
Automatically Enhanced Instruction-following Capabilities of Large
Language Models via Execution Feedback

Anonymous ACL submission

Abstract

One core capability of large language mod-001
els (LLMs) is to follow natural language in-002
structions. However, the issue of automati-003
cally constructing high-quality training data004
to enhance the complex instruction-following005
abilities of LLMs without manual annota-006
tion remains unresolved. In this paper, we007
introduce AUTOIF, the first scalable and008
reliable method for automatically generat-009
ing instruction-following training data. AU-010
TOIF transforms the validation of instruction-011
following data quality into code verification,012
requiring LLMs to generate instructions, the013
corresponding code to check the correctness014
of the instruction responses, and unit test sam-015
ples to verify the code’s correctness. Then,016
execution feedback-based rejection sampling017
can generate data for Supervised Fine-Tuning018
(SFT) and Reinforcement Learning from Hu-019
man Feedback (RLHF) training. AUTOIF020
achieves significant improvements across three021
training algorithms, SFT, Offline DPO, and On-022
line DPO, when applied to the top open-source023
LLMs, Qwen2 and Llama3, in self-alignment024
and strong-to-weak distillation settings.025

1 Introduction026

The instruction-following ability of large language027

models (LLMs) refers to their capacity to under-028

stand, interpret, and execute commands given to029

them in natural language (Lou et al., 2023; Ope-030

nAI et al., 2024). This ability is fundamental to031

contemporary LLMs as it enables them to lever-032

age their underlying knowledge, interact intuitively033

with users (Ouyang et al., 2022), adapt to various re-034

quirements (Zhang et al., 2023), and perform com-035

plex tasks (Sun et al., 2024). Misunderstandings036

in following instructions can lead to unintended037

outcomes, potentially resulting in severe conse-038

quences, particularly in critical scenarios (Zhou039

et al., 2023; Chang et al., 2024).040

Instruction

Response

Verification
Function

Keep your response under 20 characters in length.
Are you familiar with OET or Occupational English Test ?

Response 1：Yes.

Response 4：Yes, l'm familiar with it.

Response 3：Yes, I'm familiar with OET.

Response 2：Yes, I'm familiar.

Figure 1: An example of the verification function au-
tomatically assesses the adherence of responses to the
instruction’s constraints.

