From Indirect Object Identification to Syllogisms:
Exploring Binary Mechanisms in Transformer Circuits

Karim Saraipour * Shichang Zhang
University of California, Los Angeles Harvard University

Abstract

Transformer-based language models (LMs) can perform a wide range of tasks,
and mechanistic interpretability (MI) aims to reverse engineer the components
responsible for task completion to understand their behavior. Previous MI research
has focused on linguistic tasks like Indirect Object Identification (IOI). In this paper,
we investigate the ability of GPT-2 small to handle binary truth values by analyzing
its behavior with syllogistic prompts, such as “Statement A is true. Statement
B matches statement A. Statement B is”, which requires more complex logical
reasoning compared to IOI. Through our analysis of several syllogism tasks of
varying difficulty, we identify multiple circuits that mechanistically explain GPT-
2’s logical reasoning capabilities and uncover binary mechanisms that facilitate task
completion, including the ability to produce a negated token that does not appear
in the input prompt through negative heads. Our evaluation using a faithfulness
metric shows that a circuit comprising five attention heads achieves over 90% of
the original model’s performance. By relating our findings to IOl analysis, we
provide new insights into the roles of certain attention heads and MLPs in LMs.
We believe these insights contribute to a broader understanding of model reasoning
and benefit future research in mechanistic interpretability.

1 Introduction

Despite the success of Large Language Models (LLMs) and their amazing capabilities, these models
remain largely opaque and function as black boxes. Mechanistic interpretability has emerged as a
field dedicated to mitigate this conceptual gap. By analyzing how LMs solve specific tasks [Wang
et al., 2022, Hanna et al., 2023, Merullo et al., 2024], studying emergent behaviors [Arditi et al.,
2024], and identifying patterns within their architectures [Gurnee et al., 2024], researchers aim to
unravel the inner workings of LMs. Even though great progress has been made, significant gaps
remain in understanding LMs even on basic tasks.

GPT-2 is a family of representative LLMs that has been frequently studied in mechanistic inter-
pretability literature. An exemplary case is analyzing its ability to do Indirect Object Identification
task [Wang et al., 2022], which reverse engineers how GPT-2 correctly predicts the final token
in sentences like “When Mary and John went to the shops, John gave a bottle of milk to”. Such
mechanistic analysis begins with the output and traces back to identify the architectural components
relevant to the task, termed as circuit. GPT-2 small has been shown to be competent in such linguistic
tasks, however its ability and mechanism to perform logic reasoning remains uncertain. Specifically,
it lacks the capability to coherently answer true-false questions, such as “True or False? Dogs have
four legs.”. To investigate how GPT-2 represents and processes truth values, we utilize syllogism
tasks — a classic form of logical reasoning involving premises and a conclusion. By applying similar
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Figure 1: Opposite Syllogism Circuit. The blue arrow represents queries, and the yellow arrow
represents values. Negative Truth Heads perform negation of the truth value present in the prompt
while the Truth Logit Rescaler MLPs rescale the residual stream to select the correct truth value.

mechanistic analysis to syllogistic prompts, we aim to discover the circuits that are relevant to the
task and interpret the internal mechanisms GPT-2 uses when handling truth values.

This paper builds on previous interpretability research by focusing on how GPT-2 handles syllogistic
prompts. We use true-false syllogism tasks where truth values are assigned to premise statements and
the model is prompted to predict the truth value of the conclusion. We define three prompt formats to
probe binary reasoning. The Simple Syllogism (SS) presents direct entailment, e.g., “Statement A
is true. Statement B matches statement A. Statement B is”. The Opposite Syllogism (OS) inverts
this logic, requiring negation, e.g., “Statement A and Statement B are opposite. Statement A is true.
Statement B is”. The Complex Syllogism (CS) adds one or more distractor premises irrelevant to
the inference, e.g., “Statement A is true. Statement B matches statement A. Statement C is false.
Statement B is”, where the distractor is “Statement C is false”.

Our approach includes two mechanistic interpretability techniques: Path Patching and Logit Lens.
Path patching [Wang et al., 2022] determines the importance of a computational component in solving
a task by replacing part of the model’s forward pass with activations from a different distribution.
Logit Lens [Nostalgebraist, 2020] applies the model’s unembedding matrix at different stages of
the residual stream, exposing logits and offering insights into the function of specific components
during the model’s processing. Using these techniques, we apply a mechanistic lens to uncover how
LMs perform complex reasoning tasks and identify the key components that drive their decisions.
Specifically, we examine the internal mechanisms responsible for negation and reinforcement of
truth values. Evaluation with a circuit faithfulness metric shows that a circuit of three attention heads
can recover 90% of the original model’s performance on SS prompts. For OS prompts, a circuit
of five attention heads and four MLPs nearly recovers the performance of the full GPT-2 model,
achieving roughly 85% faithfulness. The structure of the OS circuit is shown in Figure 1.

