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Abstract

Transformer-based language models (LMs) can perform a wide range of tasks,1

and mechanistic interpretability (MI) aims to reverse engineer the components2

responsible for task completion to understand their behavior. Previous MI research3

has focused on linguistic tasks like Indirect Object Identification (IOI). In this paper,4

we investigate the ability of GPT-2 small to handle binary truth values by analyzing5

its behavior with syllogistic prompts, such as “Statement A is true. Statement6

B matches statement A. Statement B is”, which requires more complex logical7

reasoning compared to IOI. Through our analysis of several syllogism tasks of8

varying difficulty, we identify multiple circuits that mechanistically explain GPT-9

2’s logical reasoning capabilities and uncover binary mechanisms that facilitate task10

completion, including the ability to produce a negated token that does not appear11

in the input prompt through negative heads. Our evaluation using a faithfulness12

metric shows that a circuit comprising five attention heads achieves over 90% of13

the original model’s performance. By relating our findings to IOI analysis, we14

provide new insights into the roles of certain attention heads and MLPs in LMs.15

We believe these insights contribute to a broader understanding of model reasoning16

and benefit future research in mechanistic interpretability.17

1 Introduction18

Despite the success of Large Language Models (LLMs) and their amazing capabilities, these models19

remain largely opaque and function as black boxes. Mechanistic interpretability has emerged as a20

field dedicated to mitigate this conceptual gap. By analyzing how LMs solve specific tasks (Wang21

et al., 2022; Hanna et al., 2023; Merullo et al., 2024), studying emergent behaviors (Arditi et al.,22

2024), and identifying patterns within their architectures (Gurnee et al., 2024), researchers aim to23

unravel the inner workings of LMs. Even though great progress has been made, significant gaps24

remain in understanding LMs even on basic tasks.25

GPT-2 is a family of representative LLMs that has been frequently studied in mechanistic inter-26

pretability literature. An exemplary case is analyzing its ability to do Indirect Object Identification27

task (Wang et al., 2022), which reverse engineers how GPT-2 correctly predicts the final token28

in sentences like “When Mary and John went to the shops, John gave a bottle of milk to”. Such29

mechanistic analysis begins with the output and traces back to identify the architectural components30

relevant to the task, termed as circuit. GPT-2 small has been shown to be competent in such linguistic31

tasks, however its ability and mechanism to perform logic reasoning remains uncertain. Specifically,32

it lacks the capability to coherently answer true-false questions, such as “True or False? Dogs have33

four legs.”. To investigate how GPT-2 represents and processes truth values, we utilize syllogism34

tasks — a classic form of logical reasoning involving premises and a conclusion. By applying similar35
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Figure 1: Opposite Syllogism Circuit. The blue arrow represents queries, and the yellow arrow
represents values. Negative Truth Heads perform negation of the truth value present in the prompt
while the Truth Logit Rescaler MLPs rescale the residual stream to select the correct truth value.

mechanistic analysis to syllogistic prompts, we aim to discover the circuits that are relevant to the36

task and interpret the internal mechanisms GPT-2 uses when handling truth values.37

This paper builds on previous interpretability research by focusing on how GPT-2 handles syllogistic38

prompts. We use true-false syllogism tasks where truth values are assigned to premise statements and39

the model is prompted to predict the truth value of the conclusion. We define three prompt formats to40

probe binary reasoning. The Simple Syllogism (SS) presents direct entailment, e.g., “Statement A41

is true. Statement B matches statement A. Statement B is”. The Opposite Syllogism (OS) inverts42

this logic, requiring negation, e.g., “Statement A and Statement B are opposite. Statement A is true.43

Statement B is”. The Complex Syllogism (CS) adds one or more distractor premises irrelevant to44

the inference, e.g., “Statement A is true. Statement B matches statement A. Statement C is false.45

Statement B is”, where the distractor is “Statement C is false”.46

Our approach includes two mechanistic interpretability techniques: Path Patching and Logit Lens.47

Path patching (Wang et al., 2022) determines the importance of a computational component in solving48

a task by replacing part of the model’s forward pass with activations from a different distribution.49

Logit Lens (Nostalgebraist, 2020) applies the model’s unembedding matrix at different stages of50

the residual stream, exposing logits and offering insights into the function of specific components51

during the model’s processing. Using these techniques, we apply a mechanistic lens to uncover how52

LMs perform complex reasoning tasks and identify the key components that drive their decisions.53

