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Abstract
Using multiple input streams simultaneously to
train multimodal neural networks is intuitively ad-
vantageous but practically challenging. A key
challenge is unimodal bias, where a network
overly relies on one modality and ignores oth-
ers during joint training. We develop a theory of
unimodal bias with multimodal deep linear net-
works to understand how architecture and data
statistics influence this bias. This is the first work
to calculate the duration of the unimodal phase
in learning as a function of the depth at which
modalities are fused within the network, dataset
statistics, and initialization. We show that the
deeper the layer at which fusion occurs, the longer
the unimodal phase. A long unimodal phase can
lead to a generalization deficit and permanent uni-
modal bias in the overparametrized regime. Our
results, derived for multimodal linear networks,
extend to nonlinear networks in certain settings.
Taken together, this work illuminates pathologies
of multimodal learning under joint training, show-
ing that late and intermediate fusion architectures
can give rise to long unimodal phases and per-
manent unimodal bias. Our code is available at:
https://yedizhang.github.io/unimodal-bias.html.

1. Introduction
The success of multimodal deep learning hinges on effec-
tively utilizing multiple modalities (Baltrušaitis et al., 2019;
Liang et al., 2024). However, some multimodal networks
overly rely on a faster-to-learn or easier-to-learn modal-
ity and ignore the others during joint training (Goyal et al.,
2017; Cadene et al., 2019; Wang et al., 2020; Gat et al., 2021;
Peng et al., 2022). For example, Visual Question Answering
models should provide a correct answer by both “listen-
ing” to the question and “looking” at the image (Agrawal
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et al., 2016), whereas they tend to overly rely on the lan-
guage modality and ignore the visual modality (Goyal et al.,
2017; Agrawal et al., 2018; Hessel & Lee, 2020). This phe-
nomenon has been observed in a variety of settings, and has
several names: unimodal bias (Cadene et al., 2019), greedy
learning (Wu et al., 2022), modality competition (Huang
et al., 2022), modality laziness (Du et al., 2023), and modal-
ity underutilization (Makino et al., 2023). In this paper, we
adopt the term unimodal bias to refer to the phenomenon
in which a multimodal network learns from different input
modalities at different times during joint training.

The extent to which multimodal networks exhibit unimodal
bias depends on both the dataset and the multimodal network
architecture. Regarding datasets, practitioners managed to
alleviate the bias by building more balanced multimodal
datasets (Goyal et al., 2017; Agrawal et al., 2018; Hudson &
Manning, 2019). Regarding multimodal network architec-
tures, empirical work has shown that unimodal bias emerges
in jointly trained late fusion networks (Wang et al., 2020;
Huang et al., 2022) and intermediate fusion networks (Wu
et al., 2022), while early fusion networks may encourage
usage of all input modalities (Gadzicki et al., 2020; Barnum
et al., 2020).

Despite empirical evidence, there is scarce theoretical un-
derstanding of how unimodal bias is affected by the network
configuration, dataset statistics, and initialization. To fill the
gap, we study multimodal deep linear networks where uni-
modal bias manifests in ways consistent with those observed
in complex networks, thereby serving as a prerequisite for
theoretical understanding of complex networks. We show
that unimodal bias is conspicuous in late and intermediate
fusion linear networks but not in early fusion linear net-
works. Intermediate and late fusion linear networks learn
one modality first and the other after a delay, yielding a
phase in which the multimodal network implements a uni-
modal function. We calculate the duration of the unimodal
phase in terms of parameters of the network and statistics
of the dataset. We find that a deeper fusion layer within the
multimodal network, stronger correlations between input
modalities, and greater disparities in input-output correla-
tions for each modality all prolong the unimodal phase. In
the overparameterized regime, long unimodal phases creates
a dilemma between overfitting one modality and underfit-
ting the other, resulting in permanent unimodal bias and a
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generalization deficit. Our results apply to nonlinear net-
works in certain settings, providing insights for examining,
diagnosing, and curing unimodal bias in a broader range of
realistic cases.

In summary, our contributions are the following: (i) We
provide a theoretical explanation for why unimodal bias is
conspicuous in late and intermediate fusion linear networks
but not in early fusion linear networks. (ii) We calculate
the duration of the unimodal phase in mulitmodal learning
with late and intermediate fusion linear networks, as a func-
tion of the network configuration, correlation matrices of
the dataset, and initialization scale. (iii) We analyze the
mis-attribution during the unimodal phase and the superfi-
cial modality preference. (iv) We reveal that long unimodal
phases lead to a generalization deficit and permanent uni-
modal bias in the overparameterized regime. (v) We validate
our findings with numerical simulations of multimodal deep
linear networks and certain nonlinear networks.

1.1. Related Work

Several attempts have been made to understand unimodal
bias. On the empirical front, Wang et al. (2020); Gat et al.
(2021); Wu et al. (2022); Peng et al. (2022); Kleinman et al.
(2023) have proposed metrics to assess unimodal bias across
various multimodal models. Their metrics contributed to
multimodal learning applications but did not lend a theory.
On the theoretical front, Huang et al. (2021; 2022) proved
that multimodal learning can outperform unimodal learning
but may fail to deliver due to modality competition. In such
failed cases, multiple modalities compete; only a subset of
modalities correlated more with their encoding network’s
random initialization will win and be learned by the mul-
timodal network. However, their study was restricted to
two-layer late fusion networks and did not cover the influ-
ence of different networks and datasets upon the unimodal
bias. Our work studies multimodal deep linear networks
with three different fusion schemes, and we analytically
reveal the relationship between unimodal bias, network con-
figuration, and dataset statistics.

Our work builds on a rich line of theoretical analyses of deep
linear networks. Fukumizu (1998); Saxe et al. (2014; 2019);
Lampinen & Ganguli (2019); Braun et al. (2022); Shi et al.
(2022); Atanasov et al. (2022) obtained exact solutions to
the gradient descent dynamics of deep linear networks with
whitened input. Gidel et al. (2019); Advani et al. (2020);
Tarmoun et al. (2021) derived reductions and a special-case
solution assuming spectral initialization for the same dy-
namics but with unwhitened input. Balancing properties in
linear networks were discovered and proved in (Fukumizu,
1998; Arora et al., 2018; Du et al., 2018; Ji & Telgarsky,
2019). Nonetheless, previous solutions do not directly ad-
dress our problem because multimodal deep linear networks
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Figure 1. Schematic of a multimodal fusion network with total
depth L and fusion layer at Lf .

are not fully connected and multimodal datasets generally
do not have whitened input. We thus develop new analytic
tools for multimodal deep linear networks, extending the
theoretical landscape of linear networks.

2. Problem Setup
2.1. Multimodal Data

Let x ∈ RD represent an arbitrary multimodal input and
y ∈ R be its scalar target output. We are given a dataset
{xµ, yµ}Pµ=1 consisting of P samples. For simplicity, we
assume there are two modalities, A and B, with full input
x = [xA,xB]. Since we study multimodal linear networks
with mean square error loss, the learning dynamics depends
only on the correlation matrices of the data (Fukumizu,
1998; Saxe et al., 2014). We denote the input correlation
matrix as Σ and input-output correlation matrix as Σyx;
these are given explicitly by

Σ =

[
ΣA ΣAB
ΣBA ΣB

]
=

[〈
xAx

⊤
A

〉 〈
xAx

⊤
B

〉〈
xBx

⊤
A

〉 〈
xBx

⊤
B

〉] , (1a)

Σyx =
[
ΣyxA ΣyxB

]
=
[〈
yx⊤

A

〉 〈
yx⊤

B

〉]
, (1b)

where ⟨·⟩ denotes the average over the dataset. We assume
data points are centered to have zero mean, ⟨x⟩ = 0, and
the input correlation matrix Σ has full rank, but make no
further assumptions about the dataset.

2.2. Multimodal Fusion Linear Network

We study a multimodal deep linear network with total depth
L and fusion layer at Lf defined as1

ŷ(x;W ) =

L∏
j=Lf+1

W j

Lf∏
i=1

W i
AxA +

Lf∏
i=1

W i
BxB


≡ W tot

A xA +W tot
B xB

≡ W totx . (2)

1We abuse the notation
∏

j W
j to represent the ordered prod-

uct of matrices with the largest index on the left and smallest on
the right.
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The overall network input-output map is denoted W tot, and
the map for each modality is denoted W tot

A ,W tot
B . We use

W to denote all weight parameters collectively. We assume
the number of neurons in both pre-fusion layer branches is
of the same order. A schematic of this network is given in
Figure 1.

Our network definition incorporates bimodal deep linear
networks of three common fusion schemes. Categorized by
the multimodal deep learning community (Ramachandram
& Taylor, 2017), the case where Lf = 1 is early or data-
level fusion; 1 < Lf < L is intermediate fusion; and
Lf = L is late or decision-level fusion.

2.3. Gradient Descent Dynamics

The network is trained by optimizing the mean square error,
L = 1

2P

∑P
µ=1(y

µ − ŷµ)2, with gradient descent. In the
limit of small learning rate, the gradient descent dynamics
are well approximated by the continuous time differential
equations; see Appendix B. For pre-fusion layers 1 ≤ l ≤
Lf ,

τẆ l
A =

 L∏
j=Lf+1

W j

Lf∏
i=l+1

W i
A

⊤

eA

(
l−1∏
i=1

W i
A

)⊤

,

(3a)

τẆ l
B =

 L∏
j=Lf+1

W j

Lf∏
i=l+1

W i
B

⊤

eB

(
l−1∏
i=1

W i
B

)⊤

.