Throughout our investigation into how GPT-2 processes syllogisms, we uncover several insights
into its internal mechanisms and reasoning capabilities. We further validate these findings across
additional binary task pairs and larger model scales (see Appendix D). Our contributions include:

1. Discover Syllogism-Specific Circuits: We discover circuits that represent the internal
mechanisms through which GPT-2 solves syllogisms of varying complexity.

2. Identify a Negation Mechanism: We identify a novel mechanism for outputting the
negation of a truth value. Attention heads suppress the truth logit and MLPs modulate the
negation of the truth logit in the output distribution.

3. Explain Importance of Negative Components: Through analysis of a pair of semantically
opposite tasks (SS and OS), we demonstrate that components critical for one task often have
corresponding negative counterparts that play a causally important role in the opposite task.
This provides new insights into how language models process and represent binary pairs of
tokens.



2 Preliminary

Transformers Circuits

We provide a brief overview of GPT-2 following the notation from Elhage et al. [2021]. GPT-2 is
a decoder-only transformer with 12 layers; each layer contains 12 attention heads and one MLP.
Input tokens ¢ are embedded into the initial residual stream state xy. The residual stream, a core
intermediate representation, is updated additively as it passes through each layer’s components

At layer 1, the residual stream x;_1 is processed by the layer’s components and updated as follows:

Ti=Ti-1
+ AttentionHeads(x; 1)
+ MLP(mi_l + AttentionHeads(xi_l)).

Here, the attention heads process x;_; in parallel, and their combined output is added back to the
residual stream before passing through the MLP, whose output is then added residually to form z;.

Each attention head is parameterized by four matrices: query Wg, key Wi, value Wy, and output
Wo, which form the following composite matrices:

Wok =W Wk, Woy = WoWy.

Using these matrices, along with the embedding matrix W and the unembedding matrix Wy;, the
attention computation for each head decomposes into two core circuits.

The Query-Key (QK) circuit, defined as WET WokWEe, provides the attention scores for every
query—key token pair. Intuitively, each entry describes how much a given query token wants to attend
to a given key token, providing insights where information flows within the model.

The Output-Value (OV) circuit, defined as Wy Wy WE, determines what information is transferred
to the output logits when a token is attended to.

This formulation also allows transformers to be represented as a computational graph, where nodes
correspond to components like attention heads or MLPs, and edges represent learned weights. Circuits,
subgraphs specialized for particular tasks, can then be identified and studied mechanistically.

Indirect Object Identification Wang et al. [2022] analyzed GPT-2 small’s performance on the 101
task, where the model must predict the indirect object (IO) in sentences like: “When Mary and John
went to the store, John gave a bottle of milk to”. The correct prediction is “ Mary”, not the repeated
subject “ John™.

A human-interpretable strategy to solve IOl involves three steps: (1) identify all names in the sentence,
(2) remove duplicates, and (3) output the remaining name. GPT-2 small mirrors this algorithm through
three distinct attention head groups: Duplicate Token Heads detect repeated names, attending from
the second mention back to the first; S-Inhibition Heads suppress repeated tokens; and Name Mover
Heads copy the correct IO into the output via attention.

Path Patching Path patching is an intervention-based interpretability method for circuit discovery
[Wang et al., 2022]. It utilizes two prompt distributions: the original task distribution pg, and
a corrupted distribution py,, designed to break task-relevant behavior. First, the model is run on
samples from both distributions and each computational node’s activations are cached. Then, a
forward pass is performed on p,, where the activation at a specific node I (e.g., an attention head)
is replaced with its counterpart from pyy, While the rest of the model remains unchanged. Next,
the resulting activation at a downstream node G is cached and patched into a forward pass on pyey.
The causal impact of the path /' — G is quantified by measuring the change in logit difference. A
substantial drop indicates that F' is causally important for the model’s behavior on the task.

Logit Lens The logit lens [Nostalgebraist, 2020] is an interpretability method that projects the hidden
state of a computational node, h, into the model’s token space. It applies layer normalization followed
by the unembedding matrix:

LogitLens(h) = LayerNorm(h)Wy,.

This yields a distribution over tokens, revealing which outputs the model would favor if it predicted
directly from that point.



Type Example Syllogism Avg. Logit Diff.

