K 290K 1K 1K
MS-COCO 113K 5K 5K

Table 5: Overall statistics of datasets.

Methods MultimodalQA  WebQA  Flickr30K  MS-COCO
CLIP 98.26 90.27 96.54 96.84
Vis-BGE-base 88.70 65.89 93.64 95.86
Vis-BGE-m3 84.78 63.14 91.48 91.98
InternVL-C 98.70 93.27 98.92 98.64
InternVL-G 97.83 92.78 99.22 99.02

Table 6: Recall @20 of different retrievers.

inject noise at both the data level and the token
level, and we only performed LoRA fine-tuning
on knowledge-intensive tasks. In addition, the
logits used for contrasting with the original log-
its in (Xiao et al., 2024) are derived solely from
text input, whereas RagVL utilizes noise-injected
images to obtain the logits for comparison.

B Data Statistics and Evaluation Metrics

WebQA consists of queries requiring 1-2 images
or text snippets, while 44% of image-based and
99% of text-based queries need multiple knowledge
sources. Following the vanilla evaluation setting,
we measure the overlap of key entities between
the generated output and ground truth answer as
Accuracy.

MultimodalQA contains multimodal questions
over tables, text, and images. We focus on the QA
pairs requiring only image information, which are
annotated as ‘ImageQ’ and attached to 1 image
each. The evaluation metric used is Exact Match
(EM).

Flickr30K consists of 31,000 images sourced
from Flickr, each accompanied by five captions.
Consistent with the setup of (Lee et al., 2018), we
allocate 1,000 images for validation, 1,000 for test-
ing, and use the remaining images for training.

MS-COCO comprises 123,287 images, each
paired with five captions. Following the protocol in
(Lee et al., 2018), we designate 113,287 images for
training, 5,000 for validation, and 5,000 for testing.
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Approach Time Cost
CLIP Top-K 1.23s

+ (sequential) InternVL2-2B reranker 5.11s

+ (sequential) LLaVA-v1.5-13B reranker 6.24s

+ (concurrent) InternVL2-2B reranker 1.03s

+ (concurrent) LLaVA-v1.5-13B reranker 1.25s

Table 7: Inference time per sample. Each inference with
the reranker involves 20 evaluations of image relevance
and one generation of an answer. Sequential and con-
current denote calling the rerankers sequentially and
concurrently, respectively.

C Implementation Details

To evaluate the effectiveness and generalizability
of our proposed method, this paper leverages sev-
eral cutting-edge VLMs as the backbone, includ-
ing LLaVA-v1.5-13B (Liu et al., 2024a), mPLUG-
Owl2 (Ye et al., 2024), Qwen-VL-Chat (Bai et al.,
2023), and InternVL (Chen et al., 2024). We em-
ploy the frozen CLIP-ViT-L/14-336px as the vi-
sion and text encoder. For RagVL, we first train
the reranker model with the caption-aware rank-
ing task. Subsequently, we use CLIP to retrieve
top-K candidates and rerank them into top-/N with
the fine-tuned reranker. K is set to 20, while NV
is set to 2 for WebQA and 1 for MultimodalQA.
All trainings are conducted under the LoRA (Hu
et al., 2021) setting. For evaluation, we use greedy
decoding to ensure reproducibility and report the
best performance. All experiments are conducted
on 8 40G NVIDIA A100 GPUs.

D Computational Efficiency

Table 7 presents the inference time for different set-
tings on 4 A100 GPUs. As shown, "CLIP Top-K"
only requires a small amount of time due to fast
inner product search, while our proposed method
requires more time on reranking the retrieved can-
didates. Though the VLM reranker shows powerful
retrieval performance, the efficiency will be a major
issue that limits its development.

Thanks to advances in inference acceleration, we
can address the efficiency issue from different per-
spectives. For example, FlashAttention (Dao et al.,
2022) enables faster inference with lower resources
by using tiling to reduce the number of memory
reads/writes between GPU memories. PagedAt-
tention (Kwon et al., 2023) resorts to the classical
virtual memory and paging techniques in operat-
ing systems to achieve near-zero waste and flexible
sharing of KV cache memory. Specifically, we
can share the attention calculation of textual to-



Task Instruction Answer
Multimodal Retrieval-augmented <image> - - - <image> {question} A phrase
QA
Caption-agnostic Ranking <image>. Question:{q‘uesjziorl} Is, this image relevant to Yes / No
the question? Answer ‘Yes’ or ‘No’.
<image> Image Caption:{caption} Ques-
Caption-aware Ranking (QA) tion:{question} Based on the image and its caption, is Yes / No
the image relevant to the question? Answer "Yes" or "No".

