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Abstract
Large Language Models (LLMs) are known001
to overuse certain terms like “delve” and “in-002
tricate.” The exact reasons for these lexical003
choices, however, have been unclear. This004
study investigates the contribution of Learning005
from Human Feedback (LHF), under which we006
subsume Reinforcement Learning from Human007
Feedback and Direct Preference Optimization.008
We present a straightforward procedure for de-009
tecting the lexical preferences of LLMs that are010
potentially LHF-induced. Next, we more con-011
clusively link LHF to lexical overuse than ever012
before by experimentally emulating the LHF013
procedure and demonstrating that participants014
systematically prefer text variants that include015
certain words. To address the overuse of such016
words, developers now have a clear starting017
point: LHF datasets. This lexical overuse may018
be seen as a sort of misalignment, though our019
study highlights the potential divergence be-020
tween the lexical expectations of different pop-021
ulations – namely, LHF workers versus LLM022
users. Possible causes of these divergences in-023
clude demographic differences and/or features024
of the feedback solicitation task. Our work chal-025
lenges the view of artificial neural networks as026
impenetrable black boxes and emphasizes the027
critical importance of both data and procedural028
transparency in alignment research.029

1 Introduction030

Following the arrival of Large Language Models031

(LLMs), observers were quick to note their ten-032

dency to overproduce certain lexical entries (Kop-033

penburg, 2024; Nguyen, 2024; Shapira, 2024; Gray,034

2024; Kobak et al., 2024; Liang et al., 2024; Liu035

and Bu, 2024; Matsui, 2024; Juzek and Ward,036

2025).1 Much of the discourse centered on Scien-037

1An anonymous GitHub repository accompanies this paper:
github.com/arizus/lhf. All data in our repository is available
under a CC BY-S license. Computations were performed on
a 2024 Thelio Custom machine with a GeForce RTX 3090.
Some code was generated with the assistance of GitHub Copi-
lot and is marked as such.

tific and academic English, focusing on words such 038

as “delve”, “intricate”, and “realm”. Moreover, 039

while changes in Scientific English over decades 040

and centuries are well-documented (Degaetano- 041

Ortlieb and Teich, 2018; Degaetano-Ortlieb et al., 042

2018; Bizzoni et al., 2020; Menzel, 2022), the lan- 043

guage shifts following the introduction of LLMs 044

have been unprecedented, with certain words (like 045

“delve”) seeing a sudden and dramatic increase in 046

usage. 047

Thus, that certain lexical biases exist in LLMs 048

has been established, with evidence demonstrating 049

their influence on human language usage. However, 050

the question of why this lexical overrepresentation 051

arises remains open. While some have pointed to 052

Learning from Human Feedback (LHF) as a sig- 053

nificant contributor to these lexical choices (Hern, 054

2024; Sheikh, 2024), conclusive evidence to sub- 055

stantiate this claim is still missing. 056

Learning from Human Feedback is a procedure 057

applied after initial model training during which hu- 058

man evaluators indicate preferences through A/B 059

testing or ranking. It was first introduced in the 060

form of Reinforcement Learning from Human 061

Feedback (RLHF; Christiano et al. 2017; Ziegler 062

et al. 2019), though a more recent and increasingly 063

popular form of LHF is Direct Preference Opti- 064

mization (DPO) (Rafailov et al., 2024). LHF was 065

introduced to align models more closely with hu- 066

man preferences. Alignment, which reflects “how 067

closely the model’s opinions or stances mirror those 068

of different social groups” (He et al., 2024), is a 069

major challenge in AI (Bender et al., 2021; San- 070

turkar et al., 2023; Durmus et al., 2023). A model is 071

misaligned for a target group when its output does 072

not align with the group’s opinions, values, and/or 073

expectations. LHF is recognized as a key factor 074

contributing to the success of models like ChatGPT 075

(Ouyang et al., 2022). However, researching the ef- 076

fects of LHF is difficult due to lack of transparency 077

surrounding the procedures and datasets used in 078
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Figure 1: An illustration of the procedure used to identify lexical preferences that are potentially induced by
Learning from Human Feedback (LHF); figure created with Canva.