Simple Statement A is true. Statement B matches statement A. Statement 1.8575
B is true
Opposite  Statement A and statement B are opposites. Statement A is true. 1.2123

Statement B is false

Complex  Statement A is true. Statement B matches statement A. Statement 1.3105
C is false. Statement B is true

Table 1: Examples of syllogism types with their corresponding average logit differences over datasets
of 500 prompts. The LM is expected to predict the red tokens. We create these distributions of
syllogism by replacing letters and truth values.

3 Understand How GPT-2 Process Syllogisms

Syllogisms [Aristotle, c. 350 BC] offer an effective way to analyze a LM’s reasoning capacity. Rather
than analyzing a broad range of facts in a syllogistic format, we narrow our focus to a simpler set of
propositions and declarative statements such as: “Statement A is true. Statement B matches statement
A. Statement B is true.” We define three types of syllogisms: Simple Syllogism (SS), Opposite
Syllogism (OS), and Complex Syllogism (CS). A complete example of each type is provided in
Table 1. We define the logit difference for the syllogism task family as follows. Let the answer set
be S = {true, false} with the correct answer = € .S, and the incorrect answer —a € S. The logit
difference (LD) is then given by:

LD = logit(x) — logit(—z).

A positive logit difference indicates that the first logit is more probable, while a negative logit
difference suggests the second logit is more probable. The odds ratio, e“?, represents how many
times more likely the model will predict z compared to —z. Thus, for the SS format, GPT-2 small is
6.4077 times more likely to predict the correct truth value.

To quantify how well a circuit preserves model behavior, we use the faithfulness metric. Let
D = {d;};¥| ~ pusk denote a dataset of N samples drawn from the distribution representing the
syllogism task. We compute the average logit difference (ALD) of the full model M and the circuit
C over this dataset, denoted ALDp (M) and ALDp(C), respectively. The faithfulness metric is then
defined as:

Faithfulness = |[ALDp(M) — ALDp(C)].

A lower value indicates that the circuit more faithfully reproduces the model’s behavior on the task.

3.1 Simple Syllogism

We frame the SS task with the following human-interpretable algorithm: (1) Identify the single truth
value token in the prompt; (2) Output the truth value token. Construction of the SS dataset can be
found in Appendix A.

Truth Heads We begin by applying path patching to determine which attention heads and MLPs
influence the model’s output logits on SS prompts. As shown in Table 3, MLP layers have minimal
direct effect on the logit difference when compared to attention heads, suggesting they are not
essential for solving the SS task. We explore this further in Appendix C.

In contrast, Figure 2b reveals that several attention heads in the later layers, particularly heads 7.2,
9.1, 9.9, 10.1, and 10.4, contribute substantially to logit differences. To understand the behavior
of these heads, we analyze their attention patterns using their Q K circuits. Specifically, for each
attention head h, we compute the raw attention score:

AM = tTW Wl Wt,

which captures how much each query token attends to each key token in the vocabulary space. We
find that these heads exhibit similar induction-like attention patterns: they predominantly attend to
the final token corresponding to the truth value.



Head 1st Highest Q-K Pair 2nd Highest 3rd Highest

7.2 0.8304: 0.5749: [’is’, ’true’] 0.2750: [’true’, ’.°]
[’S?, ’matches’]
10.1 0.7139: [’is’, ’true’] 0.5524: 0.4258: [’S?, ’true’]
[’S?, ’matches’]
10.4 0.6833: [’is’, ’true’] 0.6637: 0.5063:
[’S’, ’matches’] [>.?, ’Statement’]

Table 2: Top 3 highest-scoring query—key token pairs from the attention pattern scores of the most
influential heads in the SS format.
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(a) MLP Direct Effect on Logits (b) Attention Head Direct Effect on  (c) QK Circuit Visualization (Head
Logits 7.2)

Figure 2: Path Patching and QK Analysis on Simple Syllogism Prompts.

We provide a visualization of the most influential head, 7.2, in Figure 2c, along with the top K = 3
query—key token pairs in Table 2. For reference, we use the example SS prompt: “Statement E is
true. Statement S matches statement E. Statement S is true”. Across top heads we consistently
observe two high-scoring token pairs: (S,matches) and (is,true). The first pair indicates that
GPT-2 has developed a logical understanding of equivalence between the two statements—effectively
computing matches(S, E)—while the second pair shows it retrieving the correct truth value based
on this relationship. This consistent behavior leads us to call these attention heads Truth Heads.