Although instruction following is crucial, scal- 041

able and reliable methods to enhance this capability 042

of LLMs remain elusive. Current efforts in this 043

field are divided into manual annotation (Wei et al., 044

2021; Zhou et al., 2023; Jiang et al., 2024b) and be- 045

havior imitation (Xu et al., 2023; Zhao et al., 2024). 046

Manual annotation involves annotators designing 047

instructions and writing corresponding responses. 048

However, due to human cognition’s limitations, cre- 049

ating highly complex and diverse instructions is 050

challenging, making the process difficult to scale. 051

Furthermore, accurately executing complex instruc- 052

tions can sometimes be difficult for humans (Sun 053

et al., 2024; Cao et al., 2024b), requiring multi- 054

ple rounds of rigorous and costly validation (Wang 055

et al., 2024a; Wei et al., 2024). On the other hand, 056

behavior imitation aims to distill responses from 057

more advanced LLMs (Taori et al., 2023; Peng 058

et al., 2023) like GPT-4. This approach limits mod- 059

els to the capabilities of the advanced LLMs from 060

which they are distilled. Moreover, even advanced 061

LLMs can make mistakes, and the reliability of 062

the distilled data cannot be guaranteed (Cui et al., 063

2023). Consequently, models trained with this data 064

may have a propensity to not follow instructions 065

accurately (Zhou et al., 2024). 066

1

In this paper, we introduce AUTOIF, the first067

scalable and reliable method for automatically gen-068

erating instruction following training Data for Su-069

pervised Finetuning (SFT) or Reinforcement Learn-070

ing from Human Feedback (RLHF) (Ouyang et al.,071

2022). The core idea of AUTOIF is to use code to072

verify the correctness of following instructions. In-073

tuitively, if designed properly, a significant portion074

of instructions, such as “Keep your response un-075

der 20 characters in length” can be verified for076

correctness using code, as illustrated in Fig. 1.077

Therefore, the key components of AUTOIF include078

(1) automatically generating instructions that can079

be verified by code, (2) automatically generating080

corresponding verification codes for these instruc-081

tions, and (3) ensuring the reliability of the first082

two steps. Specifically, we start by providing AU-083

TOIF with a small set of hand-written seed instruc-084

tions. Then, LLMs, not necessarily advanced ones,085

generate an augmented instruction set through self-086

instruct (Wang et al., 2023). Next, LLMs write ver-087

ification codes and unit test cases for each instruc-088

tion. Only the code that compiles correctly, passes089

the test cases, and back-translates to the original090

instruction is retained. If an instruction does not091

have a corresponding code that can verify its cor-092

rectness, it is discarded. Finally, we employ LLMs093

to generate responses that either pass or fail the094

verification code using execution feedback-based095

rejection sampling (Yuan et al., 2023). Responses096

that pass can be directly used for SFT, while pairs097

of passing and failing responses can be used to cre-098

ate chosen-rejected pairs for Direct Preference Op-099

timization (DPO) (Rafailov et al., 2023) and other100

RLHF algorithms. Moreover, once the instructions101

and verification code are determined, this process102

can be conducted on-policy, continually enhancing103

the instruction-following capabilities.104

Through extensive experiments, we have demon-105

strated that AUTOIF achieves significant improve-106

ments under three training algorithms—SFT, Of-107

fline DPO, and Online DPO—when applied to the108

top open-source LLMs, Qwen2-72B and Llama3-109

70B, in both self-alignment and strong-to-weak110

distillation settings. In the IFEval benchmark, we111

achieved Loose Instruction (Acc.) rates of up to112

88.0% with Qwen2-72B and 90.4% with Llama3-113

70B, marking the first instance of surpassing 90%114

accuracy. In the FollowBench benchmark, these115

models also showed significant improvements, with116

increases of over 5% in the SSR metric (avg). Ad-117

ditionally, they enabled Qwen2-7B and Llama3-8B118

to achieve average performance gains of over 4% 119

in both benchmarks. Replacing Qwen2-72B and 120

Llama3-70B with the more advanced GPT-4 re- 121

sulted in further substantial improvements. We will 122

open-source the SFT and DPO datasets constructed 123

using AUTOIF on Qwen2-72B, representing the 124

first open-source complex instruction-following 125

dataset at a scale of tens of thousands. 126

2 Related Works 127

Instruction-following capabilities are among the 128

most essential features of LLMs (OpenAI et al., 129

2024; Lou et al., 2023), which are expected to 130

precisely follow a broad and complex set of in- 131

structions. Consequently, recent research has 132

concentrated on evaluating LLMs’ instruction- 133

following abilities in various contexts, such as 134

verifiable (Zhou et al., 2023), compositional (Qin 135

et al., 2024), format-related (Xia et al., 2024), re- 136

futing (Yan et al., 2024), and fine-grained instruc- 137

tions (Jiang et al., 2024b). However, a significant 138

gap remains between open-source and proprietary 139

closed-source LLMs. Sun et al. (2024) propose 140

Conifer, which enhances the instruction-following 141

capabilities of open-source LLMs through knowl- 142

edge distillation from proprietary LLMs. Wang 143

et al. (2024b) use LLMs to encode instruction meta- 144

data and augment diverse instructions from this 145

metadata, employing proprietary LLMs for quality 146

control. Both approaches, however, rely on propri- 147

etary LLMs for response distillation or judgment, 148

which not only limits their potential but also sub- 149

jects them to OpenAI’s terms of use 1. In this work, 150

we propose AUTOIF, a more scalable and reliable 151

method to enhance the instruction-following capa- 152

bilities of LLMs. AUTOIF uses execution feedback 153

from self-generated verification functions to pro- 154

vide supervision for instructions. This allows for 155

effective self-alignment and strong-to-weak distil- 156

lation on open-source models, thereby narrowing 157

the performance gap with proprietary LLMs. 158

Learning with Execution Feedback is a widely- 159

used technique in automated alignment for tool 160

use and coding (Cao et al., 2024a). These learn- 161

ing methods typically utilize execution feedback 162

from tools such as code executors to provide su- 163

pervision for specific tasks. For instance, Le et al. 164

(2022) employ feedback from unit tests via code 165

compilers to enhance code synthesis capabilities 166

through reinforcement learning. Similarly, Chen 167

1https://openai.com/policies/terms-of-use

2

https://openai.com/policies/terms-of-use

et al. (2023) train LLMs to provide debugging sug-168

gestions as feedback to improve coding abilities.169

Additionally, Qiao et al. (2024) introduce Rein-170

forcement Learning with execution feedback to171

enhance LLMs using execution results from tools.172

Building on this learning paradigm, we propose a173

novel scalable oversight method that enables LLMs174

to autonomously generate verification functions175

and unit tests for natural language instructions,176

thereby applying execution feedback to enhance177

their instruction-following capabilities.178

3 AutoIF179

We introduce AUTOIF, an automated, scalable,180

and reliable method designed to enhance the181

instruction-following capabilities of LLMs. In this182

section, we outline the preliminaries (§3.1), detail183

the two core components of AUTOIF (§3.2, §3.3),184

and discuss various training strategies that can be185

seamlessly integrated with AUTOIF (§3.4).186

3.1 Preliminaries187

Instruction-following Capabilities. Following188

instructions is one of the most crucial skills in189

modern LLMs. These models are expected to190

provide precise responses to queries containing191

complex instructions, which can be either atomic192

or compositional. To evaluate the instruction-193

following capability of LLMs, we define a gen-194

eral instruction-following requirement as a specific195

task. In this task, given an instruction I = {ij}Nj=1196

with N specific constraints (e.g. “Please generate197

text in Shakespearean style, no more than 50 to-198

kens” contains 2 constraints) and a specific query199

x, an LLM πθ should generate precise response200

y ∼ πθ(y | x, I) adhering to the constraints.201

Verifiable Instructions. The complexity and di-202

versity of instructions necessitate manual construc-203

tion and verification for reliable supervision. This204

practical challenge motivates us to focus initially205

on instructions that can be automatically verified206

through programs and code executors, also known207

as verifiable instructions (Zhou et al., 2023). Specif-208

ically, for a given instruction I and task-specific209

query q, there exists a verification function fI such210

that fI(y) returns true when the model’s response211

y correctly follows the instruction. We demonstrate212

that supervision of such instructions can be self-213

generated through scalable oversight with LLMs214

and execution feedback. Extensive experiments in215

our work show that training on verifiable instruc-216

tions significantly benefits the handling of other 217

general instructions that are more complex but un- 218

verifiable with simple code snippets. 219

Method Overview. AUTOIF synthesizes high- 220

quality instruction-following data through self- 221

evolution, rejection sampling, and execution feed- 222

back. As illustrated in Fig. 2, AUTOIF integrates 223

automated data augmentation with quality verifica- 224

tion processes, including automatically generated 225

verification functions and back-translation instruc- 226

tions. This approach enables a two-stage automated 227

data synthesis at both the instruction (§3.2) and 228

query levels (§3.3). Additionally, we introduce 229

three training strategies (§3.4) and explore two ex- 230

perimental settings (§5) to thoroughly evaluate the 231

effectiveness and generalization of AUTOIF. 232

3.2 Instruction Augmentation and Verification 233

We first develop verifiable instructions along with 234

corresponding evaluation functions, using rejection 235

sampling informed by execution feedback. 236

Seed Instruction Construction. We start by hand- 237

writing a set of seed instructions, denoted as Dseed, 238

ensuring that each instruction contains only a sin- 239

gle atomic constraint (e.g., “Answer the words that 240

begin with B”). Detailed information on seed in- 241

structions is listed in Appx. §A. 242

Self-Instruct. Self-Instruct (Wang et al., 2023) is a 243

straightforward and intuitive strategy for automated 244

data augmentation that has garnered significant at- 245

tention in the field of LLM reasoning (Xu et al., 246

2023; Zhao et al., 2023). For each instruction in 247

Dseed, we use an LLM to perform K instruction 248

rewrites, generating Daug. We then combine the 249

seed and augmented data sets to obtain an enhanced 250

set of instructions, Dins = Dseed ∪Daug, and re- 251

move any duplicates. 252

Automated Quality Cross Verification. Previous 253

research has shown that relying solely on model- 254

generated augmented instructions often leads to the 255

inclusion of low-quality samples (Mumuni and Mu- 256

muni, 2022; Xie et al., 2020; Zheng et al., 2024). 257

Inspired by a series of tool execution studies, we 258

employ an LLM to generate verification functions 259

and test cases for each instruction. We use feed- 260

back from executing Python programs to ensure 261

quality control. Given the instruction set Dins, the 262

LLM M employs a rejection sampling (Touvron 263

et al., 2023; Yuan et al., 2023) to generate K ver- 264

ification functions fI = {fi}Kj=1 and test cases 265

cI = {ci}Kj=1 for each instruction I , resulting in 266

3

Seed
Instructions

Self-Instruct Verification
Function

&
Test Cases

Back Translation

Instruction
Set (2)

Verification
Function (2)

Nli Model

Test Cases

Instruction
Set

Verification
Function Final Instruction &

Verification Function

Final Instruction &
Verification Function

ShareGPT Queries

Query Set

VerificationFunction (3)

Rejection
Samplling

Response

Query Set

Verification
Function (3) Scoring

Data Filter

Data Filter

Step2 Query Augmentation and Verification

Instruction Set

Seed
Instructions

Augmented
Instructions

Superisor Model

Superisor Model 1. Response acc>0.5
2. At least 1 Func
and response.

Automated Quality
Cross Verification

Step1 Instruction Augmentation and Verification

Instruction
Set (3)

Verification
Function (3)

Response (2)

Query Set (2)

Verification
Function (3)

Response (3)

Query Set (3)

Verification
Function (3)

D-train

1. Funcs can run.
2. Funcs Acc>0.5.
3. Test Cases Acc>0.5.
4. At least 1 Func and case.

Figure 2: An Overview of AUTOIF: A Two-Stage Automated Instruction-Following Data Synthesis Method.

the set {I, fI , cI} ∈ Dins. We then cross-validate267

the quality of the instructions using the verification268

functions and test cases, ensuring they meet the269

following criteria:270

• The verification function f ∈ fI can be success-271

fully compiled by the Python executor.272

• Each test case c ∈ cI achieves an accuracy rate273

greater than 0.5 across all verification functions.274

• Each verification function f ∈ fI achieves an ac-275

curacy rate greater than 0.5 across all test cases.276

• Each instruction includes at least one evaluation277

function and test case.278

By adhering to these four conditions, we obtain the279

quality-filtered instruction set {I(2), f (2)
I } ∈ D

(2)
ins.280

Back-translation Verification. After the cross-281

validation stage, we obtained initially quality-282

verified verification functions and instructions. To283

further ensure the consistency between instruc-284

tions and verification functions, we introduce back-285

translation. For a given pair {I(2), f (2)
I } ∈ D

(2)
ins,286

we use the LLM M to back-translate the verifi-287

cation function f ∈ f
(2)
I into instruction If . We288

then treat I as the premise and the back-translated289

instruction If as the hypothesis. Using the NLI290

model, we identify the semantic relationship be-291

tween the two instructions. The prediction can fall292

into one of three categories: entailment, contradic-293

tion, or neutral:294

pθ(· | q, qaug) = softmax (scoreθ(I, If)) , (1)295

where scoreθ : Rk×ℓI × Rk×ℓIf → R3 is a model296

dependent scoring function with parameters θ. We297

filter out any instruction I labeled as contradiction298

to ensure the intent consistency. Finally we obtain299

the set {I(3), f (3)
I } ∈ D

(3)
ins300

3.3 Query Augmentation and Verification 301

Once we have obtained verified instructions and 302

verification functions, we utilize them to create 303

training data comprising queries and responses. 304

Query Reforming and Augmentation. In the real- 305

world application of modern chatbots, instructions 306

are typically employed to generate constrained re- 307

sponses to user queries. Therefore, creating high- 308

quality instructions is merely the initial step toward 309

achieving effective instruction-following capabili- 310

ties. To acquire authentic queries, as shown in the 311

bottom part of Fig. 2, we randomly selected K user 312

queries from ShareGPT (Chiang et al., 2023) for 313

each instruction and concatenated them to construct 314

the seed query dataset x, f (3)
I ∈ Dq. To further en- 315

hance the diversity and complexity of the input 316

x, we utilized the LLM to generate K responses 317

yx = {yi}Ki=1, resulting in {x, f3
I , yx} ∈ Dq. 318

Instruction-following Verification. Following the 319

previous quality cross-verification process, we fur- 320

ther employ verification functions to assess whether 321

the augmented responses adhere to the constraints 322

in input x. Similarly, we require each response in 323

Dq to meet the following conditions: 324

• Each response must achieve an accuracy rate 325

greater than 0.5 across all verification functions. 326

• Each input must include at least one verification 327

function and one response. 328

Based on these rules, we obtain the set 329

(x(2), f
(3)
I , y(2)) ∈ D

(2)
q . 330

Query Quality Verification. Additionally, we ob- 331

serve that concatenated instructions and queries of- 332

ten conflict. For instance, a high-quality response 333

to the query “help me write a news article” is un- 334

likely to comply with the instruction “please limit 335

4

D-train

Base Model
SFT

SFT Model
Self Sample Verification Function

Scoring

Response 1

Response N

Response 2
... Acc=0 →Negative

Acc>0.5 →Postive

Online DPO data

Response 1

Response N

Response 2

Score 1

Score 2

Score N

... ...

DPO Training

×N Iterations

Base Model
SFT

SFT Model

Superisor Model
SampleD-train

Base Model
SFT

SFT Model

D-train

Response 1

Response N

Response 2

... Verification
Function
Scoring Offline DPO data

Response 1

Response N

Response 2

Score 1

Score 2

Score N

... ...

