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Abstract

Vision-language Models (VLMs) have demon-001
strated remarkable capabilities in processing002
and generating content across multiple data003
modalities. However, a significant drawback004
of VLMs is their reliance on static training005
data, leading to outdated information and lim-006
ited contextual awareness. This static nature007
hampers their ability to provide accurate and008
up-to-date responses, particularly in dynamic009
or rapidly evolving contexts. To address these010
limitations, we propose RagVL, a novel frame-011
work with knowledge-enhanced reranking and012
noise-injected training. We instruction-tune the013
VLM with a simple yet effective instruction014
template to induce its ranking ability and serve015
it as a reranker to precisely filter the top-k re-016
trieved images. For generation, we inject visual017
noise during training at the data and token lev-018
els to enhance the generator’s robustness. Ex-019
tensive experiments on four datasets verify the020
effectiveness of our method. Code and models021
are available at https://anonymous.4open.022
science/r/RagVL-F694.023

1 Introduction024

As an attempt towards Artificial General Intel-025

ligence (AGI), Large Language Models (LLMs)026

have made significant strides in language under-027

standing and human-like text generation (Brown028

et al., 2020; Achiam et al., 2023; Touvron et al.,029

2023). However, true AGI requires more than030

just linguistic capabilities. It necessitates a com-031

prehensive understanding and interaction with the032

world, encompassing multiple modalities beyond033

text. Thus, the recent progress of Vision-language034

Models (VLMs) in handling multimodal informa-035

tion has attracted the community. By processing036

and generating content across different modalities,037

VLMs aim to create a more holistic and nuanced038

understanding of the world, closer to how humans039

perceive and interpret information. This integra-040

tion of modalities enables VLMs to perform tasks041

that require contextual understanding from mul- 042

tiple data sources, such as Visual Question An- 043

swering (VQA) (Goyal et al., 2017; Hudson and 044

Manning, 2019; Marino et al., 2019), Table Ques- 045

tion Answering (Lu et al., 2022), Text-to-image 046

Generation (Ramesh et al., 2021; Yu et al., 2022; 047

Aghajanyan et al., 2022), etc. 048

Nevertheless, the promising performance of 049

language models primarily relies on the knowl- 050

edge implicitly stored in their massive parameters, 051

leading to several issues such as long-tail knowl- 052

edge gaps (Asai et al., 2024), generating halluci- 053

nations (Ye and Durrett, 2022), and poor model 054

interpretability. To better adapt to knowledge- 055

intensive tasks and real-world scenarios, Retrieval- 056

augmented Language Models (RALM) (Lewis 057

et al., 2020; Lin et al., 2023; Izacard and Grave, 058

2020; Karpukhin et al., 2020) employ a dense re- 059

triever to retrieve up-to-date knowledge from ex- 060

ternal memories for grounded generation. Simi- 061

larly, Multimodal Retrieval-augmented Generation 062

(Multimodal RAG) enhances VLMs by dynami- 063

cally retrieving relevant information from external 064

multimodal data sources before generation. This 065

allows the models to incorporate real-time, con- 066

textually accurate visual information, significantly 067

improving the factuality and accuracy of their out- 068

puts. 069

As illustrated in Figure 1, to answer the 070

information-seeking query, the model must retrieve 071

and reason over external visual knowledge, which 072

differs from traditional VQA on the left and is non- 073

trivial. To solve this, MuRAG (Chen et al., 2022) 074

makes the first endeavor to extend RAG to multiple 075

modalities. It is built upon ViT (Dosovitskiy et al., 076

2020) and T5 (Raffel et al., 2020) and pre-trained 077

to encode image-text pairs for both answer genera- 078

tion and retrieval. MuRAG embeds items into an 079

external memory and handles queries for retrieving 080

multimodal knowledge from the same memory. 081

However, integrating multimodal RAG would in- 082
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Figure 1: Difference between traditional VQA and multimodal knowledge-seeking question answering. An example
from WebQA (Chang et al., 2022) reveals the challenge of multi-granularity noisy correspondence (MNC).