To test whether Truth Heads depend on earlier attention heads, we repeat path patching on their query,
key, and value inputs. We find that earlier heads have minimal effect, suggesting that the Truth Heads
operate independently. To verify their sufficiency we build a minimal circuit C'sg consisting only of
the Truth Heads. C'sg faithfully recovers the predictions of the model, achieving an average logit
difference of 1.9286, effectively matching the performance of the GPT-2 small on the task. The Truth
Heads’ QK circuit consistently directs attention to the correct truth value earlier in the prompt while
their OV circuit copies that value into the residual stream at the final token. Using the logit lens on
truth heads confirm their output strongly favors the correct truth value.

Simple Syllogism Top 1 Top 2 Top 3
Attention Heads (7.2, —25.520) (10.1, —21.598) (10.4, —21.219)
MLPs (9, —5.859) (8, 1.809) (10, 3.859)

Table 3: Top component contributions to logit difference change for the Simple Syllogism task.

Negative Heads in Simple Syllogism In addition to the Truth Heads, we identify a distinct group of
heads—such as 9.7, 10.7, and 11.10—that exhibit attention patterns similar to the Truth Heads but
are not essential for solving the task. Notably, mean-ablating head 10.7 improves model performance
beyond the baseline. Head 10.7 has previously been characterized as a negative head in prior work
[Wang et al., 2022] where it was shown to reduce the logit of specific output tokens. We hypothesize
these negative heads encode the logit of the incorrect class in a binary setting. This aligns with



Top QK Pairs (Head 10.7)

0.892: (‘is’, ‘true’), 0.772: (‘statement’, ‘E’), 0.685: (‘Statement’, ‘S’), 0.662: (‘Statement’, ‘S’),
0.459: (‘is’, ‘oppos’)

Stage Top Logits Bottom Logits

After OV from Head 10.7 depot, rink, carp, Dj, Hack, DJ, ‘true’, ‘True’, “TRUE’, ‘true’,
Gaz, Phillips, District, TTC ‘untrue’, ‘Null’

After MLP Layer 10 ‘true’, ‘false’, ‘True’, ‘False’, blitz, ombo, plateau, corrid,
infinite, truly tradem, emale, Citiz, sugg

Table 4: Top QK pairs in Head 10.7 strongly attend to truth-related tokens (e.g., ‘is’, ‘true’). Initially,
the OV output does not rank truth tokens highly. However, after the MLP layer, both ‘true’ and
‘false’ become top-ranked, indicating the MLP can help produce the opposite token, even when it is
not in the prompt

findings from the copy suppression literature [McDougall et al., 2023] where head 10.7 was also
found to suppress certain tokens. To test this, we turn to the Opposite Syllogism format.

3.2 Opposite Syllogism

To test our hypothesis surrounding negative heads, we investigate the model’s behavior on opposite
syllogisms (OS). We define a human-interpretable algorithm for this task in three steps: (1) Identify
the single truth value token in the prompt, (2) Negate the truth value token, and (3) Output the negated
token. Details on dataset construction are provided in Appendix A. For reference, we use the example
OS prompt: “Statement E and statement S are opposites. Statement E is true. Statement S is false”.

Negative Truth Heads. We begin by identifying components that directly influence the model’s
output on OS prompts. Path patching shows that ablating attention heads 7.3, 8.8, 8.10, 9.7, and
10.7 leads to a significant drop in logit difference (Figure 3b). To understand their role, we analyze
each head’s output by applying its OV matrix to the MLP-extended embedding basis, following prior
techniques from Wang et al. [2022] and McDougall et al. [2023]:

Wy Wy, MLPo(WE).

These heads consistently attend to the truth value token in the prompt (e.g., is, true)—mirroring
behavior observed in the SS setting. However, their influence on the logits differs. Some heads,
like 8.8 and 5.1, promote the truth token to the top logits and function as standard Truth Heads. In
contrast, heads such as 7.3, 8.10, 9.7, 10.7, and 11.10 suppress the truth token into the bottom logits
(Table 4). We refer to this group as Negative Truth Heads.

Unlike the SS format, MLPs corresponding to these heads are crucial: ablating them significantly
reduces performance (Figure 3a and Table 5). Furthermore, path patching the queries of these
Negative Truth Heads confirms that they operate independently, with no significant upstream influence,
mirroring earlier findings from SS where only components with direct logit impact matter.

Mechanistic Interpretation The Q) K circuit of each Negative Truth Head reliably identifies the truth
token—fulfilling Step 1 of the OS algorithm. However, their OV projection suppresses this token
into the bottom logits. The associated MLP then rescales the residual stream to promote the opposite
of the suppressed token into the top logits, completing Steps 2 and 3. We refer to these components
as Truth Logit Rescaler MLPs.