Specifically, we examine the internal mechanisms responsible for negation and reinforcement of54

truth values. Evaluation with a circuit faithfulness metric shows that a circuit of three attention heads55

can recover 90% of the original model’s performance on SS prompts. For OS prompts, a circuit56

of five attention heads and four MLPs nearly recovers the performance of the full GPT-2 model,57

achieving roughly 85% faithfulness. The structure of the OS circuit is shown in Figure 1.58

Throughout our investigation into how GPT-2 processes syllogisms, we uncover several insights into59

its internal mechanisms and reasoning capabilities. Our contributions include:60

1. Discover Syllogism-Specific Circuits: We discover circuits that represent the internal61

mechanisms through which GPT-2 solves syllogisms of varying complexity.62

2. Identify a Negation Mechanism: We identify a novel mechanism for outputting the63

negation of a truth value. Attention heads suppress the truth logit and MLPs modulate the64

negation of the truth logit in the output distribution.65

3. Explain Importance of Negative Components: Through analysis of a pair of semantically66

opposite tasks (SS and OS), we demonstrate that components critical for one task often have67

corresponding negative counterparts that play a causally important role in the opposite task.68

This provides new insights into how language models process and represent binary pairs of69

tokens.70
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2 Preliminary71

Transformers Circuits72

We provide a brief overview of GPT-2 following the notation from Elhage et al. (2021). GPT-2 is73

a decoder-only transformer with 12 layers; each layer contains 12 attention heads and one MLP.74

Input tokens t are embedded into the initial residual stream state x0. The residual stream, a core75

intermediate representation, is updated additively as it passes through each layer’s components76

At layer i, the residual stream xi−1 is processed by the layer’s components and updated as follows:77

xi = xi−1

+ AttentionHeads(xi−1)

+ MLP
(
xi−1 + AttentionHeads(xi−1)

)
.

Here, the attention heads process xi−1 in parallel, and their combined output is added back to the78

residual stream before passing through the MLP, whose output is then added residually to form xi.79

Each attention head is parameterized by four matrices: query WQ, key WK , value WV , and output80

WO, which form the following composite matrices:81

WQK := W⊤
QWK , WOV := WOWV .

Using these matrices, along with the embedding matrix WE and the unembedding matrix WU , the82

attention computation for each head decomposes into two core circuits.83

The Query-Key (QK) circuit, defined as W⊤
E WQKWE , provides the attention scores for every84

query–key token pair. Intuitively, each entry describes how much a given query token wants to attend85

to a given key token, providing insights where information flows within the model.86

The Output-Value (OV) circuit, defined as WUWOV WE , determines what information is transferred87

to the output logits when a token is attended to.88

This formulation also allows transformers to be represented as a computational graph, where nodes89

correspond to components like attention heads or MLPs, and edges represent learned weights. Circuits,90

subgraphs specialized for particular tasks, can then be identified and studied mechanistically.91

Indirect Object Identification Wang et al. (2022) analyzed GPT-2 small’s performance on the IOI92

task, where the model must predict the indirect object (IO) in sentences like: “When Mary and John93

went to the store, John gave a bottle of milk to Mary.” The correct prediction is “Mary”, not the94

repeated subject “John”.95

A human-interpretable strategy to solve IOI involves three steps: (1) identify all names in the sentence,96

(2) remove duplicates, and (3) output the remaining name. GPT-2 small mirrors this algorithm through97

three distinct attention head groups: Duplicate Token Heads detect repeated names, attending from98

the second mention back to the first; S-Inhibition Heads suppress repeated tokens; and Name Mover99

Heads copy the correct IO into the output via attention.100

Path Patching Path patching is an intervention-based interpretability method for circuit discovery101

(Wang et al., 2022). It utilizes two prompt distributions: the original task distribution porig, and102

a corrupted distribution pnew designed to break task-relevant behavior. First, the model is run on103

both distributions and each computational node’s activations are cached. Then, a forward pass is104

performed on porig where the activation at a specific node F (e.g., an attention head) is replaced105

with its counterpart from pnew, while the rest of the model remains unchanged. Next, the resulting106

activation at a downstream node G is cached and patched into a forward pass on pnew. The causal107

impact of the path F → G is quantified by measuring the change in logit difference. A substantial108

drop indicates that F is causally important for the model’s behavior on the task.109

Logit Lens The logit lens (Nostalgebraist, 2020) is an interpretability method that projects the hidden110

state of a computational node, h, into the model’s token space. It applies layer normalization followed111

by the unembedding matrix:112

LogitLens(h) = LayerNorm(h)WU .

This yields a distribution over tokens, revealing which outputs the model would favor if it predicted113

directly from that point.114
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Type Example Syllogism Avg. Logit Diff.

