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Abstract

Large Language Models (LLMs) are known
to overuse certain terms like “delve” and “in-
tricate.” The exact reasons for these lexical
choices, however, have been unclear. This
study investigates the contribution of Learning
from Human Feedback (LHF), under which we
subsume Reinforcement Learning from Human
Feedback and Direct Preference Optimization.
We present a straightforward procedure for de-
tecting the lexical preferences of LLMs that are
potentially LHF-induced. Next, we more con-
clusively link LHF to lexical overuse than ever
before by experimentally emulating the LHF
procedure and demonstrating that participants
systematically prefer text variants that include
certain words. To address the overuse of such
words, developers now have a clear starting
point: LHF datasets. This lexical overuse may
be seen as a sort of misalignment, though our
study highlights the potential divergence be-
tween the lexical expectations of different pop-
ulations — namely, LHF workers versus LLM
users. Possible causes of these divergences in-
clude demographic differences and/or features
of the feedback solicitation task. Our work chal-
lenges the view of artificial neural networks as
impenetrable black boxes and emphasizes the
critical importance of both data and procedural
transparency in alignment research.

1 Introduction

Following the arrival of Large Language Models
(LLMs), observers were quick to note their ten-
dency to overproduce certain lexical entries (Kop-
penburg, 2024; Nguyen, 2024; Shapira, 2024; Gray,
2024; Kobak et al., 2024; Liang et al., 2024; Liu
and Bu, 2024; Matsui, 2024; Juzek and Ward,
2025)." Much of the discourse centered on Scien-
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tific and academic English, focusing on words such
as “delve”, “intricate”, and “realm”. Moreover,
while changes in Scientific English over decades
and centuries are well-documented (Degaetano-
Ortlieb and Teich, 2018; Degaetano-Ortlieb et al.,
2018; Bizzoni et al., 2020; Menzel, 2022), the lan-
guage shifts following the introduction of LLMs
have been unprecedented, with certain words (like
“delve”) seeing a sudden and dramatic increase in
usage.

Thus, that certain lexical biases exist in LLMs
has been established, with evidence demonstrating
their influence on human language usage. However,
the question of why this lexical overrepresentation
arises remains open. While some have pointed to
Learning from Human Feedback (LHF) as a sig-
nificant contributor to these lexical choices (Hern,
2024; Sheikh, 2024), conclusive evidence to sub-
stantiate this claim is still missing.

Learning from Human Feedback is a procedure
applied after initial model training during which hu-
man evaluators indicate preferences through A/B
testing or ranking. It was first introduced in the
form of Reinforcement Learning from Human
Feedback (RLHF; Christiano et al. 2017; Ziegler
et al. 2019), though a more recent and increasingly
popular form of LHF is Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024). LHF was
introduced to align models more closely with hu-
man preferences. Alignment, which reflects “how
closely the model’s opinions or stances mirror those
of different social groups” (He et al., 2024), is a
major challenge in Al (Bender et al., 2021; San-
turkar et al., 2023; Durmus et al., 2023). A model is
misaligned for a target group when its output does
not align with the group’s opinions, values, and/or
expectations. LHF is recognized as a key factor
contributing to the success of models like ChatGPT
(Ouyang et al., 2022). However, researching the ef-
fects of LHF is difficult due to lack of transparency
surrounding the procedures and datasets used in
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Figure 1: An illustration of the procedure used to identify lexical preferences that are potentially induced by

Learning from Human Feedback (LHF); figure created with Canva.

model development (Bommasani et al., 2021), in-
cluding for many popular open models.

Very broadly, our research aims to investigate
how technology and language interact (Erdocia
et al., 2024). The present study addresses the po-
tential link between LHF and the lexical choices
of LLMs through a two-step process. First, we
introduce a method for identifying lexical prefer-
ences in LLMs that are potentially induced by LHF.
This procedure has possible applications in indus-
try, as it can aid efforts to mitigate the most ex-
treme cases of lexical overrepresentation and align
models more closely with general language usage
(Section 2). Second, we conduct an experiment
that emulates the LHF procedure in order to test
whether humans indeed prefer texts containing the
words identified by our initial procedure. This rep-
resents the most rigorous test to date of the hypoth-
esis that LHF significantly shapes LLMs’ lexical
choices (Section 3). Finally, we highlight the fact
that LLMs are not impenetrable black boxes: mean-
ingful insights into their behavior can indeed be
gained. We also explore whether the lexical prefer-
ences we have identified are inherently problematic.
The answer depends in part on the specific mecha-

nisms through which these preferences arise, under-
scoring the importance of research on the sources
of lexical overuse (Section 4).