model development (Bommasani et al., 2021), in-079

cluding for many popular open models.080

Very broadly, our research aims to investigate081

how technology and language interact (Erdocia082

et al., 2024). The present study addresses the po-083

tential link between LHF and the lexical choices084

of LLMs through a two-step process. First, we085

introduce a method for identifying lexical prefer-086

ences in LLMs that are potentially induced by LHF.087

This procedure has possible applications in indus-088

try, as it can aid efforts to mitigate the most ex-089

treme cases of lexical overrepresentation and align090

models more closely with general language usage091

(Section 2). Second, we conduct an experiment092

that emulates the LHF procedure in order to test093

whether humans indeed prefer texts containing the094

words identified by our initial procedure. This rep-095

resents the most rigorous test to date of the hypoth-096

esis that LHF significantly shapes LLMs’ lexical097

choices (Section 3). Finally, we highlight the fact098

that LLMs are not impenetrable black boxes: mean-099

ingful insights into their behavior can indeed be100

gained. We also explore whether the lexical prefer-101

ences we have identified are inherently problematic.102

The answer depends in part on the specific mecha-103

nisms through which these preferences arise, under- 104

scoring the importance of research on the sources 105

of lexical overuse (Section 4). 106

2 Procedure to Identify Potentially 107

LHF-Induced Lexical Preferences 108

As a first step, we develop a low-cost procedure 109

to identify lexical preferences in LLMs that likely 110

originate from LHF training. Our approach in- 111

volves generating language outputs from both a 112

pre-LHF model and a post-LHF model and then 113

comparing word usage in the resulting generations. 114

Here, we use Llama 3.2-3B Base and Llama 3.2-3B 115

Instruct (Dubey et al., 2024) (via the Hugging Face 116

Transformers library, Wolf et al. 2020; our use of 117

these models is consistent with their intended use 118

in NLP research, and we do not modify or fine-tune 119

them), as the Llama family is, to our knowledge, 120

the closest approximation to pure +/-LHF models 121

available. Llama 3 makes use of Direct Preference 122

Optimization. (Notably, OpenAI has not offered ac- 123

cess to base models for years now.) While there are 124

other differences between Llama Base and Llama 125

Instruct (Dubey et al., 2024), the use of LHF to train 126

Llama Instruct remains the main one (other differ- 127
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ences include optimizing Instruct for tooling pur-128