Simple Statement A is true. Statement B matches statement A. Statement
B is true

1.8575

Opposite Statement A and statement B are opposites. Statement A is true.
Statement B is false

1.2123

Complex Statement A is true. Statement B matches statement A. Statement
C is false. Statement B is true

1.3105

Table 1: Examples of syllogism types with their corresponding average logit differences over datasets
of 500 prompts. The LM is expected to predict the red tokens. We create these distributions of
syllogism by replacing letters and truth values.

3 Understand How GPT-2 Process Syllogisms115

Syllogisms (Aristotle, c. 350 BC) offer an effective way to analyze a LM’s reasoning capacity. Rather116

than analyzing a broad range of facts in a syllogistic format, we narrow our focus to a simpler set of117

propositions and declarative statements such as: “Statement A is true. Statement B matches statement118

A. Statement B is true.” We define three types of syllogisms: Simple Syllogism (SS), Opposite119

Syllogism (OS), and Complex Syllogism (CS). A complete example of each type is provided in120

Table 1. We define the logit difference for the syllogism task family as follows. Let the answer set121

be S = {true, false} with the correct answer x ∈ S, and the incorrect answer ¬x ∈ S. The logit122

difference (LD) is then given by:123

LD = logit(x)− logit(¬x).

A positive logit difference indicates that the first logit is more probable, while a negative logit124

difference suggests the second logit is more probable. eLD represents how many times more likely125

the model will predict x compared to ¬x. Thus, for the SS format, GPT-2 small is 6.4077 times more126

likely to predict the correct truth value.127

To quantify how well a circuit preserves model behavior, we use the faithfulness metric. Let128

ALD(M) denote the average logit difference (ALD) of the full model M, and ALD(C) that of a129

circuit C. The faithfulness metric is defined as:130

Faithfulness = |ALD(M)−ALD(C)| .

A lower value indicates that the circuit faithfully recovers the model’s behavior on the task.131

3.1 Simple Syllogism132

We frame the SS task with the following human-interpretable algorithm: (1) Identify the single truth133

value token in the prompt; (2) Output the truth value token. Construction of the SS dataset can be134

found in Appendix A.135

Truth Heads We begin by applying path patching to determine which attention heads and MLPs136

influence the model’s output logits on SS prompts. As shown in Figure 2a, MLP layers have minimal137

direct effect on the logits, suggesting they are not essential for solving the SS task. We explore this138

further in Appendix C.139

In contrast, Figure 2b reveals that several attention heads in the later layers, particularly heads 7.2,140

9.1, 9.9, 10.1, and 10.4, contribute substantially to logit differences. To understand the behavior141

of these heads, we analyze their attention patterns using their QK circuits. Specifically, for each142

attention head h, we compute the raw attention score:143

Ah = t⊤W⊤
E Wh

QKWEt,

which captures how much each query token attends to each key token in the vocabulary space. We144

find that these heads exhibit similar induction-like attention patterns: they predominantly attend to145

the final token corresponding to the truth value.146
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Head 1st Highest Q–K Pair 2nd Highest 3rd Highest

7.2 0.8304:
[’S’, ’matches’]

0.5749: [’is’, ’true’] 0.2750: [’true’, ’.’]

10.1 0.7139: [’is’, ’true’] 0.5524:
[’S’, ’matches’]

0.4258: [’S’, ’true’]

10.4 0.6833: [’is’, ’true’] 0.6637:
[’S’, ’matches’]

0.5063:
[’.’, ’Statement’]

Table 2: Top 3 highest-scoring query–key token pairs from the attention pattern scores of the most
influential heads in the SS format.
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(c) QK Circuit Visualization (Head
7.2)

Figure 2: Path Patching and QK Analysis on Simple Syllogism Prompts.

We provide a visualization of the most influential head, 7.2, in Figure 2c, along with the top K = 3147

query–key token pairs in Table 2. For reference, we use the example SS prompt: “Statement E is148

true. Statement S matches statement E. Statement S is true”. Across top heads we consistently149

observe two high-scoring token pairs: (S, matches) and (is, true). The first pair indicates that150

GPT-2 has developed a logical understanding of equivalence between the two statements—effectively151

computing matches(S,E)—while the second pair shows it retrieving the correct truth value based152

on this relationship. This consistent behavior leads us to call these attention heads Truth Heads.153

To test whether Truth Heads depend on earlier attention heads, we repeat path patching on their query,154

key, and value inputs. We find that earlier heads have minimal effect, suggesting that the Truth Heads155

operate independently. To verify their sufficiency we build a minimal circuit CSS consisting only of156

the Truth Heads. CSS faithfully recovers the predictions of the model, achieving an average logit157

difference of 1.9286, effectively matching the performance of the GPT-2 small on the task. The Truth158

