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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) for large language mod-
els (LLMs) has achieved remarkable progress in enhancing LLMs’ reasoning
capabilities on tasks with clear correctness criteria, such as mathematical reasoning
tasks. Several training metrics, such as entropy or response length, have been
observed to correlate with different reasoning behaviors in reinforcement learning.
Prior approaches incorporate such priors through reward or advantage shaping,
which often relies on hand-crafted penalties and preferences (e.g., higher-is-better
or lower-is-better). However, without careful hyper-parameter tuning, these di-
rectional priors can be overly biased and may lead to failure. To this end, we
introduce Conditional advANtage estimatiON (CANON), amplifying the impact of
the target metric without presuming its direction. Specifically, CANON regroups the
sampled responses into two groups based on the higher or lower value of a target
metric, measures which metric trend contributes to better performance through
inter-group comparison, and identifies the better response within the same group.
In summary, CANON based on entropy consistently outperforms prior methods
across three LLMs on both math reasoning and high-complexity logic tasks. When
applied to response length, CANON further improves token efficiency, yielding a
more favorable Pareto frontier in the performance—cost trade-off.

1 INTRODUCTION

Recently, Large Reasoning Models (LRMs) such as Gemini 2.5 Pro (Comanici et al.,[2025)), DeepSeek-
R1 (Guo et al 2025), and OpenAl-ol (Jaech et al., 2024), continue to push the boundaries of
performance on reasoning tasks. A key technique driving this success is Reinforcement Learning with
Verifiable Rewards (RLVR), which enables models to refine answers through multi-step reflection.
Algorithms designed for RLVR, most prominently GRPO (Shao et al.,[2024) and its variants (e.g.,
DR.GRPO, |L1u et al.| (20254))), have become central to achieving superior performance.

In previous works, some training metrics are observed to be closely correlated with model behavior,
which can guide the training process and improve LLMs’ performance (Hassid et al.| 2025} Gandhi
et al., |2025; [Wang et al., 2025)). To incorporate such a human prior, some methods integrate these
metrics through reward shaping (Arora & Zanette, 2025; [Luo et al., [2025) and advantage shaping
(Chen et al., [2025b}; |Cheng et al., 2025) to guide the model’s reasoning behavior. For example,
an over-length penalty is used to boost reasoning efficiency, and the entropy signal is leveraged to
maintain exploration for better performance.

However, these methods usually introduce human priors by adding penalty and reward terms, which
hold handcrafted priors that specific metrics are either to be higher-is-better or to be lower-is-better.
Without careful hyper-parameter selection, these priors can be overly biased and drive specific metrics
up or down directly, thus failing to enhance performance robustly. Simple handcrafted priors towards
one specific direction are hard to work in different scenarios. For instance, higher-entropy responses
tend to be exploratory and may correctly answer complex questions, whereas lower-entropy responses
exhibit higher certainty and achieve greater accuracy on most questions within their capability (Cheng
et al.} 2025} |Prabhudesai et al.| [2025; Wang et al.| 2025). Therefore, we aim to amplify the impact of
specific metric changes without presupposing preferences, naturally identifying inherent tendencies in
model rollouts that can be leveraged to facilitate learning of beneficial behaviors, such as enhancing
exploration or improving reasoning efficiency.
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To this end, we regroup the sampled responses into two groups based on the higher or lower values of
a given metric during the process of RLVR training. Specifically, we can sort the sampled responses
according to the value and split them into two groups. Based on this, we propose Conditional
advANtage estimatiON (CANON), which computes the inter-group advantage by comparing a response
with the group that it does not belong to, and gets the intra-group advantage across its own group
conversely. The inter-group advantage reveals which trend of metrics leads to higher accuracy.
Meanwhile, the intra-group advantage identifies better responses within the same group.

Taking the metric of entropy as an example, if groups with lower entropy (i.e., higher certainty) yield
higher average rewards, the inter-group advantage tends to select correct responses with low entropy,
efficiently exploiting existing features to boost performance. In contrast, correct rollouts with higher
entropy receive more advantages in the intra-group comparison because the average reward of their
group is lower, thereby encouraging truly effective exploration. We theoretically prove that when the
two groups have equal size, the inter-group advantage amplifies the impact of the grouping metric on
the advantage computation. In this setting, DR.GRPO can be formulated as a uniform weighting of
these two advantages, which is a special case of CANON.

We consider the metrics of generation entropy and response length, evaluating the effectiveness of
CANON on three open-weight LLMs across six math reasoning benchmarks and three challenging
logic reasoning tasks. Empirical results show that emphasizing the inter-group advantage based on
entropy yields a 1.9-point accuracy gain on math tasks. In contrast, for high-complexity reasoning
problems, the intra-group advantage proves crucial, achieving a 5.2-point improvement on the most
challenging subset. Through scheduling of these advantages, CANON further achieves a superior
and comprehensive performance across three models and two tasks. Furthermore, CANON based on
response length substantially enhances reasoning efficiency, establishing a new Pareto frontier in the
performance—efficiency trade-off. In low-token-budget scenarios for math tasks, it achieves 2.63x
higher performance and reduces token consumption by 45.5% at the same performance level.

2 RELATED WORK

Advantage Estimations in Reinforcement Learning. In PPO, the advantage estimation is provided
by Generalized Advantage Estimation (GAE, |Schulman et al|(2015))).To avoid the computational cost
of the critic model, several methods, such as ReMax (Li et al., 2023), RLOO (Ahmadian et al., 2024,
GRPO Shao et al.| (2024), and REINFORCE++ (Hu, 2025), utilize alternative techniques like baseline
reward and group-relative rewards for advantage estimation. ReMax compares the rewards with the
baseline reward from the greedy decoding response. REINFORCE++ estimates the advantage by
the normalization operation across the global batch for all queries. RLOO and GRPO estimate the
advantage in a group relative manner. RLOO computes the average rewards of all other solutions
in the group as the baseline reward, and GRPO utilizes the normalized rewards among the sampled
solutions as the advantage estimation. Compared to GRPO, our method splits sampled responses
into two groups based on specific conditions and selects the appropriate condition through inter- and
intra-group comparisons, thereby efficiently optimizing key patterns that boost task performance.

Reinforcement Learning with Verifiable Rewards. RLVR leverages the existing RLHF objective
(Schulman et al., 2017) but replaces the reward model with a verification function, which is available
in domains with verifiable answers, such as mathematics reasoning tasks (Guo et al., 2025} [Lambert
et al,[2024). |Yu et al.|(2025)); Liu et al.| (2025b)); Chen et al.|(2025a) consider the importance sampling
techniques and contribute novel training paradigms and optimization objectives for better and more
stable reasoning capabilities. Due to the sparse rewards during training, past methods utilize not only
accuracy-based rewards but also explicitly integrate additional signals through reward shaping (Arora
& Zanette}, 2025} |Luo et al., [2025) and advantage shaping (Chen et al., 2025b; |Cheng et al.} [2025))
to guide the model’s reasoning and reflection. |Arora & Zanette| (2025)) and |Luo et al.| (2025) utilize
an over-length penalty to boost reasoning efficiency. |(Chen et al.| (2025b) and (Cheng et al., [2025))
consider the entropy as a measure of exploration and reshape the advantage computation. (Gandhi
et al.| (2025) also observes four key cognitive behaviors of initial reasoning behaviors and strengthens
the capacity for self-improvement. However, these methods usually introduce human priors by adding
penalty and reward terms, which hold handcrafted priors that can be overly biased and may fail to
enhance performance without careful hyper-parameter selection. Our work amplifies the impact of
specific metric changes without presupposing preferences, leveraging them to facilitate learning of
beneficial behaviors.
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Figure 1: Overview of CANON. CANON regroups all the sampled responses based on the value of a
specific metric, and computes the advantages through inter-group and intra-group comparison.