poses and safety mitigations). This makes Llama129

well-suited for our purposes. All technical imple-130

mentations described in this paper were carried out131

in Python 3 (Python Software Foundation 2024;132

v3.12.3).133

Since most of the academic discourse on LLMs134

has focused on Scientific English, we chose this135

domain for our study, though the procedure we136

present is transferable to other domains. Here the137

procedure is applied to abstracts from PubMed138

from 2020 (National Library of Medicine 2024;139

our use of PubMed is consistent with its intended140

use in research, and no modifications are made to141

the original texts beyond necessary preprocessing142

steps, details of which can be found in the code in143

our GitHub repository), as this predates the main-144

stream availability of LLMs. We randomly sam-145

pled 10 000 abstracts and filtered out those with146

fewer than 40 words, which resulted in 9 853 ab-147

stracts. Each abstract was split in half by word148

count (rounding down), and each of the Llama149

models, Base and Instruct, were prompted to con-150

tinue writing based on the initial half of the ab-151

stract (Prompt: ‘Continue the following academic152

article: \“{first_half} ’). Models were, if needed,153

cut off after twice the input length. The gener-154

ated continuations were cleaned in order to remove155

issues such as generation loops (e.g., repetitive sen-156

tences) and meta-comments (e.g., “Certainly, here157

is ...”), using GPT-4o (Achiam et al., 2023; Ope-158

nAI, 2025) (Prompt: ‘The following text is meant159

to be a continuation of a scientific abstract. In some160

of the continuations, however, the AI finishes the161

abstract and continues with commentary. Please162

detect potential switches, and remove any com-163

mentary: \n\n“{input_text}”\n\n Output only the164

cleaned abstract. If the entire text is commentary,165

output an empty string.’).166

This process resulted in two corpora of PubMed167

abstract continuations: one generated by Llama168

Base (totaling 2.3m words) and the other by169

Llama Instruct (2.2m words). Both corpora170

were tagged for part-of-speech using spaCy171

(Montani et al. 2023; v3.8.3, en_core_web_sm172

v3.8.0, tagging of all data took about 140hrs),173

enabling the disambiguation of identical surface174

forms across word categories (e.g., “to_PART175

run_VERB” vs. “a_DET run_NOUN”) and the176

grouping of conceptually related forms under a177

common lemma (“delve” and “delves”). Relative178

frequency usage was compared between the two179

corpora (similar to what one sees in the Google 180

Ngram Viewer, Google 2024). Here and in 181

Section 3, we focus on statistically significant 182

differences between Base and Instruct lexical 183

usage, determined through a chi-square test. 184

The top five items showing an increase in usage 185

in the Instruct model compared to the Base 186

model are as follows: “nuanced_ADJ (+8342%)”, 187

“nuance_VERB (+6301%)”, “firstly_ADV 188

(+4794%)”, “reliance_NOUN (+3193%)”, “gener- 189

alizability_NOUN (+3124%)”; also see Table 1 in 190

Appendix A for further entries and our anonymous 191

GitHub for the full list. 192

This is a straightforward procedure for identi- 193

fying lexical items that are likely preferred by an 194

LLM (in this case, the Llama Instruct model) as 195

a result of training with LHF. Many of the identi- 196

fied words have been discussed in the literature on 197

the distinctive lexical choices of LLMs (see refer- 198

ences in Section 1). However, the procedure also 199

identifies lexical entries that are not known to be 200

overused by LLMs and so are more difficult to in- 201

terpret. For instance, the Instruct model uses the 202

item “radar_NOUN” considerably more often than 203

the Base model (an increase of 2590%). A qualita- 204

tive examination of the dataset, however, helps to 205

make sense of this result: several PubMed abstracts 206

in our sample discuss “radar_NOUN”, and the In- 207

struct model incorporates this into its continuations, 208

whereas the Base model does not. 209

Our procedure serves as a proof of concept that 210

it is possible to automate the search for potentially 211

LHF-induced lexical preferences. Our application 212

of the procedure is limited to the domain of Scien- 213

tific English and to corpora of about two million 214

words each. Thus, scaling it could improve the 215

results. It is important to keep in mind that the 216

procedure does not necessarily identify words that 217

are overused by Llama Instruct relative to human- 218

generated text; the operative comparison is with 219

Llama Base. Nevertheless, there seems to be con- 220

siderable overlap between the words overused by 221

Instruct relative to Base, and the words overused by 222

Instruct relative to a human baseline. We compared 223

the Llama Instruct outputs to a human baseline, 224

the actual second halves of the randomly sampled 225

PubMed abstracts. Virtually all of the words used 226

significantly more by Llama Instruct than Llama 227

Base (Table 1) were also used significantly more 228

by Instruct than in the human baseline (813 out 229

of 814). Thus, when it comes to the lexical items 230

that distinguish LLM-generated text from human- 231
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generated text, the identification procedure in its232

current form is effective in picking out many of the233

most extreme cases.234

Assuming such divergences from human-235

generated text are undesirable and hence a form236

of bias (a point to which we will return in Sec-237

tion 4), the procedure is a method for uncovering238

lexical biases in LLMs. Our insights could also in-239

form the discourse on AI-generated text detection240

(Lavergne et al., 2008; Chakraborty et al., 2023;241

Mitchell et al., 2023; Huang et al., 2025), as such242

methods often rely on identifying atypical lexical243

items and distributions. Although the simplicity244

of the procedure might raise questions about its245

value, the degree of such bias observed in LLM246

outputs suggests that either no robust identification247

mechanisms were previously applied, or existing248

mechanisms have proven too weak. There is there-249

fore a need for even basic procedures like the one250

presented here.251

We believe the above results are consistent with252

the hypothesis that LHF is a major source of the lex-253

ical bias discussed in the literature. However, more254

evidence is needed to more conclusively support255

this hypothesis. Specifically, experimental valida-256

tion is required to confirm that the lexical items257

whose usage by LLMs we pinpointed as poten-258

tially LHF-induced are indeed preferred by human259

evaluators, thereby strengthening the causal link260

between LHF and LLMs’ lexical choices.261

3 Experimental Validation262

At the core of the hypothesized link between LHF263

and LLMs’ lexical choices is the idea that evalua-264

tors exhibit a subtle preference for certain lexical265

items, a preference that is in fact so slight that it has266

obscured this very link. However, when scaled up,267

these minor preferences for specific lexical items268

become entrenched and ultimately manifested in269

the output generations of LLMs. To test this hy-270

pothesis, we created experimental items consisting271

of pairs of text variants. In each pair, one variant272

exhibits fewer words previously identified as poten-273

tially favored by LHF, while the other exhibits more274

such words, with all other factors held as equal as275

possible, including length and content. This design276

aims to isolate the effect of the presence of the lex-277

ical items identified above on evaluator judgments.278

3.1 Experimental Setup 279

Creation of Experimental Items. The ideal test 280

of the hypothesis would involve creating two ran- 281

dom variants of a given abstract, repeating this for 282

tens of thousands of pairs, collecting human eval- 283

uations for all these pairs, and then analyzing the 284

ratings. The problem, however, is that detecting 285

the hypothesized subtle effect experimentally un- 286

der this approach would require an extraordinarily 287

high number of ratings to achieve statistical sig- 288

nificance. Thus, we opted for a procedure that in- 289

creases the lexical differences between items, while 290

at the same time maintaining comparable validity 291

and being less resource-intensive. 292

For 50 randomly selected PubMed abstracts 293

from 2020, we prompted GPT-4o to write 294

summary notes for each abstract (“The fol- 295

lowing text is an abstract from a scientific 296

paper:\n\n{input_text}\n\nSummarize the ab- 297

stract in keywords, separate keywords by com- 298

mas.”; an example output is provided in Ap- 299

pendix B). Using these summary notes as input, 300

we then had Llama Instruct generate 500 abstracts 301

(variants) for each item (Prompt: ‘Based on the 302

following keywords, write a 100-word abstract for 303

a scientific journal article: “{line_of_keywords}.” 304

Reply with the abstract only.’), resulting in a to- 305

tal of 25 000 variants. We used GPT-4o to clean 306

the abstracts (Prompt: ‘The following text con- 307

tains a scientific abstract, but sometimes further 308

text:\n\n“{input_text}”\n\nPlease remove any ir- 309

relevant text, which can include titles, incomplete 310

sentences, even a comment that an abstract is to 311

follow (\“Abstract: \”). Output only the cleaned 312

abstract.’). We controlled for length by filtering 313

out candidates that were either below 90 words or 314

above 110 words. There has been a widespread 315

recognition that “delve” is an LLM-associated 316

word (see references in Section 1) and a corre- 317

sponding backlash against it (Juzek and Ward, 318

2025). Thus, we removed any variants contain- 319

ing any of the 21 most overused ‘AI words’ as dis- 320

cussed in (Juzek and Ward, 2025), including words 321

like “realm” and “groundbreaking”. After applying 322

these filters, we retained a final set of 8710 variants. 323

For these items, which were also part-of-speech 324

tagged, we calculated a score to measure a 325

word’s potential to have been favored by LHF 326

(“LHF-Potential-Preference-Score”, or simply “LP- 327

Score”). Using the lexical items identified in Sec- 328

tion 2 as potentially promoted by LHF, we assigned 329
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a score to each variant by summing occurrences of330