Table 8: The instruction template for ranking and generation tasks. The retrieval-augmented QA task allows
multi-image input, whereas the ranking tasks consider one image at a time.

Methods WebQA Ranking WebQA QA Models MME MMBench-en SEED!

Acc Recall@2 InternVL2-1B 1769.2 61.72 65.60

CLIP-ViT-L/14-336px _ 5710 w/ WebQA NIT  1671.3 60.76 64.32

LLaVA-v1 5-13B 6774 4535 InternVL2-2B 1839.8 72.25 71.60

w/ caption-agnostic IT 89.62 54.45 w/ WebQA NIT 17432 7046 7060
w/ caption-aware 1T 93.99 79.74

Table 9: Ablation study of captions in instruction tuning
(IT) on WebQA.

kens among different candidates and parallelize the
computation of visual tokens to maximize resource
utilization and accelerate inference, since the tex-
tual instructions of all candidates during the rerank-
ing process are identical. As a successful attempt,
Prompt Cache (Gim et al., 2024) has made simi-
lar efforts to reduce latency in time-to-first-token,
which improves 8x for GPU-based inference and
maintains output accuracy. In our actual imple-
mentation, we adopt concurrent (batched) model
invocation to mitigate the latency introduced by
sequential VLM calls. Compared to the sequen-
tial calling time reported in Table 7, the concurrent
setup can achieve more than a 5x speedup, sig-
nificantly narrowing the gap between RagVL and
CLIP-only models in terms of practical inference
time.

E Effect of Captions

We conduct experiments on test sets of WebQA
ranking and QA datasets to verify the validity of
captions in retrieving relevant sources. In We-
bQA QA task, we retrieve top-20 candidate images
using CLIP and rerank them into top-2 with our
instruction-tuned reranker models. As shown in Ta-
ble 9, the vanilla LLaVA-v1.5-13B performs poorly
on both tasks. The models trained on the ranking
task outperform the baseline, particularly the one
trained on the caption-aware task. This demon-
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Table 10: Evaluation on three general benchmark
datasets.

strates the superiority of our simple yet effective
instruction templates in inducing the ranking ability
of VLMs.

F Evaluation on General Benchmark
Datasets

While training a model on specific tasks can re-
duce its generalization capabilities (Ling et al.,
2023), a moderate trade-off in universality is often
acceptable to significantly enhance task-specific
performance. As demonstrated in Tablel10, we
evaluated our approach on three general datasets:
MME (Fu et al., 2024), MMBench (Liu et al.,
2025), and SEED-Image (Li et al., 2024). Follow-
ing noise-injected fine-tuning on WebQA, perfor-
mance declined only marginally—by 5.2%-5.5%,
1.6%-2.5%, and 1.4%—-1.9% on MME, MMBench,
and SEED-Image, respectively. However, this fine-
tuning resulted in a substantial improvement of
approximately 40% on WebQA as shown in Table
3, highlighting the effectiveness of our method in
balancing specialization and generalization.

G Performance on Caption-to-image
Retrieval

To further verify the effectiveness and generalizabil-
ity of our proposed reranking method, we conduct
more experiments on Flickr30K and MS-COCO.
We construct the reranking tasks and prompt the
reranker with the instruction "<image> Image



Flickr30K MS-COCO
Methods
R@l1 R@5 R@10 R@1 R@5 R@10
CLIP-ViT-L/14-336px 66.90 89.00 93.36 57.18 83.24 91.90
Vis-BGE-base 57.38 83.28 89.60 52.94 81.22 90.12
Vis-BGE-m3 52.18 78.18 86.06 43.14 73.44 84.42
InternVL-C 81.50 95.94 97.82 71.82 92.06 96.62
InternVL-G 84.28 96.88 98.44 76.20 94.24 97.54
Reranking Top-K from CLIP-ViT-L/14-336px
LLaVA-v1.5-13B 79.90 94.52 96.24 71.10 92.02 95.96
w/ caption-aware 1T 83.04 95.34 96.34 74.64 93.16 95.62
mPLUG-OwI2 76.16 94.12 95.98 65.44 90.34 95.38
w/ caption-aware IT 81.38 94.70 96.08 69.96 91.30 95.36
Qwen-VL-Chat 82.70 94.80 96.26 74.40 92.72 95.98
w/ caption-aware 1T 84.40 95.18 96.30 76.62 93.56 96.26
InternVL2-1B 67.74 92.56 96.04 55.76 87.14 94.02
w/ caption-aware 1T 83.02 95.12 96.38 74.24 92.78 96.02
InternVL2-2B 67.74 92.56 96.04 71.32 92.06 95.82
w/ caption-aware IT 83.78 95.14 96.32 75.86 93.40 96.10
Reranking Top-K from Different Retrievers
LLaVA-v1.5-13B
w/ Vis-BGE-base 80.76 92.56 93.44 74.12 92.36 95.02
w/ Vis-BGE-m3 79.64 90.46 91.34 71.94 88.96 91.18
w/ InternVL-C 83.56 97.12 98.58 75.00 94.26 97.36
w/ InternVL-G 83.26 97.16 98.80 75.06 94.36 97.60