2 Procedure to Identify Potentially
LHF-Induced Lexical Preferences

As a first step, we develop a low-cost procedure
to identify lexical preferences in LLMs that likely
originate from LHF training. Our approach in-
volves generating language outputs from both a
pre-LHF model and a post-LHF model and then
comparing word usage in the resulting generations.
Here, we use Llama 3.2-3B Base and Llama 3.2-3B
Instruct (Dubey et al., 2024) (via the Hugging Face
Transformers library, Wolf et al. 2020; our use of
these models is consistent with their intended use
in NLP research, and we do not modify or fine-tune
them), as the Llama family is, to our knowledge,
the closest approximation to pure +/-LHF models
available. Llama 3 makes use of Direct Preference
Optimization. (Notably, OpenAl has not offered ac-
cess to base models for years now.) While there are
other differences between Llama Base and Llama
Instruct (Dubey et al., 2024), the use of LHF to train
Llama Instruct remains the main one (other differ-



ences include optimizing Instruct for tooling pur-
poses and safety mitigations). This makes Llama
well-suited for our purposes. All technical imple-
mentations described in this paper were carried out
in Python 3 (Python Software Foundation 2024;
v3.12.3).

Since most of the academic discourse on LLMs
has focused on Scientific English, we chose this
domain for our study, though the procedure we
present is transferable to other domains. Here the
procedure is applied to abstracts from PubMed
from 2020 (National Library of Medicine 2024;
our use of PubMed is consistent with its intended
use in research, and no modifications are made to
the original texts beyond necessary preprocessing
steps, details of which can be found in the code in
our GitHub repository), as this predates the main-
stream availability of LLMs. We randomly sam-
pled 10 000 abstracts and filtered out those with
fewer than 40 words, which resulted in 9 853 ab-
stracts. Each abstract was split in half by word
count (rounding down), and each of the Llama
models, Base and Instruct, were prompted to con-
tinue writing based on the initial half of the ab-
stract (Prompt: ‘Continue the following academic
article: \“{first_half} *). Models were, if needed,
cut off after twice the input length. The gener-
ated continuations were cleaned in order to remove
issues such as generation loops (e.g., repetitive sen-
tences) and meta-comments (e.g., “Certainly, here
is ...”), using GPT-40 (Achiam et al., 2023; Ope-
nAl, 2025) (Prompt: “The following text is meant
to be a continuation of a scientific abstract. In some
of the continuations, however, the Al finishes the
abstract and continues with commentary. Please
detect potential switches, and remove any com-
mentary: \n\n“{input_text}”\n\n Output only the
cleaned abstract. If the entire text is commentary,
output an empty string.’).

This process resulted in two corpora of PubMed
abstract continuations: one generated by Llama
Base (totaling 2.3m words) and the other by
Llama Instruct (2.2m words). Both corpora
were tagged for part-of-speech using spaCy
(Montani et al. 2023; v3.8.3, en_core_web_sm
v3.8.0, tagging of all data took about 140hrs),
enabling the disambiguation of identical surface
forms across word categories (e.g., “to_PART
run_VERB” vs. “a_DET run_NOUN”) and the
grouping of conceptually related forms under a
common lemma (“delve” and “delves’). Relative
frequency usage was compared between the two

corpora (similar to what one sees in the Google
Ngram Viewer, Google 2024). Here and in
Section 3, we focus on statistically significant
differences between Base and Instruct lexical
usage, determined through a chi-square test.
The top five items showing an increase in usage
in the Instruct model compared to the Base
model are as follows: “nuanced_ADJ (+8342%)”,
“nuance_VERB  (+6301%)”, “firstly_ADV
(+4794%)”, “reliance_NOUN (+3193%)”, “gener-
alizability_ NOUN (+3124%)”; also see Table 1 in
Appendix A for further entries and our anonymous
GitHub for the full list.

This is a straightforward procedure for identi-
fying lexical items that are likely preferred by an
LLM (in this case, the Llama Instruct model) as
a result of training with LHF. Many of the identi-
fied words have been discussed in the literature on
the distinctive lexical choices of LLMs (see refer-
ences in Section 1). However, the procedure also
identifies lexical entries that are not known to be
overused by LLMs and so are more difficult to in-
terpret. For instance, the Instruct model uses the
item “radar_ NOUN” considerably more often than
the Base model (an increase of 2590%). A qualita-
tive examination of the dataset, however, helps to
make sense of this result: several PubMed abstracts
in our sample discuss “radar_NOUN”, and the In-
struct model incorporates this into its continuations,
whereas the Base model does not.