these items, weighted by their relative rate of in-331

crease. This weighting reflects the idea that a single332

usage of a term like “revolutionize_VERB”, which333

experienced a significant increase of +1160%, is334

probably more indicative of the influence of LHF335

than using a term like “of_ADP”, which saw a336

much smaller increase of only 2%.337

The LP-Score for a sequence is the sum of LP-338

Scores for each token (w). The LP-Score for339

a given token is its increase in percent between340

Llama Base (B) and Llama Instruct (I), divided by341

one thousand; “opm” stands for occurrences per342

million and is just the frequency of a token divided343

by the total number of tokens (N), multiplied by344

one million.345

LP-Score(S) =
n∑

i=1

LP-Score(wi)346

where347

LP-Score(w) =348

1

1000
·
(

opmI(w)− opmB(w)

opmB(w)
× 100

)
349

where350

opm(w) =
count(w)

N
× 106351

352 An LP-Score was calculated for all 8710 vari-353

ants generated for the 50 summarized abstracts. For354

each of the 50 abstracts, we calculated the differ-355

ence between the variant with the lowest LP-Score356

and the one with the highest LP-Score. We then357

selected the Top 30 abstract pairs with the largest358

Deltas while ensuring that the pair of variants were359

length-matched (in two cases, a length match was360

difficult, and we took the runners-up). The follow-361

ing hypothetical example between Sequence 1 and362

Sequence 2 illustrates how the LP-Scores were cal-363

culated. The LP-Score Delta is 0.31 (the score is364

calculated on lemmata and part-of-speech, which365

are omitted below for simplicity). A real example366

can be found in Appendix C.367

(1) This
0.03

is
0

an
0

intricate
0.36

example
0.03

full
0

of
0

complex
0.2

words
0

(SUM)
(=0.44)

368

(2) This
0.03

is
0

a
0

baseline
0

example
0.03

free
0

from
0

these
0.07

words
0

(SUM)
(=0.13)

369

For the 30 selected items, the average LP-Score 370

for the variants with many of the lexical items 371

identified in Section 2 is 7.2 (average length: 105 372

words), and the average LP-Score for the variants 373

with the fewest such items is 1.7 (average length: 374

104 words). The complete set of experimental 375

item pairs is available on our anonymous GitHub 376

repository. As discussed in Section 2, some of the 377

words identified by the procedure above do not 378

seem likely to have been promoted by LHF, such as 379

“radar”. This introduces noise into the experiment. 380

For instance, one variant of an abstract might 381

include “radar”, resulting in a higher LP-Score, 382

even though the in- or exclusion of such a word 383

is unlikely to affect human preference between 384

the two variants. Such cases weaken the statistical 385

power of the experiment and increase the risk of 386

a false negative outcome (the beta rate), thereby 387

favoring the null hypothesis (Haslwanter, 2016). 388

We anticipate this effect to be minor, however, 389

given that the majority of lexical items previously 390

identified do seem plausibly the sort that are 391

potentially promoted by LHF. 392

393

Participants. We recruited 400 participants 394

(231 female, 169 male; average age: 30.1 395

years, standard deviation: 9.8) through Prolific 396

(www.prolific.com). It has been claimed that 397

tech companies often recruit LHF workers from 398

the Global South (Kwet, 2019; Perrigo, 2023; 399

Gray, 2024; Rohde et al., 2024). To more closely 400

emulate the process by which LLMs are trained, 401

we recruited participants from countries in the 402

Global South where English is an official or 403

widely used language (see Appendix D for a full 404

list of countries). 90% of our participants were 405

from Africa and 10% were from Southeast Asia. 406

Participants were compensated at a rate equivalent 407

to an average of $15 per hour. 408

409

The Task. The task began with IRB information 410

(full instructions can be found in Appendix E), fol- 411

lowed by an introduction to the task (“In the follow- 412

ing, you will read a series of research summaries, 413

with two alternatives next to each other. Please 414

express which alternative you overall prefer. Some 415

of the items are hard, do the best you can!”, with 416

an example as per Appendix F), including an exam- 417

ple to familiarize participants with the process (for 418

general best practices of experimental design, we 419

followed Cowart 1997 and Berinsky et al. 2014). 420
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Figure 2: (a) Experimental results: Preferences between low LP-Score variant vs. high LP-Score variant, for the 30
items. (b) Participant preferences for pairs with different LP-Score Deltas. Each dot represents the mean preference
for one of 30 abstract pairs. High LP-Score Delta pairs contained "nuanced_ADJ."