3 PRELIMINARIES

Proximal Policy Optimization (PPO, [Schulman et al.| (2017)) is a widely used method for policy
optimization of LLMs. PPO utilizes the clip mechanism to update policy stably. PPO maximizes the
following optimization objectives.

lo]
1 . p . l4e p
Topo(0) = g ommg,, (1) [|0| E min (ro,t(G)At, chp}fs(roi)t(e))At> , (D
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where 7y, and 7y are used to denote the policy model before and after the update. ¢ is a query
sampled from the data distribution D, and the output o is generated by 7, ,. The clipping function
with clip ratio ¢ is computed as clip’ () = max(min(z, ), b) and the importance sampling ratio at

7o (0¢]g,0<+)
Togq (0t|g,0<)”

time step ¢ is defined as 7, ;(0) =

To avoid the computational cost of the critic model, GRPO (Shao et al.|2024) estimates the advantage
in a group relative manner. They sample G different solutions for the current query g as the group
Gq := {olo ~ mg,,(.|¢)}, and calculate the normalized rewards as advantages within the group G,,.
icreo _ Ro — mean({Roy|0" € G,})
,o,t T .
a std({Ro|0" € G4})

@)

Due to the success of DeepSeek-R1, several studies have proposed improvements based on GRPO.
DR.GRPO (Liu et al.;|2025a)) uses the GRPO advantages without standard deviation normalization
and develops a token-level loss without length bias.

4 CONDITIONAL ADVANTAGE ESTIMATION

Group-based advantage estimation methods, such as GRPO, typically use the average reward of all
sampled responses within the group as a baseline reward. This may fail to provide a clear feedback
signal for policy optimization due to the ambiguity of the comparison target. We propose CANON,
which performs conditional regrouping by splitting all sampled responses into two groups based on
the value of a specific metric. Leveraging these two groups, inter-group advantage identifies the
metric trend that yields higher accuracy through cross-group comparison, while intra-group advantage
selects superior responses within the same trend and prioritizes correct answers from the group with
a lower average reward.

4.1 CONDITIONAL REGROUPING

To explicitly introduce a comparison target, we regroup all the sampled responses based on specific
conditions. Given any condition ¢, we denote the set of all outputs for the current query ¢ that satisfy
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this condition in the sampled group G, as C,f := {o|o satisfy ¢, o € G,}. The set of outputs that
do not satisfy the condition can be denoted by C;” = G, \ Cy. In this work, we focus on studying
the relative conditions given by the training metrics, such as the entropy and length of the sampled
responses. Specifically, we divide the responses into two non-overlapping groups based on the value
of the metrics, as shown in Figure m

4.2 ADVANTAGE ESTIMATION BASED ON REGROUPING.

Given two groups, we can compute the inter-group advantage through comparison between different
groups.
N R, —mean({R, |0’ € G} }),ifo € G
Ai;‘gft = . 3)
R, —mean({Ry|0" € G }),ifo € Gf
Meanwhile, we also compute the intra-group advantage by comparing each response with the mean
reward of its own group.
N R, —mean({R, |0’ € G}}),ifo € G
Agon = : “
R, —mean({R,|0o" € G }),ifo € G
Although this may appear similar to the estimation of DR.GRPO within a smaller scope, due to the
differing average advantages between groups, the intra-group advantage prioritizes correct responses
from the group with a lower average reward (1 — mean({Ry[0o’ € G} > 1 — mean({Ry|0’ €

G, } when mean({R,/|0’ € G} } < mean({R,[0’ € G} ). We can further combine the above two
advantages into a unified formulation.

Agoi = pAg, + (1= W AYE,, &)
where 1 controls the balance between the inter-group and intra-group advantage. Figure [T|demon-

strates a concise case of the computation of CANON.

To ensure that the advantages introduced by conditional regrouping provide a clearer contrastive
signal, we theoretically analyze the situations under which inter-group advantage, compared to
DR.GRPO, yields a stronger advantage signal in response to reward gaps under specific conditions.

Theorem 1 (Situations with clearer advantage signal (proved in Appendix[E)). Suppose that condition
c is based on numerical comparisons and can be derived through sorting of metrics. Further
assume that the sampled response o to query q satisfy condition ¢ with probability p € (0,1), and
Eo satisfyc[Ro] 7é Eo not satisfy C[RO]' Then, we have:

%>1 [ h ‘C+|7|C—| . |O+‘ . fant (6)
| ADR.GRPO , only when |C 7| = |C | if |C} | is a constant.
4.0,

Based on Theorem [I] we divide the responses into two equally sized groups. In this way, DR.GRPO
can be expressed as a special case of this unified form when p = 0.5.
A 1 Ainter 1 Aintr
A?ﬁ"?RPO = R, —mean({R, |0 € G,}) = §Aq’t§’t + §Aq}‘£t. @)
Moreover, rather than a direct numerical amplification, CANON amplifies only the advantage at-
tributable to the metric used for grouping, without amplifying the influence of other factors.

Theorem 2 (Selective amplification based on specific metrics (proved in Appendix[E)). Consider
independent conditions c¢1 and ca, and their corresponding sets Cy and Cs (i.e., P(o € C1 N
Cslq,0) = P(o € Ci|q,0)P(o € Cs|q,0)). When we fix the condition c1, then for any value of as,
as— and P(o € Cslq, 0) that induced by whether ¢ is satisfied, we have

‘Ainter based on ¢
q,0,t

ADR.GRPO
|Aq,o,t

which says CANON based on the condition ci will not amplify the influence of another independent
condition cs.

is a constant. (8)

Therefore, CANON, when grouped by a specific metric, amplifies the influence of that metric during
training, yet it does not predefine a preference for the magnitude of the metric. This design allows it
to incorporate human priors while mitigating bias, which fully aligns with our original motivation.
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Table 1: Overall performance based on Qwen2.5-Math-7B. We compare with the following baselines:
(1) Qwen2.5-Math-7B-Instruct (Qwen-Instruct), (2) prior advantage estimation methods. All models
are evaluated under a unified setting. Bold and underline indicate the best and second-best results,
respectively.

Model Math Reasoning High Complexity Reasoning
AIME 24 AIME 25 Olympiad AMC MATH-500 GSM8k | Tokens Acc|Mid Large XLarge | Tokens Acc
Base 16.0 8.0 26.4 41.6 61.2 61.6 2046 35.8| 0.0 0.5 0.1 3303 0.2
Instruct 10.7 9.7 39.7 49.3 82.2 94.8 1077 47.7\11.6 6.2 35 2647 1.1
Previous Advantage Estimation
ReMax 23.3 18.0 48.1 62.8 83.4 90.3 2418 543|372 21.0 9.7 6246 22.6
R++ 20.3 19.7 45.8 58.3 82.6 90.0 | 4107 52.8/338 119 33 9923 163
RLOO 25.0 18.7 513 64.3 84.0 91.0 | 2537 55.7|339 144 5.8 10610 18.0
GRPO 223 18.3 473 60.6 83.8 90.8 3730 53.8|31.5 149 52 9406 17.2
DR.GRPO (1 =0.5)  27.7 203 48.4 63.4 83.2 91.1 1522 55.7/39.2 244 15.1 4896 26.2
Entropy-related Baselines
Entropy Adv 26.7 16.7 50.8 65.3 87.6 90.8 2389 56.3|30.8 17.1 75 8207 185
Clip-Cov 26.3 21.0 49.0 63.5 84.8 92.1 | 1344 56.1|39.2 256 147 | 4045 26.5
Our Methods (Conditional Groups based on Length)

CANON-Intra 21.7 19.0 49.9 63.0 86.2 922 | 2176 553|418 256 147 | 4364 274
CANON-Inter 273 19.3 47.6 64.2 82.6 91.0 1008 553|427 28.6 17.1 | 3652 29.5
Our Methods (Conditional Groups based on Entropy)

CANON-Intra 25.0 16.0 489 62.7 84.4 91.1 2959 54.7/39.1 27.8 203 | 3101 29.1
CANON-Inter 32.7 18.7 51.7 64.2 87.0 91.1 1466 57.6|36.3 258 149 | 4415 257
CANON-Dynamic 30.0 17.7 50.7 63.3 86.6 91.8 1452 56.7/40.4 305 166 | 3535 29.2

4.3 ALIGNING WITH TRAINING TARGET THROUGH WEIGHTED ADVANTAGE

According to Section[d.2] the selection between different trends of metrics only takes place in the
inter-group advantage. By weighting different conditions within the inter-group advantage calculation,
this enables fine-grained control over the trend of metrics with only tiny differences compared to
DR.GRPO. For instance, by slightly reducing the weight of longer responses, CANON can accomplish
reasoning of high token efficiency through the RL process. Specifically, the inter-group advantage in
the Eq. should be replaced with A‘;]“"gft’a where « is the weight of a specific group, and fl‘;‘fgrt,a is
defined as:

N R, — axmean({Ry|0" € GF}),ifo € G
AN = . )
ax R, —mean({Ry |0’ € G}),ifo € Gf

For example, setting v as 0.9 can achieve substantial length reduction with little performance drop,
where C; is considered the group with longer responses.