This attention—-MLP sequence forms a mechanistic pathway for learned negation: the model sup-
presses a truth token and then elevates its negation for output. Table 4 captures the entire trajectory
of such a token: from attention-induced suppression to MLP-driven recovery. This reveals how the
model predicts a correct token not seen in the prompt, using the suppression of the incorrect token as
a signal for its opposite. While this attention—MLP mechanism effectively negates the truth value
in opposite syllogisms, we observe a consistent asymmetry: the negation process is more reliably



triggered when the input token is true, resulting in false predictions. In contrast, when the prompt
contains false, the model often retains false as the dominant logit rather than flipping to true.

Circuit Faithfulness To test sufficiency, we construct a circuit Cog using only the Negative Truth
Heads and their associated MLPs. This circuit recovers approximately 85% of GPT-2 small’s
performance, demonstrating it is a faithful subcircuit for solving the OS task. A schematic of this
circuit is shown in Figure 1.

Layer

(a) MLP Direct Effect on Logits (b) Attention Head Direct Effect on  (c) QK Circuit Visualization (Head
Logits 10.7)

Figure 3: Path Patching and QK Analysis on Opposite Syllogism Prompts.

Opposite Syllogism Top 1 Top 2 Top 3
Attention Heads (19,71, —0.667)  ([10,7], —0.242)  ([8,8], —0.235)
MLPs (10, —0.405) (9, —0.391) (8, —0.293)

Table 5: Top component contributions to logit difference change for the Opposite Syllogism task.

Reversal of Head Behavior Between Tasks Interestingly, the same heads that negatively affected
logit difference in the SS task—Iike 10.7—now play a constructive role in OS. This reversal demon-
strates that the model reuses certain components in complementary tasks where their function flips to
support inverse outcomes. We extend this finding in Appendix B, where we test circuit generalization
and transferability across other binary pairs beyond true/false, further supporting the idea that
GPT-2 small represents logical negation via attention and MLPs.

3.3 Complex Syllogism

The complex syllogism task expands on the previous setups by introducing a misleading, redundant
statement. The objective is to determine whether GPT-2 Small can still arrive at the correct conclusion
in the presence of potentially confusing information.

We begin with path patching to identify which attention heads and MLPs directly influence the model’s
output logits. The results are similar to the path patching results of the OS format. More specifically,
MLPs in layers 8,9, and 10 positively influence the logit difference. Similar heads—specifically,
heads 7.3, 8.8, 8.10, 9.7, and 10.7— were found to positively influence logit difference but with
different behavior. Heads 9.7, 10.7, and 11.10 attend to both truth tokens in the prompt but place
greater emphasis on the incorrect (redundant) truth token. Inspecting their logits, we find these heads
continue to perform a suppression operation as observed previously, and we therefore classify them
as Negative Truth Heads in the CS format and do not investigate them further. In contrast, heads
7.3, 8.8, and 8.10 exclusively attend to the incorrect truth value, and we study them more closely to
understand their contribution. We refer to these as Truth Modulation Heads.

To interpret the behavior of the Truth Modulation Heads, we analyze how their outputs project
onto the unembedding vectors of the truth tokens. Let Wy [true] and Wy [false] represent the
unembedding directions for the correct and incorrect truth tokens respectively. For a head output
h;(X), we compute the logit contribution to token ¢ € {true, false} as

(hi(X), Wut]).



This dot product reflects how strongly head h; pushes the residual stream toward generating token ¢.
We scatter plot each head’s attention probability on the truth value token against the corresponding
logit contribution along the true direction. Two distinct patterns emerge across the heads. First, the
correct token is consistently ignored by these heads, receiving very low attention probability. Second,
the incorrect token shows two opposing trends depending on the head: in some cases, the attention
probability and logit contribution are positively correlated, suggesting that the head reinforces the
incorrect truth value. We refer to such heads as Correct Truth Inhibition Heads. In other cases, the
relationship is negative—the more attention the head gives to the incorrect token, the more it pushes
away from the incorrect truth direction. This effectively reinforces the correct token and we refer to
these as Correct Truth Reinforcement Heads.

These behaviors are further supported by examining the top and bottom logits. In inhibition heads,
the incorrect token consistently appears among the top logits while in reinforcement heads it appears
among the bottom logits. This supports the interpretation that Truth Modulation Heads implement a
binary operation: either reinforcing or inhibiting the direction of the incorrect token, which indirectly
determines the correct output.