Our procedure serves as a proof of concept that
it is possible to automate the search for potentially
LHF-induced lexical preferences. Our application
of the procedure is limited to the domain of Scien-
tific English and to corpora of about two million
words each. Thus, scaling it could improve the
results. It is important to keep in mind that the
procedure does not necessarily identify words that
are overused by Llama Instruct relative to human-
generated text; the operative comparison is with
Llama Base. Nevertheless, there seems to be con-
siderable overlap between the words overused by
Instruct relative to Base, and the words overused by
Instruct relative to a human baseline. We compared
the Llama Instruct outputs to a human baseline,
the actual second halves of the randomly sampled
PubMed abstracts. Virtually all of the words used
significantly more by Llama Instruct than Llama
Base (Table 1) were also used significantly more
by Instruct than in the human baseline (813 out
of 814). Thus, when it comes to the lexical items
that distinguish LLM-generated text from human-



generated text, the identification procedure in its
current form is effective in picking out many of the
most extreme cases.

Assuming such divergences from human-
generated text are undesirable and hence a form
of bias (a point to which we will return in Sec-
tion 4), the procedure is a method for uncovering
lexical biases in LLMs. Our insights could also in-
form the discourse on Al-generated text detection
(Lavergne et al., 2008; Chakraborty et al., 2023;
Mitchell et al., 2023; Huang et al., 2025), as such
methods often rely on identifying atypical lexical
items and distributions. Although the simplicity
of the procedure might raise questions about its
value, the degree of such bias observed in LLM
outputs suggests that either no robust identification
mechanisms were previously applied, or existing
mechanisms have proven too weak. There is there-
fore a need for even basic procedures like the one
presented here.

We believe the above results are consistent with
the hypothesis that LHF is a major source of the lex-
ical bias discussed in the literature. However, more
evidence is needed to more conclusively support
this hypothesis. Specifically, experimental valida-
tion is required to confirm that the lexical items
whose usage by LLMs we pinpointed as poten-
tially LHF-induced are indeed preferred by human
evaluators, thereby strengthening the causal link
between LHF and LLMs’ lexical choices.

3 Experimental Validation

At the core of the hypothesized link between LHF
and LLMs’ lexical choices is the idea that evalua-
tors exhibit a subtle preference for certain lexical
items, a preference that is in fact so slight that it has
obscured this very link. However, when scaled up,
these minor preferences for specific lexical items
become entrenched and ultimately manifested in
the output generations of LLMs. To test this hy-
pothesis, we created experimental items consisting
of pairs of text variants. In each pair, one variant
exhibits fewer words previously identified as poten-
tially favored by LHF, while the other exhibits more
such words, with all other factors held as equal as
possible, including length and content. This design
aims to isolate the effect of the presence of the lex-
ical items identified above on evaluator judgments.

3.1 Experimental Setup

Creation of Experimental Items. The ideal test
of the hypothesis would involve creating two ran-
dom variants of a given abstract, repeating this for
tens of thousands of pairs, collecting human eval-
uations for all these pairs, and then analyzing the
ratings. The problem, however, is that detecting
the hypothesized subtle effect experimentally un-
der this approach would require an extraordinarily
high number of ratings to achieve statistical sig-
nificance. Thus, we opted for a procedure that in-
creases the lexical differences between items, while
at the same time maintaining comparable validity
and being less resource-intensive.

For 50 randomly selected PubMed abstracts
from 2020, we prompted GPT-40 to write
summary notes for each abstract (“The fol-
lowing text is an abstract from a scientific
paper:\n\n{input_text}\n\nSummarize the ab-
stract in keywords, separate keywords by com-
mas.”’; an example output is provided in Ap-
pendix B). Using these summary notes as input,
we then had Llama Instruct generate 500 abstracts
(variants) for each item (Prompt: ‘Based on the
following keywords, write a 100-word abstract for
a scientific journal article: “{line_of_keywords}.”
Reply with the abstract only.’), resulting in a to-
tal of 25 000 variants. We used GPT-40 to clean
the abstracts (Prompt: “The following text con-
tains a scientific abstract, but sometimes further
text:\n\n“{input_text}”\n\nPlease remove any ir-
relevant text, which can include titles, incomplete
sentences, even a comment that an abstract is to
follow (\“Abstract: \”). Output only the cleaned
abstract.”). We controlled for length by filtering
out candidates that were either below 90 words or
above 110 words. There has been a widespread
recognition that “delve” is an LLM-associated
word (see references in Section 1) and a corre-
sponding backlash against it (Juzek and Ward,
2025). Thus, we removed any variants contain-
ing any of the 21 most overused ‘Al words’ as dis-
cussed in (Juzek and Ward, 2025), including words
like “realm” and “groundbreaking”. After applying
these filters, we retained a final set of 8710 variants.

For these items, which were also part-of-speech
tagged, we calculated a score to measure a
word’s potential to have been favored by LHF
(“LHF-Potential-Preference-Score”, or simply “LP-
Score”). Using the lexical items identified in Sec-
tion 2 as potentially promoted by LHF, we assigned



a score to each variant by summing occurrences of
these items, weighted by their relative rate of in-
crease. This weighting reflects the idea that a single
usage of a term like “revolutionize_ VERB”, which
experienced a significant increase of +1160%, is
probably more indicative of the influence of LHF
than using a term like “of ADP”, which saw a
much smaller increase of only 2%.