5 EXPERIMENTS

The empirical evaluation of CANON consists of three parts. Firstly, we demonstrate the effect of
intra-group and inter-group advantages, respectively, across six math reasoning benchmarks and one
high-complexity logic reasoning benchmark. In the second part, we perform several scheduling tricks
to get the frontier in both tasks. At last, by weighting the longer responses with o < 1, we achieve
efficient reasoning that reaches a better Pareto frontier.

5.1 PERFORMANCE OF INTRA-GROUP AND INTER-GROUP ADVANTAGES.

Training Setup. We select the response length and the per-token generation entropy, respectively,
to regroup the sampled solutions. We use a subset with 45k prompts from OpenR1-Math-220k
(Hugging Facel 2025)) that is filtered and constructed by |[Yan et al.|(2025). Following DR.GRPO (Liu
et al.,|2025a) and DAPO (Yu et al.} 2025)), we correct the response-level length bias and utilize the
clip-higher strategy (epign = 0.28) for all experiments. We also remove both the KL loss and the
entropy loss. We sample 16 responses per prompt and use temperature=1.0 for rollout generation.
Our rollout batch size is 512, and the train batch size is 32. The responses to the same prompt are
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Figure 2: The training dynamics and average test performance of CANON—-Inter, DR.GRPO, and
CANON-Intra.

separated into two evenly sized groups by sorting ordinal variables. We conduct the main experiments
on Qwen2.5-Math-7B (Yang et al.,|2024) following Zeng et al.|(2025); |Liu et al.|(2025a)); [Yan et al.
(2025). We expand Qwen2.5-Math-7B’s context limit from 4096 to 16384 by changing the rope theta
from 10000 to 4000(ﬂ We set the maximum answer length to 8192 and the learning rate is set to
le-6. We use Math-Verify to give the 0-1 score for both training reward and evaluation accuracy.

Evaluation Setup. We evaluate the math reasoning capabilities on six commonly used benchmarks,
such as MATH-500 (Hendrycks et al.,2021)), GSM8K (Cobbe et al.| 2021), AMC (Li et al.,[2024),
OlympiadBench (He et al., 2024)), and AIME 24/25. Due to the tiny size of AIME 24/25 and AMC,
we report Avg @ 10 as the test accuracy. For the other benchmarks, we compute the Pass@ ] as the
test performance. We calculate the average performance and token cost across all benchmarks. All
models are evaluated under the same setting with a temperature of 0.6. The values in Table |l|are
the percentage accuracy of the models evaluated. We also select three high-complexity subsets of
ZebralLogic (Lin et al., 2025) with their solution space sizes greater than 10% (Mid), 108 (Large),
and 10° (XLarge), respectively. In this experiment, we record six metrics, including training reward,
generation entropy, response length, the test performance of math tasks and logic reasoning task, and
the marginal improvement gained from reflection.

Baselines. In this subsection, we fix @ = 1.0 in Eq. [9] and present the results of p = 0.0
(CANON-Intra) and pr = 1.0 (CANON-Inter) in Eq. [5] A more detailed scheduling on p
will be conducted in Section 5.2} and the adjustment of « will be covered in Section[5.3] We compare
CANON with two types of baselines: (1) Qwen2.5-Math-7B-Instruct (Instruct,|Yang et al.|(2024)),
(2) previous advantage estimation methods, such as ReMax, REINFORCE++ (R++), RLOO,
GRPO, and DR.GRPO, and (3) entropy-related baselines, such as Entropy Adv (Cheng et al.,2025)
and Clip-Cov (Cui et al.| 2025).

Inter-group advantage achieves higher accuracy and lower length in math tasks. The experimen-
tal results are shown in Table[I] CANON-Inter based on Entropy achieves an average performance
of 57.6 among six math benchmarks, which is 1.9 points higher than the DR.GRPO (55.7). Specif-
ically, CANON-Inter based on Entropy has the best performance on four of the six benchmarks,
and is highly competitive with the top-performing models on the rest. In AIME24, the model’s
performance is 5.0 points higher than the DR.GRPO’s. Meanwhile, CANON—-Inter based on Length
reduces the token cost by 33.8% compared with DR.GRPO, while maintaining nearly unchanged
performance (55.7 vs. 55.3).

The benefit of intra-group advantage grows as the logic reasoning task’s complexity increases.
Table [T] demonstrates that CANON-Intra based on Entropy achieves higher performance of 2.9
points and 36.6% shorter length compared with DR.GRPO. Its performance edge over DR.GRPO
increases (from -0.1 to 3.4 and then 5.2) when the complexity becomes higher. The results of

'The original context limit leads to unacceptable length clipping ratio. Please see Figurein Appendix
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Table 2: Overall performance of CANON-Dynamic across three different models and two tasks. All
models are evaluated under a unified setting. Bold and underline indicate the best and second-best
results, respectively.

Model Math Reasoning High Complexity Reasoning
AIME 24 AIME 25 Olympiad AMC MATH-500 GSM8Kk |Tokens Acc |Mid Large XLarge | Tokens Acc
Qwen2.5-Math-7B
DR.GRPO (¢ = 0.5) 27.7 20.3 48.4 634 83.2 91.1 1522 55.7|39.2 244 15.1 4896 26.2
Cosin-First-Inter-Later-Intra ~ 30.0 17.7 50.7 63.3 86.6 91.8 1452 56.7|40.4 30.5 16.6 | 3535 29.2
First-Inter-Later-Intra 28.0 20.3 524 64.6 84.2 92.6 1328 57.0(41.7 26.6 16.5 3862 283
Qwen2.5-Math-1.5B
DR.GRPO (¢ = 0.5) 13.3 11.0 439 48.8 71.0 84.3 | 2381 464|237 9.7 5.0 9215 12.8
Cosin-First-Inter-Later-Intra 17.3 13.7 40.6 50.0 76.0 83.9 2357 46.9|19.2 89 4.2 10382 10.8
First-Inter-Later-Intra 16.0 10.0 424 50.2 78.6 833 2479 46.8/27.0 16.3 79 7070 17.0
Llama3.1-8B
DR.GRPO (¢ = 0.5) 13 0.3 8.3 113 320 78.9 9476 22.0|21.1 13.8 9.7 5864 149
Cosin-First-Inter-Later-Intra 0.7 0.0 7.1 124 33.8 81.4 2354 22.6/26.0 184 123 1685 18.9
First-Inter-Later-Intra 2.0 0.0 8.7 9.9 31.8 80.1 3488 22.1(25.1 17.5 10.6 5892 17.7

CANON-Intra based on Length shows another trend, whose inter-group advantage makes the best
performance in this task.