DPO Model

i) SFT

iii) SFT + Iterative Online DPO

ii) SFT + Offline DPO

Acc=0 →Negative

Acc>0.5 →Postive

Figure 3: Different training strategies that can be adapted with synthetic dataset generated by AUTOIF.

your answer to two words”. Such high-level seman-336

tic inconsistencies are challenging for a simple NLI337

model to discern. Therefore, we employ the LLM338

M to assign matching scores between the instruc-339

tion and query in input x(2) and the corresponding340

responses y(2), on a scale from 1 to 10. We then fil-341

ter out samples with a score lower than 8, construct-342

ing the final training set Dtrain = {xi, yi, fIi}Ni=1.343

3.4 Training Strategies344

AUTOIF offers multifaceted supervision for the345

instruction-following task, making it adaptable to346

various training strategies. To thoroughly evalu-347

ate the effectiveness of AUTOIF, we propose the348

following training approaches:349

Supervised Fine-tuning (SFT). Given (xi, yi) ∈350

Dfinal, we apply the standard Supervised Fine-351

tuning (SFT) objective on the base model P with352

parameters θ: L(θ) =
∑

(xi,yi)∈Dtrain
logPθ(yi |353

xi) , where xi denotes the i-th input, consisting of354

a concatenated instruction and user query.355

SFT + Offline DPO. In the process of AUTOIF,356

multiple scales of quality filtering are utilized, nat-357

urally generating a substantial number of positive358

and negative sample pairs. This motivates us to359

obtain pairwise preference data (x, yw, yl). Our360

preference data mining is divided into two parts:361

• Instruction Level: During the automated qual-362

ity cross-verification stage, we first extract posi-363

tive samples cw from cases with an accuracy rate364

higher than 0.5 on all verification functions and365

negative samples cl from cases with an accuracy366

rate of 0. We then construct pairwise preference367

data for each instruction: Dpref
ins → (I, cw, cl).368

• Query Level: In the query quality verification369

process, we similarly extract positive samples370

yw from responses with an accuracy rate higher 371

than 0.5 on all verification functions and negative 372

samples yl from responses with an accuracy rate 373

of 0. We then construct query preference data: 374

D
pref
query → (x, yw, yl). 375

Finally, we merge the two parts of the data: 376

Dpref = D
pref
ins ∪ D

pref
query. To further explore the 377

potential of pairwise preference data (x, yw, yl) ∈ 378

Dpref, we first perform vanilla SFT on the base 379

model πθ to obtain an SFT model πSFT
θ as equa- 380

tion 3.4. Then, we apply Direct Preference Opti- 381

mization (DPO) (Rafailov et al., 2024) on our SFT 382

model, which can be formulated as follows: 383

LDPO(π
SFT
θ ;πref) = −E(x,yw,yl)∼D[logσ(βlog

πSFT
θ (yw|x)

πSFT
θ (yw|x)

384

−βlog
πref(yl|x)
πref(yl|x)

)], 385

where the reference model πref is set to πSFT
θ ini- 386

tially and remains fixed throughout training. β is 387

a hyperparameter and σ is the sigmoid function. 388

LDPO aims to maximize the log probability of pre- 389

ferred yw relative to the dispreferred yl. 390

SFT + Iterative Online DPO. Online training en- 391

ables real-time, iterative optimization of model 392

weaknesses. It relies on high-quality, lightweight 393

reward models to provide continuous supervision 394

feedback. In the case of AUTOIF, verification func- 395

tions serve as rigorous filtering standards, akin to 396

reward models, delivering immediate feedback on 397

model responses across training iterations. Fol- 398

lowing offline DPO, we conduct initial SFT on 399

the base model πθ to derive an SFT model πSFT
θ 400

with initial instruction-following capabilities. As 401

depicted in Fig. 3, we set the generation temper- 402

ature to 0.8 and allow the SFT model to generate 403

5

K responses through self-sampling for each train-404

ing sample, forming a response set {R1, . . . , Rk}.405

Then, we employ corresponding verification func-406

tions to assess K responses, thereby constructing407

the online DPO dataset Dpref
online = (x, yw, yl) based408

on average pass rates across all functions. Finally,409

leveraging Donline, we sequentially perform DPO410

training on πSFT
θ . Importantly, our iterative on-411

line optimization process progressively unlocks en-412

hanced instruction-following capabilities.413

4 Experiment414

4.1 Experimental Setup415

Datasets & Baselines. We conduct experi-416

ments using two LLMs from the Qwen2 series417

(Qwen2-7B and Qwen2-72B-Instruct) and two418

from the Llama3 series (Llama3-8B and Llama3-419

70B-Instruct). Please note that the AUTOIF method420

proposed in this work has been employed in the421

open-source Qwen2-Instruct model. Thus, the ver-422

sion of Qwen2-Instruct we utilized represents an423

early iteration during internal development, rather424

than the final open-source model. The training425

datasets are respectively generated from Qwen2-426

72B-Instruct and Llama3-70B-Instruct, with de-427

tailed statistics provided in Tab. 5. We demonstrate428

the effectiveness of AUTOIF by evaluating the429

instruction-following capabilities of models fine-430

tuned with self-generated datasets using AUTOIF.431

Additionally, we include strong open and closed-432

source LLM baselines such as Mixtral-8x22B and433

GPT-4. For more details, refer to Appx. §B.434

Settings. we explore two experimental setups: (1)435

Strong-to-Weak Distillation involves aligning a436

less powerful model with a stronger, well-aligned437

model by mimicking its generated responses. In438

AUTOIF, we can utilize a strong model such as439

Qwen2-72B-Instruct for data synthesis. Subse-440

quently, we train a less powerful model like Qwen2-441

7B-Instruct using this synthesized data to achieve442

strong-to-weak alignment. (2) Self-Alignment:443

Following several self-alignment works (Chen444

et al., 2024; Yuan et al., 2024), we utilize the LLM445

to perform the AUTOIF process for synthesizing446

data, and then train the same model using this syn-447

thesized data.448

Evaluation. We evaluate our methods using two449

instruction-following benchmarks: IFEval (Zhou450

et al., 2023) and FollowBench (Jiang et al., 2024b).451

IFEval comprises 25 types of verifiable instruc-452

tions across about 500 prompts. While IFEval 453

also focuses on verifiable instructions, extensive 454

n-gram probing confirms no overlap between the 455

IFEval test set and our training sets, thus eliminat- 456

ing any contamination concerns. We report strict 457

and loose accuracy metrics at both prompt and in- 458

struction levels for IFEval. FollowBench is a fine- 459

grained constraint-following benchmark with five 460

levels of difficulty. It contains diverse and open- 461

ended instructions requiring evaluation by strong 462

LLMs, such as GPT-4, which can fully examine 463

the generalization of AUTOIF to more general in- 464

structions not verifiable by simple code executions. 465

At the same time, we also evaluate our models on 466

C-Eval (Huang et al., 2023), MMLU (Hendrycks 467

et al., 2021), GSM8k (Cobbe et al., 2021), and 468

HumanEval (Chen et al., 2021a) to obtain a com- 469

prehensive assessment of capabilities. 470

4.2 Main Results 471

Tab. 1 reports the main results. Overall, AUTOIF 472

substantially enhances instruction-following perfor- 473

mance across all models, configurations (strong-to- 474

weak distillation & self-Alignment), and training 475

methodologies (SFT, Offline & Online DPO) on 476

two benchmarks. These results decisively establish 477

the superiority of our approach. Furthermore, we 478

have identified the following insights: 479

On-policy Learning is More Effective. Com- 480

paring Online DPO and Offline DPO, the model- 481

generated online data through self-supervision 482

demonstrates superior performance compared to 483

offline data (Qwen2-7B, IFEval: 1.7%↑, Follow- 484

bench: 2.6%↑). This confirms that on-policy itera- 485

tive execution feedback can effectively target and 486

enhance the model’s weaknesses. 487

Larger models yield greater improvements. 488

FollowBench provides a more comprehensive 489

instruction-following assessment than IFEval. Sig- 490

nificantly, base models with larger parameters typi- 491

cally improve Followbench more than smaller mod- 492

els (Qwen2 72B: 4.6%↑, Llama3 70B: 5.6%↑). 493

This underscores that models with robust founda- 494

tional capabilities coupled with AUTOIF, can fur- 495

ther unlock powerful instruction-following align- 496

ment potential. 497

General abilities are not declined. Improving 498

instruction following abilities without compromis- 499

ing other capabilities is crucial. AUTOIF notably 500

preserves general abilities (MMLU, C-Eval), math- 501

ematical reasoning (GSM8k), and coding (Hu- 502

6

Model IFEval FollowBench (SSR) C-Eval MMLU GSM8k HumanEval
Pr (S) Pr. (L) Ins. (S) Ins. (L) Level 1 Level 2 Level 3 Level 4 Level 5 Avg

Baselines (< 10B)
Qwen2-7B 37.7 43.6 49.4 53.4 55.6 53.5 53.7 49.9 48.6 52.3 74.4 64.4 71.1 58.1
Qwen2-7B (ShareGPT) 30.9 33.5 42.4 45.2 56.1 52.7 50.8 45.2 47.9 50.5 70.2 59.8 59.4 52.4
Llama3-8B 24.6 26.1 38.1 39.7 10.0 10.3 10.5 14.3 12.7 11.6 24.2 38.8 4.5 0.6
Llama3-8B (ShareGPT) 23.7 26.4 33.8 37.1 44.0 40.0 39.6 33.3 33.6 38.1 70.2 59.8 59.4 52.4
Mistral-7B 23.3 24.6 38.4 39.6 40.1 39.7 37.9 35.7 36.7 38.0 38.2 47.6 20.5 38.4

