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Abstract

While a broad range of techniques have been proposed to tackle distribution shift,1

the simple baseline of training on an undersampled dataset often achieves close2

to state-of-the-art-accuracy across several popular benchmarks. This is rather3

surprising, since undersampling algorithms discard excess majority group data. To4

understand this phenomenon, we ask if learning is fundamentally constrained by a5

lack of minority group samples. We prove that this is indeed the case in the setting6

of nonparametric binary classification. Our results show that in the worst case,7

an algorithm cannot outperform undersampling unless there is a high degree of8

overlap between the train and test distributions (which is unlikely to be the case9

in real-world datasets), or if the algorithm leverages additional structure about10

the distribution shift. In particular, in the case of label shift we show that there is11

always an undersampling algorithm that is minimax optimal. While in the case12

of group-covariate shift we show that there is an undersampling algorithm that is13

minimax optimal when the overlap between the group distributions is small. We14

also perform an experimental case study on a label shift dataset and find that in line15

with our theory the test accuracy of robust neural network classifiers is constrained16

by the number of minority samples.17

1 Introduction18

A key challenge facing the machine learning community is to design models that are robust to19

distribution shift. When there is a mismatch between the train and test distributions, current models20

are often brittle and perform poorly on rare examples [11, 2, 20, 10, 1]. In this paper, our focus is on21

group-structured distribution shifts. In the training set, we have many samples from a majority group22

and relatively few samples from the minority group, while during test time we are equally likely to23

get a sample from either group.24

To tackle such distribution shifts, a naïve algorithm is one that first undersamples the training data by25

discarding excess majority group samples [14, 23] and then trains a model on this resulting dataset (see26

Figure 1 for an illustration of this algorithm). The samples that remain in this undersampled dataset27

constitute i.i.d. draws from the test distribution. Therefore, while a classifier trained on this pruned28

dataset cannot suffer biases due to distribution shift, this algorithm is clearly wasteful, as it discards29

training samples.30
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Figure 1: Example with linear models and linearly separable data. On the left we have the maximum
margin classifier over the entire dataset, while on the right we have the maximum margin classifier
over the undersampled dataset. The undersampled classifier is less biased and aligns more closely
with the true boundary.

This perceived inefficiency of undersampling has led to the design of several algorithms to combat31

such distribution shift [6, 15, 18, 5, 17, 29, 13, 24]. In spite of this algorithmic progress, the simple32

baseline of training models on an undersampled dataset remains competitive. In the case of label33

shift, where one class label is overrepresented in the training data, this has been observed by Cui et al.34

[7], Cao et al. [5], and Yang and Xu [28]. While in the case of group-covariate shift, a study by Idrissi35

et al. [12] showed that the empirical effectiveness of these more complicated algorithms is limited.36

For example, Idrissi et al. [12] showed that on the group-covariate shift CelebA dataset the worst-37

group accuracy of a ResNet-50 model on the undersampled CelebA dataset which discards 97% of the38

available training data is as good as methods that use all of available data such as importance-weighted39

ERM [19], Group-DRO [18] and Just-Train-Twice [16]. In Table 1, we report the performance of40

the undersampled classifier compared to the state-of-the-art-methods in the literature across several41

label shift and group-covariate shift datasets. We find that, although undersampling isn’t always42

the optimal robustness algorithm, it is typically a very competitive baseline and within 1–4% the43

performance of the best method.44

Table 1: Performance of undersampled classifier compared to the best classifier across several popular
label shift and group-covariate shift datasets. When reporting worst-group accuracy we denote it by a
?. When available, we report the 95% confidence interval. We find that the undersampled classifier is
always within 1–4% of the best performing robustness algorithm, except on the MultiNLI dataset.

Shift Type Dataset/Paper
Test Accuracy/Worst-Group Accuracy?

Best Undersampled

Label
Imb. CIFAR10 (step 10) [5] 87.81 84.59

Imb. CIFAR100 (step 10) [5] 58.71 55.06

CelebA [12] 86.9± 1.1? 85.6± 2.3?

Waterbirds [12] 87.6± 1.6? 89.1± 1.1?
Group-Covariate

MultiNLI [12] 78.0± 0.7? 68.9± 0.8?

CivilComments [12] 72.0± 1.9? 71.8± 1.4?