We then investigate whether the Negative Truth Heads and Truth Modulation Heads influence
one another. Path patching reveals that neither group affects the other directly, although both are
influenced by similar upstream sources. Moreover, ablating one group does not destroy faithfulness,
confirming that the groups can operate independently. This redundancy is consistent with the findings
of McGrath et al. [2023], who describe the Hydra Effect in language models, where multiple pathways
can implement the same behavior.

Path patching reveals that both the Negative Truth Heads and the Truth Modulation Heads receive
input from a shared set of upstream heads, primarily located in Layers 0 and 5. In Layer 5, heads
5.1 and 5.5 exhibit classic induction patterns as described by Elhage et al. [2021], attending from
the conclusion line (e.g., “Statement B is”) back to a matching premise. This effectively links the
conclusion to its logical source. In Layer O, other heads attend to repeated statement identifiers
(e.g., “Statement B”) and influence both the key vectors of downstream heads and the values used by
the Induction Heads. These heads appear to detect repeated statements and function as Duplicate
Statement Identifier Heads, marking the reuse of information—an essential step in a natural deduction
process.

At inference time, the Induction Heads serve as a routing mechanism: they either connect the
conclusion to the premise via the “matches” relation or directly extract the incorrect truth value
from the conclusion line. This information is then processed by the Negative Truth Heads or Truth
Modulation Heads to generate the final token.

4 Discussion

Connection to I0I Despite overlap with the Name Mover Heads from the IOI task, we find (Negative)
Truth Heads reflect broader functionality, particularly negate rather than simply copy. From an IOI
perspective, the Negative Truth Heads were initially interpreted as negative copy heads due to their
tendency to replicate the tokens they attend to. However, in the opposite syllogism task, the correct
answer is not explicitly present in the prompt. Consequently, these heads cannot simply copy the
attended truth value to produce the correct answer. This provides strong evidence that Negative Truth
Heads encode the direction of the less contextualized logit in a binary setting, effectively operating
in the antidirection. We believe this behavior remained unnoticed in IOI because, in that context,
Mary # —John. Similarly, many of the Truth Modulation Heads align with the S-Inhibition category
from IOI, suggesting a shared functional role. We identify the Correct Truth Inhibition Heads as the
original inhibition heads from IOI, given their role in reinforcing focus on the incorrect token. This
expanded understanding highlights how heads previously characterized in IOI tasks can exhibit more
nuanced and adaptable behaviors in different contexts.

Clustering of Truth Modulation Heads We observe distinct clusters in both groups of Modulation
Heads. To refine our truth types, we categorize truth values into four types: correct true (CT), correct
false (CF), incorrect true (IT), and incorrect false (IF). This results in two natural pairings: (CT, IF)
and (CF, IT). As shown in Figure 4a and 4b, false (IF or CF) has larger projections on the truth
embedding. We believe that this asymmetry not only reflects the internal bias of truth values learned
from the training corpus, but also resembles the behavior observed in the Opposite Syllogism task,
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Figure 4: The Truth Modulation group with refined truth types

where negation was easier with true. Although we do not rigorously analyze this connection, it may
reflect a broader model bias toward negative truth values or a negation-like structure in its internal
representations.

Scalability of Results We extend our simple and opposite syllogism formats to larger models such as
GPT-2 XL, Pythia 1.4B, Qwen3-1.7B, and LLaMA3.2-1B. (See Appendix D).

5 Related Works

Mechanistic Interpretability Mechanistic Interpretability research offers various techniques to
reverse-engineer model behavior and identify important components responsible for a model’s
performance. In addition to Path Patching [Wang et al., 2022], there are other patching methods
including Attribution Patching [Nanda, 2023], causal mediation analysis [Meng et al., 2023, Pearl,
2022, Vig et al., 2020], and AtP* [Kramadr et al., 2024]. Sparse Autoencoders (SAEs) have become
increasingly popular for interpreting features [Bricken et al., 2023, Marks et al., 2025]. Earlier
works such as Neuron Shapley [Ghorbani and Zou, 2020] introduce a framework that quantifies each
neuron’s contribution to a deep network’s performance by considering interactions among neurons.
Other earlier works such as Cao et al. [2021], Csordas et al. [2021] employ subnetworks to investigate
what model internals are needed to perform a task through probing and masking.

Circuit Discovery in GPT-2 IOI has inspired many other circuit analysis works. Hanna et al. [2023]
identify a circuit that explains GPT2’s ability to predict correct year tokens when prompted with task
like “The war lasted from the year 1732 to 17”. Merullo et al. [2024] rediscover the 1Ol circuit in
GPT2-Medium and show that much of the circuit can be reused to solve the Colored Object task
introduced by Srivastava et al. [2023]. Nainani et al. [2024] explore IOI’s generality by extending the
prompt to include more instances of the indirect object. Conmy et al. [2023] generalize and automate
the IOI-style analysis within GPT-2 small, ultimately recovering many already discovered circuits.