Baselines (> 10B)
Qwen2-72B-Instruct 77.1 80.4 84.4 86.9 70.2 66.6 63.5 58.1 56.3 62.9 83.8 80.8 87.9 73.8
Llama3-70B-Instruct 77.8 83.8 84.2 88.8 60.7 60.5 61.1 61.7 60.3 60.9 60.2 80.5 92.6 78.7
Mixtral-8x22B 41.8 47.3 55.2 60.0 63.9 60.0 58.2 56.2 55.3 58.7 - - - -
GPT-4† 76.9 79.3 83.6 85.4 84.7 77.6 76.2 77.9 73.3 77.9 - - - -
GPT-3.5 Turbo† - - - - 80.3 71.2 74.2 69.6 67.1 72.5 - - - -

Supervision Model: Qwen2-72B

Strong-to-Weak
Qwen2-7B-SFT 40.7(+3.0) 44.5(+0.9) 51.3(+1.9) 55.4(+2.0) 60.2(+4.6) 53.7(+0.2) 54.3(+0.6) 49.9(+0.0) 48.6(+0.0) 53.3(+1.0) 73.9(+0.0) 64.4(+0.0) 74.1(+3.0) 58.3(+0.2)
w/ Offline DPO 41.2(+3.5) 44.7(+1.2) 51.4(+2.0) 56.2(+2.8) 61.4(+5.8) 54.5(+1.0) 54.3(+0.6) 51.2(+1.3) 48.6(+0.0) 54.0(+1.7) 75.1(+0.7) 64.5(+0.1) 72.9(+1.8) 59.5(+1.4)
w/ Online DPO 44.0(+6.3) 46.6(+3.0) 55.0(+5.6) 57.9(+4.5) 61.4(+5.8) 56.8(+3.3) 57.8(+4.1) 55.4(+5.5) 51.6(+3.0) 56.6(+4.3) 76.0(+1.6) 64.8(+0.4) 72.3(+1.2) 58.2(+0.1)
Self-Alignment
Qwen2-72B-Instruct

w/ Online DPO 80.2(+3.1) 82.3(+1.9) 86.1(+1.7) 88.0(+1.1) 76.2(+6.0) 69.8(+3.2) 67.0(+3.5) 61.6(+3.5) 62.8(+6.5) 67.5(+4.6) 84.9(+1.1) 81.2(+0.4) 88.2(+0.3) 75.0(+1.2)

Supervision Model: LLama3-70B

Strong-to-Weak
Llama3-8B-SFT 28.7(+4.1) 40.3(+14.2) 41.4(+3.3) 52.2(+12.05) 46.6(+36.6) 46.2(+35.9) 45.9(+35.4) 37.6(+23.3) 41.0(+28.3) 43.5(+31.9) 34.5(+10.3) 45.6(+6.8) 33.2(+28.7) 38.2(+37.6)
w/ Offline DPO 27.9(+3.3) 41.6(+15.5) 40.5(+2.4) 54.1(+14.4) 51.9(+41.9) 51.3(+41.0) 50.1(+39.6) 45.3(+31.0) 47.5(+34.8) 49.2(+37.6) 36.2(+12.0) 45.3(+6.5) 31.9(+27.4) 38.5(+37.9)
w/ Online DPO 28.8(+4.2) 43.1(+17.0) 42.2(+4.1) 56.0(+16.3) 54.6(+44.6) 52.1(+41.8) 50.0(+39.5) 49.0(+34.7) 43.7(+31.0) 49.9(+38.3) 38.2(+14.0) 45.1(+6.3) 32.5(+28.0) 38.4(+37.8)
Self-Alignment
LlaMa-3-70B

w/ Online DPO 80.2(+2.4) 85.6(+1.8) 86.7(+2.5) 90.4(+1.6) 71.0(+10.3) 67.2(+6.7) 66.2(+5.1) 64.6(+2.9) 63.5(+3.2) 66.5(+5.6) 61.6(+1.4) 80.7(+0.2) 92.7(+0.1) 78.7(+0.0)

Table 1: The main results on two instruction-following and four general benchmarks. Pr. and Ins. stand for prompt
and instruction levels, respectively. S and L represent strict and loose metrics for IFEval. The highest accuracy for
each setup is highlighted in green . Results marked with † are directly sourced from the original benchmarks.

Model IFEval FollowBench (SSR)

Prompt(L) Instruction(L) Avg

Qwen2-7B 43.6 53.4 52.3

Supervision Model: Qwen2-72B
+SFT 44.5(+0.9) 55.4(+2.0) 53.3(+1.0)
+SFT & Offline DPO 44.7(+1.1) 56.2(+2.8) 54.0(+1.7)
+SFT & Online DPO 46.6(+3.0) 57.9(+4.5) 56.6(+4.3)

Supervision Model: GPT-4
+SFT 52.9(+9.3) 62.6(+9.2) 55.1(+2.8)
+SFT & Offline DPO 59.3(+15.7) 68.9(+15.5) 54.4(+2.1)
+SFT & Online DPO 59.5(+15.9) 69.4(+16.0) 55.7(+3.4)

Table 2: Ablation study on supervision models.

maneval) performance across all training setups.503

Surprisingly, there are even slight performance504

gains in on-policy settings. We attribute this preser-505

vation largely to incorporating ShareGPT data dur-506

ing data synthesis, highlighting AUTOIF’s capabil-507

ity to strike a balance across diverse abilities and508

excel in broad applicability.509

4.3 Quality Ablation Study510

Ablation on Supervision Model. Tab. 2 presents511

the results of replacing the supervision model512

Qwen72B with GPT-4. We observe that in513

AUTOIF, a stronger supervision model (GPT-4)514

demonstrates more effective strong-to-weak distil-515

lation alignment, particularly evident with a per-516

formance gain of over 15% in the loose prompt517

in IFEval. This is reasonable because AutoIF re-518

quires the supervision model to perform several519

tasks, such as text augmentation (instruction, query,520

Model
IFEval FollowBench (SSR)

Prompt(L) Instruction(L) Avg

Supervision Model: Qwen2-72B
Qwen2-7B-SFT-OnlineDPO 46.6 57.9 56.6

w/o Back-translation -0.8 -1.7 -0.7
w/o Query Quality Verification -1.4 -2.4 -1.3
w/o Cross Verification -1.6 -3.0 -1.5
w/o All Quality Process -2.2 -3.8 -2.6

Table 3: Ablation study on specific components of AU-
TOIF.

and response rewriting), code generation (verifi- 521

cation function), and quality assessment (scoring). 522

This implies that a supervision model with stronger 523

fundamental abilities can synthesize higher-quality 524

data when using AUTOIF. 525

Quality Control on Instructions and Responses. 526

In Fig. 4, we examine how varying pass rate 527

thresholds of verification functions (indicative of 528

data quality) affect the amount of SFT data and 529

instruction-following performance. As the pass 530

rate threshold increases, the amount of SFT data 531

decreases at the instruction level, while model per- 532

formance consistently improves. This suggests that 533

the quality of instructions is a crucial factor influ- 534

encing IF performance. At the query level, the SFT 535

data amount also decreases with higher pass rate 536

thresholds. Notably, performance peaks at a pass 537

rate of 0.8 and declines beyond 1. This observation 538

aligns with our expectations, indicating a trade-off 539

7

Setup Benchmark Train Size Test Size Rephrase Percentage↓ N-gram↓

ShareGPT
IFEval 25K 542 0 0.01% 4.8%

Followbench 25K 820 1 0.01% 2.3%

Qwen 72B
IFEval 10K 542 2 0.01% 3.5%

Followbench 12K 820 1 0.01% 0.9%

Llama3 72B
IFEval 15K 542 0 0.01% 2.9%

Followbench 17K 820 1 0.01% 1.2%

GPT4
IFEval 25K 542 0 0.01% 3.6%

Followbench 25K 820 1 0.01% 1.5%

Table 4: Contamination analysis on SFT data generated
by different supervision models using AUTOIF.