Table 11: Performance of knowledge-enhanced rerankers on caption-to-image retrieval. The best scores in each

setting are in bold.

Caption: {caption} Is the image relevant to the
caption? Answer ‘Yes’ or ‘No’". As shown in
Table 11, our proposed method still outperforms
the majority of existing retrievers across all met-
rics, except for InternVL-G, which is specifically
designed for image-text matching. Our approach
primarily focuses on cases where the query is a
question, and the keys are captions and images. In
contrast, in these two caption-to-image retrieval
datasets, the query is a caption, and the key is an
image. Thus, our method not only demonstrates
superior performance in multimodal RAG but also
maintains generalizability and competitiveness in
traditional text-to-image retrieval.

H More Evaluations on LLaVA-v1.5-13B

Low-resource Settings on WebQA As shown
in Figure 5, the experiments with LLaVA-v1.5-
13B under low-resource settings also verified the
robustness of our proposed method in reranker
training. With only 2.5% of the original data, the
reranker significantly surpasses the original base-
line, InternVL-G, in R@2 and almost reaches the
performance peak. This inspires us to further ex-
plore the performance of low-resource instruction
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Figure 5: Retrieval performance on WebQA with
LLaVA-v1.5-13B under low-resource settings.

fine-tuning for models with different parameter
sizes in future work, aiming to enhance the gener-
alizability and efficiency of VLMs in instruction
fine-tuning and downstream task deployment.

Reranking Performance with Thresholds Sim-
ilarly, we train LLaVA-v1.5-13B as the reranker
using only 20% of the data. As shown in Figure 6,
the relevance probabilities of correct recalls are
concentrated in the highest range. The adaptive
threshold is high enough to filter out most of the
incorrect candidates.



Il Correct Recalls B Incorrect Recalls I Correct Recalls

B Incorrect Recalls

Density Distribution
Density Distribution

o s o o
o s o

=== Correct Recalls

B Correct Recalls  HEEM Incorrect Recalls

Incorrect Recalls

Density Distribution

=
>

0.2 0.4 0.6

Relevance Probability

0.8 0.4

(a) Train set

Relevance Probability

(b) Validation set

0.6 0.8 0.2 0.4 0.6

Relevance Probability

0.8

(c) Test set

Figure 6: Density distribution of the relevance probability of correct and incorrect recalls on WebQA after reranking

from the LLaVA-v1.5-13B reranker.

Methods MultimodalQA WebQA
P R F1 P R F1
CLIP Top-N 84.78 84.78 84.78 41.24 57.10 47.89
Blended Instruction Tuning

CLIP Top-K + Reranker 98.26 98.26 98.26 57.05 78.99 66.25
w/ Natural Threshold 100.00 97.39 98.68 67.94 78.00 72.62
w/ Adaptive Threshold 100.00 97.39 98.68 84.13 62.70 71.85

Ranking-only Instruction Tuning

CLIP Top-K + Reranker 98.26 98.26 98.26 57.59 79.74 66.87
w/ Natural Threshold 100.00 97.83 98.90 68.31 78.52 73.06
w/ Adaptive Threshold 100.00 97.83 98.90 80.38 68.35 73.88

Table 12: Performance of LLaVA-v1.5-13B reranker on two benchmark datasets. P and R denote precision and
recall, respectively. The best scores in each setting are in bold.

As shown in Table 12, our proposed knowledge-
enhanced reranking method demonstrates superior
performances. We train the reranker under two
settings: (i)Blended training of ranking and QA
tasks. (ii) Training exclusively with the ranking
task. Whether training with the blended or separate
setting, our approach achieves better performance
across all metrics than directly using CLIP for top-
N retrieval. When the adaptive threshold 7 is ac-
tivated, the model accurately filters out irrelevant
images, resulting in improved accuracy and F1
score. Specifically, in WebQA, when 7 is set to an
intuitively reasonable value of 0.5, the correspond-
ing F1 score increases by 25.17% after training
on the ranking-only task. In MultimodalQA, the
reranker successfully identifies all ground truth im-
ages from the retrieved top-K candidates when 7
is set to 0.5, proving the strong capability of our
proposed method in retrieval reranking.