evitably introduce the multi-granularity noisy cor-083

respondence problem (MNC) (Huang et al., 2021).084

As shown in Figure 1, MNC refers to the noise085

at two different granularities: (I) Coarse-grained086

noise (query-caption). During the retrieval stage,087

coarse-grained captions result in retrieving similar088

but negative images. (II) Fine-grained noise (query-089

image). The retriever and generator must distin-090

guish fine-grained visual elements to formulate the091

responses. Any discrepancies between the images092

and the question can introduce noise, compromis-093

ing the accuracy. In this scenario, CLIP (Radford094

et al., 2021) struggles to match the query with the095

image during the retrieval phase (see in Table 1).096

Also, identifying the correct correspondence amidst097

the fine-grained noise to provide an answer to the098

query is a challenge.099

To this end, we propose RagVL, a novel frame-100

work with knowledge-enhanced reranking and101

noise-injected training, to mitigate MNC in multi-102

modal RAG. In the retrieval stage, we instruction-103

tune the VLM with a simple yet effective instruc-104

tion template to induce its ranking ability. Given105

that VLMs are inherently capable of understanding106

cross-modal information, we employ the fine-tuned107

model as a reranker to evaluate the relevance be-108

tween the query and the image, which precisely109

selects top-N candidates that are more related to110

the query semantically. Subsequently, we apply an111

adaptive threshold to filter the candidates, collabo-112

rating with the reranker to alleviate the fine-grained113

mismatches. To further mitigate the impact of fine-114

grained mismatches during the generation phase,115

we introduce noise at both data and token levels in116

the training process. Specifically, at the data level,117

we perform negative sampling for single-image 118

input questions within the single/multiple-image 119

interleaved dataset, supplementing them with ref- 120

erences from hard negative images. At the token 121

level, we introduce additional visual uncertainty to 122

images through Gaussian noise and reassign train- 123

ing loss weights by comparing the logits of the 124

distorted and original inputs. 125

In a nutshell, the main contributions of this work 126

are as follows: (I) We achieve effective and robust 127

multimodal retrieval-augmented generation with a 128

three-stage pipeline. Additionally, we address the 129

inherent multi-granularity noisy correspondence 130

(MNC) problem in multimodal retrieval-augmented 131

generation. (II) We introduce the knowledge- 132

enhanced reranking and noise-injected training 133

technique to mitigate the coarse-grained and fine- 134

grained noise from MNC. (III) Extensive experi- 135

ments on multimodal knowledge-seeking QA and 136

retrieval tasks demonstrate the effectiveness of the 137

proposed framework. 138

2 Related Work 139

2.1 Vision-language Model 140

Recent advances in VLMs have demonstrated im- 141

pressive performances in handling multi-format in- 142

formation (Driess et al., 2023; Huang et al., 2024; 143

Achiam et al., 2023). VLMs are generally built 144

upon existing LLMs and integrating visual infor- 145

mation as input tokens by utilizing an additional 146

vision encoder and a bridging connector. For in- 147

stance, LLaVA (Liu et al., 2024b,a) adopts one/two 148

linear MLP to project visual tokens and align the 149

feature dimension with word embeddings, while 150

BLIP-2 (Li et al., 2023) leverages a group of learn- 151
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Figure 2: Overview of our proposed RagVL. In the retrieval stage, we utilize the CLIP model and faiss to find the
top-K most relevant images through Maximum Inner Product Search (MIPS) (Guo et al., 2020). Subsequently, the
highly similar top-K images are reranked into top-N with the fine-tuned VLM reranker. Finally, the top-N images
are fed into the VLM generator along with the query for accurate generation.

able query tokens to extract information in a query-152

based manner. Despite these advances, VLMs tend153

to underperform in knowledge-intensive tasks (e.g.154

WebQA and MultimodalQA (Talmor et al., 2021))155

that require seeking up-to-date information. Since156

the knowledge stored in their massive parameters157

is currently limited, VLMs must resort to external158

memories for grounded generation.159

2.2 Multimodal Retrieval-augmented160

Generation161

Enhancing language models by incorporating rele-162

vant information from diverse knowledge sources163

has been shown to improve performance across var-164

ious NLP tasks (Borgeaud et al., 2022; Lewis et al.,165

2020). REALM (Guu et al., 2020) and RAG (Lewis166

et al., 2020) treat the retrieved passages as la-167

tent variables and train the retriever-generator sys-168

tem jointly, leading to more effective retrieval-169

augmented generation models. Inspired by textual170

RAG, Plug-and-play (Tiong et al., 2022) retrieves171

relevant image patches using GradCAM (Selvaraju172

et al., 2017) to localize relevant parts based on the173

query. MuRAG (Chen et al., 2022) proposes the174

first multimodal retrieval-augmented Transformer,175

which accesses an external non-parametric multi-176

modal memory to augment language generation.177

Sun et al. (2024) emphasize high-quality dataset178

construction, where positive and negative labels are179

pre-generated by VLMs. During inference, their180

retriever directly passes Top-K candidates to the181

generator without reranking. However, none of182

these works specifically focus on MNC in multi-183

modal RAG, which is primary in our research. 184

3 Methodology 185

3.1 Preliminaries 186

The traditional RALM acquires knowledge from 187

the external memory M and utilizes the knowledge 188

in grounded outputs to promote accurate and ex- 189

plainable generation. The retriever R first retrieves 190

the top-K most relevant contexts C = {c1, · · · , ck} 191

from M for the given question q. Subsequently, 192

the autoregressive language model generates an- 193

swers based on these retrieved contexts. Under the 194

multimodal setting, the retriever needs to compare 195

the textual queries with the multimodal documents 196

and find the best matches for the generator G. 197

3.2 Multimodal Retriever 198

We follow the dual-encoder architecture based on 199

CLIP text encoder Φtext and image encoder Φimg. 200

Before the retrieval stage, given image-query pairs 201

(v, q) from the dataset D, we first apply the image 202

encoder Φimg to encode each image and build the 203

image memory M using faiss (Douze et al., 2024). 204

From the external memory M, the retriever aims 205

to retrieve a small set of images that support the 206

textual query q. Specifically, we encode the query 207

with the text encoder Φtext and use MIPS over all 208

of the image candidates v ∈ M as follows, 209

M̂ = TopK(M|q) = TopK
v∈M

Φtext(q) ·Φimg(v).

(1) 210

The top-K images with the highest inner product 211

scores, i.e. the nearest top-K neighbors M̂ = 212
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{v1, v2, · · · , vk}, are retrieved as the candidate im-213

ages for answer generation.214

3.3 Inducing Ranking Ability of VLMs215

CLIP stands out across a wide range of multimodal216

representations and retrieval tasks as a powerful217

and highly transferable model. However, when en-218

countering long-tail distribution or domain-specific219

terms, CLIP fails to match the proper pairs across220

text and images. To mitigate this, we resort to221

VLMs for their capabilities of semantic under-222

standing. In general, VLMs are pre-trained on223

vast image-text pairs for feature alignment and224

fine-tuned on language-image instruction-tuning225

datasets for instruction following. With this pre-226

injected multimodal knowledge, they are inherently227

capable of understanding semantically relevant con-228

tents across both visual and textual modalities at a229

deeper level. Therefore, to mitigate the bottleneck230

challenge of multimodal RAG, we introduce the231

flexible knowledge-enhanced reranking to induce232

the ranking ability of VLMs.233

Ranking Data Construction We construct the234

instruction-following data based on WebQA and235

MultimodalQA and design two tasks requiring the236

model to generate "Yes" for the relevant pairs and237

"No" for the irrelevant pairs. We treat each query238

and the ground truth images as relevant, while the239

hard negative images are irrelevant. Intuitively, the240

caption-aware style brings additional knowledge to241

the model to distinguish the relevance between the242

image and query. Therefore, we train the reranker243

with the caption-aware ranking task. See the details244

of the instruction template in Table 8.245

Knowledge-enhanced Reranking By asking the246

question "Based on the image and its caption, is the247

image relevant to the question? Answer ‘Yes’ or248

‘No’.", we measure the relevance between the im-249

age and query with the probability p of generating250

"Yes" on the first token calculated from the output251

logits. Thus, reranking the top-K candidates into252

top-N can be formulated as follows,253

M̃ = TopN(M̂|ϕ) = TopN
(v,c)∈M̂

pϕ(v, c, q), (2)254

255

pϕ(v, c, q) =
exp(o("Yes"|v, c, q))