Heads’ QK circuit consistently directs attention to the correct truth value earlier in the prompt while159

their OV circuit copies that value into the residual stream at the final token. Using the logit lens on160

truth heads confirm their output strongly favors the correct truth value.161

Negative Heads in Simple Syllogism In addition to the Truth Heads, we identify a distinct group of162

heads—such as 9.7, 10.7, and 11.10—that exhibit attention patterns similar to the Truth Heads but163

are not essential for solving the task. Notably, mean-ablating head 10.7 improves model performance164

beyond the baseline. Head 10.7 has previously been characterized as a negative head in prior work165

(Wang et al., 2022) where it was shown to reduce the logit of specific output tokens. We hypothesize166

these negative heads encode the logit of the incorrect class in a binary setting. This aligns with167

findings from the copy suppression literature (McDougall et al., 2023) where head 10.7 was also168

found to suppress certain tokens. To test this, we turn to the Opposite Syllogism format.169

3.2 Opposite Syllogism170

To test our hypothesis surrounding negative heads, we investigate the model’s behavior on opposite171

syllogisms (OS). We define a human-interpretable algorithm for this task in three steps: (1) Identify172

the single truth value token in the prompt, (2) Negate the truth value token, and (3) Output the negated173
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Top QK Pairs (Head 10.7)

0.892: (‘is’, ‘true’), 0.772: (‘statement’, ‘E’), 0.685: (‘Statement’, ‘S’), 0.662: (‘Statement’, ‘S’),
0.459: (‘is’, ‘oppos’)

Stage Top Logits Bottom Logits

After OV from Head 10.7 depot, rink, carp, Dj, Hack, DJ,
Gaz, Phillips, District, TTC

‘true’, ‘True’, ‘TRUE’, ‘true’,
‘untrue’, ‘Null’

After MLP Layer 10 ‘true’, ‘false’, ‘True’, ‘False’,
infinite, truly

blitz, ombo, plateau, corrid,
tradem, emale, Citiz, sugg

Table 3: Top QK pairs in Head 10.7 strongly attend to truth-related tokens (e.g., ‘is’, ‘true’). Initially,
the OV output does not rank truth tokens highly. However, after the MLP layer, both ‘true’ and
‘false’ become top-ranked, indicating the MLP can help produce the opposite token, even when it is
not in the prompt

token. Details on dataset construction are provided in Appendix A. For reference, we use the example174

OS prompt: “Statement E and statement S are opposites. Statement E is true. Statement S is false”.175

Negative Truth Heads. We begin by identifying components that directly influence the model’s176

output on OS prompts. Path patching shows that ablating attention heads 7.3, 8.8, 8.10, 9.7, and177

10.7 leads to a significant drop in logit difference (Figure 3b). To understand their role, we analyze178

each head’s output by applying its OV matrix to the MLP-extended embedding basis, following prior179

techniques from Wang et al. (2022) and McDougall et al. (2023):180

WU Wh
OV MLP0

(
WE

)
.

These heads consistently attend to the truth value token in the prompt (e.g., is, true)—mirroring181

behavior observed in the SS setting. However, their influence on the logits differs. Some heads,182

like 8.8 and 5.1, promote the truth token to the top logits and function as standard Truth Heads. In183

contrast, heads such as 7.3, 8.10, 9.7, 10.7, and 11.10 suppress the truth token into the bottom logits184

(Table 3). We refer to this group as Negative Truth Heads.185

Unlike the SS format, MLPs corresponding to these heads are crucial: ablating them significantly186

reduces performance (Figure 3a). Furthermore, path patching the queries of these Negative Truth187

Heads confirms that they operate independently, with no significant upstream influence, mirroring188

earlier findings from SS where only components with direct logit impact matter.189

Mechanistic Interpretation The QK circuit of each Negative Truth Head reliably identifies the truth190

token—fulfilling Step 1 of the OS algorithm. However, their OV projection suppresses this token191

into the bottom logits. The associated MLP then rescales the residual stream to promote the opposite192

of the suppressed token into the top logits, completing Steps 2 and 3. We refer to these components193

as Truth Logit Rescaler MLPs.194

This attention–MLP sequence forms a mechanistic pathway for learned negation: the model sup-195

presses a truth token and then elevates its negation for output. Table 3 captures the entire trajectory196

of such a token: from attention-induced suppression to MLP-driven recovery. This reveals how the197

model predicts a correct token not seen in the prompt, using the suppression of the incorrect token as198

a signal for its opposite. While this attention–MLP mechanism effectively negates the truth value199

in opposite syllogisms, we observe a consistent asymmetry: the negation process is more reliably200

triggered when the input token is true, resulting in false predictions. In contrast, when the prompt201

contains false, the model often retains false as the dominant logit rather than flipping to true.202