(3b)

For post-fusion layers Lf + 1 ≤ l ≤ L,

τẆ l =

 L∏
j=l+1

W j

⊤

eA

 l−1∏
j=Lf+1

W j

Lf∏
i=1

W i
A

⊤

+

 L∏
j=l+1

W j

⊤

eB

 l−1∏
j=Lf+1

W j

Lf∏
i=1

W i
B

⊤

,

(4)

where the time constant τ is the inverse of learning rate and
eA and eB represent the correlation between the output error,
y − ŷ, and the inputs, xA,xB,

eA = ΣyxA −W tot
A ΣA −W tot

B ΣBA, (5a)
eB = ΣyxB −W tot

A ΣAB −W tot
B ΣB. (5b)

The network is initialized with small random weights.

3. Two-Layer Multimodal Linear Networks
We first study two-layer multimodal linear networks, for
which L = 2. There are two possible fusion schemes for

two-layer networks according to our setup: early fusion,
Lf = 1, as in Figure 2a and late fusion, Lf = 2, as in
Figure 2d.

We explain that unimodal bias is conspicuous in late fusion
linear networks but not in early fusion linear networks by an-
alyzing their loss landscape in Section 3.1. We then focus on
late fusion networks: Section 3.2 calculates duration of the
unimodal phase; Section 3.3 specifies mis-attribution in the
unimodal phase; Section 3.4 reveals the superficial modality
preference; Section 3.5 demonstrates that a long unimodal
phase harms generalization in the overparametrized regime.

3.1. Loss Landscape

As shown in Figures 2b and 2e, early fusion networks learn
from both modalities almost simultaneously while late fu-
sion networks learn two modalities at two separate times
with a conspicuous unimodal phase in between. For both
networks, the loss trajectories exhibit quasi-stage-like be-
haviors. As studied by Saxe et al. (2014; 2019); Jacot
et al. (2021); Pesme & Flammarion (2023), linear networks
trained from small initialization learn slowly for most of
the time and move rapidly from one fixed point or saddle
to the next with a sigmoidal transition stage. We show that
early fusion networks have two manifolds of fixed points,
corresponding to their one transition stage. In contrast, late
fusion networks have two manifolds of fixed points and two
manifolds of saddles, accounting for their two transition
stages.

Early Fusion. There are two manifolds of fixed points in
early fusion networks (Appendix C): one is an unstable fixed
point at zero M0 and the other is a manifold of stable fixed
points at the global pseudo-inverse solution M∗,

M0 = {W |W = 0}; (6a)

M∗ =
{
W |W tot = ΣyxΣ

−1
}
. (6b)

The network starts from small initialization, which is close
to the unstable fixed point M0. When learning progresses,
the network escapes from the unstable fixed point M0 and
converges to the global pseudo-inverse solution at M∗ with
one brief transition. We visualize the fixed points and the
learning trajectory in the phase portrait in Figure 2c. Since
there can only be one brief transition stage, all modalities
are learned almost simultaneously in early fusion networks.

Late Fusion. Late fusion linear networks have the same
two manifolds of fixed points M0,M∗ as early fusion net-
works. In addition, late fusion linear networks have two
manifolds of saddles MA,MB (Appendix D.1), correspond-
ing to learning one modality but not the other,

MA =
{
W |W tot

A = ΣyxAΣA
−1,W tot

B = 0
}
; (7a)

MB =
{
W |W tot

A = 0,W tot
B = ΣyxBΣB

−1
}
. (7b)
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Figure 2. Effect of fusion point on learning dynamics and loss landscape. Top row: Early fusion. Bottom row: Late fusion. Both networks
are trained with the same dataset. (a,d) Network schematic. (b,e) Training trajectories. (c,f) Phase portrait. Late fusion introduces two
manifolds of saddles (blue and magenta crosses) into the loss landscape, causing learning trajectories to plateau near a unimodal solution.
Experimental details are provided in Appendix J.

The late fusion linear network therefore undergoes two tran-
sition stages because the network first arrives and lingers
near a saddle in MA or MB and subsequently converges
to the global pseudo-inverse solution in M∗. Visiting the
saddle gives rise to the plateau in the loss that separates
the time when the two modalities are learned. During the
plateau, the network is unimodal. We visualize the fixed
points and the learning trajectory in the phase portrait in
Figure 2f.

3.2. Duration of the Unimodal Phase

We now quantify the duration of the unimodal phase. For
definiteness, we designate the modality learned first to be
modality A. We define tA to be the time when the total
weight of modality A reaches half of its associated plateau
and similarly for tB, as illustrated in Figures 3a and 3b.
Because of the small random initialization, we can assume
that the Frobenius norms of W 1

A and W 1
B are approximately

equal at initialization, denoted u0. We compute the times tA
and tB in Appendix D.3 in leading order of the initialization
u0 and obtain

tA = τ∥ΣyxA∥−1 ln
1

u0
, (8a)

tB = tA + τ
1− ∥ΣyxA∥−1∥ΣyxB∥∥∥ΣyxB −ΣyxAΣA

−1ΣAB
∥∥ ln

1

u0
. (8b)

To compare the unimodal phase duration across different
settings, we focus on the time ratio2,

tB

tA
= 1 +

∥ΣyxA∥ − ∥ΣyxB∥∥∥ΣyxB −ΣyxAΣA
−1ΣAB

∥∥ . (9)

We note that the time ratio reduces to ∥ΣyxA∥/∥ΣyxB∥
if the cross correlation is zero, i.e., ΣAB = 0. This ac-
cords with the intuition that ∥ΣyxA∥ governs the speed
at which modality A is learned and ∥ΣyxB∥ governs the
speed at which modality B is learned. When the cross cor-
relation is nonzero, having learned modality A affects the
speed at which modality B is learned during the unimodal
phase. Specifically, the speed of modality B is reduced by
ΣyxAΣA

−1ΣAB; see Appendix D.3.

We validate Equation (9) with numerical simulations in
Figure 3c. With theoretical and experimental evidence, we
conclude that stronger correlations between input modalities
and a greater disparity in input-output correlations for each
modality make the time ratio larger, indicating a longer uni-
modal phase. In the extreme case of maximum correlation,
xA and xB are co-linear, and so one of them is redundant.
In this case, the denominator ΣyxB −ΣyxAΣA

−1ΣAB is 0,
and the ratio tB/tA is ∞. Here later becomes never — the
network learns to fit the output only with modality A and
modality B will never be learned, as shown in Figure 8.

2We use ∥ · ∥ to notate the L2 norm of a vector or the Frobenius
norm of a matrix in this paper.
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Figure 3. Duration of unimodal phase and amount of mis-attribution in two-layer late fusion linear networks. We consider scalar inputs
xA,xB ∈ R with input covariance matrix parameterized as Σ =

[
σ2

A, ρσAσB; ρσBσA, σ
2
B
]
. The target output is generated as y = xA +xB.

(a) Loss and total weight trajectories in two-layer late fusion networks when modalities are positively correlated. (b) Same as panel a but
for negative correlations. (c) Time ratio tB/tA as in Equation (9). (d) Amount of mis-attribution. In panel c and d, lines are theoretical
predictions; circles are simulations of two-layer late fusion linear networks; crosses are simulations of two-layer late fusion ReLU
networks. Experimental details are provided in Appendix J.

3.3. Mis-attribution in the Unimodal Phase

We take a closer look at the unimodal mode by highlight-
ing a phenomenon we call mis-attribution. During the uni-
modal phase, W tot

A fits the output as much as it can and the
network mis-attributes some of the output contributed by
modality B to modality A by exploiting their correlations.
When modalities are correlated, the local pseudo-inverse
solution differs from the global pseudo-inverse solution,
i.e.,

[
ΣyxAΣA

−1,ΣyxBΣB
−1
]
̸= ΣyxΣ

−1. Specifically,
the weights of modality A overshoot if modalities have a
positive correlation as in Figure 3a and undershoot if nega-
tive as in Figure 3b. This mis-attribution is then corrected
when modality B catches up at time tB, and the network
eventually converges to the global pseudo-inverse solution.
In Figure 3d we demonstrate, using scalar input for clarity,
that mis-attribution is more severe when modalities have
stronger correlation.

When modalities are uncorrelated, late fusion networks do
not mis-attribute during the unimodal phase because the
local pseudo-inverse solutions are the same as the global
pseudo-inverse solution. Weights for modality A converge
to the global solution at time tA and do not change thereafter,
as in Figure 2e. In this case, the late fusion network behaves
the same as two separately trained unimodal networks.

3.4. Superficial Modality Preference

We now look into which modality is learned first. Late fu-
sion linear networks have what we call “superficial modality
preference”. They prioritize the modality that is faster to
learn, which is not necessarily the modality that yields the
larger decrease in loss.

From the time ratio expression given in Equation (9) and
details in Appendix D.3.1, we see that which modality is
learned first depends solely on the relative size of ∥ΣyxA∥
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Figure 4. Demonstration of superficial modality preference. A two-
layer late fusion linear network is trained with two different dataset.
(a,b) In both examples, modality A is learned first. The dotted
black line marks the loss when the network visits MA. The dotted
gray line marks the loss if the network had instead visited MB. (a)
The prioritized modality is not the modality that contributes more
to the output. (b) The prioritized modality is the modality that
contributes more to the output. (c) Boundaries of which modality
is prioritized and which modality contributes more to the output
in terms of dataset statistics. In region I and III, modality A is
learned first. In region I and II, modality A contributes more to the
output. Thus in region II and III (shaded red), prioritization and
contribution disagree, resulting in superficial modality preference.
Experimental details are provided in Appendix J.
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and ∥ΣyxB∥. Thus late fusion networks first learn the modal-
ity that has a higher correlation with the output, even though
it may not be the modality that makes a larger contribution
to the output. Under the following two conditions on dataset
statistics,

∥ΣyxA∥ > ∥ΣyxB∥, (10a)

ΣyxAΣA
−1Σ⊤

yxA
< ΣyxBΣB

−1Σ⊤
yxB

, (10b)

modality A is faster to learn but modality B contributes more
to the output. We present an example where these conditions
hold in Figure 4a and where they do not in Figure 4b.