An illustration of the interface can be found in Ap-421

pendix F. Each participants rated 25 pairs of text422

variants, consisting of 20 critical item pairs (in ran-423

dom order), one calibration item at the beginning424

of the survey (where one variant was deliberately425

poor), two randomly interspersed “gotcha” items426

(which contained mid-sequence, “This is not a real427

item, please click on the left button”; cf. Berin-428

sky et al. 2014; Maniaci and Rogge 2014), and two429

randomly interspersed items to assess language pro-430

ficiency, similar to the calibration item. For each431

item, the left-right positioning of the abstracts was432

randomly flipped to avoid positional bias (Fried-433

man et al., 1994; Chyung et al., 2018). We did not434

include fillers, as the differences between the vari-435

ants were subtle, and we were not concerned that436

participants would guess the purpose of the study.437

Exclusions. To ensure high-quality data, which438

is crucial for statistical power (Mahowald et al.,439

2016), we applied exclusions. Only participants440

who completed 10 or more of the 25 items were441

included in the analysis (11 participants excluded).442

Participants who failed to correctly answer both443

“gotcha” items were also excluded from the anal-444

ysis (158 participants excluded). Häussler and445

Juzek (2017) report that (225 ms + 25ms * charac-446

ter length of an item) is a good approximation of447

the minimum time physically required to read text.448

To account for skimming or decisions made on449

the basis of reading only part of each abstract, we450

used a less strict threshold, excluding only ratings451

completed in less than 40% of this minimum time.452

Participants were warned if they responded more453

quickly than this. If a participant fell below this454

threshold on 5 or more items, all of their ratings 455

were excluded from the analysis (18 additional par- 456

ticipants excluded; many of the participants who 457

failed the “gotcha” items would also have been 458

excluded by this speed criterion). After applying 459

these exclusions, we retained 4039 ratings (out of 460

a maximum of 8000 ratings: 400 participants * 20 461

ratings each), averaging about 135 ratings per item 462

pair (minimum: 125 ratings). Our exclusion rate 463

of 46.8% of the participants is in line with the per- 464

centages reported in the literature (Downs et al., 465

2010; Zhu and Carterette, 2010; Kazai et al., 2011; 466

Thomas and Clifford, 2017; Daniel et al., 2018). 467

3.2 Analyses 468

The null hypothesis is that participants’ choices be- 469

tween the high and low LP-Score abstracts do not 470

diverge from what one would expect when flipping 471

a fair coin. The relevant alternative hypothesis is 472

that participants show a preference for variants con- 473

taining more of the words identified previously as 474

potentially promoted by LHF – i.e., variants with 475

a high LP-score. For categorical, binary prefer- 476

ence data like ours, where observations are tested 477

against an expected baseline, a chi-square test is 478

an excellent choice of statistical test (Haslwanter, 479

2016). This is our main analysis. Additionally, 480

we provide descriptives for the 30 item pairs, and 481

we perform a mixed linear regression analysis to 482

account for random effects. Our model includes 483

the intercept as a fixed effect and participant and 484

item as random effects. 485
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3.3 Results486