Training dynamics reflect different roles of CANON-Intra and CANON-Inter. To be specific,
we record training curves under the setting of CANON based on Entropy. The training dynamic
shown in Figure [2]indicates that both the training reward and the test performance of the math tasks
increase rapidly when only CANON-Inter is utilized (u = 1.0). Its generation entropy stably
decreases, and the response length changes smoothly. When using only CANON-Intra (@ = 0.0),
the responses show a greater tendency for exploration. We divide the responses into two groups by
counting reflection patterns and calculate the gap in average reward between the group with more
and fewer reflections (Figure 2f). Figure[2]demonstrates that the trend of high-complexity reasoning
performance is highly consistent with the curve of reflection gains. In the later stages of training
(after approximately 90 steps), the reflection gain curve of intra-group advantage increases and finally
crosses the zero point. At the same time, its performance experiences rapid growth, significantly
outperforming the other two advantages.

5.2 BALANCING PERFORMANCE VIA ADVANTAGE SCHEDULING

As shown in Table[T]and Figure 2] CANON-Inter and CANON-Intra outperform DR.GRPO on
the math reasoning task and the complex logic reasoning task, respectively, but neither can achieve
the best performance on both simultaneously. To this end, we schedule the CANON-Inter and
CANON-Intra by leveraging accuracy and the training steps to achieve a better balance between
the two scenarios.

Setup. We conduct experiments across six math benchmarks and three complex logic reasoning tasks
on Qwen2.5-Math-7B (Yang et al.| |2024), Llama3.1-8B (Dubey et al.| 2024), and Qwen2.5-Math-
1.5B (Yang et al., 2024). For the two Qwen series models, we use the dataset introduced in Section
[5.1] Due to the weak capability of Llama3.1-8B, we collect a simpler dataset with 35k samples from
four open-source datasets and follow the other training setups described in Section[5.1] Please see the
details of this newly constructed dataset in Appendix We draw a radar chart with the average
performance of the two scenarios for visualization, and the results for CANON with scheduling are
denoted as CANON—-Dynami c.

Scheduling strategies. All of the strategies are based on the coefficient x in the Eq. [5] which
balances the CANON-Inter and CANON-Intra. We try four scheduling strategies utilizing the
training accuracy and training steps, respectively: (1) First-Inter-Later-Intra. We set the value of y to
1 — A, where A denotes the mean accuracy of current whole batch; (2) First-Intra-Later-Inter. We set
the value of u to A. (3) Cosin-First-Inter-Later-Intra. We schedule the value of p from high to low
using a cosine annealing function with restarts and warm-up. (4) Cosin-First-Intra-Later-Inter. We
schedule the value of i from low to high using a cosine annealing function with restarts and warm-up.
Please see Appendix [C.6|for more details. The shown results of CANON-Dynamic are derived from
one of the tried scheduling strategies that achieve strong performance in both scenarios.
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First-Inter-Later-Intra consistently performs better than DR.GRPO across three models and two
tasks. As shown in Table[2} all three models demonstrate the same trend that performs better than the
baseline by first applying Inter-group advantage and then using Intra-group advantage. Qwen2.5-1.5B
performs particularly well under accuracy-based scheduling, possibly because its training accuracy
range (0-0.6) aligns well with its learning progress. In contrast, the other two models may achieve
higher final accuracies, which—under the same scheduling scheme—trigger excessive exploration
and consequently lead to suboptimal final performance. We utilize fixed min/max values of 1 by
applying cosine annealing based on training steps, achieving higher performance.

Moreover, different models may have different num- e \\\

bers of parameters and different levels of capability. /" Uamase Uama-88  \

A specifically designed strategy is acceptable for bet- / Y \’ \\\ 8
ter performance in practice. In this way, we select // - \ -é
strategy Cosin-First-Inter-Later-Intra for Qwen2.5- £ | Ve
Math-7B and Llama3.1-8B, and strategy First-Inter- 2| 57 < »2 | §
Later-Intra for Qwen2.5-Math-1.5B to draw Figure £} %" Qe
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achieving a superior and more comprehensive perfor-
mance. Although its math performance on Qwen2.5-

\ 468 17.0 //
N Qwen-1.5B Qwen-1.5B /

N %

Math-7B lags slightly behind CANON-Inter, it
still makes a better performance than DR.GRPO.
The radar chart illustrates the trade-off between
two types of tasks faced by CANON-Inter and
CANON-Intra between two types of tasks, as
well as the balanced but mediocre performance of
DR.GRPO.

DR.GRPO CANON-Inter CANON-Intra CANON-Dynamic

Figure 3: Evaluation for three LLMs across two
types of reasoning tasks. We apply a model-
specific schedule for a given model that consis-
tently yields leading results across both mathemat-
ical and logical reasoning tasks

5.3 WEIGHTED CONDITIONS FOR EFFICIENT REASONING.

Training Setup. In this subsection, we utilize CANON based on response length with ¢ = 0.5 in
the Eq. |5|and tune the « in the Eq. [9, where Cj is considered the group with longer responses.
A larger o means less compression of length. We follow the training setups described in Section
[5.1] and reduce the maximum response length to 3072 for better efficiency. To be specific, we use
CANON-Eff to denote the results of CANON with weighted conditions of length.

Evaluation Setup under different token budgets and varying hyperparameter settings of differ-
ent methods. To systematically assess LRMs’ reasoning efficiency (Qu et al.,|2025)), we introduce
two types of curves: budget-performance curves for each LRM and cost-performance curves of
different coefficients for all compared baselines. Specifically, we set a maximum budget for each
benchmark based on its difficulty and the average unconstrained output length of LRMs (Appendix
[C:2), then slice the same response at various budget ratios to draw the budget-performance curves.
Moreover, we tune the length-controlling coefficients of each baseline to draw the cost-performance
curves, recording their average performance and token cost to enable a comprehensive and fair
comparison. Please see the subsection on Pareto frontier for the specific hyperparameters. In every
comparison, the closer to the upper-left corner, the better (which represents high accuracy and high
efficiency at the same time).

Baselines. We select three types of baseline methods towards efficient reasoning: (1) Clip Length
that directly clips the maximum output length (Hou et al.l[2025), (2) Length Reward (+) that adds

meang,, (L) _

length penalties terms in the training reward (Luo et al.| (2025), +coeff * (—— 1)), and (3)
Length Reward (x) that multiplies a normalized length coefficient on the reward (Arora & Zanette

(2025)), (1 — coeff * sigmoid(%n?g)(m))). All these baselines are conducted with DR.GRPO.

CANON achieves better performance with shorter responses compared with baselines. We present
the detailed performance of the top-performing models for each method across various benchmarks in
Table[J] CANON-Ef £ with &« = 0.96 Pareto dominates the results of Clip Length and Length Reward
(+), reducing the length by 26.3% compared to DR.GRPO while only decreasing performance by
0.4 points. Figure ] shows that CANON-Ef £ with o = 0.96 consistently outperforms the baseline
methods in both low-token-budget and high-token-budget scenarios. Since models trained with the
Length Reward () exhibit significantly lower length with low performance at the same time, it is
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Table 3: The comparison between different methods towards efficient reasoning. Bold and underline
indicate the best and second-best results, respectively. The detailed performance is from the top-
performing models for each method, specifically «=0.96 for CANON-Eff. We include CANON-Eff
with o = 0.88, which has comparable performance with the baseline Length Reward (*).