The LP-Score for a sequence is the sum of LP-
Scores for each token (w). The LP-Score for
a given token is its increase in percent between
Llama Base (B) and Llama Instruct (1), divided by
one thousand; “opm” stands for occurrences per
million and is just the frequency of a token divided
by the total number of tokens (N), multiplied by
one million.

n
LP-Score(S) = Z LP-Score(w;)
i=1
where
LP-Score(w) =
1 —
) opm; (w) — opmp(w) % 100
1000 opmp(w)

where

count(w)

106
N X

opm(w) =
An LP-Score was calculated for all 8710 vari-
ants generated for the 50 summarized abstracts. For
each of the 50 abstracts, we calculated the differ-
ence between the variant with the lowest LP-Score
and the one with the highest LP-Score. We then
selected the Top 30 abstract pairs with the largest
Deltas while ensuring that the pair of variants were
length-matched (in two cases, a length match was
difficult, and we took the runners-up). The follow-
ing hypothetical example between Sequence 1 and
Sequence 2 illustrates how the LP-Scores were cal-
culated. The LP-Score Delta is 0.31 (the score is
calculated on lemmata and part-of-speech, which
are omitted below for simplicity). A real example
can be found in Appendix C.

(1) This is an intricate example full of

0.03 0 0 0.36 0.03 0 O
complex words (SUM)

0.2 0 (=0.44)
(2) This is a baseline example free from
003 0 00 0.03 0 O
these words (SUM)
0.07 0 (=0.13)

For the 30 selected items, the average LP-Score
for the variants with many of the lexical items
identified in Section 2 is 7.2 (average length: 105
words), and the average LP-Score for the variants
with the fewest such items is 1.7 (average length:
104 words). The complete set of experimental
item pairs is available on our anonymous GitHub
repository. As discussed in Section 2, some of the
words identified by the procedure above do not
seem likely to have been promoted by LHF, such as
“radar”. This introduces noise into the experiment.
For instance, one variant of an abstract might
include “radar”, resulting in a higher LP-Score,
even though the in- or exclusion of such a word
is unlikely to affect human preference between
the two variants. Such cases weaken the statistical
power of the experiment and increase the risk of
a false negative outcome (the beta rate), thereby
favoring the null hypothesis (Haslwanter, 2016).
We anticipate this effect to be minor, however,
given that the majority of lexical items previously
identified do seem plausibly the sort that are
potentially promoted by LHF.

Participants. We recruited 400 participants
(231 female, 169 male; average age: 30.1
years, standard deviation: 9.8) through Prolific
(www.prolific.com). It has been claimed that
tech companies often recruit LHF workers from
the Global South (Kwet, 2019; Perrigo, 2023;
Gray, 2024; Rohde et al., 2024). To more closely
emulate the process by which LLMs are trained,
we recruited participants from countries in the
Global South where English is an official or
widely used language (see Appendix D for a full
list of countries). 90% of our participants were
from Africa and 10% were from Southeast Asia.
Participants were compensated at a rate equivalent
to an average of $15 per hour.

The Task. The task began with IRB information
(full instructions can be found in Appendix E), fol-
lowed by an introduction to the task (“In the follow-
ing, you will read a series of research summaries,
with two alternatives next to each other. Please
express which alternative you overall prefer. Some
of the items are hard, do the best you can!”, with
an example as per Appendix F), including an exam-
ple to familiarize participants with the process (for
general best practices of experimental design, we
followed Cowart 1997 and Berinsky et al. 2014).
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Figure 2: (a) Experimental results: Preferences between low LP-Score variant vs. high LP-Score variant, for the 30
items. (b) Participant preferences for pairs with different LP-Score Deltas. Each dot represents the mean preference
for one of 30 abstract pairs. High LP-Score Delta pairs contained "nuanced_ADJ."

An illustration of the interface can be found in Ap-
pendix F. Each participants rated 25 pairs of text
variants, consisting of 20 critical item pairs (in ran-
dom order), one calibration item at the beginning
of the survey (where one variant was deliberately
poor), two randomly interspersed “gotcha” items
(which contained mid-sequence, “This is not a real
item, please click on the left button”; cf. Berin-
sky et al. 2014; Maniaci and Rogge 2014), and two
randomly interspersed items to assess language pro-
ficiency, similar to the calibration item. For each
item, the left-right positioning of the abstracts was
randomly flipped to avoid positional bias (Fried-
man et al., 1994; Chyung et al., 2018). We did not
include fillers, as the differences between the vari-
ants were subtle, and we were not concerned that
participants would guess the purpose of the study.