If xA,xB are scalars and uncorrelated, the two inequality
conditions in Equation (10) reduce to

σ2
B

σ2
A
<

w∗
A

w∗
B
<

σB

σA
, (11)

where σA, σB are variances of xA,xB and we assume the
target output is generated as y = w∗

AxA + w∗
BxB. We plot

the two conditions in Figure 4c. Region III satisfies the
conditions we give in Equation (11). Region II corresponds
to Equation (11) with flipped inequality signs, meaning the
other superficial modality preference case where modality
B is prioritized but modality A contributes more to the out-
put. Hence, region II and III (shaded red) cover the dataset
statistics where prioritization and contribution disagree and
late fusion linear networks would prioritize learning the
modality that contributes less to the output.

We note that the networks eventually converge to zero loss,
regardless of which modality is learned first and how long
the unimodal phase is. But they affect the generalization
error in the overparameterized regime, which we discuss in
the following section.

3.5. Underparameterization and Overparameterization

In the underparameterized regime, training loss closely
tracks the corresponding generalization error as shown in
Figures 5a and 5b because the training data is sufficient
to accurately estimate the true data distribution. Analysis
on the training loss applies to the generalization error as
well. Both early and late fusion networks achieve a lower
generalization error at convergence than that of a unimodal
network (dotted gray line).

In the overparameterized regime, the number of samples is
insufficient compared to the number of effective parameters,
which is the input dimension for linear networks (Advani
et al., 2020). As shown in Figure 5c, the overparameterized
early fusion linear network learns both modalities during
one transition stage. The generalization error decreases
during the transition stage and increases afterwards, as pre-
dicted by theory (Le Cun et al., 1991; Krogh & Hertz, 1992;
Advani et al., 2020). If early stopping is adopted, we obtain
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Euni
g

1

700 training samples

Loss
Eg

(a) Underparam early fusion
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(b) Underparam late fusion
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Euni
g
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Loss
Eg

(d) Overparam late fusion

Figure 5. Overparameterized and underparameterized two-layer
early and late fusion linear networks. Inputs are 50-dimensional,
i.e., xA,xB ∈ R50. (a) Loss and generalization error trajectories
of a two-layer early fusion linear network trained with 700 ex-
amples. (b) Same as panel a but with late fusion. (c) Loss and
generalization error trajectories of a two-layer early fusion linear
network trained with 70 examples. (d) Same as panel c but with
late fusion. The dotted gray line marks the lowest generalization
error that a unimodal network could achieve with the same dataset.
Experimental details are given in Appendix J.

a model that has learned from both modalities and does not
substantially overfit. This model achieves a lower general-
ization error than its unimodal counterpart.

As shown in Figure 5d, the overparameterized late fusion
linear network learns the faster-to-learn modality first and
overfits this modality during the unimodal phase when the
training loss plateaus but the generalization error increases.
In this case, there is a dilemma between overfitting the
first modality and underfitting the second. If optimal early
stopping on the generalization error is adopted, training
terminates at time t1. The model at time t1 has a strong and
permanent unimodal bias because the first modality has just
been learned while the second modality has not. If training
terminates at time t2, after both modalities are learned, the
network has overfit the first modality. This can result in
a generalization error worse than that in early stopping or
what could be achieved by its unimodal counterpart. Thus
overfitting is a mechanism that can convert the transient
unimodal phase to a generalization deficit and permanent
unimodal bias.

6
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4. Deep Multimodal Linear Networks
We now consider the more general case of multimodal deep
linear networks and examine how the fusion layer depth Lf

affects the extent of unimodal bias.

4.1. Loss Landscape

Early Fusion. Similar to two-layer early fusion networks,
deep early fusion networks learn from both modalities al-
most simultaneously, as shown in Figure 6a (purple curve).
Saxe et al. (2014; 2019); Advani et al. (2020) have shown
that for deep linear networks, depth slows down learning
but does not qualitatively change the dynamics compared
to two-layer linear networks. The weights associated with
all input modalities escape from the initial zero fixed point
M0 and converge to the pseudo-inverse solution fixed point
in M∗ in one transition stage.

Intermediate and Late Fusion. Deep intermediate and late
fusion linear networks learn the two modalities with two
separate transitions, as shown in Figure 6a; this is similar
to what happens in two-layer late fusion networks. Due
to the common terms in Equations (3) and (4) that govern
the weight dynamics, the two manifolds of fixed points,
M0,M∗, and the two manifolds of saddles, MA,MB, ex-
ist for any 2 ≤ Lf ≤ L,L ≥ 2, comprising intermediate
and late fusion linear networks of any configuration.

In what follows, we stick to the convention that modality A
is learned first. Deep intermediate and late fusion networks
start from small initialization, which is close to the zero
fixed point M0. When modality A is learned in the first
transition stage at time tA, the network visits the saddle in
MA. After a unimodal phase, the network goes through
the second transition at time tB to reach the global pseudo-
inverse solution fixed point in M∗. Because the network is
in the same manifold MA during the unimodal phase, our
results in Section 3.3 on the mis-attribution in the unimodal
phase and Section 3.4 on superficial modality preference in
two-layer late fusion networks directly carry over to deep
intermediate and late fusion linear networks.

As shown in Figure 6, the loss trajectories of networks with
different Lf ≥ 2 traverse the same plateau but they stay in
the plateau for different durations. We thus quantify how the
total depth L and fusion layer depth Lf affect the duration
of the unimodal phase in Section 4.2.

4.2. Duration of the Unimodal Phase

We now calculate the duration of the unimodal phase in deep
intermediate and late fusion linear networks, incorporating
the new parameters L and Lf . The input-output correlation
ratio is denoted k = ∥ΣyxB∥/∥ΣyxA∥ ∈ (0, 1). We derive
the time ratio through leading order approximation of the

initialization scale in Appendix E. For 2 < Lf ≤ L, the
time ratio is

tB

tA
= 1 +

∥ΣyxA∥ − ∥ΣyxB∥∥∥ΣyxB −ΣyxAΣA
−1ΣAB

∥∥
× u

L−Lf

0

(Lf − 2)∥ΣyxAΣA
−1∥1−

Lf
L

I(L,Lf )
−1,

(12)

where

I(L,Lf ) =

∫ ∞

1

[
1 +

(
k + (1− k)xLf−2

) 2
2−Lf

]Lf−L

2

xL−1
dx .

(13)

For Lf = 2, the expression is slightly different but quali-
tatively similar; see Appendix E.3. As shown in Figure 6,
the theoretical prediction captures the trend that a deeper
fusion layer Lf , a larger input-output correlation ratio k,
and stronger correlations ΣAB between input modalities all
prolong the duration of the unimodal phase. The qualitative
influence of dataset statistics on the time ratio in deep inter-
mediate and late fusion networks is consistent with what we
have seen in two-layer late fusion networks.

We now look into the influence of the fusion layer depth. By
setting Lf = L in Equation (12), we find that the time ratio
in deep late fusion networks reduces to the same expression
as the two-layer late fusion case in Equation (9), which only
involves dataset statistics but not the depth of the network
or the initialization, since depth slows down the learning of
both modalities by the same factor. In intermediate fusion
linear networks, the time ratio is smaller than in late fusion
networks, with a smaller ratio for a shallower fusion layer. In
intermediate fusion linear networks, learning one modality
changes the weights in its associated pre-fusion layers and
the shared post-fusion layers. At time tA, the pre-fusion
layer weights of modality A and the shared post-fusion layer
weights have escaped from the zero fixed point and grown
in scale while the pre-fusion layer weights of modality B
have not. During the unimodal phase, the shared post-fusion
layer weights and the correlation between modality B and
the output together drive the pre-fusion layer weights of
modality B to escape from the zero fixed point. Thus having
more shared post-fusion layers makes learning one modality
more helpful for learning the other, shortening the unimodal
phase. In essence, an early fusion point allows the weaker
modality to benefit from the stronger modality’s learning in
the post-fusion layers.

We also note that the initialization scale affects the time
ratio in intermediate fusion networks, as demonstrated in
Figure 6d. Even amongst cases that all fall into the rich
feature learning regime, the initialization scale has an effect

7
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Figure 6. Duration of unimodal phase in multimodal deep linear networks. Four-layer linear networks with fusion layer at Lf = 1, 2, 3, 4
are trained to fit y = xA + xB. The input covariance matrix is parameterized as Σ =

[
σ2

A, ρσAσB; ρσBσA, σ
2
B
]
. (a) An example of loss

trajectories when input covariance matrix Σ = diag(4, 1). (b) Correlation coefficient sweep with σA/σB = 2 and initialization scale
u0 = 0.1. (c) Variance ratio sweep with ρ = 0, u0 = 0.1. Note that σA/σB =

√
k when ρ = 0. (d) Initialization scale sweep with

σA/σB = 2, ρ = 0. In panel b to d, lines are theory; circles are simulations of four-layer linear networks with different fusion layer depth.
Experimental details are provided in Appendix J.

on the time ratio, with a larger time ratio for a larger initial-
ization scale. In Figure 6d, the simulations (circles) slightly
deviate from theoretical predictions (lines) because our the-
oretical prediction is derived with small initialization and is
thus less accurate for larger initialization. Nonetheless, the
monotonic trend is well captured.