Inspired by the strong performance of undersampling in these experiments, we ask:45

Is the performance of a model under distribution shift fundamentally46

constrained by the lack of minority group samples?47

To answer this question we analyze the minimax excess risk. We lower bound the minimax excess risk48

to prove that the performance of any algorithm is lower bounded only as a function of the minority49
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samples (nmin). This shows that even if a robust algorithm optimally trades off between the bias and50

the variance, it is fundamentally constrained by the variance on the minority group which decreases51

only with nmin.52

For our study, we consider the well-studied setting of nonparametric binary classification [21]. By53

operating in this nonparametric regime we are able to study the properties of undersampling in rich54

data distributions, but are able to circumvent the complications that arise due to the optimization55

and implicit bias of parametric models. We explore two distribution shift scenarios: label shift and56

group-covariate shift. Under label shift, one of the labels is overrepresented in the training data,57

Ptrain(y = 1) ≥ Ptrain(y = −1), whereas the test samples are equally likely to come from either58

class. Here the class-conditional distribution P(x | y) is Lipschitz in x. Under group-covariate shift,59

we have two groups {a, b} and in the training data we have more samples from the distribution Pa(x)60

than from Pb(x). Whereas during test time, it is equiprobable to receive samples from either group.61

In this case, the distribution P(y | x) is Lipschitz in x.62

Our Contributions. We show that in the label shift setting there is a fundamental constraint, and63

that the minimax excess risk of any robust learning method is lower bounded by 1/nmin
1/3. That is,64

minority group samples fundamentally constrain performance under distribution shift. Furthermore,65

by leveraging previous results about nonparametric density estimation [9] we show a matching upper66

bound on the excess risk of a standard binning estimator trained on an undersampled dataset to67

demonstrate that undersampling is optimal.68

In the case of group-covariate shift, we show that when the overlap (defined in terms of total variation69

distance) between the group distribution Pa and Pb is small, a similar result holds and the minimax70

excess risk of any robust learning algorithm is lower bounded by 1/nmin
1/3. We show that this lower71

bound is tight, by proving an upper bound on the excess risk of the binning estimator acting on the72

undersampled dataset.73

Finally, we experimentally show in a label shift dataset (Imbalanced Binary CIFAR10) that the74

accuracy of popular classifiers generally follow the trends predicted by our theory. When the minority75

samples are increased, the accuracy of these classifiers increases drastically, whereas when the number76

of majority samples are increased the gains in the accuracy are marginal at best.77

Taken together, our results underline the need to move beyond designing “general-purpose” robustness78

algorithms (like importance-weighting [5, 17, 13, 24], g-DRO [18], JTT [16], SMOTE [6], etc.)79

that are agnostic to the structure in the distribution shift. Our worst case analysis highlights that to80

successfully beat undersampling, an algorithm must leverage additional structure in the distribution81

shift.82

2 Related Work83

On several group-covariate shift benchmarks (CelebA, CivilComments, Waterbirds), Idrissi et al. [12]84

showed that training ResNet classifiers on an undersampled dataset either outperforms or performs85

as well as other popular reweighting methods like Group-DRO [18], reweighted ERM, and Just-86

Train-Twice [16]. They find Group-DRO performs comparably to undersampling, while both tend to87

outperform methods that don’t utilize group information.88

One classic method to tackle distribution shift is importance weighting [19], which reweights the loss89

of the minority group samples to yield an unbiased estimate of the loss. However, recent work [3, 27]90

has demonstrated the ineffectiveness of such methods when applied to overparameterized neural91

networks. Many followup papers [5, 29, 17, 13, 24] have introduced methods that modify the loss92

function in various ways to address this. However, despite this progress undersampling remains a93

competitive alternative to these importance weighted classifiers.94

Our theory draws from the rich literature on non-parametric classification [21]. Apart from borrowing95

this setting of nonparametric classification, we also utilize upper bounds on the estimation error of96

the simple histogram estimator [9, 8] to prove our upper bounds in the label shift case. Finally, we97

note that to prove our minimax lower bounds we proceed by using the general recipe of reducing98

from estimation to testing [22, Chapter 15]. One difference from this standard framework is that our99

training samples shall be drawn from a different distribution than the test samples used to define the100

risk.101
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3 Setting102

In this section, we shall introduce our problem setup and define the types of distribution shift that we103

consider.104

3.1 Problem Setup105

The setting for our study is nonparametric binary classification with Lipschitz data distributions.106

We are given n training datapoints S := {(x1, y1), . . . , (xn, yn)} ∈ ([0, 1]× {−1, 1})n that are all107

drawn from a train distribution Ptrain. During test time, the data shall be drawn from a different108

distribution Ptest. To present a clean analysis, we study the case where the features x are bounded109

scalars, however, it is easy to extend our results to the high-dimensional setting.110

Given a classifier f : R → {−1, 1}, we shall be interested in the test error (risk) of this classifier111

under the test distribution Ptest:112

R(f ;Ptest) := E(x,y)∼Ptest
[1(f(x) 6= y)] .