Supervision Total Data SFT Data DPO Data Pass Rate MBPP (Code) IFEval
Llama3-70b 85K 15K 6k 26% 70.4 43.1
Qwen2-72b 123K 10K 4K 28% 73.9 44.7

GPT4 210k 25K 15K 34% 87.5 59.3

Table 5: Data statistics and efficiency. Pass Rate denotes
the samples with a query quality score above 8 (%).

between data quality and quantity.540

Ablation on Specific Components. To investigate541

the effectiveness of various modules in AUTOIF,542

we conduct an ablation study, as presented in Tab. 3.543

we use w/o to denote the variant without a specific544

module. The results reveal the following: (1) The545

performance of AUTOIF declines when any qual-546

ity filtering process is removed, indicating that all547

components are highly effective. (2) The most sig-548

nificant performance drop occurs when the Cross549

Verification of instructions is removed, highlighting550

its importance over query quality verification. This551

underscores that a high-quality instruction set is552

fundamental to the AUTOIF process. (3) Eliminat-553

ing the overall quality filtering process results in554

a more substantial performance drop than remov-555

ing any single component, suggesting that quality556

filtering at both the instruction and query levels557

provides a mutually reinforcing effect.558

4.4 Analyses559

Contamination Analysis. We evaluate the con-560

tamination of the training dataset generated by561

AUTOIF on IFEval and FollowBench. Specifi-562

cally, we employ contamination detectors from563

LM-Sys (Yang et al., 2023), which utilize advanced564

chatbots to identify potentially rephrased contam-565

inated test samples. Additionally, we report con-566

tamination findings detected by traditional n-gram567

contamination algorithms. As shown in Tab. 4,568

both contamination rates are lower than those of569

the ShareGPT dataset we used. This allows us to570

confidently assert that there is no contamination be-571

tween the self-generated training samples and the572

test sets. More cases can be viewed in Appx. §D,573

Data Efficiency. Tab. 5 explores the relationship574

0% 20% 40% 60% 80% 100%
Pass Rate of Verification Function

0

5

10

15

20

25

D
at

a
A

m
ou

nt

Data Amount
Prompt Acc (Loose)

0% 20% 40% 60% 80% 100%
Pass Rate of Query Function

0

5

10

15

20

25

D
at

a
A

m
ou

nt

Data Amount
Prompt Acc (Loose)

35

40

45

50

55

60

Pr
om

pt
 A

cc
 (

Lo
os

e)

35

40

45

50

55

60

Pr
om

pt
 A

cc
 (

Lo
os

e)

Figure 4: Quality ablation on instructions and queries.

11/21/41/81/161/321/64
SFT Data Amount

44

46

48

50

52

54

Pr
om

pt
 A

cc
 (

Lo
os

e)

Qwen2-7B supervised by GPT4

11/21/41/81/161/321/64
DPO Pair Amount

54

55

56

57

58

59

60

Pr
om

pt
 A

cc
 (

Lo
os

e)

Qwen2-7B supervised by GPT4

Figure 5: Scaling analysis on SFT data and DPO pairs

between model coding ability, data quality pass 575

rate, and instruction-following capability. Surpris- 576

ingly, we observe consistency in the supervision 577

model across all three metrics. This indicates that 578

the execution feedback resulting from the supervi- 579

sion model’s coding ability substantially influences 580

data synthesis quality and the final capability. 581

Scaling Analysis on SFT & DPO Data. Fig. 5 582

presents the scaling analysis of SFT and DPO data 583

using GPT-4 as the supervision model. The results 584

demonstrate that even with just 1/64 of AUTOIF- 585

generated SFT/DPO data, Qwen2-7B achieves im- 586

pressive performance, particularly with 1/64 DPO 587

data reaching nearly 55% in loose prompt accuracy, 588

, an increase of 11.4% pts. This strongly verifies the 589

high quality of AUTOIF-generated data. Further 590

analysis reveals that IF capability steadily improves 591

with an increase in data quantity, a scaling trend 592

confirmed by numerous reasoning studies (Yuan 593

et al., 2023; Muennighoff et al., 2024). 594

5 Conclusion 595

In this paper, we propose AUTOIF, a scalable 596

and automated method to enhance the instruction- 597

following abilities of LLMs. It uses self-instruct 598

and rejection sampling to enhance the supervi- 599

sory signals of seed instructions and relies on self- 600

generated execution feedback for quality filtering. 601

We introduce three training strategies and two align- 602

ment settings to comprehensively analyze AUTOIF. 603

Experiments demonstrate that our method signifi- 604

cantly improves performance across all settings in 605

both IFEval and Followbench, with the first LLM 606

achieving over 90% loose prompt accuracy. 607

8

Limitations608

In this paper, we propose AUTOIF, a system for609

automated instruction augmentation and quality610

filtering, capable of scaling to over 10,000 instruc-611

tions. While our focus is not on the construction612

of cross-instructions, the excellent results achieved613

in two instruction-following benchmarks demon-614

strate the generalizability of our method in han-615

dling complex instruction-following tasks. Addi-616

tionally, we believe a more direct strategy would617

involve combining multiple simple instructions into618

cross-instructions, and subsequently enhancing and619

quality-filtering them using AUTOIF. This way has620

the potential to further amplify the effectiveness of621

our method. Therefore, we consider automating622

and scaling cross-instruction tasks as a key direc-623

tion for future research.624

Ethic Consideration625

In this paper, we have fully presented the seed in-626

struction set used by AUTOIF in the Appendix. All627

concatenated queries are sourced from the publicly628

available ShareGPT dataset and have undergone629

multiple steps of quality filtering. Therefore, our630

method strives to minimize potential safety and eth-631

ical risks as much as possible. However, during the632

rejection sampling process, malicious prompts can633

lead the model to produce harmful or inappropriate634

outputs, which is a shared problem. Ensuring the635

quality of generated content in a safe and control-636

lable manner is crucial. The application of these637

techniques should be guided by ethical considera-638

tions, with safeguards in place to prevent misuse639

and reduce the likelihood of producing harmful640

outcomes.641

References642

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama643
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,644
Diogo Almeida, Janko Altenschmidt, Sam Altman,645
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.646
arXiv preprint arXiv:2303.08774.647

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,648
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei649
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,650
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,651
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,652
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong653
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang654
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian655
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi656
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,657

Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin- 658
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. 659
Qwen technical report. Preprint, arXiv:2309.16609. 660

Boxi Cao, Keming Lu, Xinyu Lu, Jiawei Chen, Mengjie 661
Ren, Hao Xiang, Peilin Liu, Yaojie Lu, Ben He, Xian- 662
pei Han, Le Sun, Hongyu Lin, and Bowen Yu. 2024a. 663
Towards scalable automated alignment of llms: A 664
survey. Preprint, arXiv:2406.01252. 665

Boxi Cao, Keming Lu, Xinyu Lu, Jiawei Chen, Mengjie 666
Ren, Hao Xiang, Peilin Liu, Yaojie Lu, Ben He, 667
Xianpei Han, et al. 2024b. Towards scalable auto- 668
mated alignment of llms: A survey. arXiv preprint 669
arXiv:2406.01252. 670

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, 671
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, 672
Cunxiang Wang, Yidong Wang, et al. 2024. A sur- 673
vey on evaluation of large language models. ACM 674
Transactions on Intelligent Systems and Technology, 675
15(3):1–45. 676

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 677
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 678
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 679
Greg Brockman, Alex Ray, Raul Puri, Gretchen 680
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 681
try, Pamela Mishkin, Brooke Chan, Scott Gray, 682
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 683
Kaiser, Mohammad Bavarian, Clemens Winter, 684
Philippe Tillet, Felipe Petroski Such, Dave Cum- 685
mings, Matthias Plappert, Fotios Chantzis, Eliza- 686
beth Barnes, Ariel Herbert-Voss, William Hebgen 687
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 688
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 689
William Saunders, Christopher Hesse, Andrew N. 690
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 691
Morikawa, Alec Radford, Matthew Knight, Miles 692
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 693
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 694
Sutskever, and Wojciech Zaremba. 2021a. Evaluat- 695
ing large language models trained on code. 696

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 697
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 698
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 699
Greg Brockman, Alex Ray, Raul Puri, Gretchen 700
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 701
try, Pamela Mishkin, Brooke Chan, Scott Gray, 702
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 703
Kaiser, Mohammad Bavarian, Clemens Winter, 704
Philippe Tillet, Felipe Petroski Such, Dave Cum- 705
mings, Matthias Plappert, Fotios Chantzis, Eliza- 706
beth Barnes, Ariel Herbert-Voss, William Hebgen 707
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 708
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 709
William Saunders, Christopher Hesse, Andrew N. 710
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 711
Morikawa, Alec Radford, Matthew Knight, Miles 712
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 713
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 714
Sutskever, and Wojciech Zaremba. 2021b. Evaluat- 715
ing large language models trained on code. Preprint, 716
arXiv:2107.03374. 717

9

https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2406.01252
https://arxiv.org/abs/2406.01252
https://arxiv.org/abs/2406.01252
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and718
Denny Zhou. 2023. Teaching large language models719
to self-debug. Preprint, arXiv:2304.05128.720

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,721
and Quanquan Gu. 2024. Self-play fine-tuning con-722
verts weak language models to strong language mod-723
els. Preprint, arXiv:2401.01335.724

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,725
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan726
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion727
Stoica, and Eric P. Xing. 2023. Vicuna: An open-728
source chatbot impressing gpt-4 with 90%* chatgpt729
quality.730

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,731
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias732
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro733
Nakano, Christopher Hesse, and John Schulman.734
2021. Training verifiers to solve math word prob-735
lems. Preprint, arXiv:2110.14168.736

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,737
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and738
Maosong Sun. 2023. Ultrafeedback: Boosting lan-739
guage models with high-quality feedback. arXiv740
preprint arXiv:2310.01377.741

Tri Dao. 2023. Flashattention-2: Faster attention with742
better parallelism and work partitioning. CoRR.743