In summary, a deeper fusion layer, a larger input-output
correlation ratio, stronger correlations between input modal-
ities, and sometimes a larger initialization scale all prolong
the unimodal phase in the joint training of multimodal deep
linear networks with small initialization.

5. Discussion
To understand unimodal bias in multimodal learning, we
have studied multimodal deep linear networks. In these net-
works, the unimodal bias already manifests itself in many
ways consistent with those seen in complex networks. We
now discuss how our results can apply to or break in non-
linear networks and tasks, in the hope of inspiring future
work.

5.1. Nonlinear Multimodal Networks

Linear Task. We find that our results, derived for linear
networks, carry over to two-layer ReLU networks when the
target task is linear. This aligns with the intuitions from
a line of studies on the implicit bias of two-layer ReLU
networks (Sarussi et al., 2021; Phuong & Lampert, 2021;
Timor et al., 2023; Min et al., 2024). We simulate two-layer
early and late fusion ReLU networks to learn a linear target
map. As shown in Figure 11, the loss and weight trajectories
are qualitatively the same as their linear counterparts in
Figure 2, except that learning is about two times slower
and the converged total weights are two times larger. We
conduct simulations on the duration of the unimodal phase
and the amount of mis-attribution in two-layer late fusion

ReLU networks with the rest of the setting unchanged (target
map is linear). The time ratio and mis-attribution in ReLU
networks closely follow the theoretical predictions derived
for linear networks as shown in Figures 3c and 3d (crosses).

Realistic Task. We validate our results in multimodal deep
ReLU networks trained on a noisy MNIST (Lecun et al.,
1998) task. In the noisy MNIST classification task shown
in Figure 13, the multimodal network receives two MNIST
written digit images as input, one of which may be cor-
rupted by Gaussian noise. This is a common scenario in
multimodal learning where the dominating modality varies
per sample. We train multimodal ReLU networks with
L = 5 and Lf = 1, 2, · · · , 5 on this task. The multimodal
ReLU networks learn the modality that is corrupted less
often faster. We record the ratio between the time when
the unimodal accuracy of the first learned modality reaches
50% and the time of the second modality. Table 1 records
the mean and standard deviation of the time ratio across
five random seeds. As shown in Figure 7 and Table 1, the
deeper the layer at which fusion occurs, the slower the net-
work learns from the second modality. This is consistent
with the qualitative conclusion we draw from multimodal
linear networks. Similar results are observed in multimodal
convolutional networks, as shown in Figure 14 and Table 1.

Table 1. Time ratio in noisy MNIST digit classification.

Network MLP CNN

Lf = 1 1.30±0.24 1.04±0.03
Lf = 2 1.53±0.40 1.10±0.05
Lf = 3 1.90±0.39 1.08±0.03
Lf = 4 3.38±1.13 1.32±0.16
Lf = 5 6.38±1.12 2.53±0.45

Heterogeneous Task. We present a simple heterogeneous
task that involves behaviors not observed in linear networks
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Figure 7. Loss and accuracy trajectories of multimodal fully-connected ReLU networks. Five-layer ReLU newtorks with different fusion
layer depths are trained on the noisy MNIST dataset. Solid black curves plot the training loss. Dotted black curves plot the multimodal
classification accuracy, where both branches are presented with an uncorrupted testset image. Blue curves plot the unimodal classification
accuracy of modality A, where branch A is presented with an uncorrupted testset image and branch B with a blank image. Similarly, for
modality B (purple curves). The trajectories are averaged over five random seeds. Experimental details are provided in Appendix I.

and linear tasks. Consider learning y = xA + XOR(xB),
where xA ∈ R,xB ∈ {[1, 1], [1,−1], [−1, 1], [−1,−1]}
and XOR(xB) refers to performing XOR to the two dimen-
sions of xB. We observe that two-layer late fusion ReLU
networks always learn this task successfully, forming the
four perpendicular XOR features as shown in Figures 12b,
12d and 12f. However, two-layer early fusion ReLU net-
works do not learn consistent XOR features and can even
fail to learn this task as shown in Figures 12a, 12c and 12e.
In the failed cases, the variance of xA is large so that the
network can be stuck at a local minimum where the network
only exploits the linear modality. For this heterogeneous
task, late fusion networks are advantageous in terms of ex-
tracting heterogeneous features from each input modality.
We provide videos of the learning dynamics on our website.

5.2. Practical Insights

We hypothesize that the practical choice of the fusion layer
depth is a trade-off between alleviating unimodal bias and
learning unimodal features. A shallower fusion layer helps
alleviate unimodal bias because modalities can cooperate
reciprocally to learn the synergistic computation. A deeper
fusion layer helps unimodal feature learning because the
network can operate more independently to learn the unique
computation of extracting heterogeneous features from each
modality. We hope our work contributes to a better un-
derstanding of this trade-off, ultimately leading to more
systematic architectural choices and improved multimodal
learning algorithms.
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Appendix

A. Additional Related Work
A.1. Technical Challenges in Multimodal Deep Linear Networks

There are two main challenges of studying multimodal deep linear networks, compared with standard deep linear networks.

The first challenge is that multimodal networks are not fully-connected. The gradient descent dynamics of multimodal linear
networks derived in Appendix B differ from those in fully-connected linear networks. One complication is that the standard
balancing property (Du et al., 2018) does not hold across all layers. In fully-connected linear networks, all layers maintain
balance and have equal norm throughout learning (Du et al., 2018). However, in multimodal linear networks, post-fusion
layers are balanced and pre-fusion layers of the two modalities are respectively balanced, as discussed in Appendix E.1.
Thus, the dynamics of multimodal linear networks are summarized by three variables (post-fusion layers, pre-fusion layers
of modality A, and pre-fusion layers of modality B), in contrast to one variable in fully-connected linear networks.

The second challenge is that multimodal datasets generally do not have whitened input. A considerable portion of theoretical
work on linear network learning dynamics (Fukumizu, 1998; Saxe et al., 2014; 2019; Lampinen & Ganguli, 2019; Arora
et al., 2019; Huh, 2020; Tarmoun et al., 2021; Atanasov et al., 2022; Braun et al., 2022) assumes whitened input covariance
matrix, i.e. identity matrix. With the whitened input assumption, the learning dynamics of linear networks with small or
balanced initialization can be written as a Riccati equation, which has known closed-form solutions (Fukumizu, 1998; Saxe
et al., 2014; Tarmoun et al., 2021; Shi et al., 2022; Braun et al., 2022). However, we did not use this assumption because it is
unrealistic to assume that multimodal data streams are whitened. For the unwhitened input case, existing literature does not
provide closed-form solutions and Tarmoun et al. (2021) stated that they believe the dynamics cannot be solved exactly.
Given the unavailability of closed-form solutions, we conduct a fixed point analysis and a calculation of the time ratio to
gain insights relevant to unimodal bias. Our fixed point analysis is a standard tool for dynamical systems but has not been
done for multimodal deep linear networks before. Our calculation of the time presents novel tools to understand the timing
of phase transitions in linear networks.

A.2. Alleviating Unimodal Bias in Practice

Unimodal bias is a common issue in multimodal learning. Practitioners have proposed many approaches to alleviate the bias.

Some approaches construct more balanced datasets to alleviate the language bias in Visual Question Answering (VQA).
Zhang et al. (2016) added training samples with the opposite answer for binary VQA datasets. Goyal et al. (2017) built
VQA v2 dataset by adding images with different answers into the popular VQA v1 dataset (Antol et al., 2015). Agrawal
et al. (2018) presented new splits of the VQA v1 and VQA v2 datasets in which the train and test sets have different prior
distributions of answers. The new splits can be used to diagnose the unimodal bias in VQA models.

Some approaches alter the training process of multimodal models to alleviate the unimodal bias. Ramakrishnan et al. (2018)
employed adversarial training for VQA models. They posed training as an adversarial game between the VQA model
and a question-only model, discouraging the VQA model from capturing language biases. Lao et al. (2021) employed
curriculum learning for VQA models. Their VQA model learns from the language modality first and then progressively
learns multimodal reasoning from less-biased samples. RUBi (Cadene et al., 2019) leverages a question-only model to
dynamically adjust the loss in the training of VQA models. Gat et al. (2020) proposed a new regularization term based on
the functional entropy, which encourages the multimodal model to balance the contribution of each modality in training.
Wang et al. (2020); Peng et al. (2022) inspect the contribution of each modality in the multimodal model and dynamically
re-weight the loss (Wang et al., 2020) or the gradient (Peng et al., 2022) to balance the modalities during training. Wu
et al. (2022) inspect the speed at which the model learns from each modality and accelerate learning from underutilized
modalities. Du et al. (2023) introduced knowledge distillation to multimodel learning. They distill pretrained unimodal
features into corresponding parts of the late fusion multimodal model to facilitate unimodal feature learning.
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B. Gradient Descent in Deep Multimodal Linear Networks
We derive the gradient descent dynamics in multimodal deep linear networks with learning rate η. In pre-fusion layers
1 ≤ l ≤ Lf , the gradient update is

∆W l
A = −η

∂L
∂ŷ

∂ŷ

∂W l
A

= η

 L∏
j=Lf+1

W j
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W i
A

⊤
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W i
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)⊤

= η
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(14a)
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(14b)

In post-fusion layers Lf + 1 ≤ l ≤ L,

∆W l = −η
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∂ŷ
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In the limit of small learning rate, the difference equations Equations (14) and (15) are well approximated by the differential
equations Equations (3) and (4) in the main text.
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C. Two-Layer Early Fusion Linear Network
A two-layer early fusion linear network is described as ŷ = W 2W 1x. The gradient descent dynamics are

τẆ 1 = W 2⊤(Σyx −W 2W 1Σ), τẆ 2 = (Σyx −W 2W 1Σ)W 1⊤. (16)

By setting to the gradients to zero, we find that there are two manifolds of fixed points:

W 2 = 0, W 1 = 0 ⇒ M0 = {W |W = 0}, (17a)

Σyx −W 2W 1Σ = 0 ⇒ M∗ = {W |W tot = ΣyxΣ
−1}. (17b)

We plot M0,M∗ in Figure 2c for a scalar case introduced in Figure 2b.