exp(o("Yes"|v, c, q)) + exp(o("No"|v, c, q)) ,

(3)256

where v, c, q, and o denote the image, correspond-257

ing caption, query, and logit respectively. ϕ is the258

weight of the reranker.259

Adaptive Threshold The reranked images may 260

still exhibit low relevance p to the query, which 261

could adversely impact the generation of answers. 262

Consequently, their inclusion might lead to poorer 263

performance compared to scenarios where the im- 264

ages are not included at all. To further improve 265

the retrieval accuracy, we apply an adaptive thresh- 266

old η to filter out candidates when p < η. We 267

set two types of thresholds: the natural threshold 268

and the adaptive threshold. The natural threshold 269

refers to η = 0.5, which is the natural boundary 270

for our binary classification ranking. For more pre- 271

cise retrieval, we experiment on the validation set 272

and utilize the intersection point of the interpolated 273

curve of exact match and mismatch as the adaptive 274

threshold. In this way, the model can avoid the 275

distractions from irrelevant images. 276

3.4 Noise-injected Training 277

Compared to providing a fixed number of images 278

each time, the task with single/multiple images in- 279

terleaved is more aligned with real-world scenarios. 280

It is challenging to determine the optimal number 281

of images to refer to each time and extract relevant 282

information from the images, while irrelevant ones 283

still inevitably disturb the accurate generation. 284

Inspired by VCD (Leng et al., 2024): visual 285

uncertainty can amplify language priors, and con- 286

trasting the logits from the enhanced priors with the 287

original ones can better highlight visual relevance 1. 288

We propose injecting visual noise during training at 289

the data and token level to enhance robustness: (I) 290

For single-image/multi-image interleaved tasks, we 291

sample randomly from the hard negatives to ensure 292

that each instruction-following data has the same 293

amount of image input. (II) We introduce Gaussian 294

noise as additional visual uncertainty and contrast 295

the logits to reweight the loss for each token. 296

Noise-injected Data Construction We standard- 297

ize the number of image inputs for each sample 298

in the instruction-following data to the maximum 299

number needed for any question. In the case of We- 300

bQA, where each question requires 1-2 images for 301

answering, we randomly sample 1 image from the 302

hard negatives as an injected noise for the single- 303

image query. The model is required to distinguish 304

relevant visual information, which strengthens its 305

capability of visual understanding. 306

1Refer to Appendix A for the comparison of motivations
and implementation details between VCD and RagVL.
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Figure 3: Generalizability of caption-aware instruction
tuning. (a) compares the reranker fine-tuned on WebQA
with the one fine-tuned on MultimodalQA, evaluated
on MultimodalQA. (b) visualizes the changes in the
probability distribution of correctly recalled items and
the recall of the reranker under low-resource settings.

Noise-injected Logits Contrasting To inject307

noise at the token level, we employ forward dif-308

fusion (Ho et al., 2020) to distort the image:309

f (vt | vt−1) = N
(
vt;

√
1− γvt−1, γI

)
, (4)310

f (vT | v0) =
T∏
t=1

f (vt | vt−1) , (5)311

where I and v0 denote an identity matrix and the312

original image, respectively. We gradually distort313

the original image by adding the Gaussian noise for314

T steps and γ controls the amount of noise added315

in each step. Subsequently, to guide the model316

in more effectively learning the visual relevance317

highlighted in the contrasted logits, we propose318

reweighting the training loss by contrasting vanilla319

and noisy logits to highlight the visual relevance.320

Given a textual query x and an image input v, the321

model generates two logit distributions conditioned322

on different visual posteriors: the original v and323

distorted v∗. By contrasting the logit distributions324

obtained from these two conditions, we can get325

the contrastive probability distribution of the i-th326

sample at time step t as follows, 327

wi,t = ∆o(yi,t|vi, v∗i , xi, yi,<t) (6) 328

= oθ(yi,t|vi)− oθ(yi,t|v∗i ), (7) 329

where yi,t and yi,<t denote the token at time step t 330

and the generated tokens sequence up to the time 331

step t− 1 of the i-th sample, respectively. Subse- 332

quently, we reassign the weight of each token in 333

the vanilla MLE loss as follows, 334

Li,t
INJ = − wi,t∑l

k=1wi,k

· logpθ(yi,t|vi, xi, yi,<t),

(8) 335

where l and w̃ represent the length of textual tokens 336

and the smooth weight, respectively. 337

4 Experiments and Analysis 338

4.1 Experiment Setup 339

Datasets and Evaluation Metrics For evalua- 340

tion, we consider the image-related subsets of 341

two multimodal QA datasets WebQA and Mul- 342

timodalQA. Since the test set labels from both 343

datasets are not publicly available, the training and 344

validation sets in our work are subsets of the orig- 345

inal training data, while the test sets are sourced 346

from the original validation sets. Each query is 347

associated with a set of hard negative distractors 348

so that two evaluation setups can be used, namely 349

distractor and full-wiki. We only consider the full- 350

wiki setting to demonstrate the superiority of our 351

proposed pipeline. Additionally, we conduct more 352

experiments on Flickr30K (Young et al., 2014) and 353

MS-COCO (Lin et al., 2014) to evaluate the perfor- 354

mance on caption-to-image retrieval tasks. More 355

details can be found in Appendix B, C and G. 356

4.2 Evaluation on Multimodal 357

Knowledge-seeking 358

Results of Retrieval Table 1 shows the perfor- 359

mance on MulitmodalQA and WebQA. The re- 360

triever performs weakly regarding precise recall 361

(R@1 and R@2) on both datasets, making it diffi- 362

cult for accurate generation. Since the captions 363

from the two datasets are names of objects or 364

places, it is not trivial to adapt to the scenarios 365

using vanilla contrastive learning, as proven in the 366

table. After inducing the ranking abilities of VLMs, 367

our proposed method effectively improves perfor- 368

mance by a large margin. Specifically, with five 369

VLMs, our method consistently improves R@2 on 370

WebQA by an average of 40%. The results of four 371
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Methods
MultimodalQA WebQA

R@1 R@5 R@10 R@2 R@5 R@10

CLIP-ViT-L/14-336px 84.78 94.35 95.65 57.10 71.96 84.86
w/ SFT 83.04 94.35 94.78 55.09 73.23 81.94

Vis-BGE-base 49.57 74.78 82.61 28.78 43.62 54.56
Vis-BGE-m3 43.48 66.52 72.17 26.69 40.75 51.14
InternVL-C 82.17 95.65 96.96 64.90 81.22 88.09
InternVL-G 82.17 95.22 97.39 64.90 80.23 88.28