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,744
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.745
2021. Measuring massive multitask language under-746
standing. Preprint, arXiv:2009.03300.747

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei748
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,749
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,750
Maosong Sun, and Junxian He. 2023. C-eval: A751
multi-level multi-discipline chinese evaluation suite752
for foundation models. Preprint, arXiv:2305.08322.753

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-754
sch, Chris Bamford, Devendra Singh Chaplot, Diego755
de las Casas, Florian Bressand, Gianna Lengyel, Guil-756
laume Lample, Lucile Saulnier, et al. 2023. Mistral757
7b. arXiv preprint arXiv:2310.06825.758

Albert Q Jiang, Alexandre Sablayrolles, Antoine759
Roux, Arthur Mensch, Blanche Savary, Chris Bam-760
ford, Devendra Singh Chaplot, Diego de las Casas,761
Emma Bou Hanna, Florian Bressand, et al. 2024a.762
Mixtral of experts. arXiv preprint arXiv:2401.04088.763

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun764
Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin765
Jiang, Qun Liu, and Wei Wang. 2024b. Follow-766
bench: A multi-level fine-grained constraints follow-767
ing benchmark for large language models. Preprint,768
arXiv:2310.20410.769

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Sil-770
vio Savarese, and Steven C. H. Hoi. 2022. Coderl:771

Mastering code generation through pretrained mod- 772
els and deep reinforcement learning. Preprint, 773
arXiv:2207.01780. 774

Renze Lou, Kai Zhang, and Wenpeng Yin. 2023. A com- 775
prehensive survey on instruction following. arXiv 776
preprint arXiv:2303.10475. 777

Meta. 2024. Introducing meta llama 3: The most capa- 778
ble openly available llm to date. 779

Niklas Muennighoff, Alexander Rush, Boaz Barak, 780
Teven Le Scao, Nouamane Tazi, Aleksandra Piktus, 781
Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. 782
2024. Scaling data-constrained language models. 783
Advances in Neural Information Processing Systems, 784
36. 785

Alhassan Mumuni and Fuseini Mumuni. 2022. Data 786
augmentation: A comprehensive survey of modern 787
approaches. Array, 16:100258. 788

OpenAI. 2022. Introducing chatgpt. 789

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, 790
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 791
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 792
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 793
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 794
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir- 795
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, 796
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, 797
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock- 798
man, Tim Brooks, Miles Brundage, Kevin Button, 799
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany 800
Carey, Chelsea Carlson, Rory Carmichael, Brooke 801
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully 802
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben 803
Chess, Chester Cho, Casey Chu, Hyung Won Chung, 804
Dave Cummings, Jeremiah Currier, Yunxing Dai, 805
Cory Decareaux, Thomas Degry, Noah Deutsch, 806
Damien Deville, Arka Dhar, David Dohan, Steve 807
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 808
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, 809
Simón Posada Fishman, Juston Forte, Isabella Ful- 810
ford, Leo Gao, Elie Georges, Christian Gibson, Vik 811
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo- 812
Lopes, Jonathan Gordon, Morgan Grafstein, Scott 813
Gray, Ryan Greene, Joshua Gross, Shixiang Shane 814
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, 815
Yuchen He, Mike Heaton, Johannes Heidecke, Chris 816
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, 817
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin 818
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, 819
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun 820
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee- 821
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka- 822
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, 823
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, 824
Christina Kim, Yongjik Kim, Jan Hendrik Kirch- 825
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, 826
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon- 827
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal 828
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan 829
Leike, Jade Leung, Daniel Levy, Chak Ming Li, 830

10

https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2305.08322
https://arxiv.org/abs/2305.08322
https://arxiv.org/abs/2305.08322
https://arxiv.org/abs/2305.08322
https://arxiv.org/abs/2305.08322
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2207.01780
https://arxiv.org/abs/2207.01780
https://arxiv.org/abs/2207.01780
https://arxiv.org/abs/2207.01780
https://arxiv.org/abs/2207.01780
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/index/chatgpt/

Rachel Lim, Molly Lin, Stephanie Lin, Mateusz831
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,832
Anna Makanju, Kim Malfacini, Sam Manning, Todor833
Markov, Yaniv Markovski, Bianca Martin, Katie834
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer835
McKinney, Christine McLeavey, Paul McMillan,836
Jake McNeil, David Medina, Aalok Mehta, Jacob837
Menick, Luke Metz, Andrey Mishchenko, Pamela838
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel839
Mossing, Tong Mu, Mira Murati, Oleg Murk, David840
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,841
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,842
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex843
Paino, Joe Palermo, Ashley Pantuliano, Giambat-844
tista Parascandolo, Joel Parish, Emy Parparita, Alex845
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-846
man, Filipe de Avila Belbute Peres, Michael Petrov,847
Henrique Ponde de Oliveira Pinto, Michael, Poko-848
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-849
ell, Alethea Power, Boris Power, Elizabeth Proehl,850
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,851
Cameron Raymond, Francis Real, Kendra Rimbach,852
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-853
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,854
Girish Sastry, Heather Schmidt, David Schnurr, John855
Schulman, Daniel Selsam, Kyla Sheppard, Toki856
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav857
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,858
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin859
Sokolowsky, Yang Song, Natalie Staudacher, Fe-860
lipe Petroski Such, Natalie Summers, Ilya Sutskever,861
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,862
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,863
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-864
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,865
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,866
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,867
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-868
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,869
Clemens Winter, Samuel Wolrich, Hannah Wong,870
Lauren Workman, Sherwin Wu, Jeff Wu, Michael871
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-872
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong873
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao874
Zheng, Juntang Zhuang, William Zhuk, and Bar-875
ret Zoph. 2024. Gpt-4 technical report. Preprint,876
arXiv:2303.08774.877

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-878
roll L. Wainwright, Pamela Mishkin, Chong Zhang,879
Sandhini Agarwal, Katarina Slama, Alex Ray, John880
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,881
Maddie Simens, Amanda Askell, Peter Welinder,882
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.883
Training language models to follow instructions with884
human feedback.885

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-886
ley, and Jianfeng Gao. 2023. Instruction tuning with887
gpt-4. arXiv preprint arXiv:2304.03277.888

Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai889
Jia, Huajun Chen, and Ningyu Zhang. 2024. Making890
language models better tool learners with execution891
feedback. Preprint, arXiv:2305.13068.892

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, 893
Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei 894
Liu, Pengfei Liu, and Dong Yu. 2024. Infobench: 895
Evaluating instruction following ability in large lan- 896
guage models. Preprint, arXiv:2401.03601. 897

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano 898
Ermon, Christopher D. Manning, and Chelsea Finn. 899
2023. Direct preference optimization: Your language 900
model is secretly a reward model. 901

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 902
pher D Manning, Stefano Ermon, and Chelsea Finn. 903
2024. Direct preference optimization: Your language 904
model is secretly a reward model. Advances in Neu- 905
ral Information Processing Systems, 36. 906

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, 907
and Yuxiong He. 2020. Deepspeed: System opti- 908
mizations enable training deep learning models with 909
over 100 billion parameters. KDD ’20. 910

Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Bao- 911
hua Dong, Ran Lin, and Ruohui Huang. 2024. 912
Conifer: Improving complex constrained instruction- 913
following ability of large language models. Preprint, 914
arXiv:2404.02823. 915

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 916
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 917
and Tatsunori B Hashimoto. 2023. Stanford alpaca: 918
An instruction-following llama model. 919

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 920
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 921
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 922
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 923
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 924
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 925
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 926
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 927
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 928
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 929
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 930
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 931
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 932
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 933
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 934
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 935
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 936
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 937
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 938
Melanie Kambadur, Sharan Narang, Aurelien Ro- 939
driguez, Robert Stojnic, Sergey Edunov, and Thomas 940
Scialom. 2023. Llama 2: Open foundation and fine- 941
tuned chat models. Preprint, arXiv:2307.09288. 942

Xinru Wang, Hannah Kim, Sajjadur Rahman, Kushan 943
Mitra, and Zhengjie Miao. 2024a. Human-llm col- 944
laborative annotation through effective verification of 945
llm labels. In Proceedings of the CHI Conference on 946
Human Factors in Computing Systems, pages 1–21. 947

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 948
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 949

11

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.13068
https://arxiv.org/abs/2305.13068
https://arxiv.org/abs/2305.13068
https://arxiv.org/abs/2305.13068
https://arxiv.org/abs/2305.13068
https://arxiv.org/abs/2401.03601
https://arxiv.org/abs/2401.03601
https://arxiv.org/abs/2401.03601
https://arxiv.org/abs/2401.03601
https://arxiv.org/abs/2401.03601
https://arxiv.org/abs/2404.02823
https://arxiv.org/abs/2404.02823
https://arxiv.org/abs/2404.02823
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288

Hajishirzi. 2023. Self-instruct: Aligning language950
models with self-generated instructions. Preprint,951
arXiv:2212.10560.952

Zifeng Wang, Chun-Liang Li, Vincent Perot, Long T.953
Le, Jin Miao, Zizhao Zhang, Chen-Yu Lee, and954
Tomas Pfister. 2024b. Codeclm: Aligning lan-955
guage models with tailored synthetic data. Preprint,956
arXiv:2404.05875.957