Exclusions. To ensure high-quality data, which
is crucial for statistical power (Mahowald et al.,
2016), we applied exclusions. Only participants
who completed 10 or more of the 25 items were
included in the analysis (11 participants excluded).
Participants who failed to correctly answer both
“gotcha” items were also excluded from the anal-
ysis (158 participants excluded). Héaussler and
Juzek (2017) report that (225 ms + 25ms * charac-
ter length of an item) is a good approximation of
the minimum time physically required to read text.
To account for skimming or decisions made on
the basis of reading only part of each abstract, we
used a less strict threshold, excluding only ratings
completed in less than 40% of this minimum time.
Participants were warned if they responded more
quickly than this. If a participant fell below this

threshold on 5 or more items, all of their ratings
were excluded from the analysis (18 additional par-
ticipants excluded; many of the participants who
failed the “gotcha” items would also have been
excluded by this speed criterion). After applying
these exclusions, we retained 4039 ratings (out of
a maximum of 8000 ratings: 400 participants * 20
ratings each), averaging about 135 ratings per item
pair (minimum: 125 ratings). Our exclusion rate
of 46.8% of the participants is in line with the per-
centages reported in the literature (Downs et al.,
2010; Zhu and Carterette, 2010; Kazai et al., 2011;
Thomas and Clifford, 2017; Daniel et al., 2018).

3.2 Analyses

The null hypothesis is that participants’ choices be-
tween the high and low LP-Score abstracts do not
diverge from what one would expect when flipping
a fair coin. The relevant alternative hypothesis is
that participants show a preference for variants con-
taining more of the words identified previously as
potentially promoted by LHF — i.e., variants with
a high LP-score. For categorical, binary prefer-
ence data like ours, where observations are tested
against an expected baseline, a chi-square test is
an excellent choice of statistical test (Haslwanter,
2016). This is our main analysis. Additionally,
we provide descriptives for the 30 item pairs, and
we perform a mixed linear regression analysis to
account for random effects. Our model includes
the intercept as a fixed effect and participant and
item as random effects.



3.3 Results

Overall, participants exhibited a significant prefer-
ence for variants with a high LP-Score over vari-
ants with a low LP-Score, with a highly significant
52.4% to 47.6% split (x?> = 9.4,p < 0.01). This
trend is consistent across items and is not driven by
a small subset of items, as confirmed by the regres-
sion model and the low variance observed across
items (also see Figure 2). The mixed-effects model
(REML, N = 4038, log-likelihood = —2903.53)
revealed a significant intercept (8 = 0.524, 2z =
33.20,p < 0.001), with low variance across items
(02, = 0.006) and low to moderate variance
across users (02, = 0.104). Based on these find-
ings, we reject the null hypothesis and accept the
alternative hypothesis: participants systematically
and significantly prefer variants containing more
of the items identified in Section 2 as words whose
use by LLMs was likely promoted by LHF.
Although we did not initially intend to analyze
abstracts containing any particular word, we
noticed that sentence pairs in which the high
RP-Score abstract contains the adjective “nuanced”
had a substantially higher LP-Score Delta (Figure 2
(b)). Further, the average preference for the high
LP-Score variant is markedly lower for items con-
taining ‘“nuanced” (46.6%) compared to sentence
pairs without it (54.5%). It could be that items
containing “nuanced” stuck out to participants,
leading them to disprefer those items, similar to
what has been observed with text that includes
“delve” (Juzek and Ward, 2025). Additional data is
needed to substantiate this interpretation, however.

4 Discussion and Conclusion

There is little doubt thatr Large Language Models
exhibit lexical overuse — that is, that they output
certain words more frequently than a human base-
line (see references in Section 1). Our research ad-
vances the discourse by addressing the why, provid-
ing stronger evidence than ever before that Learn-
ing from Human Feedback could be a major source
of this lexical overuse. We have identified lexical
entries that models trained on LHF use consider-
ably more than models without LHF training and
then shown that texts containing many of these
words are preferred to texts with fewer of them.
Furthermore, there is reason to think that the
words used more by Llama Instruct than by Llama
Base are also the sorts of words overused by LLMs

compared to humans. To probe this connection
to human language use, we extracted the lexical
entries discussed in the academic literature on lex-
ical overrepresentation (Gray, 2024; Kobak et al.,
2024; Liang et al., 2024; Liu and Bu, 2024; Matsui,
2024; Juzek and Ward, 2025). This resulted in a
list of 32 lexical entries (see Appendix G). We ob-
serve that 28 of these are also present in our Llama
Base vs. Llama Instruct list. Thus, almost all of
the words that researchers have identified as over-
represented in LLM-generated text compared to
human-generated text appear more in the outputs
of Llama Instruct than Llama Base. And as we
have shown experimentally, these words are also
favored by human evaluators, lending credibility to
the hypothesis that the overuse of certain words by
LLMs (relative to human usage) is at least partly
the product of LHE. Our work therefore substanti-
ates the previously speculative link between lexical
overrepresentation and LHF.