AIME 24 AIME 25  Olympiad AMC MATH-500  GSM&8k Overall

Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens‘ Acc Tokens

DR.GRPO 29.0 1640 19.0 1586 49.0 1172 64.6 1214 858 728 919 349 ‘56.6 1115
Clip Length 28.0 1177 183 1177 473 915 63.1 956 84.8 612 929 291 |55.7 855
Length Reward 31.7 1190 18.0 1208 46.7 864 61.8 937 84.6 546 919 255 |56.2 869
Length Reward. 27.3 1087 13.77 1027 46.4 707 61.0 779 83.0 463 922 198 |53.9 710

CANON-Eff (a =0.88) 27.3 816 153 862 439 582 593 649 844 386 914 166 |53.6 577
CANON-Eff (o =0.96) 29.7 1216 19.0 1136 484 881 623 936 858 533 92.0 233 |56.2 822

PP ’ FIEN
. : = 54 /
w o 4 . .
I : J° g | assw g™
c < | € 5
E ¥ . £ > <263 g CANON-Eff (Ours)
E s T T £ = & Length Reward (*)
€ o DR.GRPO (a=1.0) €. €. Length Reward (+)
& e Clip Length o DR.GRPO (2=1.0) = Clip Length
o s’ Length Reward (+) Length Reward (*) “
X CANON-Eff (Ours, a=0.96) CANON-Eff (Ours, a=0.88) EOJ Collapsel
10
o o T 7 = g 3 3 200 60 60 800
Token Budget Token Budget Token Cost

(a) CANON-Ef f with a = 0.96 con- (b) CANON-Eff with @« = 0.88 (c) The Pareto frontier in the trade-
sistently outperforms baselines meth- achieves significantly better perfor- off between performance and to-
ods. mance at low token budgets. ken efficiency.

Figure 4: Budget-Performance and Cost-Performance Curves for Efficient Reasoning. This figure
compares the reasoning efficiency of CANON-Ef £ against baselines under various token budgets.

difficult to fairly compare with other baselines. To this end, we include an additional model trained
with CANON-Ef £ with o = 0.88 that has comparable performance. 4b]indicates that CANON with
a = 0.88 shows better token efficiency compared with Length Reward (x), achieving 2.63 times
the performance of DR.GRPO in low-token-budget scenarios, while reducing token consumption by
45.5% at the same performance level.

CANON achieves a better Pareto frontier and stably explores the entire frontier. To draw the
cost-performance curves for each method, we draw the Pareto frontier of CANON-Eff with the
results of a = 0.5,0.7,0.8,0.88,0.96. For Length Clipping, we respectively present the results
with maximum lengths of 2048 and 1024 in the Pareto frontier. For Length Reward (+), penalty
coefficients of 0.001, 0.004, 0.005, and 0.1 are used, respectively. For Length Reward (x), we utilize
the coefficients of 0.05, 0.2, and 0.4. 4c|shows that all the frontier from baselines are dominated by
the frontier of CANON-Ef £’s. It is noteworthy that after the coefficient of Length Reward (+) is
adjusted from 0.004 to 0.005, its performance drops from 54.8 to 22.5. In contrast, CANON-Ef f
remains consistently stable, exploring the Pareto frontier efficiently.

6 ANALYSIS

In this section, we analyze how CANON-Dynamic and

CANON-Eff effectively improve the task performance Table 4: The accuracy and token cost of
and reasoning efficiency. CANON-Inter with different metrics.

Methods Acc Tokens
CANON selects appropriate metrics as the target. We DR.GRPO 557 522
conduct a simple ablation study on the target metrics con- Random regrouping 557 1557
sidered by CANON. As shown in TableE], random regroup- CANON-Inter
ing achieves only the same performance as the baseline based on Length 553 1008
method while producing longer responses, thus failing to based on Entropy 57.6 1466

improve either performance or efficiency compared to the
baseline. In contrast, CANON-Inter based on the response length excels in the token efficiency
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with 33.8% shorter responses, and the entropy-based CANON-Inter delivers the best performance
(57.6 points) among the comparisons.

Different advantage combinations of CANON select dif- B
ferent trends of the target metrics. Due to the differ- H=0.0 (CANON-nta)

u=02
25 p=0.4

ent baseline rewards being compared, CANON-Inter bR oReiro)
tends to favor correct answers from the group with a e
higher average reward, while CANON-Intra selects HeLO (cANONnten
correct answers from the group with a lower average

reward. We compare the effects of CANON on their
target metrics across seven different settings, with y
ranging from 0.0 to 1.0. When entropy is consid- “ raining Steps

ered, figure [5] shows that a larger y (favoring more Figure 5: CANON shows hierarchical
CANON-Inter) leads to a reduction in entropy, whereas trends of target metrics through differ-
a smaller p (favoring more CANON—-Intra) promotes ent combinations of CANON-Inter and
an increase in entropy. The results demonstrates a hi- CANON-Intra.

erarchical trend in the metric changes, indicating the effectiveness of controlling and select-
ing different trends from CANON-Inter and CANON-Intra. In this way, CANON-Dynamic
can boost the task performance by adjusting different combinations of the two components.

Entropy

CANON can achieve positive gains of more rethinking
and high training efficiency through scheduling of two
advantages. As shown in Figure[6] we record the perfor-
mance genuinely brought by reflections and the curve of
training reward. Although CANON-Intra achieves pos-
itive gains from more reflections, its training reward expe-
riences a significant decline. In contrast, CANON-Inter,
which shows a similar trend of DR.GRPO, has not yet
achieved positive returns even by step 360, but main-
tains a higher training reward. CANON-Dynamic, on .
the other hand, not only achieves positive gains of re-

. . .. . Training Steps
thinking but also makes a training reward on a par with Figure 6: CANON-Dynamic with sched-
CANON-Inter’s. This explains why CANON-Dynamic yled p has positive gains of rethinking and
can achieve comprehensive leading performance in both  high training score at the same time.
math and complex logic reasoning tasks.

CANON amplifies only the advantage attributable to the Table 5: The performance comparison be-

metric used for grouping, without amplifying the in- tween the direct numerical amplification of
fluence of other factors. As shown in Table[5] directly advantage and CANON.

Positive Gains

002

Gain of Rethinking

CANON-Intra
DR.GRPO
CANON-Inter
——— CANON-Dynamic

Reward

scaling the advantage (A = A x 2) fails to improve per- Methods Math Logic
formance the way CANON does. Any minor gains likely DR.GRPO . »7 262
stem from faster learning progress due to an effectively Direct Numerical Amplification

. . Numerical Scaling 56.1 25.1
larger learning rate, but this comes at the cost of degraded Entrooy Ady 6.3 185
performance—particularly on out-of-domain logical rea- Py canoN ‘
soning tasks. This suggests that the key to CANON’ success CANON-Tntra 547 29.1
is not simply amplifying the advantage signal, but rather CANON-TInter 57.6 257

selectively amplifying specific signals, and that’s why we
introduce a regrouping operation.

7 CONCLUSION

In this paper, we introduce CANON, a novel reinforcement learning framework for large reasoning
models that leverages human priors on training metrics (e.g., entropy, response length) without
presuming their directional impact on performance. Extensive experiments across six math reasoning
benchmarks and three high-complexity logic reasoning tasks demonstrate that CANON significantly
outperforms prior advantage estimation methods like DR.GRPO. CANON also supports flexible
weighting of different metric trends, where CANON based on response length achieves a superior
Pareto frontier in the performance-efficiency trade-off. Our analysis further confirms that CANON
promotes beneficial behaviors such as effective exploration and reflection, which are critical for
solving complex reasoning problems.

10
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ETHICS STATEMENT

This work aims to introduce human priors about key metrics into reinforcement learning by proposing
a novel advantage estimation framework named CANON, which amplifies the impact of target metrics
without presuming preferences. The experiments in this paper are limited to reasoning tasks conducted
on open-source models, datasets, and benchmarks, which will not raise ethical concerns. We hope
to explore the potential of CANON to enhance the security of large language models in the future,
thereby promoting their reliable and trustworthy development.

REPRODUCIBILITY STATEMENT

We aim to include both the high-level and low-level details of our method in the setup paragraphs of
Section 5 and Appendix [C]to reproduce our results. All experiments are conducted on open-source
LLMs and benchmarks. We employ open-source datasets for the Qwen series LLMs, provide a
detailed description of the prompts used for training and evaluation, and comprehensively present the
construction process of the training dataset for the Llama series LLM. Our code implementation is
based on VeRL (Sheng et al.| 2024)), which is applied with focused modifications in the advantage
computation part, enhancing the reproducibility of our work. Please access our code base via the
following anonymous link: |CANON.
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A LIMITATIONS.