3.2 Types of Distribution Shift113

We assume that Ptrain consists of a mixture of two groups of unequal size, and Ptest contains equal114

numbers of samples from both groups. Given a majority group distribution Pmaj and a minority group115

distribution Pmin, the learner has access to nmaj majority group samples and nmin minority group116

samples:117

Smaj ∼ P
nmaj

maj and Smin ∼ Pnmin

min .

Here nmaj > n/2 and nmin < n/2 with nmaj + nmin = n. The full training dataset is S =118

Smaj ∪ Smin = {(x1, y1), . . . , (xn, yn)}. We assume that the learner has access to the knowledge119

whether a particular sample (xi, yi) comes from the majority or minority group.120

The test samples will be drawn from Ptest = 1
2Pmaj + 1

2Pmin, a uniform mixture over Pmaj and Pmin.121

Thus, the training dataset is an imbalanced draw from the distributions Pmaj and Pmin, whereas the122

test samples are balanced draws. We let ρ := nmaj/nmin > 1 denote the imbalance ratio in the123

training data.124

We focus on two-types of distribution shifts: label shift and group-covariate shift that we describe125

below.126

3.2.1 Label Shift127

In this setting, the imbalance in the training data comes from there being more samples from one
class over another. Without loss of generality, we shall assume that the class y = 1 is the majority
class. Then, we define the majority and the minority class distributions as

Pmaj(x, y) = P1(x)1(y = 1) and Pmin = P−1(x)1(y = −1),

where P1,P−1 are class-conditional distributions over the interval [0, 1]. We assume that class-128

conditional distributions Pi have densities on [0, 1] and that they are 1-Lipschitz: for any x, x′ ∈ [0, 1],129

|Pi(x)− Pi(x
′)| ≤ |x− x′|.

We denote the class of pairs of distributions (Pmaj,Pmin) that satisfy these conditions by PLS.130

3.2.2 Group-Covariate Shift131

In this setting, we have two groups {a, b}, and corresponding to each of these groups is a distribution
(with densities) over the features Pa(x) and Pb(x). We let a correspond to the majority group and b
correspond to the minority group. Then, we define

Pmaj(x, y) = Pa(x)P(y | x) and Pmin(x, y) = Pb(x)P(y | x).

We assume that for y ∈ {−1, 1}, for all x, x′ ∈ [0, 1]:132 ∣∣P(y | x)− P(y | x′)
∣∣ ≤ |x− x′|,
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that is, the distribution of the label given the feature is 1-Lipschitz, and it varies slowly over the133

domain.134

To quantify the shift between the train and test distribution, we define a notion of overlap between the135

group distributions Pa and Pb as follows:136

Overlap(Pa,Pb) := 1− TV(Pa,Pb).

Notice that when Pa and Pb have disjoint supports, TV(Pa,Pb) = 1 and therefore Overlap(Pa,Pb) =137

0. On the other hand when Pa = Pb, TV(Pa,Pb) = 0 and Overlap(Pa,Pb) = 1. When the overlap138

is 1, the majority and minority distributions are identical and hence we have no shift between train139

and test. Observe that Overlap(Pa,Pb) = Overlap(Pmaj,Pmin) since P(y | x) is shared across Pmaj140

and Pmin.141

Given a level of overlap τ ∈ [0, 1] we denote the class of pairs of distributions (Pmaj,Pmin) with142

overlap at least τ by PGS(τ). It is easy to check that, PGS(τ) ⊆ PGS(0) at any overlap level τ ∈ [0, 1].143

4 Lower Bounds on the Minimax Excess Risk144

In this section, we shall prove our lower bounds that show that the performance of any algorithm is145

constrained by the number of minority samples nmin. Before we state our lower bounds, we need to146

introduce the notion of excess risk and minimax excess risk.147

Excess Risk and Minimax Excess Risk. We measure the performance of an algorithm A through148

its excess risk defined in the following way. Given an algorithm A that takes as input a dataset S149

and returns a classifier AS , and a pair of distributions (Pmaj,Pmin) with Ptest = 1
2Pmaj + 1