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin958
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-959
drew M Dai, and Quoc V Le. 2021. Finetuned lan-960
guage models are zero-shot learners. arXiv preprint961
arXiv:2109.01652.962

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu,963
Nathan Hu, Dustin Tran, Daiyi Peng, Ruibo Liu,964
Da Huang, Cosmo Du, et al. 2024. Long-form fac-965
tuality in large language models. arXiv preprint966
arXiv:2403.18802.967

Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang,968
Yihao Feng, Ran Xu, Wenpeng Yin, and Caim-969
ing Xiong. 2024. Fofo: A benchmark to eval-970
uate llms’ format-following capability. Preprint,971
arXiv:2402.18667.972

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and973
Quoc Le. 2020. Unsupervised data augmentation for974
consistency training. Advances in neural information975
processing systems, 33:6256–6268.976

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,977
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin978
Jiang. 2023. Wizardlm: Empowering large language979
models to follow complex instructions. Preprint,980
arXiv:2304.12244.981

Jianhao Yan, Yun Luo, and Yue Zhang. 2024.982
Refutebench: Evaluating refuting instruction-983
following for large language models. Preprint,984
arXiv:2402.13463.985

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E.986
Gonzalez, and Ion Stoica. 2023. Rethinking bench-987
mark and contamination for language models with988
rephrased samples. Preprint, arXiv:2311.04850.989

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,990
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-991
son Weston. 2024. Self-rewarding language models.992
Preprint, arXiv:2401.10020.993

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting994
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and995
Jingren Zhou. 2023. Scaling relationship on learning996
mathematical reasoning with large language models.997
Preprint, arXiv:2308.01825.998

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,999
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-1000
wei Zhang, Fei Wu, et al. 2023. Instruction tuning1001
for large language models: A survey. arXiv preprint1002
arXiv:2308.10792.1003

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu, 1004
Fei Huang, Yongbin Li, and Nevin L. Zhang. 2023. 1005
A preliminary study of the intrinsic relationship be- 1006
tween complexity and alignment. 1007

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu, 1008
Minghao Li, Fei Huang, Nevin L Zhang, and Yongbin 1009
Li. 2024. Tree-instruct: A preliminary study of the 1010
intrinsic relationship between complexity and align- 1011
ment. In Proceedings of the 2024 Joint International 1012
Conference on Computational Linguistics, Language 1013
Resources and Evaluation (LREC-COLING 2024), 1014
pages 16776–16789. 1015

Chenyu Zheng, Guoqiang Wu, and Chongxuan Li. 2024. 1016
Toward understanding generative data augmentation. 1017
Advances in Neural Information Processing Systems, 1018
36. 1019

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, 1020
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping 1021
Yu, Lili Yu, et al. 2024. Lima: Less is more for align- 1022
ment. Advances in Neural Information Processing 1023
Systems, 36. 1024

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha 1025
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and 1026
Le Hou. 2023. Instruction-following evaluation for 1027
large language models. Preprint, arXiv:2311.07911. 1028

12

https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2404.05875
https://arxiv.org/abs/2404.05875
https://arxiv.org/abs/2404.05875
https://arxiv.org/abs/2402.18667
https://arxiv.org/abs/2402.18667
https://arxiv.org/abs/2402.18667
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2402.13463
https://arxiv.org/abs/2402.13463
https://arxiv.org/abs/2402.13463
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.05696
https://arxiv.org/abs/2308.05696
https://arxiv.org/abs/2308.05696
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

Appendix1029

A Seed Instructions1030

Fig. 6 illustrates our hand-written seed instructions.1031

B Implementation Details1032

To better motivate researchers to reproduce the re-1033

sults, I report the detailed experimental details:1034

In the SFT phase, we perform full fine-tuning1035

on Qwen2-7B and Llama3-8B with a learning rate1036

of 7e-6, using a linear scheduler with 20 warm-1037

up steps. All models are trained with DeepSpeed1038

ZeRO Stage 3 (Rasley et al., 2020) and Flash-1039

Attention 2 (Dao, 2023). We use a global batch1040

size of 128, a weight decay of 0.1, and train for 31041

epochs, saving checkpoints every 200 steps. Mixed1042

precision training with bf16 is used, and the max-1043

imum context length is set to 8192 tokens. For1044

Qwen2-72B and Llama3-70B, the global batch size1045

is 512.1046

In the DPO phase, the learning rate is set to1047

5e-7 with a cosine scheduler and a 0.1 warm-up1048

ratio. We use DeepSpeed ZeRO Stage 3 and Flash-1049

Attention 2 for efficiency, with a global batch size1050

of 64. Training utilizes a sigmoid loss function with1051

a beta value of 0.3 and spans 2 epochs, with check-1052

points every 200 steps. Mixed precision training1053

with bf16 is employed, and the maximum context1054

length is 4096 tokens.1055

We run all our experiments on NVIDIA A1001056

and H800 GPUs. Specifically, we train Qwen2-71057

and LLaMa-3-8B on 8 A100 GPUs, while Qwem2-1058

72B-Instruct and LLaMa-3-70B-Instruct on 641059

H800 GPUs. Notably, we use an in-house version1060

of Qwen2-7B without any targeted optimizations1061

on instruction-following capabilities. For evalu-1062

ations, we report pass@1 results with greedy de-1063

coding for HumanEval and zero-shot accuracy for1064

GSM8K. We report averaged performance from1065

five randomly seeded experiments.1066

C Details of AUTOIF1067

At the instruction level, for the self-instruct stage,1068

we perform RFT with K=100 on seed instructions.1069

During the Automated Quality Cross Verification1070

stage, we filter the quality based on four criteria1071

outlined in the main text. For NLI filtering, we1072

use mDeberta as our filtering model2, and filter out1073

2The NLI model is available at
https://huggingface.co/MoritzLaurer/
mDeBERTa-v3-base-xnli-multilingual-nli-2mil7

only samples predicted as "Contradiction" (approx- 1074

imately 15%). 1075

At the query level, we randomly select 16 1076

ShareGPT samples for each instruction and per- 1077

form Response Rejection Sampling with K=8. For 1078

instruction following verification, we adhere to the 1079

two standards mentioned in the text. Finally, for 1080

query quality verification, we filter for consistency 1081

using a threshold of 8. 1082

D Case Study of Data Combination 1083

We used n-gram 13 to evaluate the overlap between 1084

each test sample and the SFT training samples. It is 1085

unnecessary to evaluate DPO data since the inputs 1086

for DPO data are derived from SFT data. In Tab. 4, 1087

all our data combination metrics (both model-based 1088

and rule-based evaluation) are lower than those of 1089

ShareGPT, confirming that our method has no data 1090

combination with the test set. We also present the 1091

top 5 training-test sample overlaps in n-gram for 1092

both IF Eval and Followbench in Fig. 7. 1093

E Case Study of AUTOIF 1094

In Tab. 6, we illustrates the data format of our AU- 1095

TOIF, including the query, response (verification 1096

funcs Acc>0.8) and verification function. 1097

F Baselines & Datasets 1098

We give introductions to the LLM baselines for our 1099

instruction following. 1100

Llama3 (Meta, 2024), developed by MetaAI, is 1101

the latest iteration of the Llama series, featuring sig- 1102

nificant upgrades. Compared to Llama 2, Llama 3 1103

expands its training dataset, context length, and vo- 1104

cabulary, resulting in improved performance across 1105

various tasks. Enhancements in contextual under- 1106

standing and language generation further distin- 1107

guish Llama 3. 1108

Qwen2 (Bai et al., 2023), developed by Alibaba, 1109

includes five sizes: Qwen2-0.5B, Qwen2-1.5B, 1110

Qwen2-7B, Qwen2-57B-A14B, and Qwen2-72B. 1111

Trained on high-quality data in Chinese, English, 1112

and 27 other languages, Qwen2 excels in multi- 1113

lingual capabilities and shows strong performance 1114

in coding and mathematics. Additionally, it sup- 1115

ports extended context lengths of up to 128K to- 1116

kens (Qwen2-72B-Instruct), making it ideal for 1117

long texts and complex tasks. 1118

13

https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7

1. Answer with words that begin with the letter ‘B’

2. Construct the reply as if it's a telegram STOP

3. Use only palindromes

4. Use words that end with '-ing’

5. Write the response backward

6. Use only words with double letters (e.g., "bookkeeper")

7. Use only onomatopoeia

8. Answer with a single sentence that is exactly 100 words long

9. Use no words containing the letter 'E’

10. Translate your answer into emojis

11. Use only the 1000 most common English words

12. Incorporate a famous movie quote seamlessly into your answer

13. Use only military lingo

14. Respond with a haiku (5-7-5 syllable structure)

15. Write the response in future tense only

16. Use only monosyllabic words

17. Answer with words in alphabetical order

18. Write the response as a limerick

19. Use no adjectives or adverbs

20. Respond with a six-word story

21. Include at least three rhyming pairs

22. Write the response in iambic pentameter

23. Use alliteration throughout your answer

24. Answer in the form of a sonnet (14 lines with 10 syllables each)

25. Use only the first half of the alphabet (A-M)

26. Use only questions to form your reply

27. Use only words that start and end with the same letter

28. Write the response in Morse code

29. Use only words that are colors

30. Use only the second half of the alphabet (N-Z)

31. Answer with each sentence decreasing in word count

32. Respond with a list of bullet points

33. Answer with a sequence of puns

34. Answer with emoji only

35. Use only words that have an X in them

36. Answer with each word starting with the next letter of the alphabet

Seed Instructions

Figure 6: Examples of our seed instructions

Is it true that the first song ever sung in outer

space is "Happy Birthday." Your answer must

contain one of the following phrases: My

answer is yes. My answer is no. My answer is

maybe.