Based on feasibility and motivation, this work focuses on conditions that can be specified through
numerical ordering, without exploring conditions that are more complex and harder to verify. Due
to limitations in paper length and computation resources, this work primarily conducts the CANON
based on two metrics—response length and entropy—while other training metrics remain unexplored.
Additionally, the paper considers only one metric at a time, without attempting to incorporate multiple
metrics simultaneously. This demonstrates that the perspective and framework proposed in this
work is flexible and hold significant potential for extension, which can be further explored in future
research.

B THE USE OF LARGE LANGUAGE MODELS.

LLMs primarily assist this work in two aspects: on one hand, they are used for aiding our writing,
and on the other hand, they sometimes serve as a coding assistant during the programming of our
code base.

C EXPERIMENTS DETAILS.

C.1 RETHINKING PATTERNS.

Following |Gandhi et al.| (2025), we firstly samples 10000 responses of Qwen3-32B [Yang et al.| (2025)
and utilize the modified prompts from (Gandhi et al., [2025) to collect the rethinking patterns of
verification, sub-goal setting, and backtracking. Then we match these patterns in a few Question-
Answer instances and filter out overly frequent conjunctions, overly short words, and semantically
ambiguous phrases. The number of remaining keywords and regular expressions is 334 for verification,
1036 for sub-goal setting, and 532 for backtracking.

C.2 THE MAXIMUM TOKEN BUDGET SETUPS.

We set the maximum token budget for each benchmark based on its difficulty and the average token
length observed from models trained with DR.GRPO, as shown in Figure [l When plotting the
performance-budget curve, we normalize the maximum token budget of each benchmark to 1.0. We
then evaluate the performance of all benchmarks under token budgets ranging from 0.1x to 1.3x
their respective maximum budget, averaging the results across benchmarks at each budget ratio and
displaying them in the figure.

Table 6: Benchmark-wise Maximum Token Budget.

Benchmark Avg. Tokens (unlimited) Max Token Budget
GSM8k 349 600
MATH-500 728 1500
AMC 1214 1800
OlympiadBench 1172 1800
AIME 2024 1640 2000
AIME 2025 1586 2000

C.3 REASONS FOR EXPANDING THE CONTEXT WINDOW OF MODELS FROM QWEN2.5-MATH
SERIES.

Initially, we uses the setting of Section[5.1} however, during the training process, too much length
clipping (> 30%) results in nearly incomparable experimental outcomes, as shown in Figure
Therefore, we expand Qwen2.5-Math-7B’s context limit from 4096 to 16384 and set the maximum
output length to 8192, which alleviates this phenomenon.

C.4 SYSTEM PROMPT.

For the training and inference of Qwen series models, we share the same system prompt as follows.
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Figure 7: The ratio of answers  Figure 8: The score curves of the training set and validation set
truncated due to reaching the from the newly constructed dataset with 35k data and the original
maximum output length. dataset used for the Qwen series models, respectively.

Your task is to follow a systematic, thorough reasoning process before providing the final
solution. This involves analyzing, summarizing, exploring, reassessing, and refining your
thought process through multiple iterations. Structure your response into two sections:
Thought and Solution. In the Thought section, present your reasoning using the format:
“<think>\n thoughts </think>\n”. Each thought should include detailed analysis,
brainstorming, verification, and refinement of ideas. After “</think>\n" in the Solution
section, provide the final, logical, and accurate answer, clearly derived from the exploration in
the Thought section. If applicable, include the answer in \boxed{ } for closed-form results
like multiple choices or mathematical solutions.

C.5 CONSTRUCTION OF TRAINING DATASET FOR LLAMA3.1-8B.

Since the pretraining of Llama3.1-8B lacks data for long chain-of-thought and mathematical reasoning,
its average training reward based on the original dataset used for Qwen2.5-Math remains below 0.2.
To enhance training efficiency, we employ three Llama series models (Llama3.1-8B, Llama3.1-8B-
Instruct, and Llama3.1-70B) to generate solutions for each problem across four datasets (training
set of GSM8k (Cobbe et al., [2021)), training set of MATH (Hendrycks et al., 2021)), a 46k subset
of OpenR1-Math-220k (Hu et al.,|2025; |Yan et al., 2025)), and DeepMath-103k (He et al., |2025)).
We then filter out questions whose accuracy of Pass@8 > 0, ultimately selecting 35k samples for
training the Llama3.1-8B model. Concurrently, due to Llama3.1-8B’s limited instruction-following
capability, we simplify the output format requirements in its system prompt.

Your task is to follow a systematic, thorough reasoning process before providing the final
solution. This involves analyzing, summarizing, exploring, reassessing, and refining your
thought process through multiple iterations. Structure your response into two sections:
Thought and Solution. In the Thought section, each thought should include detailed analysis,
brainstorming, verification, and refinement of ideas. In the Solution section, provide the final,
logical, and accurate answer, clearly derived from the exploration in the Thought section. If
applicable, include the answer in \boxed{ } for closed-form results like multiple choices or
mathematical solutions. Let’s think step by step.

The training curves for this 35k dataset and the original 46k training dataset over 150 training
steps are shown in the Figure|8] It demonstrates that Llama3.1-8B has significantly higher learning
effectiveness on the newly constructed dataset.

C.6 SCHEDULING STRATEGIES OF COEFFICIENT TO BALANCE CANON—-INTER AND
CANON—INTRA.

We try four different scheduling strategies and show the best of them for each model. Figure [J]

shows the dynamics of p in the training process from the First-Inter-Later-Intra (un = 1 — A) and
First-Intra-Later-Inter (i = A). Cosin-First-Inter-Later-Intra and Cosin-First-Intra-Later-Inter
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Table 7: Detailed experimental results of CANON on Llama3.1-8B and Qwen2.5-Math-1.5B . All
models are evaluated under a unified setting. Bold and underline indicate the best and second-best
results, respectively.

Model Math Reasoning High Complexity Reasoning

AIME 24 AIME 25 Olympiad AMC MATH-500 GSM8k | Tokens Acc |Mid Large XLarge | Tokens Acc
Qwen2.5-Math-1.5B

DR.GRPO (. =0.5) 133 11.0 439 48.8 77.0 84.3 | 2381 464|237 9.7 5.0 9215 12.8

CANON-Intra 15.0 9.7 39.1 47.1 752 84.5 4092 45.1|127.7 11.5 49 11718 14.7

CANON-Inter 14.3 9.3 41.8 49.4 78.8 82.7 1876 46.1|23.1 9.6 5.8 8342 12.8

CANON-Dynamic 16.0 10.0 42.4 50.2 78.6 83.3 2479 46.8/27.0 16.3 7.9 7070 17.0

Llama3.1-8B

DR.GRPO (2 = 0.5) 13 0.3 8.3 113 320 78.9 9476 22.021.1 13.8 9.7 6370 14.9

CANON-Intra 1.0 0.0 7.7 10.2 27.2 78.9 | 23961 20.8(243 167 103 | 17753 17.1

CANON-Inter 2.7 0.0 8.0 10.0 31.6 79.8 | 3671 22.1/179 138 9.5 1331 137

CANON-Dynamic 0.7 0.0 7.1 12.4 33.8 814 2354 22.6/26.0 184 123 | 1685 189

schedule the value of 1 with a cosine annealing function ¥ with restarts and warm-up:

s+1 .
Mmax * if s <w
U = , ,
1 S : /_ d S—w
Hmin+§(umax*ltmin) 1+ cos W'W if s>wand s = s —wmo LTJ
(10)

where ¢ denotes the number of restart and w is the warm-up step. s is the current step of training and
S is the total step. ftmax and pmin denote the specified maximum and minimum values of p. We use
c=3,w = 30and S = 150 for both strategies.