2Pmin, the150

expected excess risk is given by151

Excess Risk[A; (Pmaj,Pmin)] := ES∼Pnmaj
maj ×P

nmin
min

[
R(AS ;Ptest))−R(f?(Ptest);Ptest)

]
, (1)

where f?(Ptest) is the Bayes classifier that minimizes the risk R(·;Ptest). The first term corresponds152

to the expected risk for the algorithm when given nmaj samples from Pmaj and nmin samples from153

Pmin, whereas the second term corresponds to the Bayes error for the problem.154

Excess risk does not let us characterize the inherent difficulty of a problem, since for any particular155

data distribution (Pmaj,Pmin) the best possible algorithm A to minimize the excess risk would be the156

trivial mapping AS = f?(Ptest). Therefore, to prove meaningful lower bounds on the performance157

of algorithms we need to define the notion of minimax excess risk [see 22, Chapter 15]. Given a class158

of pairs of distributions P define159

Minimax Excess Risk(P) := inf
A

sup
(Pmaj,Pmin)∈P

Excess Risk[A; (Pmaj,Pmin)], (2)

where the infimum is over all measurable estimators A. The minimax excess risk is the excess risk of160

the “best” algorithm in the worst case over the class of problems defined by P .161

4.1 Label Shift Lower Bounds162

We demonstrate the hardness of the label shift problem in general by establishing a lower bound163

on the minimax excess risk. Below we let c > 0 be an absolute constant independent of problem164

parameters like nmaj and nmin.165

Theorem 4.1. Consider the label shift setting described in Section 3.2.1. Recall that PLS is the class166

of pairs of distributions (Pmaj,Pmin) that satisfy the assumptions in that section. The minimax excess167

risk over this class is lower bounded as follows:168

Minimax Excess Risk(PLS) = inf
A

sup
(Pmaj,Pmin)∈PLS

Excess Risk[A; (Pmaj,Pmin)] ≥
c

nmin
1/3

. (3)

We establish this result in Appendix B.169

We show that rather surprisingly, the lower bound on the minimax excess risk scales only with the170

number of minority class samples nmin
1/3, and does not depend on nmaj. Intuitively, this is because171
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any learner must predict which class-conditional distribution (P(x | 1) or P(x | −1)) assigns higher172

likelihood at that x. To interpret this result, consider the extreme scenario where nmaj →∞ but nmin173

is finite. In this case, the learner has full information about the majority class distribution. However,174

the learning task continues to be challenging since any learner would be uncertain about whether175

the minority class distribution assigns higher or lower likelihood at any given x. This uncertainty176

underlies the reason why the minimax rate of classification is constrained by the number of minority177

samples nmin.178

We also note that the theorem can be trivially extended to higher dimensions. In this case the179

exponents degrade to 1/3d rather than 1/3 as is to be expected in nonparametric classification.180

4.2 Group-Covariate Shift Lower Bounds181

Next, we shall state our lower bound on the minimax excess risk that demonstrates the hardness of the182

group-covariate shift problem. In the theorem below c > 0 shall be an absolute constant independent183

of nmaj, nmin and τ .184

Theorem 4.2. Consider the group shift setting described in Section 3.2.2. Given any overlap185

τ ∈ [0, 1] recall that PGS(τ) is the class of distributions such that Overlap(Pmaj,Pmin) ≥ τ . The186

minimax excess risk in this setting is lower bounded as follows:187

Minimax Excess Risk(PGS(τ)) = inf
A

sup
(Pmaj,Pmin)∈PGS(τ)

Excess Risk[A; (Pmaj,Pmin)]

≥ c

(nmin · (2− τ) + nmaj · τ)1/3
≥ c

nmin
1/3(ρ · τ + 2)1/3

, (4)

where ρ = nmaj/nmin > 1.188

We prove this theorem in Appendix C.189

We see that in the low overlap setting (τ � 1/ρ), the minimax excess risk is lower bounded by190

1/nmin
1/3, and we are fundamentally constrained by the number of samples in minority group. To191

see why this is the case, consider the extreme example with τ = 0 where Pa has support [0, 0.5]192

and Pb has support [0.5, 1]. The nmaj majority group samples from Pa provide information about193

the correct label predict in the interval [0, 0.5] (the support of Pa). However, since the distribution194