Overall, participants exhibited a significant prefer-487

ence for variants with a high LP-Score over vari-488

ants with a low LP-Score, with a highly significant489

52.4% to 47.6% split (χ2 = 9.4, p < 0.01). This490

trend is consistent across items and is not driven by491

a small subset of items, as confirmed by the regres-492

sion model and the low variance observed across493

items (also see Figure 2). The mixed-effects model494

(REML, N = 4038, log-likelihood = −2903.53)495

revealed a significant intercept (β = 0.524, z =496

33.20, p < 0.001), with low variance across items497

(σ2
item = 0.006) and low to moderate variance498

across users (σ2
user = 0.104). Based on these find-499

ings, we reject the null hypothesis and accept the500

alternative hypothesis: participants systematically501

and significantly prefer variants containing more502

of the items identified in Section 2 as words whose503

use by LLMs was likely promoted by LHF.504

Although we did not initially intend to analyze505

abstracts containing any particular word, we506

noticed that sentence pairs in which the high507

RP-Score abstract contains the adjective “nuanced”508

had a substantially higher LP-Score Delta (Figure 2509

(b)). Further, the average preference for the high510

LP-Score variant is markedly lower for items con-511

taining “nuanced” (46.6%) compared to sentence512

pairs without it (54.5%). It could be that items513

containing “nuanced” stuck out to participants,514

leading them to disprefer those items, similar to515

what has been observed with text that includes516

“delve” (Juzek and Ward, 2025). Additional data is517

needed to substantiate this interpretation, however.518

519

4 Discussion and Conclusion520

There is little doubt that Large Language Models521

exhibit lexical overuse – that is, that they output522

certain words more frequently than a human base-523

line (see references in Section 1). Our research ad-524

vances the discourse by addressing the why, provid-525

ing stronger evidence than ever before that Learn-526

ing from Human Feedback could be a major source527

of this lexical overuse. We have identified lexical528

entries that models trained on LHF use consider-529

ably more than models without LHF training and530

then shown that texts containing many of these531

words are preferred to texts with fewer of them.532

Furthermore, there is reason to think that the533

words used more by Llama Instruct than by Llama534

Base are also the sorts of words overused by LLMs535

compared to humans. To probe this connection 536

to human language use, we extracted the lexical 537

entries discussed in the academic literature on lex- 538

ical overrepresentation (Gray, 2024; Kobak et al., 539

2024; Liang et al., 2024; Liu and Bu, 2024; Matsui, 540

2024; Juzek and Ward, 2025). This resulted in a 541

list of 32 lexical entries (see Appendix G). We ob- 542

serve that 28 of these are also present in our Llama 543

Base vs. Llama Instruct list. Thus, almost all of 544

the words that researchers have identified as over- 545

represented in LLM-generated text compared to 546

human-generated text appear more in the outputs 547

of Llama Instruct than Llama Base. And as we 548

have shown experimentally, these words are also 549

favored by human evaluators, lending credibility to 550

the hypothesis that the overuse of certain words by 551

LLMs (relative to human usage) is at least partly 552

the product of LHF. Our work therefore substanti- 553

ates the previously speculative link between lexical 554

overrepresentation and LHF. 555

4.1 Broader impacts and concluding remarks 556

It remains to be seen whether it is the demograph- 557

ics of the human evaluators or something about the 558

feedback task they are engaged in that explains why 559

they favor the sorts of words under discussion here. 560

One notable observation is that LHF workers tend 561

to be young, and almost all of the words overrep- 562

resented in LLM-generated text relative to human- 563

generated text were already increasing in usage 564

before the advent of LLMs (Matsui, 2024). Taken 565

together, these facts suggest that lexical overuse in 566

LLMs might be a form of normal intergenerational 567

language change (Labov, 2011), albeit an accel- 568

erated one, wherein the preferences of younger 569

generations are propagated in LLMs. This aligns 570

with observations that young people tend to prefer 571

AI-generated output over human-produced output 572

(Young et al., 2024). 573

LHF workers are also typically located in the 574

Global South, whereas criticism of the increased 575

usage of words like “delve” has predominantly orig- 576

inated from the Global North. Some have specu- 577

lated that the words overrepresented in LLM out- 578

puts might be more common in the dialects of En- 579

glish spoken by these LHF workers (Hern, 2024; 580

Sheikh, 2024), though follow-up work has not 581

yet substantiated this conjecture (Juzek and Ward, 582

2025). It is also possible that it is the nature of the 583

LHF task, rather than demographic factors, that is 584

responsible. Perhaps human evaluators, skimming 585

quickly through unfamiliar text, rely on the pres- 586
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ence of certain words as a proxy for quality. Wu587