In strategy Cosin-First-Inter-Later-Intra, we utilize y = ¥ with . = 1.0 and ppi;, = 0.4,
respectively, while in strategy Cosin-First-Intra-Later-Inter, we utilize y = 1 — U) with piy.x = 0.6
and fumin = 0.0, respectively. The changes in x under these strategies are shown in the Figure [10]
Ultimately, based on training performance, we selected strategy Cosin-First-Inter-Later-Intra for
Qwen2.5-7B and Llama, and strategy First-Inter-Later-Intra for Qwen2.5-1.5B.

Cosin-First-Intra-Later-Inter
Warm-up Restart Cosin-First-Inter-Later-Intra

First-Intra-Later-Inter
First-Inter-Later-Intra

Coefficient u
Coefficient u

W @ w T e 1w
Training Steps = % 23 w 9 £ pa
Training Steps

Figure 9: The changes of u for two schedul-
ing strategies based on accuracy during
training.

Figure 10: The changes of p for two scheduling strate-
gies based on training steps during training.

C.7 DETAILED EXPERIMENTAL RESULTS ON LLAMA3.1-8B AND QWEN2.5-MATH-1.5B.

Here we show the detailed test results for Llama3.1-8B and Qwen2.5-Math-1.5B for the compar-
ison between CANON, CANON-Dynamic and its baseline. As shown in Tablem consistent with
Qwen2.5-Math-7B, Llama3.1-8B achieves superior performance on math tasks with CANON-Inter
and leads on reasoning tasks with CANON-Intra, while CANON-Dynamic outperforms the base-
line across both tasks. On Qwen2.5-Math-1.5B, CANON—-Inter does not achieve a lead in math
performance; however, its dynamic variant CANON-Dynami c still surpasses the baseline in both
tasks, demonstrating the effectiveness of the CANON.
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D ADDITIONAL EXPERIMENTS.

D.1 CANON BASED ON ANOTHER METRIC.

To further verify that CANON remains effective under other grouping criteria, we conduct new
experiments that use the number of per-token reflection steps in each response as the grouping
metric. As shown in Table 8] it exhibits a trend similar to entropy-based CANON. Although both
are slightly inferior to the entropy-based CANON, CANON-Inter still outperforms the baselines
on mathematical reasoning, and CANON-Intra achieves better performance than the baselines on
complex logic reasoning. Figure [[T]demonstrate that CANON-Inter favors less-reflection responses
and CANON-Intra encourages more reflections.

Table 8: Overall performance of CANON based on Per-token Reflection for Qwen2.5-Math-7B. All
models are evaluated under a unified setting. Bold and underline indicate the best and second-best
results, respectively.

Model Math Reasoning High Complexity Reasoning
AIME 24 AIME 25 Olympiad AMC MATH-500 GSMS8k | Tokens Acc |Mid Large XLarge|Tokens Acc
DR.GRPO (i = 0.5)  27.7 20.3 484 634 832 9L1 | 1522 557|392 244 151 | 4896 262
Our Methods (Conditional Groups based on Per-token Reflection)
CANON-Intra 25.0 16.0 504 628 854 913 | 1912 55.1[41.0 255 155 | 4834 273
CANON-Inter 267 183 519 654 854 922 | 1739 56.6|37.4 170 85 | 7835 21.0
0.7 p=0.0 (CANON-Intra)
u=0.5 (DR.GRPO)
o038 ™™ p=1.0 (CANON-Inter)
0.6 7,
C
e S oo
8 5
) @
[24 "’q_) 0.025
N = /\\—\____\\/
03
Training Steps Training Steps

Figure 11: The training dynamic of CANON based on per-token reflection.

D.2 OTHER ALTERNATIVE SCHEDULING STRATEGIES OF CANON-DYNAMIC

We conduct further experiments that utilize other alternative scheduling strategies that were used to
be performed in the scheduler of learning rate, including the Lambda strategy and
Cyclic-triangular2 strategy [2017). Following the setting of tried scheduling strategies, both
of these strategies schedule p from 1.0 down to 0.4.

The new experimental results in Table[9]show that Lambda strategy achieves slightly better perfor-
mance than DR.GRPO on math tasks but performs worse on logic reasoning tasks. This may be
because they fail to sufficiently leverage intra-group advantages in the later stages of training. This
experiment demonstrates the rationale behind CANON’s tried scheduling strategies and highlights
the practical flexibility of the CANON framework.

D.3 DYNAMIC SCHEDULING ON LENGTH-BASED CANON.

When we consider response length, CANON-Inter tends to produce shorter responses, whereas
CANON-Intra favors longer ones. However, these trends in response length do not translate into
performance gains. This is precisely why we only applied dynamic scheduling to the entropy-based
variant of CANON. To prove this, we try dynamic scheduling on length-based CANON under the
setting of entropy-based CANON—initially favoring shorter responses and gradually shifting toward
longer ones as training progresses. The results are shown below. Although the responses are shorter
than those of DR.GRPO, the math performance slightly declines, as shown in Table[I0] While this
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Table 9: Overall performance of CANON-Dynamic based on other two scheduling strategies for
Qwen2.5-Math-7B. All models are evaluated under a unified setting. Bold and underline indicate the
best and second-best results, respectively.

Model Math Reasoning High Complexity Reasoning
AIME 24 AIME 25 Olympiad AMC MATH-500 GSM8k ‘ Tokens Acc ‘Mid Large XLarge ‘ Tokens Acc

DR.GRPO (1 = 0.5) 27.7 20.3 48.4 63.4 83.2 91.1 ‘ 1522 55.7 ‘ 39.2 244 151 ‘ 4896 26.2

CANON-Dynamic based on Entropy

Cosin-First-Inter-Later-Intra ~ 30.0 17.7 50.7 63.3 86.6 91.8 1452 56.7140.4 30.5 16.6 | 3535 29.2

First-Inter-Later-Intra 28.0 20.3 524 64.6 84.2 92.6 1328 57.0|41.7 26.6 16.5 3862 28.3

Cyclic-triangular2 strategy 24.0 18.0 49.3 63.3 84.8 91.3 1647 55.1|374 22.1 14.5 5203 24.6

Lambda strategy 26.0 22.0 49.3 63.5 85.2 91.5 1744 56.3|37.1 21.8 13.6 5297 24.1

method shows improved performance on complex reasoning tasks, it still does not surpass either
CANON:-Inter or CANON-Intra based on length.

Table 10: Overall performance of CANON-Dynamic based on length response for Qwen2.5-Math-
7B. All models are evaluated under a unified setting. Bold and underline indicate the best and
second-best results, respectively.

Model Math Reasoning High Complexity Reasoning
AIME 24 AIME 25 Olympiad AMC MATH-500 GSMSk‘Tokens Acc ‘Mid Large XLarge‘Tokens Acc
DR.GRPO (1 =0.5)  27.7 20.3 48.4 63.4 83.2 91.1 ‘ 1522 55.7 ‘ 392 244 151 ‘ 4896 26.2
CANON based on Length
CANON-Intra 21.7 19.0 499 63.0 86.2 92.2 2176 55.3|41.8 25.6 147 | 4364 274
CANON-Inter 27.3 19.3 47.6 64.2 82.6 91.0 1008 553|427 28.6 17.1 | 3652 29.5
CANON-Dynamic 271 17.7 48.3 63.6 84.6 91.7 1393 55.6(39.6 247 17.8 | 4333 273

D.4 ANALYSIS OF ;t’S HYPERPARAMETER TUNING COMPLEXITY

Although CANON-Dynamic introduces a hyperparameter ;. to balance exploitation and exploration,
unlike conventional regularization coefficients, p carries rich physical meaning and does not add
significant complexity. When p equals 0.5, DR.GRPO achieves the simplest form of balance through a
static weighted average. This observation inspired us: if a more dynamic balancing mechanism exists,
it is natural that this method could outperform DR.GRPO—this is precisely why CANON-Dynamic
works.