Reranking Top-K from CLIP-ViT-L/14-336px

LLaVA-v1.5-13B 72.61 90.87 95.22 45.35 65.87 80.56
w/ caption-aware IT 98.26 98.26 98.26 79.74 88.14 89.77

mPLUG-Owl2 67.83 87.39 93.91 43.26 63.80 79.38
w/ caption-aware IT 90.87 96.09 97.39 71.27 85.08 88.97

Qwen-VL-Chat 68.26 89.57 92.61 47.64 67.22 80.42
w/ caption-aware IT 91.30 95.65 97.39 80.12 88.53 89.96

InternVL2-1B 47.39 84.78 93.91 34.99 57.49 74.72
w/ caption-aware IT 98.26 98.26 98.26 82.00 88.78 89.94

InternVL2-2B 66.52 88.70 93.91 42.79 62.48 77.97
w/ caption-aware IT 98.26 98.26 98.26 81.91 88.94 89.94

Reranking Top-K from Different Retrievers

LLaVA-v1.5-13B
w/ Vis-BGE-base 88.70 88.70 88.70 59.61 64.71 65.70
w/ Vis-BGE-m3 84.78 84.78 84.78 57.57 62.26 63.03
w/ InternVL-C 98.70 98.70 98.70 82.08 90.79 92.72
w/ InternVL-G 97.83 97.83 97.83 81.91 90.24 92.31

Table 1: Performance of rerankers on multimodal knowledge-seeking. The reranking is conducted based on the top
20 candidates from the retrievers (see details in Appendix B). The best scores in each setting are in bold.

different retrievers are significantly improved af-372

ter reranking the Top-K candidates. Notably, on373

MultimodalQA, it reaches the upper bound of Re-374

call@20 (98.26%) from CLIP on LLaVA-v1.5-13B375

and InternVL2-1/2B.376

Generalizability of Caption-aware Instruction377

Tuning To further validate the generalizability378

of our method, on one hand, we test the reranker,379

which is fine-tuned on WebQA, on MultimodalQA.380

As shown in Figure 3a, the reranker trained on381

WebQA exhibits competitive performances and382

even matches the original reranker’s performance383

with InternVL2-1/2B. On the other hand, we se-384

lect different portions of data from WebQA to train385

InternVL2-2B in a low-resource setting, and ob-386

tain the probability distribution of the reranker out-387

putting "Yes" for correctly recalled images. Fig-388

ure 3b shows the robust performance of our pro-389

posed method under the low-resource settings.390

With only 2.5% of the original data, the reranker391

significantly outperforms the strong retriever base-392

line, InternVL-G, in R@2. As the data scale in-393

creases, the probability of correctly recalling im-394

ages also improves, stabilizing around 20%, and the395

recall follows a similar trend. In summary, these 396

two points fully demonstrate the strong generaliz- 397

ability of our proposed method, making it easily 398

adaptable to more scenarios. We make a further 399

discussion in Appendix H. 400

4.3 Evaluation on Multimodal RAG 401

Reranking Performance with Thresholds 402

Since the reranker performs excellently in low- 403

resource settings, we train InternVL2-1/2B as the 404

rerankers using only 20% of the data, considering 405

efficiency. As shown in Figure 4, we collect the 406

relevance of the image candidates after reranking. 407

Among all sets, the probabilities of correct recalls 408

are concentrated in the highest range. For WebQA, 409

since there is still a portion of erroneous recalls, 410

we plot the interpolated curves of correct recalls 411

and erroneous recalls on the validation set and take 412

the x-coordinate of their intersection point as the 413

adaptive threshold. For MultimodalQA, we set 414

the adaptive threshold to 0.5 because the results in 415

Table 2 suggest that it already performs strongly 416

without the need for further tuning. 417

As demonstrated in Table 2, our proposed 418
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Figure 4: Density distribution of the relevance probability of correct and incorrect recalls on WebQA after reranking
with the InternVL2-2B reranker.

Methods
MultimodalQA WebQA

P R F1 P R F1

CLIP Top-N 84.78 84.78 84.78 41.24 57.10 47.89

Caption-aware Instruction Tuning

CLIP Top-K + Reranker 98.26 98.26 98.26 59.26 82.05 68.82
w/ Natural Threshold 100.00 97.83 98.90 74.89 80.59 77.64
w/ Adaptive Threshold 100.00 97.83 98.90 88.34 68.29 77.03

Table 2: Performance of InternVL2-2B reranker on two benchmark datasets. P and R denote precision and recall,
respectively. The best scores in each setting are in bold.

knowledge-enhanced reranking demonstrates supe-419

rior performances. We achieve better performance420

across all metrics compared to directly using CLIP421

for top-N retrieval. When the adaptive threshold422

η is activated, the model accurately filters out ir-423

relevant images, improving accuracy and F1 score.424

Specifically, in WebQA, when η is set to an intu-425

itively reasonable value of 0.5, the corresponding426

F1 score increases by 29.75%. In MultimodalQA,427

the reranker successfully identifies all ground truth428

images from the retrieved top-K candidates when429

η is set to 0.5, proving the strong capability of our430

proposed method in retrieval reranking.431

Results of RAG Table 3 displays the results on432

multimodal question answering which requires re-433

trieving images. The baselines without retrieval434

show limited performance, even the powerful GPT-435

3.5 fails to answer the knowledge-intensive ques-436

tions. Notably, the backbone LLMs of InternVL2-437

1/2B (Qwen2-0.5B-Instruct and internlm2-chat-438

1_8b) perform poorly while their multimodal coun-439

terparts are improved. This phenomenon indicates440

that VLMs can indeed learn world knowledge from441

different modalities and RAG offers the potential442

for a more timely and flexible knowledge integra-443

tion in VLMs.444

After applying our proposed pipeline, all con-445

figurations on InternVL2-1B and InternVL2-2B 446

demonstrate excellent performance, approaching 447

or even surpassing Oracle. When the natural thresh- 448

old is activated, there is a significant increase in the 449

accuracy of recalling the correct images (as shown 450

in Table 2), leading to substantial improvements in 451

all metrics. Moreover, this improvement is more 452

evident in the single-image scenario. This is be- 453

cause we fixed the number of images recalled each 454

time, and setting the threshold allows filtering out 455

erroneously recalled images, resulting in a consis- 456

tent performance enhancement. However, when 457

adopting adaptive thresholds, the improvement in 458

results is not as significant as with natural thresh- 459

olds. This can be seen from Table 2, where, despite 460

a substantial increase in accuracy, there is a signif- 461

icant drop in recall. Therefore, natural thresholds 462

are a better and more efficient choice for RAG. 463

Ablation Studies To validate the efficacy of each 464

component in our proposed method, we conduct 465

a set of ablation experiments on WebQA with 466

InternVL2-2B, and the results are reported in Ta- 467

ble 4. For "w/o Reranker", we directly retrieve Top- 468

2 images with CLIP in the inference stage. The use 469

of the reranker in RagVL shows an improvement 470

in all metrics compared to "w/o Reranker". For 471

"w/o ND", we replace the noise-injected dataset 472
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Methods
MultimodalQA WebQA