For "w/ Blended Reranker", we utilize the
blended reranker for both reranking and generation,
which is trained with noise-injected data and vanilla
MLE loss. Though we directly mix the ranking and
QA datasets due to a lack of sufficient datasets,
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the blended reranker still performs competitively.
Since training the blended reranker requires precise
adjustments (Yu et al., 2024) to the composition
of the training datasets to achieve better results,
the results show a promising direction for future
research (unifying reranker and generator), which
further demonstrates the generalizability and supe-
riority of our proposed method.

Results of Retrieval-augmented Generation
Table 13 displays the results of LLaVA-v1.5-13B
on MultimodalQA and WebQA. Our proposed ap-
proach still outperforms baselines on all config-
urations. Due to a larger amount of parameters,
LLaVA-v1.5-13B outperforms InternVL2-1/2B in
answer generation. What’s more, the adaptive
threshold works better on LLaVA-v1.5-13B be-
cause the relevance probabilities of correct recalls
are more focused in the high range. Therefore, our
proposed method is also applicable to models with
larger parameters.

Ablation Studies As shown in Table 14, we
ablate the proposed approaches on WebQA with
LLaVA-v1.5-13B. Similar to the results from



MultimodalQA WebQA

Methods
EM Single. Multi. Overall
w/o Retrieval-augmented Generation
Vicuna-v1.5-13B 8.26 32.43 42.82 37.05
Llama-2-13b-chat-hf 0.43 16.23 21.27 18.47
LLaVA-v1.5-13B 42.61 31.92 50.37 40.12

LLaVA-v1.5-13B w/ Retrieval-augmented Generation

LLaVA-v1.5-13B

w/ CLIP Top-N 75.65 41.29 47.54 44.07
w/ InternVL-G Top-N 75.22 42.37 47.71 44.74
RagVL w/o NIT 78.70 41.03 48.09 44.17
w/ Natural Threshold 79.57 44.50 48.47 46.26
w/ Adaptive Threshold 79.57 44.05 49.00 46.25
RagVL w/ NIT 78.70 57.06 76.18 65.56
w/ Natural Threshold 79.57 60.86 76.83 67.95
w/ Adaptive Threshold 79.57 61.76 76.90 68.49
Oracle 79.13 65.51 77.04 70.63

Table 13: Performance of multimodal question answering on two benchmark datasets requiring image retrieval. In
addition to the overall results, we report the accuracy of single-image and multi-image input with Single. and Multi.
for WebQA, respectively. Oracle refers to directly feeding the ground truth image to the generator. The best scores
in each training setting are in bold.

Methods WebQA more cases requiring single image or multiple im-
Single. Multi. Overall ages for inferencing.
RagVL (n = 0.5) 60.86 76.83 67.95
w/o Reranker 58.67 75.66 66.22
w/o ND 61.67 75.19 67.68
w/o NLC 60.08 7624 67.26
w/o ND & NLC 60.68 7492 67.01

w/ Blended Reranker 58.15 7497 65.63

Table 14: Ablation study on WebQA with LLaVA-v1.5-
13B. NLC and ND refer to Noise-injected Logits Con-
trasting and Noise-injected Data, respectively.

InternVL2-2B, the benefits from reranking and
noise injection are still significant. Specially, to
explore the possibility of unifying reranker and gen-
erator, we utilize the blended reranker for both re-
trieval and generation. The results are very promis-
ing, and there is still significant room for optimiza-
tion.

I More Case Studies

As illustrated in Figure 7, we visualize the attention
heatmaps of three methods. The attention weights
are calculated by accumulating the attention score
between image tokens and text tokens across all
layers. Obviously, the model w/ NIT provides more
focused attention on the crucial parts of the query
than the other two models. Figure 8 and 9 show
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n the head of the Violet Turaco?"

(b) "Which is better maintained, the carving on the front of the Palace of the Governor in Uxmal or the Bird carving above the
doorway in Mexico, Architecture?"

Figure 7: Visualization of attention heatmaps w/ and w/o NIT. Displayed from left to right are the attention maps for
the base model (w/o IT), the model fine-tuned w/o NIT, and the model fine-tuned w/ NIT, respectively, with each
corresponding to its respective question in the caption.
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(d) "What color is the logo on China Merchants Bank Tower?"

Figure 8: More single-image cases on WebQA.
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(b) "Are the colors of the word lyric different in the Lyric Theater, Blacksburg and Lyric Theater, Georgia signs?"

Figure 9: More multi-image cases on WebQA.
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