Circuit Faithfulness To test sufficiency, we construct a circuit COS using only the Negative Truth203

Heads and their associated MLPs. This circuit recovers approximately 85% of GPT-2 small’s204

performance, demonstrating it is a faithful subcircuit for solving the OS task. A schematic of this205

circuit is shown in Figure 1.206

Reversal of Head Behavior Between Tasks Interestingly, the same heads that negatively affected207

logit difference in the SS task—like 10.7—now play a constructive role in OS. This reversal demon-208
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Figure 3: Path Patching and QK Analysis on Opposite Syllogism Prompts.

strates that the model reuses certain components in complementary tasks where their function flips to209

support inverse outcomes. We extend this finding in Appendix B, where we test circuit generalization210

and transferability across other binary pairs beyond true/false, further supporting the idea that211

GPT-2 small represents logical negation via attention and MLPs.212

3.3 Complex Syllogism213

The complex syllogism task expands on the previous setups by introducing a misleading, redundant214

statement. The objective is to determine whether GPT-2 Small can still arrive at the correct conclusion215

in the presence of potentially confusing information.216

We begin with path patching to identify which attention heads and MLPs directly influence the model’s217

output logits. The results are similar to the path patching results of the OS format. More specifically,218

MLPs in layers 8,9, and 10 positively influence the logit difference. Similar heads—specifically,219

heads 7.3, 8.8, 8.10, 9.7, and 10.7— were found to positively influence logit difference but with220

different behavior. Heads 9.7, 10.7, and 11.10 attend to both truth tokens in the prompt but place221

greater emphasis on the incorrect (redundant) truth token. Inspecting their logits, we find these heads222

continue to perform a suppression operation as observed previously, and we therefore classify them223

as Negative Truth Heads in the CS format and do not investigate them further. In contrast, heads224

7.3, 8.8, and 8.10 exclusively attend to the incorrect truth value, and we study them more closely to225

understand their contribution. We refer to these as Truth Modulation Heads.226

To interpret the behavior of the Truth Modulation Heads, we analyze how their outputs project227

onto the unembedding vectors of the truth tokens. Let WU [true] and WU [false] represent the228

unembedding directions for the correct and incorrect truth tokens respectively. For a head output229

hi(X), we compute the logit contribution to token t ∈ {true, false} as230

⟨hi(X),WU [t]⟩.
This dot product reflects how strongly head hi pushes the residual stream toward generating token t.231

We scatter plot each head’s attention probability on the truth value token against the corresponding232

logit contribution along the true direction. Two distinct patterns emerge across the heads. First, the233

correct token is consistently ignored by these heads, receiving very low attention probability. Second,234

the incorrect token shows two opposing trends depending on the head: in some cases, the attention235

probability and logit contribution are positively correlated, suggesting that the head reinforces the236

incorrect truth value. We refer to such heads as Correct Truth Inhibition Heads. In other cases, the237

relationship is negative—the more attention the head gives to the incorrect token, the more it pushes238

away from the incorrect truth direction. This effectively reinforces the correct token and we refer to239

these as Correct Truth Reinforcement Heads.240

These behaviors are further supported by examining the top and bottom logits. In inhibition heads,241

the incorrect token consistently appears among the top logits while in reinforcement heads it appears242

among the bottom logits. This supports the interpretation that Truth Modulation Heads implement a243

binary operation: either reinforcing or inhibiting the direction of the incorrect token, which indirectly244

determines the correct output.245

We then investigate whether the Negative Truth Heads and Truth Modulation Heads influence246

one another. Path patching reveals that neither group affects the other directly, although both are247
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influenced by similar upstream sources. Moreover, ablating one group does not destroy faithfulness,248

confirming that the groups can operate independently. This redundancy is consistent with the findings249

of McGrath et al. (2023), who describe the Hydra Effect in language models, where multiple pathways250

can implement the same behavior.251

Path patching reveals that both the Negative Truth Heads and the Truth Modulation Heads receive252

input from a shared set of upstream heads, primarily located in Layers 0 and 5. In Layer 5, heads253

5.1 and 5.5 exhibit classic induction patterns as described by Elhage et al. (2021), attending from254

the conclusion line (e.g., “Statement B is”) back to a matching premise. This effectively links the255

conclusion to its logical source. In Layer 0, other heads attend to repeated statement identifiers256