4.1 Broader impacts and concluding remarks

It remains to be seen whether it is the demograph-
ics of the human evaluators or something about the
feedback task they are engaged in that explains why
they favor the sorts of words under discussion here.
One notable observation is that LHF workers tend
to be young, and almost all of the words overrep-
resented in LLM-generated text relative to human-
generated text were already increasing in usage
before the advent of LLMs (Matsui, 2024). Taken
together, these facts suggest that lexical overuse in
LLMs might be a form of normal intergenerational
language change (Labov, 2011), albeit an accel-
erated one, wherein the preferences of younger
generations are propagated in LLMs. This aligns
with observations that young people tend to prefer
Al-generated output over human-produced output
(Young et al., 2024).

LHF workers are also typically located in the
Global South, whereas criticism of the increased
usage of words like “delve” has predominantly orig-
inated from the Global North. Some have specu-
lated that the words overrepresented in LLM out-
puts might be more common in the dialects of En-
glish spoken by these LHF workers (Hern, 2024;
Sheikh, 2024), though follow-up work has not
yet substantiated this conjecture (Juzek and Ward,
2025). It is also possible that it is the nature of the
LHEF task, rather than demographic factors, that is
responsible. Perhaps human evaluators, skimming
quickly through unfamiliar text, rely on the pres-



ence of certain words as a proxy for quality. Wu
and Aji (2025) showed that human evaluators tend
to prioritize style over content, which may explain
why evaluators treat certain words as indicative of
good outputs. In that case, the lexical preferences
baked into LLMs through LHF might simply be
task-driven. Discriminating between these explana-
tions — that is, determining whether age, geographic
location, dialect, or task features lead LHF workers
to favor particular words — requires future research.

LHF is known to be a useful tool for aligning
the outputs of LLMs more closely with human
expectations. Our results, however, suggest that
an accidental byproduct of such alignment efforts
is lexical overuse. Does the overuse of particular
words by LLMs constitute a failure of alignment?
And should developers intervene to reduce the
prevalence of these words? The answers to both
questions depend on whose lexical preferences
LLMs ought to reflect. Our research suggests that
these models are making lexical choices that align
with the preferences and expectations of LHF
workers; but these same lexical choices may not
satisfy consumers unhappy with LLMs’ overuse of
words like “delve.”

If intervention is desired, our procedure offers a
straightforward way of identifying potential cases
of lexical overuse. While some manual verification
(and comparison with a human baseline) is still
needed, the procedure effectively identifies many
of the most extreme instances of potential overuse.
Importantly, our findings also highlight where in-
terventions should be targeted: LHF datasets. Dif-
ferent strategies could be employed. For instance,
developers and data scientists could diversify the
workforce of human evaluators providing feedback
for LHF (Sheikh, 2024), or datasets could be ad-
justed post-collection to ensure greater balance.

While we leave open the question of whether
intervention is necessary, we note a shift in the
dynamics of language change: Workers from the
Global South are now influencing the language
of language technologies, which are subsequently
deployed globally. In the past, the direction of
influence has predominantly flowed in the opposite
direction (Kwet, 2019; hMensa, 2024).

A potential risk of our work is that insights into
the role of LHF in influencing lexical preferences
could be used to further align LLLMs with general
expectations, potentially undermining Al-detection
methods.

Finally, our research challenges the idea that ar-
tificial neural networks (ANNSs) are impenetrable
black boxes (Knight, 2017; Sculley et al., 2015).
Through systematic investigation, meaningful in-
sights into their workings can indeed be gained
(see also discussion in Templeton 2024). How-
ever, a key difficulty for such research is the lack of
transparency surrounding LLM development (Bom-
masani et al., 2021). This includes lack of process
transparency, as all major tech companies obscure
the details of their LHF procedures, arguably in part
to avoid scrutiny of poor working conditions for
human evaluators, who are frequently underpaid
and stressed (Toxtli et al., 2021; Roberts, 2022;
Novick, 2023). Lack of data transparency remains
an issue as well, with LHF datasets not being pub-
licly available. These failures of transparency are
worrisome in light of the significant impact that
language technology has on global language usage.
By facilitating insights like those presented here,
publicizing information about model training can
aid efforts to align LLMs more closely with human
expectations.