and Aji (2025) showed that human evaluators tend588

to prioritize style over content, which may explain589

why evaluators treat certain words as indicative of590

good outputs. In that case, the lexical preferences591

baked into LLMs through LHF might simply be592

task-driven. Discriminating between these explana-593

tions – that is, determining whether age, geographic594

location, dialect, or task features lead LHF workers595

to favor particular words – requires future research.596

LHF is known to be a useful tool for aligning597

the outputs of LLMs more closely with human598

expectations. Our results, however, suggest that599

an accidental byproduct of such alignment efforts600

is lexical overuse. Does the overuse of particular601

words by LLMs constitute a failure of alignment?602

And should developers intervene to reduce the603

prevalence of these words? The answers to both604

questions depend on whose lexical preferences605

LLMs ought to reflect. Our research suggests that606

these models are making lexical choices that align607

with the preferences and expectations of LHF608

workers; but these same lexical choices may not609

satisfy consumers unhappy with LLMs’ overuse of610

words like “delve.”611

612

If intervention is desired, our procedure offers a613

straightforward way of identifying potential cases614

of lexical overuse. While some manual verification615

(and comparison with a human baseline) is still616

needed, the procedure effectively identifies many617

of the most extreme instances of potential overuse.618

Importantly, our findings also highlight where in-619

terventions should be targeted: LHF datasets. Dif-620

ferent strategies could be employed. For instance,621

developers and data scientists could diversify the622

workforce of human evaluators providing feedback623

for LHF (Sheikh, 2024), or datasets could be ad-624

justed post-collection to ensure greater balance.625

While we leave open the question of whether626

intervention is necessary, we note a shift in the627

dynamics of language change: Workers from the628

Global South are now influencing the language629

of language technologies, which are subsequently630

deployed globally. In the past, the direction of631

influence has predominantly flowed in the opposite632

direction (Kwet, 2019; hMensa, 2024).633

A potential risk of our work is that insights into634

the role of LHF in influencing lexical preferences635

could be used to further align LLMs with general636

expectations, potentially undermining AI-detection637

methods.638

639

Finally, our research challenges the idea that ar- 640

tificial neural networks (ANNs) are impenetrable 641

black boxes (Knight, 2017; Sculley et al., 2015). 642

Through systematic investigation, meaningful in- 643

sights into their workings can indeed be gained 644

(see also discussion in Templeton 2024). How- 645

ever, a key difficulty for such research is the lack of 646

transparency surrounding LLM development (Bom- 647

masani et al., 2021). This includes lack of process 648

transparency, as all major tech companies obscure 649

the details of their LHF procedures, arguably in part 650

to avoid scrutiny of poor working conditions for 651

human evaluators, who are frequently underpaid 652

and stressed (Toxtli et al., 2021; Roberts, 2022; 653

Novick, 2023). Lack of data transparency remains 654

an issue as well, with LHF datasets not being pub- 655

licly available. These failures of transparency are 656

worrisome in light of the significant impact that 657

language technology has on global language usage. 658

By facilitating insights like those presented here, 659

publicizing information about model training can 660

aid efforts to align LLMs more closely with human 661

expectations. 662

5 Limitations 663

As noted in Section 2, the application of the pro- 664

cedure proposed here to identify potentially LHF- 665

favored words is limited in both domain and size. 666

The procedure should be scaled to domains other 667

than Scientific English and well beyond the few 668

millions words that we have analyzed. It is also 669

important to keep in mind that potential language 670

confounds in the experimental items might have im- 671

pacted our results. While we controlled for abstract 672

length, other distinctive linguistic features of LLM- 673

generated text, such as specific syntactic structures 674

or stylistic elements (“It’s not about [X], it’s about 675

[Y]”, the AI Whisperer 2024), might correlate with 676

the presence of the words that we have identified, 677

unknowingly contributing to higher preference rat- 678

ings. A qualitative inspection of the item pairs 679

did not reveal any clear patterns of such confound- 680

ing features, but the possibility cannot be entirely 681

ruled out. Furthermore, although our experimen- 682

tal procedure aimed to emulate the task situation 683

of LHF workers, it did so imperfectly, as we can- 684

not perfectly simulate their working conditions for 685

both ethical and practical reasons. Lastly, while 686

our experimental results clearly bear on the existing 687

discourse about lexical biases, the connection to hu- 688
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man language use remains somewhat preliminary.689

Further strengthening this connection would yield690

still further support for the hypothesis that LHF691

is at least partly responsible for lexical overuse in692

LLM outputs compared to human-generated text.693
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A Top Potentially LHF-Favored Words 957

Table 1 gives the Top 20 words used more 958

frequently by Llama Instruct than Llama 959

Base, identified using the procedure presented in 960

Section 2. The full list can be found on our GitHub. 961

962

Lemma_POS opm opm Incr.
Ll-B Ll-I %

nuanced_ADJ 0.6 51.4 8342.8
nuance_VERB 0.6 39 6301.7
firstly_ADV 2.4 119.2 4794
reliance_NOUN 1.2 40.1 3193.6
generalizability_N 2.4 78.5 3124
underscore_VERB 4.3 124.9 2829.1
radar_NOUN 0.6 16.4 2590.6
staffing_NOUN 0.6 13 2033.9
socioemotional_ADJ 0.6 13 2033.9
multifacete_VERB 0.6 11.9 1848.3
flake_NOUN 0.6 10.7 1662.8
interoceptive_ADJ 0.6 10.7 1662.8
vocabulary_ADJ 0.6 10.7 1662.8
theanine_NOUN 0.6 10.7 1662.8
secondly_ADV 6.1 103.4 1597.8
finish_NOUN 0.6 10.2 1570
daa_NOUN 0.6 10.2 1570
necessitate_VERB 0.6 9.6 1477.2
behavioral_NOUN 0.6 9.6 1477.2

Table 1: Lemmata and part-of-speech for the Top 20
words identified using the procedure described in Sec-
tion 2. Compared are occurrences-per-million for Llama
Base (Ll-B) vs. Llama Instruct (Ll-I).

B Example of Abstract and AI-Generated 963

Keywords for Summary 964

Example of original PubMed abstract: “Using 965

a life course theory perspective, this qualitative 966

descriptive study explored how Hispanic ado- 967

lescent fathers view fatherhood, and how their 968

perception of parenthood is shaped by critical life 969

events. Hispanics are one of the largest ethnic 970

groups, as well as one of the populations that is 971

overrepresented in adolescent births in the United 972

States. Despite this, Hispanic adolescent fathers 973

are understudied and underrepresented in research. 974
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Participants were recruited from a community-975