D. Two-Layer Late Fusion Linear Network
A two-layer late fusion linear network is described as ŷ = W 2

AW
1
AxA +W 2

BW
1
BxB. The gradient descent dynamics are

τẆ 1
A = W 2

A
⊤
(ΣyxA −W 2

AW
1
AΣA −W 2

BW
1
BΣBA), (18a)

τẆ 2
A = (ΣyxA −W 2

AW
1
AΣA −W 2

BW
1
BΣBA)W

1
A
⊤
, (18b)

τẆ 1
B = W 2

B
⊤
(ΣyxB −W 2

AW
1
AΣAB −W 2

BW
1
BΣB), (18c)

τẆ 2
B = (ΣyxB −W 2

AW
1
AΣAB −W 2

BW
1
BΣB)W

1
B
⊤
. (18d)

D.1. Fixed Points and Saddles

By setting the gradients in Equation (18) to zero, we find that the two manifolds of fixed points in Equation (6) exist in
two-layer late fusion linear networks as well.{

W 2
A = 0, W 1

A = 0

W 2
B = 0, W 1

B = 0
⇒ M0 = {W |W = 0}, (19a){

ΣyxA −W 2
AW

1
AΣA −W 2

BW
1
BΣBA = 0

ΣyxB −W 2
AW

1
AΣAB −W 2

BW
1
BΣB = 0

⇒ M∗ = {W |W tot = ΣyxΣ
−1}. (19b)

In addition, there are two manifolds of saddles:{
ΣyxA −W 2

AW
1
AΣA = 0

W 2
B = 0, W 1

B = 0
⇒ MA = {W |W tot

A = ΣyxAΣA
−1,W tot

B = 0}, (20a){
W 2

A = 0, W 1
A = 0

ΣyxB −W 2
BW

1
BΣB = 0

⇒ MB = {W |W tot
A = 0,W tot

B = ΣyxBΣB
−1}. (20b)

We plot the four manifolds M0,M∗,MA,MB in Figure 2f for a scalar case introduced in Figure 2e.

D.2. A Solvable Simple Case

If the two modalities are not correlated (ΣAB = 0) and have white covariance (ΣA = σ2
AI,ΣB = σ2

BI) the dynamics is
equivalent to two separately trained unimodal two-layer linear networks with whitened input, whose solution has been
derived in Saxe et al. (2014). The time course solutions of total weights are

W tot
A (t) = uA(t)σ

−2
A ΣyxA , uA(t) =

[(
∥ΣyxA∥
σ2

AuA(0)
− 1

)
e−2∥ΣyxA∥

t
τ + 1

]−1

, (21a)

W tot
B (t) = uB(t)σ

−2
B ΣyxB , uB(t) =

[(
∥ΣyxB∥
σ2

BuB(0)
− 1

)
e−2∥ΣyxB∥

t
τ + 1

]−1

. (21b)

The total weights for both modalities only evolve in scale along the pseudo-inverse solution direction. The scale variables
uA(t), uB(t) both go through the sigmoidal growth while modality A grows approximately ∥ΣyxA∥/∥ΣyxB∥ times faster.

15



Understanding Unimodal Bias in Multimodal Deep Linear Networks

D.3. General Cases

In the general case of having arbitrary correlation matrices, the analytical solution in Equation (21) does not hold since the
total weights not only grow in one fixed direction but also rotate. We then focus on the early phase dynamics to compute the
duration of the unimodal phase.

D.3.1. WHICH MODALITY IS LEARNED FIRST AND WHEN?

We assume that the modality learned first is modality A and specify the time tA and the condition for prioritizing modality A
in the following. During time 0 to tA, the total weights of both modalities have not moved much away from their small
initialization near zero. Hence, the dynamics from time 0 to tA in leading order approximation of the initialization are

τẆ 1
A = W 2

A
⊤
ΣyxA , τẆ

2
A = ΣyxAW

1
A
⊤
; (22a)

τẆ 1
B = W 2

B
⊤
ΣyxB , τẆ

2
B = ΣyxBW

1
B
⊤
. (22b)

The first-layer weights W 1
A ,W

1
B align with ΣyxA ,ΣyxB respectively in the early phase when their scale has not grown

appreciably (Atanasov et al., 2022). We have the balancing property (Du et al., 2018; Ji & Telgarsky, 2019) between the two
layers of modality A

W 1
AW

1
A
⊤
= W 2

A
⊤
W 2

A ⇒ ∥W 1
A∥F = ∥W 2

A∥
def
= uA. (23)

We conduct the following change of variable

W 1
A = uA(t)r

1
A

ΣyxA

∥ΣyxA∥
, W 2

A = uA(t)r
1
A
⊤
, (24)

where r1A is a fixed unit norm column vector representing the freedom in the hidden layer and uA is a scalar representing the
norm of the two balancing layers (Advani et al., 2020). Substituting the variables, we can re-write the dynamics of W 2

A and
obtain an ordinary differential equation about uA:

τ u̇Ar
1
A
⊤
= ΣyxA

Σ⊤
yxA

∥ΣyxA∥
r1A

⊤
uA ⇒ τ u̇A = ∥ΣyxA∥uA. (25)

Separating variables and integrating both sides, we get

t = τ∥ΣyxA∥−1(lnuA − lnu0), (26)

where u0 denotes u0 = uA(0). Because the initialization u0 is very small compared to ∥ΣyxA∥, the time that uA grows to
be comparable with ∥ΣyxA∥ is

tA ≈ τ∥ΣyxA∥−1 ln
1

u0
, (27)

From Equation (27), we can infer that the condition for modality A to be learned first is that ∥ΣyxA∥ > ∥ΣyxB∥.

τ∥ΣyxA∥−1 ln
1

u0
< τ∥ΣyxB∥−1 ln

1

u0
⇔ ∥ΣyxA∥ > ∥ΣyxB∥. (28)

D.3.2. WHEN IS THE SECOND MODALITY LEARNED?

We next calculate the time tB when modality B is learned. During time 0 to tA, the weight dynamics of modality B takes the
same form as modality A as described in Equation (22b). Because the layers in the modality B branch are balanced and W 1

B
aligns with the rank-one direction ΣyxB , we again change variables and re-write the dynamics of W 2

B , obtaining an ordinary
differential equation about the norm of the two balanced layers uB = ∥W 1

B∥F = ∥W 2
B∥:

τ u̇B = ∥ΣyxB∥uB ⇒ t = τ∥ΣyxB∥−1(lnuB − lnu0), t ∈ [0, tA). (29)
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We assume uB(0) = u0, since the initialization is small and the number of hidden neurons in the modality B branch is of the
same order as modality A. We plug tA, obtained in Equation (27), into Equation (29) and get

lnuB(tA) =
(
1− ∥ΣyxA∥−1∥ΣyxB∥

)
lnu0. (30)

We then look into the dynamics during the unimodal phase from tA to tB. During time tA to tB, the weights of modality B
are still small and negligible in leading ordering approximation. Meanwhile, the weights of modality A have grown to be
W tot

A = ΣyxAΣA
−1, which influences the dynamics of modality B when the cross-covariance ΣAB ̸= 0. Taking this into

consideration, the dynamics of modality B during tA to tB is

τẆ 1
B = W 2

B
⊤
Σ̃yxB , τẆ

2
B = Σ̃yxBW

1
B
⊤
, t ∈ (tA, tB), (31)

where Σ̃yxB = ΣyxB − ΣyxAΣA
−1ΣAB. The first-layer weights W 1

B rapidly rotate from ΣyxB to Σ̃yxB at time tA and
continue to evolve along Σ̃yxB during tA to tB. Through the same manner of changing variables, we obtain the ordinary
differential equation about uB during tA to tB:

τ u̇B =
∥∥∥Σ̃yxB

∥∥∥uB ⇒ t− tA = τ
∥∥∥Σ̃yxB

∥∥∥−1

(lnuB − lnuB(tA)), t ∈ (tA, tB). (32)

Plugging in uB(tA) obtained in Equation (30), we get the time when uB grows to be comparable with ∥ΣyxB∥:

tB ≈ tA − τ
∥∥∥Σ̃yxB

∥∥∥−1

lnuB(tA) ≈ tA + τ
1− ∥ΣyxA∥−1∥ΣyxB∥∥∥∥Σ̃yxB

∥∥∥ ln
1

u0
. (33)

Dividing Equation (33) by Equation (27), we obtain the time ratio Equation (9) in the main text:

tB

tA
≈ 1 +

∥ΣyxA∥ − ∥ΣyxB∥∥∥ΣyxB −ΣyxAΣA
−1ΣAB

∥∥ .
We validate Equation (9) with numerical simulations in Figure 3c. Note that if xA and xB have collinearity, the denominator
in Equation (9) is zero and the time ratio is ∞. As shown in Figure 8, the late fusion network learns to fit the output only
with modality A and modality B will never be learned.
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Figure 8. Loss and weight trajectories in a two-layer late fusion network when modalities have collinearity. Inputs xA and xB are scalars
with covariance matrix Σ = [4, 2; 2, 1]. The target output is generated as y = xA + xB.