(e.g., “Statement B”) and influence both the key vectors of downstream heads and the values used by257

the Induction Heads. These heads appear to detect repeated statements and function as Duplicate258

Statement Identifier Heads, marking the reuse of information—an essential step in a natural deduction259

process.260

At inference time, the Induction Heads serve as a routing mechanism: they either connect the261

conclusion to the premise via the “matches” relation or directly extract the incorrect truth value262

from the conclusion line. This information is then processed by the Negative Truth Heads or Truth263

Modulation Heads to generate the final token.264

4 Discussion265

Connection to IOI Despite overlap with the Name Mover Heads from the IOI task, we find (Negative)266

Truth Heads reflect broader functionality, particularly negate rather than simply copy. From an IOI267

perspective, the Negative Truth Heads were initially interpreted as negative copy heads due to their268

tendency to replicate the tokens they attend to. However, in the opposite syllogism task, the correct269

answer is not explicitly present in the prompt. Consequently, these heads cannot simply copy the270

attended truth value to produce the correct answer. This provides strong evidence that Negative Truth271

Heads encode the direction of the less contextualized logit in a binary setting, effectively operating272

in the antidirection. We believe this behavior remained unnoticed in IOI because, in that context,273

Mary ̸= ¬John. Similarly, many of the Truth Modulation Heads align with the S-Inhibition category274

from IOI, suggesting a shared functional role. We identify the Correct Truth Inhibition Heads as the275

original inhibition heads from IOI, given their role in reinforcing focus on the incorrect token. This276

expanded understanding highlights how heads previously characterized in IOI tasks can exhibit more277

nuanced and adaptable behaviors in different contexts.278

Clustering of Truth Modulation Heads We observe distinct clusters in both groups of Modulation279

Heads. To refine our truth types, we categorize truth values into four types: correct true (CT), correct280

false (CF), incorrect true (IT), and incorrect false (IF). This results in two natural pairings: (CT, IF)281

and (CF, IT). As shown in Figure 4a and 4b, false (IF or CF) has larger projections on the truth282

embedding. We believe that this asymmetry not only reflects the internal bias of truth values learned283

from the training corpus, but also resembles the behavior observed in the Opposite Syllogism task,284

where negation was easier with true. Although we do not rigorously analyze this connection, it may285

reflect a broader model bias toward negative truth values or a negation-like structure in its internal286

representations.287

Scalability of Results We extend our simple and opposite syllogism formats to larger models such as288

GPT-2 XL, Pythia 1.4B, Qwen3-1.7B, and LLaMA3.2-1B. (See Appendix D).289

5 Related Works290

Mechanistic Interpretability Mechanistic Interpretability research offers various techniques to291

reverse-engineer model behavior and identify important components responsible for a model’s292

performance. In addition to Path Patching (Wang et al., 2022), there are other patching methods293

including Attribution Patching (Nanda, 2023), causal mediation analysis (Meng et al., 2023; Pearl,294

2022; Vig et al., 2020), and AtP* (Kramár et al., 2024). Sparse Autoencoders (SAEs) have become295

increasingly popular for interpreting features (Bricken et al., 2023; Marks et al., 2025). Earlier works296

such as Neuron Shapley (Ghorbani & Zou, 2020) introduce a framework that quantifies each neuron’s297

contribution to a deep network’s performance by considering interactions among neurons. Other298
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Figure 4: The Truth Modulation group with refined truth types

earlier works such as Cao et al. (2021); Csordás et al. (2021) employ subnetworks to investigate what299

model internals are needed to perform a task through probing and masking.300

Circuit Discovery in GPT-2 IOI has inspired many other circuit analysis works. Hanna et al. (2023)301

identify a circuit that explains GPT2’s ability to predict correct year tokens when prompted with task302

like ”The war lasted from the year 1732 to 17”. Merullo et al. (2024) rediscover the IOI circuit in303

GPT2-Medium and show that much of the circuit can be reused to solve the Colored Object task304

introduced by Srivastava et al. (2023). Nainani et al. (2024) explore IOI’s generality by extending the305

prompt to include more instances of the indirect object. Conmy et al. (2023) generalize and automate306

the IOI-style analysis within GPT-2 small, ultimately recovering many already discovered circuits.307

Syllogisms for Assessing LLMs Recent studies have explored assessing LLMs with syllogisms.308

Eisape et al. (2024); Ando et al. (2023) provide a comparative analysis on how humans and LLMs309

perform syllogistic reasoning. Kim et al. (2025) conduct a mechanistic analysis of standard syllogisms.310

In contrast, our work explores syllogisms with assigned truth values, offering a distinct perspective.311