P(y | x) is 1-Lipschitz in the worst case these samples provide very limited information about the195

correct predictions in [0.5, 1] (the support of Pb). Thus, predicting on the support of Pb requires196

samples from the minority group and this results in the nmin dependent rate. In fact, in this extreme197

case (τ = 0) even if nmaj → ∞, the minimax excess risk is still bounded away from zero. This198

intuition also carries over to the case when the overlap is small but non-zero and our lower bound199

shows that minority samples are much more valuable than majority samples at reducing the risk.200

On the other hand, when the overlap is high (τ � 1/ρ) the minimax excess risk is lower bounded201

by 1/(nmin(2− τ) + nmajτ)1/3 and the extra majority samples are quite beneficial. This is roughly202

because the supports of Pa and Pb have large overlap and hence samples from the majority group203

are useful in helping make predictions even in regions where Pb is large. In the extreme case when204

τ = 1, we have that Pa = Pb and therefore recover the classic i.i.d. setting with no distribution shift.205

Here, the lower bound scales with 1/n1/3, as one might expect.206

Identical to the label shift case, the theorem can be extended to hold in higher dimensions with the207

exponents being 1/3d rather than 1/3.208

5 Upper Bounds on the Excess Risk for the Undersampled Binning209

Estimator210

We will show that an undersampled estimator matches the rates in the previous section showing211

that undersampling is an optimal robustness intervention. We start by defining the undersampling212

procedure and the undersampling binning estimator.213

Undersampling Procedure. Given training data S := {(x1, y1), . . . , (xn, yn)}, generate a new214

undersampled dataset SUS by215
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• including all nmin samples from Smin and,216

• including nmin samples from Smaj by sampling uniformly at random without replacement.217

This procedure ensures that in the undersampled dataset SUS, the groups are balanced, and that218

|SUS| = 2nmin.219

The undersampling binning estimator defined next will first run this undersampling procedure to220

obtain SUS and just uses these samples to output a classifier.221

Undersampled Binning Estimator The undersampled binning estimator AUSB takes as input a222

dataset S and a positive integer K corresponding to the number of bins, and returns a classifier223

AS,KUSB : [0, 1]→ {−1, 1}. This estimator is defined as follows:224

1. First, we compute the undersampled dataset SUS.225

2. Given this dataset SUS, let n1,j be the number of points with label +1 that lie in the interval226

Ij = [ j−1
K , jK ]. Also, define n−1,j analogously. Then set227

Aj =

{
1 if n1,j > n−1,j ,

−1 otherwise.

3. Define the classifier AS,KUSB such that if x ∈ Ij then228

AS,KUSB (x) = Aj . (5)

Essentially in each bin Ij , we set the prediction to be the majority label among the samples229

that fall in this bin.230

Whenever the number of bins K is clear from the context we shall denote AS,KUSB by ASUSB. Below we231

establish upper bounds on the excess risk of this simple estimator.232

5.1 Label Shift Upper Bounds233

We now establish an upper bound on the excess risk of AUSB in the label shift setting (see Sec-234

tion 3.2.1). Below we let c, C > 0 be absolute constants independent of problem parameters like235

nmaj and nmin.236

Theorem 5.1. Consider the label shift setting described in Section 3.2.1. For any (Pmaj,Pmin) ∈ PLS237

the expected excess risk of the Undersampling Binning Estimator (Eq. (5)) with number of bins with238

K = cdnmin
1/3e is upper bounded by239

Excess Risk[AUSB; (Pmaj,Pmin)] = ES∼Pnmaj
maj ×P

nmin
min

[
R(ASUSB;Ptest)−R(f?;Ptest)

]
≤ C

nmin
1/3

.