D.4. Logistic Loss

Our qualitative and quantitative results, derived with mean square error loss, carry over to multimodal deep linear network
with logistic loss. As shown in Figure 9, the early fusion linear network trained with logistic loss learns both modality almost
simultaneously while the late fusion network learns two modalities at two separate times, which is similar to Figures 2b
and 2e. Note that weights diverge due to the nature of the logistic loss, which cannot attain zero with any finite weights and
keeps decreasing for larger ŷ values with the correct sign.

The time ratio in late fusion linear networks trained with logistic loss is the same as those trained with mean square error
loss as demonstrated in Figure 9c. This is because the first order approximation of the gradient descent dynamics in the early
phase of training is the same for the two loss functions.
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Figure 9. Two-layer early and late fusion linear networks trained with logistic loss. (a,b) Loss and weights trajectories. (c) Time ratio as in
Equation (9).

In the early phase of training, the network output ŷ is close to 0 since we assume small initialization. Thus the Taylor
expansion of the loss function around ŷ = 0 is a good approximation in the early phase

ℓMSE(ŷ) ≡
1

2
(ŷ − y)2 =

1

2
y2 − yŷ +O(ŷ2), (34)

ℓLG(ŷ) ≡ ln (1 + exp(−yµŷµ)) = ℓLG(0) + ℓ′LG(0)ŷ +O(ŷ2) = ln 2− 1

2
yŷ +O(ŷ2). (35)

We can use the first-order expansion to write the gradient descent dynamics in the early phase

τẆ = −dℓMSE

dŷ

dŷ

dW
≈ y

dŷ

dW
, (36)

τẆ = −dℓLG

dŷ

dŷ

dW
≈ 1

2
y

dŷ

dW
, (37)

which are the same for square and logistic loss except a constant factor. Since the calculation of the time ratio mainly
involves the early phase dynamics, the time ratio in late fusion linear networks remains the same whether trained with mean
square error or logistic loss.

E. Deep Intermediate & Late Fusion Linear Networks
E.1. Balancing Properties

The full dynamics of deep intermediate and late fusion linear networks are given in Equations (3) and (4). Between
pre-fusion layers and between post-fusion layers, the standard balancing property (Du et al., 2018; Ji & Telgarsky, 2019)
holds true:

W 1
AW

1
A
⊤
= W 2

AW
2
A
⊤
= · · · = W

Lf

A W
Lf

A

⊤
, (38a)

W 1
BW

1
B
⊤
= W 2

BW
2
B
⊤
= · · · = W

Lf

B W
Lf

B

⊤
, (38b)

WLf+1WLf+1⊤ = WLf+2WLf+2⊤ = · · · = WL⊤
WL. (38c)

Between a pre-fusion layer and a post-fusion layer, the balancing condition takes a slightly different form:

W
Lf

A W
Lf

A

⊤
+W

Lf

B W
Lf

B

⊤
= WLf+1WLf+1⊤. (39)

Based on the standard balancing properties in Equation (38), we have equal norm between pre-fusion layers and between
post-fusion layers.

∥W 1
A∥F = ∥W 2

A∥F = · · · = ∥WLf

A ∥F
def
= uA, (40a)

∥W 1
B∥F = ∥W 2

B∥F = · · · = ∥WLf

B ∥F
def
= uB, (40b)

∥WLf+1∥F = ∥WLf+2∥F = · · · = ∥WL∥ def
= u. (40c)
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Based on Equation (39), we have the balancing property between the norm of a pre-fusion layer and a post-fusion layer.

u2
A + u2

B = u2. (41)

In addition to the balancing norm, we infer from the balancing properties that post-fusion layers have rank-one structures as
in standard linear networks (Ji & Telgarsky, 2019; Atanasov et al., 2022). The pre-fusion layers are not necessarily rank-one
due to the different balancing property in Equation (39). However, guided by empirical observations, we make the ansatz
that the weights in pre-fusion layers are also rank-one, which will enable us to conduct the change of variables similar to
what we have done in Appendix D.3.

E.2. Time Ratio for Lf ̸= 2

E.2.1. WHICH MODALITY IS LEARNED FIRST AND WHEN?

We adopt the convention that the modality learned first is modality A. During time 0 to tA, the dynamics in leading order
approximation of the initialization are

τẆ l
A =

 L∏
j=Lf+1

W j

Lf∏
i=l+1

W i
A

⊤

ΣyxA

(
l−1∏
i=1

W i
A

)⊤

, 1 ≤ l ≤ Lf , (42a)

τẆ l
B =

 L∏
j=Lf+1

W j

Lf∏
i=l+1

W i
B

⊤

ΣyxB

(
l−1∏
i=1

W i
B

)⊤

, 1 ≤ l ≤ Lf , (42b)

τẆ l =

 L∏
j=l+1

W j

⊤

ΣyxA

 l−1∏
j=Lf+1

W j

Lf∏
i=1

W i
A

⊤

+

 L∏
j=l+1

W j

⊤

ΣyxB

 l−1∏
j=Lf+1

W j

Lf∏
i=1

W i
B

⊤

, Lf + 1 ≤ l ≤ L. (42c)

We make the following change of variables

W 1
A = uA(t)r

1
A

ΣyxA

∥ΣyxA∥
, W 1

B = uB(t)r
1
B

ΣyxB

∥ΣyxB∥
; (43a)

W i
A = uA(t)r

i
Ar

i−1
A

⊤
, W i

B = uB(t)r
i
Br

i−1
B

⊤
, 2 ≤ i ≤ Lf − 1; (43b)

W
Lf

A = uA(t)r
Lf r

Lf−1
A

⊤
, W

Lf

B = uB(t)r
Lf r

Lf−1
B

⊤
; (43c)

W j = u(t)rjrj−1⊤, Lf + 1 ≤ j ≤ L− 1; (43d)

WL = u(t)rL
⊤
. (43e)

where all r are fixed unit norm column vectors representing the freedom in hidden layers. By substituing Equation (43) into
Equation (42), we reduce the dynamics during time 0 to tA to a three-dimensional dynamical system about uA, uB and u:

τ u̇A = ∥ΣyxA∥u
Lf−1
A uL−Lf , (44a)

τ u̇B = ∥ΣyxB∥u
Lf−1
B uL−Lf , (44b)

τ u̇ = ∥ΣyxA∥u
Lf

A uL−Lf−1 + ∥ΣyxB∥u
Lf

B uL−Lf−1. (44c)

We divide Equation (44b) by Equation (44a) and reveal an equality between the two branches of a pre-fusion layer:

duB

duA
=

∥ΣyxB∥u
Lf−1
B

∥ΣyxA∥u
Lf−1
A

⇒ u
2−Lf

B − u
2−Lf

0

u
2−Lf

A − u
2−Lf

0

=
∥ΣyxB∥
∥ΣyxA∥

def
= k, Lf ̸= 2, (45)
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We assume Lf ̸= 2 in this section and handle the case of Lf = 2 in Appendix E.3. By utilizing two equality properties in
Equation (45) and Equation (41), we reduce Equation (44a) to an ordinary differential equation about uA

τ u̇A = ∥ΣyxA∥u
Lf−1
A

[
u2

A +
(
ku

2−Lf

A + (1− k)u
2−Lf

0

) 2
2−Lf

]L−Lf
2

. (46)

The ordinary differential equation in Equation (46) is separable despite being cumbersome. By separating variables and
integrating both sides, we can write time t as a function of uA:

t =

∫ uA

u0

x1−Lf

[
x2 +

(
kx2−Lf + (1− k)u

2−Lf

0

) 2
2−Lf

]Lf−L

2

dx. (47)

The time when uA grows to be comparable with ∥ΣyxA∥, for instance ∥ΣyxA∥/2, is

tA ≈ τ∥ΣyxA∥−1

∫ ∥ΣyxA∥/2

u0

u
1−Lf

A

[
u2

A +
(
ku

2−Lf

A + (1− k)u
2−Lf

0

) 2
2−Lf

]Lf−L

2

duA

≈ τ∥ΣyxA∥−1u2−L
0

∫ ∞

1

x1−L
[
1 +

(
k + (1− k)xLf−2

) 2
2−Lf

]Lf−L

2

dx. (48)

From Equation (48), we find that the condition for modality A to be learned first in deep intermediate and late fusion linear
networks is the same as that for two-layer late fuison linear networks:

τ∥ΣyxA∥−1u
2−Lf

0 I(L,Lf ) < τ∥ΣyxB∥−1u
2−Lf

0 I(L,Lf ) ⇔ ∥ΣyxB∥
∥ΣyxA∥

≡ k ∈ (0, 1), (49)

where we use I(L,Lf ) to denote the integral

I(L,Lf ) =

∫ ∞

1

x1−L
[
1 +

(
k + (1− k)xLf−2

) 2
2−Lf

]Lf−L

2

dx .

E.2.2. WHEN IS THE SECOND MODALITY LEARNED?