EM Single. Multi. Overall

w/o Retrieval-augmented Generation

Qwen2-0.5B-Instruct 10.43 17.29 19.33 18.20
internlm2-chat-1_8b 10.43 23.25 32.58 27.40
gpt-3.5-turbo-0125 25.22 40.80 54.49 46.88
InternVL2-1B 19.57 26.10 43.57 33.86
InternVL2-2B 25.22 30.37 48.20 38.29

InternVL2-1B w/ Retrieval-augmented Generation

InternVL2-1B
w/ CLIP Top-N 50.87 35.98 48.65 41.61
w/ InternVL-G Top-N 49.57 38.88 49.11 43.43

RagVL w/o NIT 54.78 38.09 50.91 43.79
w/ Natural Threshold 54.78 40.43 50.96 45.11
w/ Adaptive Threshold 54.78 40.64 50.98 45.23

RagVL w/ NIT 68.26 53.07 72.53 61.72
w/ Natural Threshold 68.70 56.68 72.49 63.71
w/ Adaptive Threshold 68.70 56.71 72.60 63.78

Oracle 69.13 60.09 73.23 65.93

InternVL2-2B w/ Retrieval-augmented Generation

InternVL2-2B
w/ CLIP Top-N 61.30 40.80 48.88 44.39
w/ InternVL-G Top-N 60.00 41.92 48.45 44.82

RagVL w/o NIT 64.78 41.68 48.40 44.67
w/ Natural Threshold 65.65 44.71 48.97 46.60
w/ Adaptive Threshold 65.65 44.37 48.98 46.42

RagVL w/ NIT 73.04 53.91 72.62 62.23
w/ Natural Threshold 73.48 57.25 73.01 64.25
w/ Adaptive Threshold 73.48 57.94 72.47 64.40

Oracle 73.48 60.66 73.59 66.41

Table 3: Performance of multimodal knowledge-seeking question answering on WebQA and MultimodalQA. In
addition to the overall results, we report the accuracy of single-image and multi-image input with Single. and
Multi. for WebQA, respectively. Oracle refers to directly feeding the ground truth image to the generator after NIT
(Noise-injected Training). The best scores in each setting are in bold.

Methods
WebQA

Single. Multi. Overall

RagVL (η = 0.5) 57.25 73.01 64.25
w/o Reranker 53.63 71.79 61.70
w/o ND 57.11 71.24 63.39
w/o NLC 56.42 72.40 63.52
w/o ND & NLC 56.27 70.10 62.42

Table 4: Ablation study on WebQA with InternVL2-2B.
NLC and ND refer to Noise-injected Logits Contrasting
and Noise-injected Data, respectively.

with the vanilla dataset. The results show that intro-473

ducing noise at both data and token levels helps the474

model distinguish relevant candidates more effec-475

tively in real-world scenarios. Since NLC enhances476

the model’s robustness at the token level, ablating477

it leads to a decrease in all metrics. This decline 478

is more pronounced when both NLC and ND are 479

ablated, especially in multi-image inference scenar- 480

ios. Therefore, our proposed method, which injects 481

noise at the data and token levels, helps reduce the 482

distractions from noise and mitigate MNC. 483

5 Conclusion 484

In this paper, we present a robust framework for en- 485

hancing Vision-language Models (VLMs) through 486

knowledge-enhanced reranking and noise-injected 487

training to tackle the multi-granularity noisy corre- 488

spondence (MNC) problem in multimodal retrieval- 489

augmented generation. Our approach addresses 490

both coarse-grained and fine-grained noise, signifi- 491

cantly improving retrieval accuracy and generation 492

robustness. 493
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Limitations494

Although our approach demonstrates strong perfor-495

mance in single-image and multi-image retrieval-496

augmented generation scenarios, the effectiveness497

in long-context situations remains unexplored. Fur-498

thermore, the current retrieval mechanism is lim-499

ited to images; whereas in real-world applications,500

a wealth of information can be extracted from501

videos or other modalities. In future work, we will502

emphasize exploring retrieval-augmented genera-503

tion across more modalities and extended contexts.504
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A Comparison of Motivations and 790

Implementation Details between VCD 791

and RagVL 792

Although both our method and VCD use con- 793

trastive logit calculation, there are fundamental dif- 794

ferences in their implementation and motivation. 795

Our approach employs contrastive logit calculation 796

during fine-tuning, rather than inference. VCD, by 797

contrast, applies this calculation exclusively during 798

inference and does not involve fine-tuning. Ad- 799

ditionally, we introduce two types of noise dur- 800

ing training: token-level noise and data-level noise 801

(negatively sampled images). VCD only incorpo- 802

rates token-level noise during inference. By inject- 803

ing noise at both levels during training, we leverage 804

the ∆logits as visual correlation weights to reas- 805

sign the loss for each token, guiding the model to 806

focus on relevant visual elements. Importantly, in- 807

ference in our method involves standard decoding, 808

not contrastive decoding. Our motivation extends 809

beyond mitigating irrelevant factors from a single 810

retrieved image to addressing those arising from 811

multiple images. In contrast, VCD focuses on bet- 812

ter attending to visual tokens within a single ground 813

truth image. 814

Another study (Xiao et al., 2024) also follows 815

VCD to highlight the visual relevance. It retrains 816

the VLMs from the pre-training stage aiming to 817

focus more on matching image-text pairs from po- 818

tentially mismatched datasets. In contrast, we aim 819

to achieve noise-resistant generation in practical 820

multimodal RAG scenarios. Therefore, we actively 821
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Dataset Train Dev Test

WebQA 15K 3.7K 2.5K
MultimodalQA 2K 420 230
Flickr30K 29K 1K 1K
MS-COCO 113K 5K 5K

Table 5: Overall statistics of datasets.