5 Limitations

As noted in Section 2, the application of the pro-
cedure proposed here to identify potentially LHF-
favored words is limited in both domain and size.
The procedure should be scaled to domains other
than Scientific English and well beyond the few
millions words that we have analyzed. It is also
important to keep in mind that potential language
confounds in the experimental items might have im-
pacted our results. While we controlled for abstract
length, other distinctive linguistic features of LLM-
generated text, such as specific syntactic structures
or stylistic elements (“It’s not about [X], it’s about
[Y]”, the Al Whisperer 2024), might correlate with
the presence of the words that we have identified,
unknowingly contributing to higher preference rat-
ings. A qualitative inspection of the item pairs
did not reveal any clear patterns of such confound-
ing features, but the possibility cannot be entirely
ruled out. Furthermore, although our experimen-
tal procedure aimed to emulate the task situation
of LHF workers, it did so imperfectly, as we can-
not perfectly simulate their working conditions for
both ethical and practical reasons. Lastly, while
our experimental results clearly bear on the existing
discourse about lexical biases, the connection to hu-



man language use remains somewhat preliminary.
Further strengthening this connection would yield
still further support for the hypothesis that LHF
is at least partly responsible for lexical overuse in
LLM outputs compared to human-generated text.
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A Top Potentially LHF-Favored Words

Table 1 gives the Top 20 words used more
frequently by Llama Instruct than Llama
Base, identified using the procedure presented in
Section 2. The full list can be found on our GitHub.

Lemma_POS opm | opm Incr.

LI-B | LI-I %
nuanced_AD]J 0.6 | 514 | 8342.8
nuance_ VERB 0.6 39 | 6301.7
firstly_ADV 24| 119.2 4794
reliance. NOUN 1.2 | 40.1 | 3193.6
generalizability_N 24| 785 3124
underscore_VERB 4311249 | 2829.1
radar_ NOUN 0.6 | 16.4 | 2590.6
staffing. NOUN 0.6 13 | 2033.9
socioemotional ADJ 0.6 13 | 2033.9
multifacete. VERB 0.6 11.9 | 1848.3
flake. NOUN 0.6 | 10.7 | 1662.8
interoceptive_ADJ 0.6 | 10.7 | 1662.8
vocabulary_ADJ 0.6 10.7 | 1662.8
theanine_ NOUN 0.6 10.7 | 1662.8
secondly_ADV 6.1 | 103.4 | 1597.8
finish_ NOUN 0.6 | 10.2 1570
daa_ NOUN 06| 10.2 1570
necessitate_ VERB 0.6 9.6 | 1477.2
behavioral_NOUN 0.6 9.6 | 1477.2

Table 1: Lemmata and part-of-speech for the Top 20
words identified using the procedure described in Sec-
tion 2. Compared are occurrences-per-million for Llama
Base (L1-B) vs. Llama Instruct (L1-1).

B Example of Abstract and AI-Generated
Keywords for Summary

Example of original PubMed abstract: “Using
a life course theory perspective, this qualitative
descriptive study explored how Hispanic ado-
lescent fathers view fatherhood, and how their
perception of parenthood is shaped by critical life
events. Hispanics are one of the largest ethnic
groups, as well as one of the populations that is
overrepresented in adolescent births in the United
States. Despite this, Hispanic adolescent fathers
are understudied and underrepresented in research.
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Participants were recruited from a community-
based fatherhood program.  Semi-structured
interviews were conducted with Hispanic fathers,
ages 16 years to 23 years. Participants conveyed
their grief over fragmented family relationships
and limited interactions with their own father.
Some lived in hostile environments where they
frequently experienced racism, discrimination,
and neighborhood violence. The cumulative
impact of these events resulted in substance use
and emotional distress. Becoming a father was
a sentinel event that helped resolve negative
perceptions about fatherhood. Fatherhood also
motivated participants towards a more productive,
meaningful life.”

Al-generated keywords: “Hispanic, adolescent
fathers, fatherhood, life course theory, qualita-
tive descriptive study, critical life events, un-
derrepresented, community-based program, semi-
structured interviews, grief, family relationships,
racism, discrimination, neighborhood violence,
substance use, emotional distress, sentinel event,
positive perceptions, meaningful life.”

C A Full Example: High- and
Low-LP-Score Variants

For readability, words with an LP-score of >0.1
are highlighted in boldface, but part-of-speech is
omitted. All items in both forms, with and without
part-of-speech, can be found on our GitHub.