To analyze the hyperparameter tuning complexity re-introduced by p, we train Qwen2.5-Math-7B
with a 4K context length using entropy-based CANON, showing how model performance and entropy
vary with . Table@indicates that, as p increases from 0 (CANON-Intra)to 1 (CANON-Inter),
in-domain mathematical performance steadily improves, out-of-domain logical reasoning perfor-
mance gradually declines, and entropy consistently decreases—revealing a clear trend. Therefore,
introducing p does not increase the difficulty of hyperparameter tuning; rather, it extends the CANON
framework and offers new insights on how we can utilize CANON.

Table 11: Performance and entropy across different y values.

I 00 02 04 05 06 038 1.0
Math 542 549 560 56.6 56.77 564 579
Logic 271 251 246 238 256 229 225
Entropy | 240 128 046 039 0.26 0.19 0.15

D.5 ANALYSIS OF &’S HYPERPARAMETER TUNING COMPLEXITY

Insights from CANON reveal that the choice of metric trend primarily occurs in the inter-group
advantage computation. Therefore, in scenarios where inference efficiency is desired, we only need
to slightly reduce the reward weight for the long-response group in CANON-Inter, prompting the
model to favor shorter answers. Meanwhile, since CANON—-Int ra remains unchanged, CANON-Ef £
fully preserves the model’s exploration capability, achieving a superior performance—efficiency
Pareto frontier. The hyperparameter « introduced in CANON-EfT not only allows flexible tuning
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toward specific application needs and thorough exploration of the Pareto frontier, but also ensures
greater stability and smoother behavior compared to baselines (like the collapse of Length Reward
(+)) —because it minimally alters the training process (only modifying the inter-group advantage
computation).

To analyze the hyperparameter tuning complexity re-introduced by «. We show the detailed per-
formance and token length of these CANON-Eff models. Table ?? indicates that as « gradually
decreases from 0.96 to 0.5, model performance declines modestly, while the number of tokens con-
sumed drops significantly—again aligning with our understanding. Therefore, in efficient reasoning
tasks, introducing « not only avoids increasing hyperparameter tuning difficulty but also enables
users to apply CANON-Eff more flexibly according to their specific needs.

Table 12: Performance and token cost across different «v values.

« 0.5 0.7 0.8 0.88 0.96
Performance | 44.5 49.5 52.0 53.6 56.2
Token Cost 198.9 317.9 420.6 5766 8224

E DETAILED DERIVATION OF THEOREM [I] AND

Theorem 1 (Situations with clearer advantage signal). Suppose that condition c is based on numerical
comparisons and can be derived through sorting of metrics. Further assume that the sampled response
o to query q satisfy condition ¢ with probability p € (0,1), and Eq sy c[Ro] 7 Eo not sarisfy c[Ro)-
Then, we have:
| Ainter |
—— 20t only when |CF1 = |C, | if |Cf | is a constant. (11)

ADR.GRPO
|Aq,o,t

Proof of Theorem[I] Given a prompt g, the set of all responses that satisfy condition c can be denoted
as C. Weuse p = P(o € C|q,0) € (0,1) to describe the probability that a response o satisfying
condition c is provided to the prompt ¢ by an LLM with parameter 6. Assuming that when condition
c is satisfied, the probability of the correct response is a-, and when condition c is not satisfied, the
probability of the correct response is a_. Denoting the correctness of the response o to query ¢ as R,,
then we have:

EoeC[Ro] = a4 and EoQC[Ro] =a—_ . (12)

E.1 DR.GRPO

Sampling a group of responses G, to the prompt g, the advantage AE}E’S’RPO
calculated as:

of a response o can be

ADRGRFO — R, — mean({Ry |0 € Gg}). (13)
We use APRGRPO (5 ¢) to denote the average advantage of the responses that satisfy condition ¢, and

utilize APRGRPO (4, ¢) to describe the average advantage of the other responses that do not satisfy
condition c.

ADR‘GRPO(Q C) — EOEC[AI;E"?RPO}
= EOEC[RO] - EoeGq [Ro]
a4 — [P(O € C|q7 G)EOEC[RO] + P(O ¢ C|Q7 9)E0¢C[ROH
as —pay — (1-pla- = (ay —a_)(1-p), (14)
APRGRFO( ) — (a_ —ay)p. (15)
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E.2 INTER-GROUP ADVANTAGE (CANON-INTER)

We sort the sampled responses based on the numerical value considered by condition ¢, and split them
at position k into two groups. Based on the symmetry of the inter-group advantage, we can denote
ct
these k responses as C’j . Weuse A := || e ‘l
q
group advantage with Ay (o, ¢, p) for the responses that satisfy condition c. Ay (o, ¢, p) is utilized to
represent the average inter-group advantage of those responses that do not satisfy condition c.

to simplify the notation, and denote the average inter-

Then, we can compute the average reward of each group as follows.
EoEC; [Ro] = [P(O € C|Q>070 € C;)EOEC[RO] + P(O ¢ C‘qv 97 o€ C;)EOQC[ROH
gEOGC[RO] + L;pEOQC[ROL it A > p

EOEC [Ro]a if A < p

Ray + %a,,if)\ >p
= ) (16)
ap,ifA<p
Eogcg' [Ro] = [P(O € C|Q7970 ¢ C;)EOGC[RO] + P(O ¢ C“L 0,0 ¢ C;_)EoécRo}

Eozc[Ro),if A > p

P2 Eec[Ro] + T2 Eoge[Ro),if A < p

a_,if A\>p
= . 17
- a7

1— .
P=Sa, + Ra_,if A <p

Therefore, we can calculate the average advantages:
Ax(0,¢,p) = Eoec[R, —P(o€ Cf|q.0,0 € C)Eo/gcj [Ror] —P(o ¢ Cllq,0,0€ C)Eo'ecj [Ro]]

a_,if A\ >p 0,if \>p
“BeeclR -4
Slisas + =Ra-]if A <p Efag it A <p
ay —a_,if A\ >p
=\ aaw ) ) (18)
Py (ay —a_),if A\ <p

Ax(0,¢,p) = Eogc[R, —P(o € C’;‘\q,e, o¢ C)Eo/ecj [Ro'] —P(o ¢ C’;’|q, 0,0¢ C)Eo'ecj [Ro]]
A

Bl 2=La_,if A > p 22 (%ar + 252a],if A > p
= Lpgc|Llo] — -
0,if A <p ap,if A <p
K (o —as)ifA>p o
a_ —ay,ifA<p
E.3 COMPARISON
We have the ratio between inter-group advantage and DR.GRPO:
| ADRGRPO (4, ¢)] ﬁ ifA<p’
and
Ar.ep)| _ [y A= e
| ADRGRPO (4, ¢)| S>1 ifa<p’
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To accentuate the impact of a specific condition on advantages, the following is required:

1—A A
—>1ifA>p, and ——— > 1if A < p. (22)
A1 -p) (I=XNp
Then we have
1
A< 5o if)\Zp,and)\>1ipif)\<p. (23)

If |CF | is a constant, A is also a constant. Due to ﬁ > 1 and s < 3. A needs to satisfy A < 3
and A > % at the same time, consequently restricting the value of A to 0.5. In this way, we have

Ic _
Wq‘cvq,‘ = 05, and ﬁnally |C;_| = |Cq | O

Theorem 2 (Selective amplification based on specific metrics (proved in Appendix[E)). Consider
independent conditions c¢1 and ca, and their corresponding sets Cq and Cs (i.e., P(o € C1 N
Cslq,0) = P(o € C1]q,0)P(0 € Cs|q,0)). When we fix the condition ¢y, then for any value of as,
as— and P(o € Cslq, 0) that induced by whether ¢, is satisfied, we have

A inter based on ¢y
‘Aq,o,t
ADR.GRPO
|Aq,o7t

is a constant. (24)

which says CANON based on the condition ci will not amplify the influence of another independent
condition cs.

Proof of Theorem[2] According to Eq. 20]and [21] the scaling factor depends only on the probability
p1 = P(o € C1]q, 0) that a response o satisfying condition ¢; is provided to the prompt ¢ by an LLM
with parameter 6. Therefore, any irrelevant condition co and its associated parameters cannot affect
this ratio. O
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