Methods MultimodalQA WebQA Flickr30K MS-COCO

CLIP 98.26 90.27 96.54 96.84
Vis-BGE-base 88.70 65.89 93.64 95.86
Vis-BGE-m3 84.78 63.14 91.48 91.98
InternVL-C 98.70 93.27 98.92 98.64
InternVL-G 97.83 92.78 99.22 99.02

Table 6: Recall@20 of different retrievers.

inject noise at both the data level and the token822

level, and we only performed LoRA fine-tuning823

on knowledge-intensive tasks. In addition, the824

logits used for contrasting with the original log-825

its in (Xiao et al., 2024) are derived solely from826

text input, whereas RagVL utilizes noise-injected827

images to obtain the logits for comparison.828

B Data Statistics and Evaluation Metrics829

WebQA consists of queries requiring 1-2 images830

or text snippets, while 44% of image-based and831

99% of text-based queries need multiple knowledge832

sources. Following the vanilla evaluation setting,833

we measure the overlap of key entities between834

the generated output and ground truth answer as835

Accuracy.836

MultimodalQA contains multimodal questions837

over tables, text, and images. We focus on the QA838

pairs requiring only image information, which are839

annotated as ‘ImageQ’ and attached to 1 image840

each. The evaluation metric used is Exact Match841

(EM).842

Flickr30K consists of 31,000 images sourced843

from Flickr, each accompanied by five captions.844

Consistent with the setup of (Lee et al., 2018), we845

allocate 1,000 images for validation, 1,000 for test-846

ing, and use the remaining images for training.847

MS-COCO comprises 123,287 images, each848

paired with five captions. Following the protocol in849

(Lee et al., 2018), we designate 113,287 images for850

training, 5,000 for validation, and 5,000 for testing.851

Approach Time Cost

CLIP Top-K 1.23s
+ (sequential) InternVL2-2B reranker 5.11s
+ (sequential) LLaVA-v1.5-13B reranker 6.24s
+ (concurrent) InternVL2-2B reranker 1.03s
+ (concurrent) LLaVA-v1.5-13B reranker 1.25s

Table 7: Inference time per sample. Each inference with
the reranker involves 20 evaluations of image relevance
and one generation of an answer. Sequential and con-
current denote calling the rerankers sequentially and
concurrently, respectively.

C Implementation Details 852

To evaluate the effectiveness and generalizability 853

of our proposed method, this paper leverages sev- 854

eral cutting-edge VLMs as the backbone, includ- 855

ing LLaVA-v1.5-13B (Liu et al., 2024a), mPLUG- 856

Owl2 (Ye et al., 2024), Qwen-VL-Chat (Bai et al., 857

2023), and InternVL (Chen et al., 2024). We em- 858

ploy the frozen CLIP-ViT-L/14-336px as the vi- 859

sion and text encoder. For RagVL, we first train 860

the reranker model with the caption-aware rank- 861

ing task. Subsequently, we use CLIP to retrieve 862

top-K candidates and rerank them into top-N with 863

the fine-tuned reranker. K is set to 20, while N 864

is set to 2 for WebQA and 1 for MultimodalQA. 865

All trainings are conducted under the LoRA (Hu 866

et al., 2021) setting. For evaluation, we use greedy 867

decoding to ensure reproducibility and report the 868

best performance. All experiments are conducted 869

on 8 40G NVIDIA A100 GPUs. 870

D Computational Efficiency 871

Table 7 presents the inference time for different set- 872

tings on 4 A100 GPUs. As shown, "CLIP Top-K" 873

only requires a small amount of time due to fast 874

inner product search, while our proposed method 875

requires more time on reranking the retrieved can- 876

didates. Though the VLM reranker shows powerful 877

retrieval performance, the efficiency will be a major 878

issue that limits its development. 879

Thanks to advances in inference acceleration, we 880

can address the efficiency issue from different per- 881

spectives. For example, FlashAttention (Dao et al., 882

2022) enables faster inference with lower resources 883

by using tiling to reduce the number of memory 884

reads/writes between GPU memories. PagedAt- 885

tention (Kwon et al., 2023) resorts to the classical 886

virtual memory and paging techniques in operat- 887

ing systems to achieve near-zero waste and flexible 888

sharing of KV cache memory. Specifically, we 889

can share the attention calculation of textual to- 890
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Task Instruction Answer

Multimodal Retrieval-augmented
QA

<image> · · · <image> {question} A phrase

Caption-agnostic Ranking
<image> Question:{question} Is this image relevant to
the question? Answer ‘Yes’ or ‘No’.

Yes / No

Caption-aware Ranking (QA)
<image> Image Caption:{caption} Ques-
tion:{question} Based on the image and its caption, is
the image relevant to the question? Answer "Yes" or "No".

Yes / No

Table 8: The instruction template for ranking and generation tasks. The retrieval-augmented QA task allows
multi-image input, whereas the ranking tasks consider one image at a time.

Methods
WebQA Ranking WebQA QA

Acc Recall@2

CLIP-ViT-L/14-336px - 57.10
LLaVA-v1.5-13B 67.74 45.35

w/ caption-agnostic IT 89.62 54.45
w/ caption-aware IT 93.99 79.74

Table 9: Ablation study of captions in instruction tuning
(IT) on WebQA.

kens among different candidates and parallelize the891

computation of visual tokens to maximize resource892

utilization and accelerate inference, since the tex-893

tual instructions of all candidates during the rerank-894

ing process are identical. As a successful attempt,895

Prompt Cache (Gim et al., 2024) has made simi-896

lar efforts to reduce latency in time-to-first-token,897

which improves 8x for GPU-based inference and898

maintains output accuracy. In our actual imple-899

mentation, we adopt concurrent (batched) model900

invocation to mitigate the latency introduced by901

sequential VLM calls. Compared to the sequen-902

tial calling time reported in Table 7, the concurrent903

setup can achieve more than a 5× speedup, sig-904

nificantly narrowing the gap between RagVL and905

CLIP-only models in terms of practical inference906

time.907

E Effect of Captions908

We conduct experiments on test sets of WebQA909

ranking and QA datasets to verify the validity of910

captions in retrieving relevant sources. In We-911

bQA QA task, we retrieve top-20 candidate images912

using CLIP and rerank them into top-2 with our913

instruction-tuned reranker models. As shown in Ta-914

ble 9, the vanilla LLaVA-v1.5-13B performs poorly915

on both tasks. The models trained on the ranking916

task outperform the baseline, particularly the one917

trained on the caption-aware task. This demon-918

Models MME MMBench-en SEEDI

InternVL2-1B 1769.2 61.72 65.60
w/ WebQA NIT 1671.3 60.76 64.32

InternVL2-2B 1839.8 72.25 71.60
w/ WebQA NIT 1743.2 70.46 70.60

Table 10: Evaluation on three general benchmark
datasets.