based fatherhood program. Semi-structured976

interviews were conducted with Hispanic fathers,977

ages 16 years to 23 years. Participants conveyed978

their grief over fragmented family relationships979

and limited interactions with their own father.980

Some lived in hostile environments where they981

frequently experienced racism, discrimination,982

and neighborhood violence. The cumulative983

impact of these events resulted in substance use984

and emotional distress. Becoming a father was985

a sentinel event that helped resolve negative986

perceptions about fatherhood. Fatherhood also987

motivated participants towards a more productive,988

meaningful life.”989

990

AI-generated keywords: “Hispanic, adolescent991

fathers, fatherhood, life course theory, qualita-992

tive descriptive study, critical life events, un-993

derrepresented, community-based program, semi-994

structured interviews, grief, family relationships,995

racism, discrimination, neighborhood violence,996

substance use, emotional distress, sentinel event,997

positive perceptions, meaningful life.”998

C A Full Example: High- and999

Low-LP-Score Variants1000

For readability, words with an LP-score of >0.11001

are highlighted in boldface, but part-of-speech is1002

omitted. All items in both forms, with and without1003

part-of-speech, can be found on our GitHub.1004

1005

An example with a high LP-score: “In a transgenic1006

mouse model of melanoma, we investigated the1007

effects of glutamine supplementation on tumour1008

growth and survival under conditions of nutrient1009

deprivation. Glutamine supplementation enhanced1010

tumour growth, but when combined with a BRAF1011

inhibitor, reduced tumour growth and increased1012

survival. Metabolomic analysis revealed increased1013

αKG levels, leading to hypomethylation and1014

H3K4me3 demethylation, promoting oncogenic1015

pathways. Dietary intervention and targeted1016

therapy strategies targeting these epigenetic mod-1017

ifications hold promise for melanoma treatment.1018

Furthermore, our results suggest that glutamine1019

supplementation may promote tumour growth,1020

potentially through its role in αKG synthesis,1021

highlighting the need for nuanced nutritional1022

approaches in cancer treatment.” (100 words,1023

LP-score: 12.6)1024

1025

The following is the counterpart with a low LP- 1026

score: “This study employed a transgenic mouse 1027

model of melanoma to investigate the effects of 1028

glutamine supplementation on tumour growth and 1029

survival under conditions of nutrient deprivation. 1030

The model was treated with a BRAF inhibitor, 1031

a common targeted therapy for melanoma. 1032

Metabolomic analysis revealed increased αKG 1033

levels, indicative of glutamine metabolism, and 1034

associated with tumour growth and survival. 1035

Transcriptome analysis showed alterations in 1036

epigenetic marks, including hypomethylation 1037

and H3K4me3 modifications, in response to 1038

glutamine supplementation. These changes were 1039

correlated with activation of oncogenic pathways 1040

and improved tumour growth. Dietary intervention 1041

with glutamine also demonstrated enhanced 1042

tumour growth and survival in the model.” (101 1043

words, LP-score: 2.1) 1044

1045

D Full List of Permitted Countries 1046

Bangladesh, Belize, Botswana, Cameroon, 1047

Ethiopia, Fiji, Gambia, Ghana, Guyana, Indonesia, 1048

Kenya, Liberia, Malawi, Malaysia, Mauritius, Mi- 1049

cronesia, Montserrat, Namibia, Nigeria, Pakistan, 1050

Papua New Guinea, Philippines, South Africa, Sri 1051

Lanka, Swaziland, Tanzania, Uganda, Zambia, 1052

Zimbabwe. 1053

1054

E IRB Instructions 1055

“You are about to take part in a study whose goal it 1056

is to investigate language preferences. Your task 1057

will be to express a preference when presented 1058

with two choices. 1059

1060

Your participation is your free, rescindable 1061

choice. You will not be exposed to any known 1062

risks or uncertainties, there are not any known ben- 1063

efits, either. You can leave this study at any time, 1064

without specifying reasons. 1065

Note: We do remove bad actors during the study 1066

and exclude their ratings from our analyses. For 1067

this, we collect the IP addresses -only of bad actors- 1068

and store these for about 24 hours. 1069

We collect basic demographic information (age, 1070

gender, region, English proficiency) but your partic- 1071

ipation is anonymous and published data does not 1072

contain any identifiable information. Anonymised 1073
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data will be published on Github.1074

Estimated time for completion is about 15 min-1075

utes. Payment will be delivered through the recruit-1076

ment platform. The exact payment amount will be1077

based on the rate previously agreed upon via the1078

recruitment platform.1079

If you any questions or concerns, contact the1080

Principal Investigator: [PI info omitted].1081

[Institutional Review Board info omitted] is1082

overseeing this research. The [omitted] is a group1083

of people who perform official independent review1084

of research studies before studies begin to ensure1085

that the rights and welfare of participants are1086

protected. If you have questions about your rights1087

or wish to speak with someone other than the1088

research team, you may contact: [Institutional1089

Review Board info omitted]1090

1091

I have read and considered the presented infor-1092

mation. I confirm that I understand the purpose1093

of the research. I understand that I may contact1094

the Principal Investigator at any time and can with-1095

draw my participation without prejudice.1096

By clicking the right-arrow button, I indicate my1097

willingness to participate in this study.”1098

1099

F Rating Interface1100

Figure 3: The rating interface for our experiment.

G List of words discussed in the literature1101

on lexical overrepresentation in LLMs1102

advancements, aligns, boasts, commendable,1103

comprehending, crucial, delve, delved, delves,1104

delving, emphasizing, garnered, groundbreaking,1105

intricacies, intricate, invaluable, meticulous,1106

meticulously, notable, noteworthy, pivotal, poten-1107

tial, realm, showcases, showcasing, significant,1108

strategically, surpasses, surpassing, underscore,1109

underscores, underscoring.1110

1111
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