Furthermore, we provide novel insights into the role of MLPs in facilitating syllogistic reasoning and312

handling logical negation.313

6 Conclusion314

In this work, we reverse-engineered GPT-2 for three syllogism tasks of varying complexity, uncovering315

key insights into how GPT-2 handles binary truth values within logical tasks. In the simplest case,316

high faithfulness was achieved with just Truth Heads, highlighting the model’s ability to maintain317

correct truth values with minimal components. In the opposite syllogism case, the inclusion of318

Negative Truth Heads and MLPs allowed the model to properly negate the truth value, demonstrating319

the novel negation mechanism in handling binary outcomes. In the complex case, while negation320

remained a key mechanism, additional heads were needed to identify and process the correct truth321

value to negate, reflecting the increased complexity of the task. Our findings reveal significant overlap322

with the IOI circuit, expanding our understanding of these computational nodes’ capabilities; however,323

this understanding remains limited, underscoring the need for continued interpretability research to324

ensure that, as such models become increasingly integrated into daily life, their logical deductions325

can be relied upon and their behaviour held accountable.326
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A Syllogism Dataset Construction490

Syllogistic prompts were created using templates. [TRUTH VALUE] ∈ {true, false}, and [A],491

[B], [C] are sampled from capital letters. See table 4 for templates of each syllogism format492

Type Template

Simple Syllogism 1. Statement [A] is [TRUTH VALUE 1]. Statement [B] has the same truth
value as [A]. Statement [B] is [TRUTH VALUE 1].

2. Statement [A] is [TRUTH VALUE 1]. Statement [B] matches statement
A. Statement B is [TRUTH VALUE 1].

3. (Extended) Statement [A] is [TRUTH VALUE 1]. Statement [B]
must match [A]. Statement [C] doesn’t matter. Statement [B] is
[TRUTH VALUE 1].

Opposite
Syllogism

1. Statement [B] has the opposite truth value of [A]. Statement [A] is
[TRUTH VALUE 1]. Statement [B] is [TRUTH VALUE 2].

2. Statement [A] and statement [B] are opposites. Statement [A] is
[TRUTH VALUE 1]. Statement [B] is [TRUTH VALUE 2].

Complex
Syllogism

1. Statement [A] is [TRUTH VALUE 1]. Statement [B] has same truth
value as [A]. Statement [C] is [TRUTH VALUE 2]. Statement [B] is
[TRUTH VALUE 3].

(Harder constraint): [TRUTH VALUE 2] = ¬[TRUTH VALUE 1].

Complex
Opposite
Syllogism

1. Statement [A] is [TRUTH VALUE 1]. Statement [B] has the opposite
truth value of [A]. Statement [C] is [TRUTH VALUE 2]. Statement [B] is
[TRUTH VALUE 3].

2. Statement [A] and [B] are opposites. Statement [C] has the same truth
value as [A]. Statement [B] is [TRUTH VALUE 3].

3. Statement [A] is [TRUTH VALUE 1]. Statement [A] and [B] are
opposites. Statement [C] is [TRUTH VALUE 2]. Statement [B] is
[TRUTH VALUE 3].

Table 4: Templates used for generating syllogistic prompts.

B Generality Across Binary Contrasts493

Having established mechanistic evidence for circuits supporting binary truth tasks in both the sim-494

ple and opposite syllogism settings, we next evaluate the generality of these circuits beyond the495

original true/false framing. Specifically, we test whether the same circuits generalize to anal-496

ogous binary pairs: (right, wrong), (good, bad), (positive, negative), and (correct,497

incorrect).498

To do so, we apply both the simple syllogism circuit (CSS) and opposite syllogism circuit (COS) to499

each pair and compare their performance to the full GPT-2 Small model. As shown by tables 5 and 6500

we find that the original circuits often match or even outperform the full model in logit difference501

between most binary pairs of tokens. This provides compelling evidence that the binary task is not502

specific to a particular token pair, but instead reflects a transferable reasoning mechanism.503

To further validate generalization, we visualize direct path patching attention results across each504

binary pair. As seen in Figures 5–8, across the binary pairs of tokens, the core attention heads relevant505

to the simple and opposite syllogism cases are opposite in their effect on logit difference.506
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Figure 5: Binary task results of Right/Wrong
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(b) Opposite Syllogism with Correct/Incorrect

Figure 6: Binary task results of Correct/Incorrect
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(a) Simple Syllogism with Positive/Negative
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(b) Opposite Syllogism with Positive/Negative

Figure 7: Binary task results of Positive/Negative
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Original Good/Bad Pos/Neg Correct/Incorrect Right/Wrong