strates the superiority of our simple yet effective 919

instruction templates in inducing the ranking ability 920

of VLMs. 921

F Evaluation on General Benchmark 922

Datasets 923

While training a model on specific tasks can re- 924

duce its generalization capabilities (Ling et al., 925

2023), a moderate trade-off in universality is often 926

acceptable to significantly enhance task-specific 927

performance. As demonstrated in Table10, we 928

evaluated our approach on three general datasets: 929

MME (Fu et al., 2024), MMBench (Liu et al., 930

2025), and SEED-Image (Li et al., 2024). Follow- 931

ing noise-injected fine-tuning on WebQA, perfor- 932

mance declined only marginally—by 5.2%–5.5%, 933

1.6%–2.5%, and 1.4%–1.9% on MME, MMBench, 934

and SEED-Image, respectively. However, this fine- 935

tuning resulted in a substantial improvement of 936

approximately 40% on WebQA as shown in Table 937

3, highlighting the effectiveness of our method in 938

balancing specialization and generalization. 939

G Performance on Caption-to-image 940

Retrieval 941

To further verify the effectiveness and generalizabil- 942

ity of our proposed reranking method, we conduct 943

more experiments on Flickr30K and MS-COCO. 944

We construct the reranking tasks and prompt the 945

reranker with the instruction "<image> Image 946
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Methods
Flickr30K MS-COCO

R@1 R@5 R@10 R@1 R@5 R@10

CLIP-ViT-L/14-336px 66.90 89.00 93.36 57.18 83.24 91.90
Vis-BGE-base 57.38 83.28 89.60 52.94 81.22 90.12
Vis-BGE-m3 52.18 78.18 86.06 43.14 73.44 84.42
InternVL-C 81.50 95.94 97.82 71.82 92.06 96.62
InternVL-G 84.28 96.88 98.44 76.20 94.24 97.54

Reranking Top-K from CLIP-ViT-L/14-336px

LLaVA-v1.5-13B 79.90 94.52 96.24 71.10 92.02 95.96
w/ caption-aware IT 83.04 95.34 96.34 74.64 93.16 95.62

mPLUG-Owl2 76.16 94.12 95.98 65.44 90.34 95.38
w/ caption-aware IT 81.38 94.70 96.08 69.96 91.30 95.36

Qwen-VL-Chat 82.70 94.80 96.26 74.40 92.72 95.98
w/ caption-aware IT 84.40 95.18 96.30 76.62 93.56 96.26

InternVL2-1B 67.74 92.56 96.04 55.76 87.14 94.02
w/ caption-aware IT 83.02 95.12 96.38 74.24 92.78 96.02

InternVL2-2B 67.74 92.56 96.04 71.32 92.06 95.82
w/ caption-aware IT 83.78 95.14 96.32 75.86 93.40 96.10

Reranking Top-K from Different Retrievers

LLaVA-v1.5-13B
w/ Vis-BGE-base 80.76 92.56 93.44 74.12 92.36 95.02
w/ Vis-BGE-m3 79.64 90.46 91.34 71.94 88.96 91.18
w/ InternVL-C 83.56 97.12 98.58 75.00 94.26 97.36
w/ InternVL-G 83.26 97.16 98.80 75.06 94.36 97.60

Table 11: Performance of knowledge-enhanced rerankers on caption-to-image retrieval. The best scores in each
setting are in bold.

Caption: {caption} Is the image relevant to the947

caption? Answer ‘Yes’ or ‘No’". As shown in948

Table 11, our proposed method still outperforms949

the majority of existing retrievers across all met-950

rics, except for InternVL-G, which is specifically951

designed for image-text matching. Our approach952

primarily focuses on cases where the query is a953

question, and the keys are captions and images. In954

contrast, in these two caption-to-image retrieval955

datasets, the query is a caption, and the key is an956

image. Thus, our method not only demonstrates957

superior performance in multimodal RAG but also958

maintains generalizability and competitiveness in959

traditional text-to-image retrieval.960

H More Evaluations on LLaVA-v1.5-13B961

Low-resource Settings on WebQA As shown962

in Figure 5, the experiments with LLaVA-v1.5-963

13B under low-resource settings also verified the964

robustness of our proposed method in reranker965

training. With only 2.5% of the original data, the966

reranker significantly surpasses the original base-967

line, InternVL-G, in R@2 and almost reaches the968

performance peak. This inspires us to further ex-969

plore the performance of low-resource instruction970
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Figure 5: Retrieval performance on WebQA with
LLaVA-v1.5-13B under low-resource settings.

fine-tuning for models with different parameter 971

sizes in future work, aiming to enhance the gener- 972

alizability and efficiency of VLMs in instruction 973

fine-tuning and downstream task deployment. 974

Reranking Performance with Thresholds Sim- 975

ilarly, we train LLaVA-v1.5-13B as the reranker 976

using only 20% of the data. As shown in Figure 6, 977

the relevance probabilities of correct recalls are 978

concentrated in the highest range. The adaptive 979

threshold is high enough to filter out most of the 980

incorrect candidates. 981
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Figure 6: Density distribution of the relevance probability of correct and incorrect recalls on WebQA after reranking
from the LLaVA-v1.5-13B reranker.

Methods
MultimodalQA WebQA

P R F1 P R F1

CLIP Top-N 84.78 84.78 84.78 41.24 57.10 47.89

Blended Instruction Tuning

CLIP Top-K + Reranker 98.26 98.26 98.26 57.05 78.99 66.25
w/ Natural Threshold 100.00 97.39 98.68 67.94 78.00 72.62
w/ Adaptive Threshold 100.00 97.39 98.68 84.13 62.70 71.85

Ranking-only Instruction Tuning

CLIP Top-K + Reranker 98.26 98.26 98.26 57.59 79.74 66.87
w/ Natural Threshold 100.00 97.83 98.90 68.31 78.52 73.06
w/ Adaptive Threshold 100.00 97.83 98.90 80.38 68.35 73.88

Table 12: Performance of LLaVA-v1.5-13B reranker on two benchmark datasets. P and R denote precision and
recall, respectively. The best scores in each setting are in bold.