Syllogisms for Assessing LL.Ms Recent studies have explored assessing LLMs with syllogisms.
Eisape et al. [2024], Ando et al. [2023] provide a comparative analysis on how humans and LLMs
perform syllogistic reasoning. Kim et al. [2025] conduct a mechanistic analysis of standard syllogisms.
In contrast, our work explores syllogisms with assigned truth values, offering a distinct perspective.
Furthermore, we provide novel insights into the role of MLPs in facilitating syllogistic reasoning and
handling logical negation.

6 Conclusion

In this work, we reverse-engineered GPT-2 for three syllogism tasks of varying complexity, uncovering
key insights into how GPT-2 handles binary truth values within logical tasks. In the simplest case,
high faithfulness was achieved with just Truth Heads, highlighting the model’s ability to maintain
correct truth values with minimal components. In the opposite syllogism case, the inclusion of



Negative Truth Heads and MLPs allowed the model to properly negate the truth value, demonstrating
the novel negation mechanism in handling binary outcomes. In the complex case, while negation
remained a key mechanism, additional heads were needed to identify and process the correct truth
value to negate, reflecting the increased complexity of the task. Our findings reveal significant overlap
with the IOI circuit, expanding our understanding of these computational nodes’ capabilities; however,
this understanding remains limited, underscoring the need for continued interpretability research to
ensure that, as such models become increasingly integrated into daily life, their logical deductions
can be relied upon and their behavior held accountable.
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A Syllogism Dataset Construction

Syllogistic prompts were created using templates. [TRUTH_VALUE] € {true,false}, and [A],
[B], [C] are sampled from capital letters. See table 6 for templates of each syllogism format

Type Template

Simple Syllogism 1. Statement [A] is [TRUTH_VALUE_1]. Statement [B] has the same truth
value as [A]. Statement [B] is [TRUTH_VALUE_1].

2. Statement [A] is [TRUTH_VALUE_1]. Statement [B] matches statement
A. Statement B is [TRUTH_VALUE_1].

3.  (Extended) Statement [A] is [TRUTH_VALUE_1]. Statement
[B] must match [A]. Statement [C] doesn’t matter. Statement [B] is
[TRUTH_VALUE_1].

Opposite 1. Statement [B] has the opposite truth value of [A]. Statement [A] is
Syllogism [TRUTH_VALUE_1]. Statement [B] is [TRUTH_VALUE_2].

2. Statement [A] and statement [B] are opposites. Statement [A] is
[TRUTH_VALUE_1]. Statement [B] is [TRUTH_VALUE_2].

Complex 1. Statement [A] is [TRUTH_VALUE_1]. Statement [B] has same truth
Syllogism value as [A]. Statement [C] is [TRUTH_VALUE_2]. Statement [B] is
[TRUTH_VALUE_3].

(Harder constraint): [TRUTH_VALUE_2] = -[TRUTH_VALUE_1].

Complex 1. Statement [A] is [TRUTH_VALUE_1]. Statement [B] has the opposite
Opposite truth value of [A]. Statement [C] is [TRUTH_VALUE_2]. Statement [B] is
Syllogism [TRUTH_VALUE_3].

2. Statement [A] and [B] are opposites. Statement [C] has the same truth
value as [A]. Statement [B] is [TRUTH_VALUE_3].

3. Statement [A] is [TRUTH_VALUE_1]. Statement [A] and [B] are
opposites. Statement [C] is [TRUTH_VALUE_2]. Statement [B] is
[TRUTH_VALUE_3].

Table 6: Templates used for generating syllogistic prompts.

B Generality Across Binary Contrasts

Having established mechanistic evidence for circuits supporting binary truth tasks in both the sim-
ple and opposite syllogism settings, we next evaluate the generality of these circuits beyond the
original true/false framing. Specifically, we test whether the same circuits generalize to anal-
ogous binary pairs: (right, wrong), (good, bad), (positive, negative), and (correct,
incorrect).

To do so, we apply both the simple syllogism circuit (C'ss) and opposite syllogism circuit (Cpg) to
each pair and compare their performance to the full GPT-2 Small model. As shown by tables 7 and 8
we find that the original circuits often match or even outperform the full model in logit difference
between most binary pairs of tokens. This provides compelling evidence that the binary task is not
specific to a particular token pair, but instead reflects a transferable reasoning mechanism.