Case study

Write me a template for a product description

in the form of a poem and end it with a

postscript starting with P.P.S.

Write a paragraph that lists the average length

of various animal specimens from smallest to

largest. Your response should contain less

than 17 sentences.

Can you write rap songs about the history of

the prefecture system in Japan? Give exactly

two different responses separated by 6

asterisk symbols ******.

What is a lattice? Rewrite the answer to be

understandable to a young audience and make

sure it's entirely in Russian, no other language

is allowed.

Is it true that AI is dangerous for humankind?

Respond with a sentence that includes every

letter of the alphabet at least once.

Write me a response in 1000 words or less on

how you would manage multiple

subcontractors. Use only words that are the

name of a body part.

Write a paragraph about how a small amount

of alcohol daily is good for the body, then cite

your sources. Write the response as if it's a

set of instructions for a simple task, like tying

shoelaces.

Can you write me a PowerShell script for

Windows that lists all member groups and

their members? Write the response as a series

of book titles.

What is a good product to start selling on

TikTok? It needs to be able to generate catchy

videos on TikTok. Answer with words that are

all the same length.

8.2

8.2

8.2

8.0

8.0

You are a doctor. Please explain how someone

with type II diabetes can calculate the total

amount of daily carbohydrates they can

consume without going overboard?

How did US states get their names? Please

respond in the writing style of Shakespeare.

Would you consider direct air carbon capture

an expensive technology? Please provide one

reason to support your opinion.

Could you share a story about nuclear physics,

maintaining a tone of awe and wonder

reminiscent of Carl Sagan's style of narration?

Can you list the top 10 films or movies that are

in English, but do it as if you were

Shakespeare describing his favorite plays?

You are a Russian physics professor. Create a

ridiculous problem set in the course Quantum

Mechanics 1. Write the response as a series of

conditional statements.

How do I properly offboard users in Microsoft

365 with PowerShell? Answer with each

sentence being a statement.

Would you write me a Unity code for a simple

Flappy Bird-like game? Answer with words

that have a homophone.

Could you explain to me what Generics in

programming are, using TypeScript examples?

Use alliteration and consonance throughout

your answer.

Can you write an Archie comic scene where

Archie finds a letter his father wrote him

predicting the future? Translate your answer

into ASCII art

8.0

7.3

6.6

5.8

5.3

On Follow BenchOn IFEVAL

N-gram Train data Test data N-gram Train data Test data

Figure 7: Case Study of data combination on IFEval and Followbench

Mistral-7B (Jiang et al., 2023), released by Mis-1119

tral AI in September 2023, leverages grouped query1120

attention (GQA) combined with sliding window1121

attention (SWA) to efficiently process sequences1122

of any length, enhance inference speed, and im-1123

prove throughput. It outperforms many 13B mod-1124

els across various tasks.1125

Mixtral-8×7B (Jiang et al., 2024a) developed1126

by Mistral AI, is the first open-source MOE large1127

model. It is a sparse mixture of experts network1128

and, like Mistral 7B, employs the GQA mecha-1129

nism. With a smaller parameter count compared1130

to Llama2 70B and GPT-3.5, it outperforms them1131

across numerous tasks.1132

GPT Series GPT-3.5 (OpenAI, 2022) and GPT-1133

4 (Achiam et al., 2023), developed by OpenAI,1134

are advanced models in the GPT series that use1135

a three-stage reinforcement learning with human1136

feedback (RLHF) algorithm. This enhances their1137

instruction-following capabilities and minimizes 1138

harmful content generation. GPT-3.5 excels in text 1139

completion, translation, and summarization. Build- 1140

ing on these strengths, GPT-4 further refines the 1141

RLHF algorithm, enhancing performance on com- 1142

plex instructions and making it suitable for applica- 1143

tions ranging from academic research to industrial 1144

use. 1145

In addition to the two Instruction-Following 1146

benchmarks introduced in the main text, we also 1147

provide a detailed overview of datasets covered in 1148

the experiments 1149

ShareGPT refers to the multi-turn chatting 1150

histories used by Vicuna (Chiang et al., 2023). 1151

ShareGPT includes 86K human queries and re- 1152

sponses from ChatGPT and other chatbots. We ran- 1153

domly select 2w samples to train Llama3-8B and 1154

Qwen2-7B to obtain our baseline models: Llama3- 1155

8B(ShareGPT) and Qwen2-7B(ShareGPT).3. 1156

3We use the version from https://huggingface.

14

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

GSM8K (Cobbe et al., 2021) is a mathemati-1157

cal dataset designed to evaluate the mathematical1158

problem-solving abilities of language models. It1159

consists of 8,000 diverse grade school-level math1160

word problems, which require understanding and1161

manipulating mathematical concepts to arrive at a1162

correct solution. It comprises high-quality grade1163

school math problems, with 7,473 training samples1164

and 1,319 testing samples.1165

HumanEval (Chen et al., 2021b) includes 1641166

unique programming challenges, each paired with1167

approximately 9.6 test cases on average. To provide1168

a more comprehensive evaluation of the functional1169

accuracy of code generated by large language mod-1170

els, HumanEval+ substantially increases the num-1171

ber of test cases to an average of 774.8 per problem.1172

In this paper, we report the Pass@1 result when1173

applying greedy decoding.1174

MMLU (Hendrycks et al., 2021) is a benchmark1175

designed to assess pretraining knowledge in mod-1176

els using zero-shot and few-shot evaluations. It in-1177

cludes 57 subjects across STEM, humanities, social1178

sciences, and more, with difficulty levels ranging1179

from elementary to advanced professional. MMLU1180

tests both world knowledge and problem-solving1181

skills, covering traditional disciplines like math-1182

ematics and history, as well as specialized areas1183

such as law and ethics.1184

C-Eval (Huang et al., 2023) consists of multiple-1185

choice questions categorized into four difficulty1186

levels: middle school, high school, college, and1187

professional. The questions cover 52 varied disci-1188

plines, including humanities, science, and engineer-1189

ing. Additionally, there is C-Eval Hard, a subset of1190

particularly challenging topics within C-Eval that1191

demand advanced reasoning skills. We perform an1192

in-depth evaluation of leading language models on1193

C-Eval, testing both English and Chinese-focused1194

models.1195

co/datasets/anon8231489123/ShareGPT_Vicuna_
unfiltered cleaned raw dataset, and follow Vicuna
preprocess.

15

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

Query Response Verification Funcs

Keep your answer to under
50 characters total. what is

autoarima in python.

AutoARIMA automates
ARIMA model selection.

def evaluate(response: str)
-> bool:
return len(response) <=

50

Refrain from using any
words that contain ’S’. i

need a name for my
Dungeons and Dragons

world.

EternaRealm

def evaluate(response):
forbidden = ’sS’
for char in response:

if char in
forbidden:
return False

return True

Keep your response under
twenty words without

sacrificing clarity. Let’s
play a game shall we?.

ure, let’s play a game! What
game do you have in mind?

Please keep instructions
simple and clear.

def evaluate(response: str)
-> bool:
return len(response.

split()) <= 20 and
len(response) > 0

Compose your answer
using exactly 20 words.
Diffrent Normal Forms.

Normal forms in databases:
1NF ensures atomic

columns, 2NF eliminates
non-key dependencies, 3NF

removes transitive
dependencies, BCNF
enforces determinant

restriction.

def evaluate(response: str)
-> bool:
return len(response.

split()) == 20

Word your response in a
five-line verse with a strict
AABBA rhyme. 1.Write
short notes on Decision

trees..

Decision trees, so clear and
bright, Branch out to split

data’s might, With nodes of
questions, true or false,
They sort through cases,

young or old, like a
versatile horse. From root

to leaves, paths decide their
course.

def evaluate(response: str)
-> bool:
lines = response.split(

’\n’)
if len(lines) != 5:

return False
rhymes = [line[-1] for

line in lines]
rhyme_pattern = rhymes

[0] == rhymes [1] ==
rhymes [2] !=

rhymes [3] == rhymes
[4]

return rhyme_pattern

Table 6: Examples of AutoIF’s data formats.

16

	Introduction
	Related Works
	AutoIF
	Preliminaries
	Instruction Augmentation and Verification
	Query Augmentation and Verification
	Training Strategies

	Experiment
	Experimental Setup
	Main Results
	Quality Ablation Study
	Analyses

	Conclusion
	Seed Instructions
	Implementation Details
	Details of AutoIF
	Case Study of Data Combination
	Case Study of AutoIF
	Baselines & Datasets