We next compute the time tB when modality B is learned. During time tA to tB, the network is in manifold MA where

W tot
A = ΣyxAΣA

−1 ⇒ uA = u =
∥∥ΣyxAΣA

−1
∥∥ 1

L , t ∈ (tA, tB). (50)

We plug uA(tA), which is very large compared to u0, into Equation (45) and obtain uB(tA)

uB(tA) =
[
uA(tA)

2−Lf + (1− k)u
2−Lf

0

] 1
2−Lf ≈ (1− k)

1
2−Lf u0. (51)

We then look into the dynamics during the unimodal phase from tA to tB. Substituting W tot
A = ΣyxAΣA

−1 into Equation (3b),
we get

τẆ l
B =

 L∏
j=Lf+1

W j

Lf∏
i=l+1

W i
B

⊤

Σ̃yxB

(
l−1∏
i=1

W i
B

)⊤

, 1 ≤ l ≤ Lf , (52)

where Σ̃yxB = ΣyxB − ΣyxAΣA
−1ΣAB. The first-layer weights W 1

B rapidly rotate from ΣyxB to Σ̃yxB at time tA and
continues to evolve along Σ̃yxB during tA to tB. Through the same manner of changing variables, we obtain an ordinary
differential equation for uB during tA to tB:

τ u̇B =
∥∥ΣyxAΣA

−1
∥∥1−Lf

L ∥Σ̃yxB∥u
Lf−1
B

⇒ t− tA = τ
∥∥ΣyxAΣA

−1
∥∥Lf

L −1 ∥Σ̃yxB∥−1u
2−Lf

B − uB(tA)
2−Lf

2− Lf
, t ∈ (tA, tB).

(53)
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Plugging in uB(tA) obtained in Equation (51), we get the time tB:

tB = tA + τ
uB(tB)

2−Lf − uB(tA)
2−Lf

(2− Lf )
∥∥ΣyxAΣA

−1
∥∥1−Lf

L ∥Σ̃yxB∥

≈ tA + τ
−uB(tA)

2−Lf

(2− Lf )
∥∥ΣyxAΣA

−1
∥∥1−Lf

L ∥Σ̃yxB∥

≈ tA + τ
1− ∥ΣyxA∥−1∥ΣyxB∥

(Lf − 2)
∥∥ΣyxAΣA

−1
∥∥1−Lf

L ∥Σ̃yxB∥
u
2−Lf

0 .

(54)

Dividing Equation (54) by Equation (48), we arrive at the time ratio Equation (12) in the main text. For intermediate and
late fusion linear networks 2 < Lf ≤ L, the time ratio is

tB

tA
= 1 +

(∥ΣyxA∥ − ∥ΣyxB∥)u
L−Lf

0

(Lf − 2)
∥∥ΣyxAΣA

−1
∥∥1−Lf

L
∥∥ΣyxB −ΣyxAΣA

−1ΣAB
∥∥I(L,Lf )

−1,

where the integral I(L,Lf ) has been defined in Equation (13).

E.3. Time Ratio for Lf = 2

When the fusion layer is the second layer Lf = 2, the equality in Equation (45) takes following form:

duA

duB
=

∥ΣyxA∥uA

∥ΣyxB∥uB
⇒ lnuA − lnu0

lnuB − lnu0
=

∥ΣyxA∥
∥ΣyxB∥

. (55)

Consequently, fusion at the second layer is a special case with slightly different expressions for the times. We follow the
same procedure as Appendix E.2 and obtain the times for 2 = Lf < L:

tA ≈ τ
u2−L
0

∥ΣyxA∥

∫ ∞

1

x−1
(
x2 + x2k

)1−L
2 dx, (56a)

tB ≈ tA + τ
1− ∥ΣyxA∥−1∥ΣyxB∥∥∥ΣyxB −ΣyxAΣA

−1ΣAB
∥∥ ∥∥ΣyxAΣA

−1
∥∥ 2

L−1
ln

1

u0
. (56b)

The time ratio is

tB

tA
= 1 +

(∥ΣyxA∥ − ∥ΣyxB∥)uL−2
0 ln 1

u0

(Lf − 2)
∥∥ΣyxB −ΣyxAΣA

−1ΣAB
∥∥∥∥ΣyxAΣA

−1
∥∥1− 2

L

I(L, 2)−1, (57)

where the integral is given by

I(L, 2) =

∫ ∞

1

x−1
(
x2 + x2k

)1−L
2 dx. (58)

E.4. Time Ratio for Unequal Depth

Our time ratio calculations can be carried out for intermediate fusion linear networks with unequal depth between modalities.
Consider a intermediate fusion linear network with Lc post-fusion layers, LA pre-fusion layers for the modality A branch,
and LB pre-fusion layers for the modality B branch. Assuming LA, LB > 2 and modality A is learned first, the time ratio is

tB

tA
= 1 +

u
Lc+LA−LB
0

LB−2 ∥ΣyxA∥ −
uLc
0

LA−2∥ΣyxB∥∥∥ΣyxAΣ
−1
A

∥∥ Lc
LA+Lc

∥∥ΣyxB −ΣyxAΣ
−1
A ΣAB

∥∥I(LA, LB, Lc)
−1, (59)

where the integral is given by

I(LA, LB, Lc) =

∫ ∞

1

x1−LA

[
x2 +

(
(LB − 2)∥ΣyxB∥
(LA − 2)∥ΣyxA∥

uLB−LA
0

(
x2−LA − 1

)
+ 1

) 2
2−LB

]−Lc
2

dx. (60)

As a sanity check, setting LA = LB gives us back the same expression as Equation (12).

21



Understanding Unimodal Bias in Multimodal Deep Linear Networks

0 100 200 300 400 500 600
Epoch

0.0

0.5

1.0

Loss
Wtot

A

Wtot
B

(a) Loss and weights (b) First layer weights evolution in early fusion linear network
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Figure 10. Feature evolution in two-layer early fusion and late fusion linear networks. We plot the feature evolution, which are first-layer
weights in linear networks, corresponding to dynamics in Figures 2b and 2e. (a) Same as Figure 2b. (b) First-layer weights at initialization,
during training, and at convergence in panel a. The green arrow denotes the direction of Σyx. The red arrow denotes the direction of
ΣyxΣ

−1. (c) Same as Figure 2e. (d) First-layer weights at initialization, during training, and at convergence in panel c. Complementary
videos can be found on our website.

F. Feature Evolution in Multimodal Linear Networks
We compare the feature evolution in two-layer early fusion and late fusion linear networks to gain a more detailed
understanding of their different learning dynamics. As studied by Atanasov et al. (2022), features of linear networks lie in
the first-layer weights. We thus plot the first-layer weights in multimodal linear networks at different times in training to
inspect the feature evolution.

F.1. Feature Evolution in Early Fusion Linear Networks

In early fusion linear networks with small initialization, the balancing property W 1W 1⊤ = W 2⊤W 2 holds true throughout
training, which implies W 1 is rank-one throughout training (Du et al., 2018; Ji & Telgarsky, 2019). Specifically, W 1

initially aligns with Σyx during the plateau and eventually aligns with ΣyxΣ
−1 after W 1 have grown in scale and rotated

during the brief transition stage. We illustrate this process with Figure 10b. In deep early fusion linear networks, W 1

behaves qualitatively the same.

F.2. Feature Evolution in Intermediate and Late Fusion Linear Networks

In intermediate and late fusion linear networks, the balancing property takes a different form as given in Equations (38)
and (39). Thus the first-layer weights are not constrained to be rank-one. Specifically, W 1

A grows during the first transition
stage while W 1

B remains close to small initialization. After a unimodal phase, W 1
B starts to grow during the second transition

stage while W 1
A stays unchanged, shrinks in scale, or expands in scale depending on modality B has zero, positive, or

negative correlation with modality A. We illustrate this process with Figure 10d. In deep late and intermediate fusion linear
networks, W 1 behaves qualitatively the same as in two-layer late fusion linear networks.
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G. Superficial Modality Preference
We impose that modality A contributes less to the output, meaning the loss would decrease more if the network visited a
saddle in MB instead of MA as illustrated in Figure 4a:

L(MA) > L(MB) (61)

Substituting in the saddles defined in Equation (7), we expand and simplify the two mean square losses:

L(MA) =
〈
(y −ΣyxAΣA

−1xA)
2
〉

=
〈
y2
〉
− 2ΣyxAΣA

−1⟨yxA⟩+ΣyxAΣA
−1
〈
xAx

⊤
A

〉
ΣA

−1Σ⊤
yxA

=
〈
y2
〉
−ΣyxAΣA

−1Σ⊤
yxA

, (62a)

L(MB) =
〈
(y −ΣyxBΣB

−1xB)
2
〉

=
〈
y2
〉
− 2ΣyxBΣA

−1⟨yxB⟩+ΣyxBΣB
−1
〈
xBx

⊤
B

〉
ΣB

−1Σ⊤
yxB

=
〈
y2
〉
−ΣyxBΣB

−1Σ⊤
yxB

. (62b)

Plugging Equation (62) into Equation (61) gives us

ΣyxAΣA
−1Σ⊤

yxA
< ΣyxBΣB

−1Σ⊤
yxB

.

Since we also assume modality A is learned first, thus ∥ΣyxA∥ > ∥ΣyxB∥. We thereby arrive at the two inequality conditions
Equation (10) in the main text.