To further validate generalization, we visualize direct path patching attention results across each
binary pair. As seen in Figures 5-8, across the binary pairs of tokens, the core attention heads relevant
to the simple and opposite syllogism cases are opposite in their effect on logit difference.
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Figure 5: Binary task results of Right/Wrong
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Figure 7: Binary task results of Positive/Negative
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Original Good/Bad Pos/Neg Correct/Incorrect Right/Wrong

GPT-2 Small 1.8399 1.7738 0.6958 2.1221 2.0309
Csg 1.9234 1.9940 1.1584 1.6785 2.1599

Table 7: Transferability of Csg to other binary token pairs

Original Good/Bad Pos/Neg Correct/Incorrect Right/Wrong

GPT-2 Small 1.2632 2.1163 3.0032 0.7986 1.3469
Cos 1.3136 1.7136 1.0113 0.8142 1.2481

Table 8: Transferability of Cpg to other binary token pairs

C Disentangling MLP Contributions via Patching

To assess the contribution of MLPs to the model’s output, we perform path patching both with and
without attention restored. Figure 10b shows that early-layer MLPs—particularly MLPO—appear
to significantly affect the logits when patched in isolation. This aligns with prior observations that
MLPO functions as an extended embedding layer, especially when attention is absent [McDougall
et al., 2023, Wang et al., 2022].

However, once attention is also restored, the influence of these early MLPs sharply diminishes. This
suggests their apparent impact in the no-attention condition is largely an artifact of missing context,
rather than a reflection of GPT2 semantic ability to complete syllogisms.

For this reason, in all subsequent experiments analyzing MLP effects, we report results with attention
paths patched in. This allows us to isolate the true downstream influence of MLPs under more
realistic model conditions.

D Extension to Larger Models

To assess whether the findings observed in GPT-2 Small generalize across model scale and architecture,
we extend our experiments to several larger models: GPT-2 XL, Pythia 1.4B, Qwen3-1.7B, and
LLaMA3.2-1B.

Across all models, we continue to observe empirical signatures of binary behavior: heads relevant
to the simple and opposite syllogism tasks tend to exert opposing effects on the logits. MLP layers
remain important in the opposite syllogism task for all models except Pythia 1.4B, mirroring the
behavior observed in GPT-2 Small. Notably, Table 9 shows that performance on the simple syllogism

Logit diff. variation ° Logit diff. variation
0%

s 8
" H an
-60%
0 5 1
Layer Layer

(a) Simple Syllogism with Good/Bad (b) Opposite Syllogism with Good/Bad

Figure 8: Binary task results of Good/Bad
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Figure 9: Path patching MLPs in the opposite syllogism task. (a) shows effects when MLPs are
patched with attention context preserved; (b) shows isolated MLP contributions without attention
context.
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Figure 10: Path patching MLPs in the simple syllogism task. (a) shows effects when MLPs are
patched with attention context preserved. No MLPs have significant importance; (b) shows isolated
MLP contributions without attention context. Early MLPs, specifically MLPO, appear relevant for the
task

format degrades significantly in larger models, suggesting that task generalization does not uniformly
scale with model size.

All models retain some attention heads exhibiting negative-copy behavior. However, the influence of
these heads on output logits is more muted compared to GPT-2 Small. In particular, the heads most
responsible for enabling opposite syllogism performance in the larger models are not the negative
heads. Qwen3-1.7B, for instance, contains relatively few negative heads, and those it has do not
drive logit differences in either task. An exception is Pythia 1.4B, whose success on the opposite task
remains closely tied to the activity of its negative-copy heads.

Interestingly, across all models, the heads most influential on model output tend to exhibit strong
induction behavior (e.g., ABA — B), regardless of whether they also contribute to the task-relevant
distinction. Yet despite this variability in attention head dynamics, the consistent involvement of
MLPs in the opposite task—and their near absence in the simple task—suggests a robust division of
labor: negation appears to depend more heavily on the feedforward path than on attention alone. This
may help constrain future hypotheses about the mechanistic implementation of logical inversion and
contextual negation in transformer models.

These findings remain empirical and exploratory. Figures 11-14 illustrate the direct effects of attention
heads and MLPs across the syllogism tasks. A deeper investigation into how architectural scale
affects circuit behavior remains a promising direction for follow-up work.
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GPT-2XL Qwen3-1.7B LLaMA 3.2-1B Pythia 1.4B

Simple Syllogism 0.1112

2.6114

0.5322
1.5257

—0.4357
—0.1807

1.0105

Opposite Syllogism 2.1098

Table 9: Average logit difference across models and tasks.
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Figure 14: Direct effects of attention heads and MLPs for Qwen 1.7B across syllogism tasks.
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