An example with a high LP-score: “In a transgenic
mouse model of melanoma, we investigated the
effects of glutamine supplementation on tumour
growth and survival under conditions of nutrient
deprivation. Glutamine supplementation enhanced
tumour growth, but when combined with a BRAF
inhibitor, reduced tumour growth and increased
survival. Metabolomic analysis revealed increased
aKG levels, leading to hypomethylation and
H3K4me3 demethylation, promoting oncogenic
pathways. Dietary intervention and targeted
therapy strategies targeting these epigenetic mod-
ifications hold promise for melanoma treatment.
Furthermore, our results suggest that glutamine
supplementation may promote tumour growth,
potentially through its role in «KG synthesis,
highlighting the need for nuanced nutritional
approaches in cancer treatment.” (100 words,
LP-score: 12.6)
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The following is the counterpart with a low LP-
score: “This study employed a transgenic mouse
model of melanoma to investigate the effects of
glutamine supplementation on tumour growth and
survival under conditions of nutrient deprivation.
The model was treated with a BRAF inhibitor,
a common targeted therapy for melanoma.
Metabolomic analysis revealed increased aKG
levels, indicative of glutamine metabolism, and
associated with tumour growth and survival.
Transcriptome analysis showed alterations in
epigenetic marks, including hypomethylation
and H3K4me3 modifications, in response to
glutamine supplementation. These changes were
correlated with activation of oncogenic pathways
and improved tumour growth. Dietary intervention
with glutamine also demonstrated enhanced
tumour growth and survival in the model.” (101
words, LP-score: 2.1)

D Full List of Permitted Countries

Bangladesh, Belize, Botswana, Cameroon,
Ethiopia, Fiji, Gambia, Ghana, Guyana, Indonesia,
Kenya, Liberia, Malawi, Malaysia, Mauritius, Mi-
cronesia, Montserrat, Namibia, Nigeria, Pakistan,
Papua New Guinea, Philippines, South Africa, Sri
Lanka, Swaziland, Tanzania, Uganda, Zambia,
Zimbabwe.

E IRB Instructions

“You are about to take part in a study whose goal it
is to investigate language preferences. Your task
will be to express a preference when presented
with two choices.

Your participation is your free, rescindable
choice. You will not be exposed to any known
risks or uncertainties, there are not any known ben-
efits, either. You can leave this study at any time,
without specifying reasons.

Note: We do remove bad actors during the study
and exclude their ratings from our analyses. For
this, we collect the IP addresses -only of bad actors-
and store these for about 24 hours.

We collect basic demographic information (age,
gender, region, English proficiency) but your partic-
ipation is anonymous and published data does not
contain any identifiable information. Anonymised



data will be published on Github.

Estimated time for completion is about 15 min-
utes. Payment will be delivered through the recruit-
ment platform. The exact payment amount will be
based on the rate previously agreed upon via the
recruitment platform.

If you any questions or concerns, contact the
Principal Investigator: [PI info omitted].

[Institutional Review Board info omitted] is
overseeing this research. The [omitted] is a group
of people who perform official independent review
of research studies before studies begin to ensure
that the rights and welfare of participants are
protected. If you have questions about your rights
or wish to speak with someone other than the
research team, you may contact: [Institutional
Review Board info omitted]

I have read and considered the presented infor-
mation. I confirm that I understand the purpose
of the research. I understand that I may contact
the Principal Investigator at any time and can with-
draw my participation without prejudice.

By clicking the right-arrow button, I indicate my
willingness to participate in this study.”

F Rating Interface

205
Excessive caffeine consumption has been linked to various
symptoms, including anxiety, agitation, insomnia, and
gastrointestinal disorders. As a stimulant, caffeine can cause
significant physiological effects, including caffeine poisoning,
which can have life-threatening consequences. This review aims
to examine the relationship between caffeine consumption and
various health outcomes, with a focus on sex differences and the
potential for personalized medicine. We analyze the risk and
protective factors associated with caffeine consumption,
including natural foods and sex-specific therapies. Our findings
highlight the need for a more nuanced understanding of
caffeine's effects on human health, particularly in vulnerable
populations. Sex-specific approaches may mitigate risk factors.

Ll is beer rightis belter

Caffeine is a naturally occurring stimulant found in various
natural foods, including coffee, tea, and chocolate. While
moderate consumption of caffeine is generally considered safe,
excessive consumption can lead to negative effects on the body.
Cafeine poisoning, characterized by symptoms such as anxiety,
agitation, insomnia, gastrointestinal disorders, neurological
disorders, and psychiatric disorders, can occur when the body is
unable to process high levels of the stimulant. This review aims
1o discuss the current understanding of caffeine’s impact on the
human body, with a focus on sex differences and personalized
‘medicine. We examine the risk factors, protective factors, and
sex-specific therapies for caffeine-related disorders.

Figure 3: The rating interface for our experiment.

G List of words discussed in the literature
on lexical overrepresentation in LLMs

advancements, aligns, boasts, commendable,
comprehending, crucial, delve, delved, delves,
delving, emphasizing, garnered, groundbreaking,
intricacies, intricate, invaluable, meticulous,
meticulously, notable, noteworthy, pivotal, poten-
tial, realm, showcases, showcasing, significant,
strategically, surpasses, surpassing, underscore,
underscores, underscoring.
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