GPT-2 Small 1.8399 1.7738 0.6958 2.1221 2.0309

CSS 1.9234 1.9940 1.1584 1.6785 2.1599

Table 5: Transferability of CSS to other binary token pairs

Original Good/Bad Pos/Neg Correct/Incorrect Right/Wrong

GPT-2 Small 1.2632 2.1163 3.0032 0.7986 1.3469

COS 1.3136 1.7136 1.0113 0.8142 1.2481

Table 6: Transferability of COS to other binary token pairs

C Disentangling MLP Contributions via Patching507

To assess the contribution of MLPs to the model’s output, we perform path patching both with and508

without attention restored. Figure 10b shows that early-layer MLPs—particularly MLP0—appear509

to significantly affect the logits when patched in isolation. This aligns with prior observations that510

MLP0 functions as an extended embedding layer, especially when attention is absent (McDougall511

et al., 2023; Wang et al., 2022).512

However, once attention is also restored, the influence of these early MLPs sharply diminishes. This513

suggests their apparent impact in the no-attention condition is largely an artifact of missing context,514

rather than a reflection of GPT2 semantic ability to complete syllogisms.515

For this reason, in all subsequent experiments analyzing MLP effects, we report results with attention516

paths patched in. This allows us to isolate the true downstream influence of MLPs under more517

realistic model conditions.518

D Extension to Larger Models519

To assess whether the findings observed in GPT-2 Small generalize across model scale and architecture,520

we extend our experiments to several larger models: GPT-2 XL, Pythia 1.4B, Qwen3-1.7B, and521

LLaMA3.2-1B.522

Across all models, we continue to observe empirical signatures of binary behavior: heads relevant523

to the simple and opposite syllogism tasks tend to exert opposing effects on the logits. MLP layers524

remain important in the opposite syllogism task for all models except Pythia 1.4B, mirroring the525

behavior observed in GPT-2 Small. Notably, Table 7 shows that performance on the simple syllogism526
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(a) Simple Syllogism with Good/Bad
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(b) Opposite Syllogism with Good/Bad

Figure 8: Binary task results of Good/Bad
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(a) MLP effects with attention context
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Figure 9: Path patching MLPs in the opposite syllogism task. (a) shows effects when MLPs are
patched with attention context preserved; (b) shows isolated MLP contributions without attention
context.
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(a) MLP effects with attention context
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(b) MLP effects without attention context

Figure 10: Path patching MLPs in the simple syllogism task. (a) shows effects when MLPs are
patched with attention context preserved. No MLPs have significant importance; (b) shows isolated
MLP contributions without attention context. Early MLPs, specifically MLP0, appear relevant for the
task

format degrades significantly in larger models, suggesting that task generalization does not uniformly527

scale with model size.528

All models retain some attention heads exhibiting negative-copy behavior. However, the influence of529

these heads on output logits is more muted compared to GPT-2 Small. In particular, the heads most530

responsible for enabling opposite syllogism performance in the larger models are not the negative531

heads. Qwen3-1.7B, for instance, contains relatively few negative heads, and those it has do not532

drive logit differences in either task. An exception is Pythia 1.4B, whose success on the opposite task533

remains closely tied to the activity of its negative-copy heads.534

Interestingly, across all models, the heads most influential on model output tend to exhibit strong535

induction behavior (e.g., ABA → B), regardless of whether they also contribute to the task-relevant536

distinction. Yet despite this variability in attention head dynamics, the consistent involvement of537

MLPs in the opposite task—and their near absence in the simple task—suggests a robust division of538

labor: negation appears to depend more heavily on the feedforward path than on attention alone. This539

may help constrain future hypotheses about the mechanistic implementation of logical inversion and540

contextual negation in transformer models.541

These findings remain empirical and exploratory. Figures 11-14 illustrate the direct effects of attention542

heads and MLPs across the syllogism tasks. A deeper investigation into how architectural scale543

affects circuit behavior remains a promising direction for follow-up work.544
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GPT-2 XL Qwen3-1.7B LLaMA 3.2-1B Pythia 1.4B

Simple Syllogism 0.1112 0.5322 −0.4357 1.0105

Opposite Syllogism 2.6114 1.5257 −0.1807 2.1098

Table 7: Average logit difference across models and tasks.
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Figure 11: Direct effects of attention heads and MLPs for GPT-2 XL across syllogism tasks.
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Figure 12: Direct effects of attention heads and MLPs for Pythia 1.4B across syllogism tasks.
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Figure 13: Direct effects of attention heads and MLPs for LLaMA 3.2B across syllogism tasks.
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Figure 14: Direct effects of attention heads and MLPs for Qwen 1.7B across syllogism tasks.
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