H. Two-Layer Multimodal ReLU Networks
H.1. ReLU Networks with Linear Task

Two-layer ReLU networks are trained to learn the same linear task introduced in Figure 2. The loss and weights trajectories
in Figure 11 are qualitatively the same as Figure 2, except that learning evolves about two times slower and the converged
total weights are two times larger.
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Figure 11. Two-layer early fusion and late fusion ReLU networks trained on a linear task. The setting is the same as Figure 2, except that
ReLU activation is added to the hidden layer. (a,b) Time trajectories of loss and total weights in the two-layer early fusion and late fusion
ReLU network.

H.2. ReLU Networks with Nonlinear Task

We consider a simple nonlinear task of learning y = xA + XOR(xB), where xA ∈ R,xB ∈ {[1, 1], [1,−1], [−1, 1],
[−1,−1]}. The term XOR(xB) refers to performing exclusive-or to the two dimensions of xB. We train two-layer early
fusion and late fusion ReLU networks to learn this task with variance of the linear modality Var(xA) ≡ σA = 1, 2 or 3. We
inspect the features in ReLU networks by plotting the first-layer weights since the features in a two-layer ReLU network lie
in its first-layer weights (Xie et al., 2017).

As shown in Figures 12b, 12d and 12f, two-layer late fusion ReLU networks always solve the task by consistently forming
the four perpendicular XOR features. We can see two transitions in the loss trajectories of late fusion ReLU networks,
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(a) Early fusion, σA = 1
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(b) Late fusion, σA = 1
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(c) Early fusion, σA = 2
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(d) Late fusion, σA = 2
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(e) Early fusion, σA = 3
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(f) Late fusion, σA = 3

Figure 12. Two-layer early fusion and late fusion ReLU networks trained on an XOR and linear task. The early fusion network has 100
hidden neurons. The late fusion network has 100 hidden neurons in both branches. In every panel, the loss trajectory is plotted on the left
and the first-layer weights at the end of training are plotted on the right. The first-layer weights are three-dimensional: the two dimensions
of W 1

B are plotted as the position of the dots and W 1
A is plotted as the color of the dots. (a,c,e) Two-layer early fusion ReLU networks.

(b,d,f) Two-layer late fusion ReLU networks. Complementary videos can be found on our website.

which are similar to the transitions in linear networks. Late fusion ReLU newtorks learn the XOR modality during one
transition stage and learn the linear modality during the other. As an example of converged features shown in Figure 12d,
W 1

B has taken on the rank-two XOR structure and W 1
A has grown in scale while preserving its independence from W 1

B at
initialization.

As shown in Figures 12a, 12c and 12e, two-layer early fusion ReLU networks struggle to extract the XOR features. In the
early stage of training, features in W 1 favor particular directions in the three-dimensional space that are most correlated
with the target output. In comparison with features in late fusion ReLU networks, the first layer weights for modality A do
not preserve its independence from weights for modality B as shown in Figure 12c. The larger the variance of the linear
modality, the closer the favorable direction is to the direction of the linear modality. In later stage of training, features in
W 1 can rotate or scatter, giving rise to multiple transition stages as shown in Figure 12c. For a large variance in the linear
modality, the features are closely aligned with the linear modality direction and the network can be stuck in a local minimum,
failing to learn from the XOR modality as in Figure 12e.
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Figure 13. Noisy MNIST dataset.

10
0

10
1

10
2

Epoch

0.00

0.25

0.50

0.75

1.00

Lo
ss

 &
 A

cc
ur

ac
y

(a) CNN Lf = 1
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(b) CNN Lf = 2
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(c) CNN Lf = 3
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(d) CNN Lf = 4
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Figure 14. Loss and accuracy trajectories of multimodal convolutional networks. Six-layer ReLU newtorks with different fusion layer
depths are trained on the noisy MNIST dataset shown in Figure 13. The solid black curve plots the training loss. The dotted black curve
plots the multimodal classification accuracy, for which both branches are presented with an uncorrupted testset image. The blue curve
plots the unimodal classification accuracy of modality A, for which branch A is presented with an uncorrupted testset image and branch B
with a blank image. Similarly, for modality B (purple curve). The trajectories are averaged over five random seeds.

I. Noisy MNIST Classification
We perform experiments to validate that our theoretical results, derived for multimodal linear networks, can extend to more
realistic scenarios. We train deep fully-connected ReLU networks and deep convolutional networks with different fusion
layer depths on a noisy MNIST digit classification task. The results qualitatively align with our conclusion that the deeper
the layer at which fusion occurs, the longer it takes to learn from the weaker modality.

In the noisy MNIST classification, the multimodal network receives two written digit images as two modalities, one of
which may be corrupted by Gaussian noise. With probability 0.6, modality B is corrupted as in Figure 13a. With probability
0.2, modality A is corrupted as in Figure 13b. With probability 0.2, both modalities are uncorrupted as in Figure 13c. This is
a common scenario in multimodal learning where the dominating modality varies per sample.

The deep fully-connected ReLU networks and deep convolutional networks are trained with SGD with cross-entropy
loss on the noisy MNIST dataset. The batch size is 1000. The learning rate at the beginning of training is 0.04 for the
fully-connected ReLU networks and 0.002 for the convolutional networks. We use a learning rate scheduler that decays the
learning rate by 0.996 every epoch. Pytorch’s default initialization is used.

The fully-connected ReLU networks have depth L = 5 and fusion layer Lf = 1, 2, · · · , 5. The architecture is the same as
multimodal deep linear networks except for the ReLU activation. The network width is 500 except for the first layer.

The convolutional networks have six layers: the first five layers are convolutional layers with ReLU activation and the last
layer is a fully-connected layer. At a convolutional fusion layer, two inputs are concatenated along the channel and then
passed to post-fusion layers. The number of output channels is 32; the kernal size is 3; the stride is 1.

Similar to what we have done with multimodal linear networks, we record the time ratio for the noisy MNIST experiments.
The time ratio is computed by dividing the time when the unimodal accuracy of the firstly learned modality reaches 50%
by that of the second modality. The time ratio serves as a metric for the relative speed at which the network learns from
the second modality compared to the first. All experiments are repeated five times from five random seeds. We report the
average and the standard deviation in Table 1.
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J. Implementation Details
We provide our code at https://github.com/yedizhang/unimodal-bias.

J.1. Multimodal Linear Networks

Early fusion networks have 100 neurons in every layer. Late fusion networks have 100 neurons in every layer for both
branches. Intermediate fusion networks have 100 neurons in every pre-fusion layer for both branches and 100 neurons in
every post-fusion layer. All networks are trained with full batch gradient descent with learning rate 0.04. Thus the time
constant τ , which appeared in many differential equations such as Equations (3) and (4), is τ = 1/0.04 = 25 for our
experiments.

For Figures 3c, 3d, 6b to 6d, 7 and 14 and Table 1, we run experiments with five different random seeds and report the
average.

J.2. Data Generation

For data generation, we sample input data points from zero mean normal distribution x ∼ N (0,Σ) and generate the
corresponding target output from a groundtruth linear map y = w∗x. All datasets do not contain noise except Figure 5. The
number of training samples is 8192 for all experiments except Figure 5. Hence, all experiments, except Figure 5, fall into
the underparameterized regime where the training loss well reflects the generalization error.

Note that we do not lose generality by using linear datasets because the learning dyanmics of linear networks as given
in Equations (3) and (4) only concern the input correlation matrix Σ and input-output correlation matrix Σyx. Hence,
datasets generated from any distribution and target map with the same Σ,Σyx will have the same learning dynamics in
linear networks.

J.3. Specifications for Each Figure

Figure 2. Inputs xA,xB are scalars with covariance matrix Σ = diag(4, 1). The target output is generated as y = xA + xB.
All weights in the early fusion network and the late fusion network are initialized with independent random samples from
N (0, 10−9).

Figure 3. Inputs xA,xB are scalars with different covariance matrices parameterized as Σ = [σ2
A, ρσAσB; ρσAσB, σ

2
B],

that is σA, σB are the variances of modality A,B and ρ is their correlation coefficient. The target output is generated as
y = xA +xB. All weights are initialized with independent random samples from N (0, 10−9). In this two-dimensional case,
the derived time ratio reduces to 1 + (

σ2
A

σ2
B
− 1)/(1− ρ2); the amount of mis-attribution reduces to ρσB

σA
.

Figure 4. In panel (a), the input covariance matrix is Σ = diag(9, 1) and the target output is y = xA + 4xB. The dotted
gray line is below the dotted black, meaning modality B contributes more to the output. The prioritized modality is therefore
not the modality that contributes more to the output. In panel (b), the input covariance matrix is Σ = diag(16, 1) and the
target output is y = xA + 3xB. The dotted black line is below the dotted gray, meaning modality A contributes more to
the output. The prioritized modality is the modality that contributes more to the output. All weights are initialized with
independent random samples from N (0, 10−9).

Figure 5. The inputs xA,xB ∈ R50 have covariance ΣA = I,ΣB = 3I,ΣAB = 0. The target output is generated as
y = w∗x+ ϵ, where w∗ = 1/10 and the noise is independently sampled from ϵ ∼ N (0, 0.52). All weights are initialized
with independent random samples from N (0, 10−9).

Figure 6. Inputs xA,xB are scalars with different covariance matrices parameterized as Σ = [σ2
A, ρσAσB; ρσAσB, σ

2
B]. The

target output is generated as y = xA + xB. Except the initialization scale sweep in Figure 6d, pre-fusion layer weights are
initialized with independent random samples from N (0, 10−4); post-fusion layer weights are initialized with independent
random samples from N (0, 2× 10−4).
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