As shown in Table 12, our proposed knowledge-982

enhanced reranking method demonstrates superior983

performances. We train the reranker under two984

settings: (i)Blended training of ranking and QA985

tasks. (ii) Training exclusively with the ranking986

task. Whether training with the blended or separate987

setting, our approach achieves better performance988

across all metrics than directly using CLIP for top-989

N retrieval. When the adaptive threshold η is ac-990

tivated, the model accurately filters out irrelevant991

images, resulting in improved accuracy and F1992

score. Specifically, in WebQA, when η is set to an993

intuitively reasonable value of 0.5, the correspond-994

ing F1 score increases by 25.17% after training995

on the ranking-only task. In MultimodalQA, the996

reranker successfully identifies all ground truth im-997

ages from the retrieved top-K candidates when η998

is set to 0.5, proving the strong capability of our999

proposed method in retrieval reranking.1000

For "w/ Blended Reranker", we utilize the1001

blended reranker for both reranking and generation,1002

which is trained with noise-injected data and vanilla1003

MLE loss. Though we directly mix the ranking and1004

QA datasets due to a lack of sufficient datasets,1005

the blended reranker still performs competitively. 1006

Since training the blended reranker requires precise 1007

adjustments (Yu et al., 2024) to the composition 1008

of the training datasets to achieve better results, 1009

the results show a promising direction for future 1010

research (unifying reranker and generator), which 1011

further demonstrates the generalizability and supe- 1012

riority of our proposed method. 1013

Results of Retrieval-augmented Generation 1014

Table 13 displays the results of LLaVA-v1.5-13B 1015

on MultimodalQA and WebQA. Our proposed ap- 1016

proach still outperforms baselines on all config- 1017

urations. Due to a larger amount of parameters, 1018

LLaVA-v1.5-13B outperforms InternVL2-1/2B in 1019

answer generation. What’s more, the adaptive 1020

threshold works better on LLaVA-v1.5-13B be- 1021

cause the relevance probabilities of correct recalls 1022

are more focused in the high range. Therefore, our 1023

proposed method is also applicable to models with 1024

larger parameters. 1025

Ablation Studies As shown in Table 14, we 1026

ablate the proposed approaches on WebQA with 1027

LLaVA-v1.5-13B. Similar to the results from 1028
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Methods
MultimodalQA WebQA

EM Single. Multi. Overall

w/o Retrieval-augmented Generation

Vicuna-v1.5-13B 8.26 32.43 42.82 37.05
Llama-2-13b-chat-hf 0.43 16.23 21.27 18.47
LLaVA-v1.5-13B 42.61 31.92 50.37 40.12

LLaVA-v1.5-13B w/ Retrieval-augmented Generation

LLaVA-v1.5-13B
w/ CLIP Top-N 75.65 41.29 47.54 44.07
w/ InternVL-G Top-N 75.22 42.37 47.71 44.74

RagVL w/o NIT 78.70 41.03 48.09 44.17
w/ Natural Threshold 79.57 44.50 48.47 46.26
w/ Adaptive Threshold 79.57 44.05 49.00 46.25

RagVL w/ NIT 78.70 57.06 76.18 65.56
w/ Natural Threshold 79.57 60.86 76.83 67.95
w/ Adaptive Threshold 79.57 61.76 76.90 68.49

Oracle 79.13 65.51 77.04 70.63

Table 13: Performance of multimodal question answering on two benchmark datasets requiring image retrieval. In
addition to the overall results, we report the accuracy of single-image and multi-image input with Single. and Multi.
for WebQA, respectively. Oracle refers to directly feeding the ground truth image to the generator. The best scores
in each training setting are in bold.

Methods
WebQA

Single. Multi. Overall

RagVL (η = 0.5) 60.86 76.83 67.95
w/o Reranker 58.67 75.66 66.22
w/o ND 61.67 75.19 67.68
w/o NLC 60.08 76.24 67.26
w/o ND & NLC 60.68 74.92 67.01

w/ Blended Reranker 58.15 74.97 65.63

Table 14: Ablation study on WebQA with LLaVA-v1.5-
13B. NLC and ND refer to Noise-injected Logits Con-
trasting and Noise-injected Data, respectively.

InternVL2-2B, the benefits from reranking and1029

noise injection are still significant. Specially, to1030

explore the possibility of unifying reranker and gen-1031

erator, we utilize the blended reranker for both re-1032

trieval and generation. The results are very promis-1033

ing, and there is still significant room for optimiza-1034

tion.1035

I More Case Studies1036

As illustrated in Figure 7, we visualize the attention1037

heatmaps of three methods. The attention weights1038

are calculated by accumulating the attention score1039

between image tokens and text tokens across all1040

layers. Obviously, the model w/ NIT provides more1041

focused attention on the crucial parts of the query1042

than the other two models. Figure 8 and 9 show1043

more cases requiring single image or multiple im- 1044

ages for inferencing. 1045
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(a) "How many primary colors are found on the head of the Violet Turaco?"

(b) "Which is better maintained, the carving on the front of the Palace of the Governor in Uxmal or the Bird carving above the
doorway in Mexico, Architecture?"

Figure 7: Visualization of attention heatmaps w/ and w/o NIT. Displayed from left to right are the attention maps for
the base model (w/o IT), the model fine-tuned w/o NIT, and the model fine-tuned w/ NIT, respectively, with each
corresponding to its respective question in the caption.
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(a) "Are the homes at the Main Shopping Street in Enniskillen or the church behind it taller?"

(b) "What color is the facade of bakery Sattin et Fils in Rethel, France?"

(c) "What text is on the signage in front of the Rijksmuseum?"

(d) "What color is the logo on China Merchants Bank Tower?"

Figure 8: More single-image cases on WebQA.
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(a) "Which guitar looks more like a tool that might cut a tree; Gene Simmons’ Guitar or Gibson L-3 archtop guitar?"

(b) "Are the colors of the word lyric different in the Lyric Theater, Blacksburg and Lyric Theater, Georgia signs?"

Figure 9: More multi-image cases on WebQA.
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