We prove this result in Appendix B. This upper bound combined with the lower bound in Theorem 4.1240

shows that an undersampling approach is minimax optimal up to constants in the presence of label241

shift.242

We note that our analysis leaves open the possibility of better algorithms when the learner has243

additional information about the structure of the label shift beyond Lipschitz continuity.244

5.2 Group-Covariate Shift Upper Bounds245

Next, we present our upper bounds on the excess risk of the undersampled binning estimator in the246

group-covariate shift setting (see Section 3.2.2). In the theorem below, C > 0 is an absolute constant247

independent of the problem parameters nmaj, nmin and τ .248

Theorem 5.2. Consider the group shift setting described in Section 3.2.2. For any overlap τ ∈ [0, 1]249

and for any (Pmaj,Pmin) ∈ PGS(τ) the expected excess risk of the Undersampling Binning Estimator250

(Eq. (5)) with number of bins with K = dnmin
1/3e is251

Excess Risk[AUSB; (Pmaj,Pmin)] = ES∼Pnmaj
maj ×P

nmin
min

[
R(ASUSB;Ptest))−R(f?;Ptest)

]
≤ C

nmin
1/3

.
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We provide a proof for this theorem in Appendix C. Compared to the lower bound established in252

Theorem 4.2 which scales as 1/ ((2− τ)nmin + nmajτ)
1/3, the upper bound for the undersampled253

binning estimator always scales with 1/nmin
1/3 since it operates on the undersampled dataset (SUS).254

Thus, we have shown that in the absence of overlap (τ � 1/ρ = nmin/nmaj) there is an under-255

sampling algorithm that is minimax optimal up to constants. However when there is high overlap256

(τ � 1/ρ) there is a non-trivial gap between the upper and lower bounds:257

Upper Bound

Lower Bound
= c(ρ · τ + 2)1/3.

6 Minority Sample Dependence in Practice258

Figure 2: Convolutional neural network classifiers trained on the Imbalanced Binary CIFAR10 dataset
with a 5:1 label imbalance. (Top) Models trained using the importance weighted cross entropy loss
with early stopping. (Bottom) Models trained using the importance weighted VS loss [13] with early
stopping. We report the average test accuracy calculated on a balanced test set over 5 random seeds.
We start off with 2500 cat examples and 500 dog examples in the training dataset. We find that in
accordance with our theory, for both of the classifiers adding only minority class samples (red) leads
to large gain in accuracy (∼ 6%), while adding majority class samples (blue) leads to little or no
gain. In fact, adding majority samples sometimes hurts test accuracy due to the added bias. When
we add majority and minority samples in a 5:1 ratio (green), the gain is largely due to the addition
of minority samples and is only marginally higher (< 2%) than adding only minority samples. The
green curves correspond to the same classifiers in both the left and right panels.

Inspired by our worst-case theoretical predictions in nonparametric classification, we ask: how does259

the accuracy of neural network classifiers trained using robust algorithms evolve as a function of the260

majority and minority samples?261

To explore this question, we conduct a small case study using the imbalanced binary CIFAR10262

dataset [3, 24] that is constructed using the “cat” and “dog” classes. The test set consists of all263

of the 1000 cat and 1000 dog test examples. To form our initial train and validation sets, we take264

2500 cat examples but only 500 dog examples from the official train set, corresponding to a 5:1265
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label imbalance. We then use 80% of those examples for training and the rest for validation. In our266

experiment, we either (a) add only minority samples; (b) add only majority samples; (c) add both267

majority and minority samples in a 5:1 ratio. We consider competitive robust classifiers proposed268

in the literature that are convolutional neural networks trained either by using (i) the importance269

weighted cross entropy loss, or (ii) the importance weighted VS loss [13]. We early stop using the270

importance weighted validation loss in both cases. The additional experimental details are presented271

in Appendix D.272

Our results in Figure 2 are generally consistent with our theoretical predictions. By adding only273

minority class samples the test accuracy of both classifiers increases by a great extent (6%), while by274

adding only majority class samples the test accuracy remains constant or in some cases even decreases275

owing to the added bias of the classifiers. When we add samples to both groups proportionately, the276

increase in the test accuracy appears to largely to be due to the increase in the number of minority277

class samples and on the left panels, we see that the difference between adding only extra minority278

group samples (red) and both minority and majority group samples (green) is small. Thus, we find279

that the accuracy for these neural network classifiers is also constrained by the number of minority280

class samples.281

7 Discussion282

We showed that undersampling is an optimal robustness intervention in nonparametric classification283

in the absence of significant overlap between group distributions or without additional structure284

beyond Lipschitz continuity.285

At a high level our results highlight the need to reason about the specific structure in the distribution286

shift and design algorithms that are tailored to take advantage of this structure. This would require287

us to step away from the common practice in robust machine learning where the focus is to design288

“universal” robustness interventions that are agnostic to the structure in the shift. Alongside this,289

our results also dictate the need for datasets and benchmarks with the propensity for transfer from290

training time to test time.291
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