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Abstract

Quantitative analysis of cardiac motion is crucial for assessing cardiac function.
This analysis typically uses imaging modalities such as MRI and Echocardiograms
that capture detailed image sequences throughout the heartbeat cycle. Previous
methods predominantly focused on the analysis of image pairs lacking considera-
tion of the motion dynamics and spatial variability. Consequently, these methods
often overlook the long-term relationships and regional motion characteristic of
cardiac. To overcome these limitations, we introduce the GPTrack, a novel un-
supervised framework crafted to fully explore the temporal and spatial dynamics
of cardiac motion. The GPTrack enhances motion tracking by employing the
sequential Gaussian Process in the latent space and encoding statistics by spatial
information at each time stamp, which robustly promotes temporal consistency
and spatial variability of cardiac dynamics. Also, we innovatively aggregate se-
quential information in a bidirectional recursive manner, mimicking the behavior
of diffeomorphic registration to better capture consistent long-term relationships
of motions across cardiac regions such as the ventricles and atria. Our GPTrack
significantly improves the precision of motion tracking in both 3D and 4D medi-
cal images while maintaining computational efficiency. The code is available at:
https://github.com/xmed-lab/GPTrack.

1 Introduction

Cardiac motion tracking from Cardiac Magnetic Resonance Imaging (MRI) and Echocardiograms is
crucial in quantitative cardiac image processing. These imaging techniques provide comprehensive
image sequences that cover an entire heartbeat cycle, allowing for detailed analysis of cardiac
dynamics. Conventional non-parametric cardiac motion tracking approaches, such as B-splines [1],
Demons algorithms [2] and optical-flow based methods [3, 4, 5], are commonly utilized due to
their flexibility and ability to align detailed structures within images. However, these methods
face significant challenges in motion tracking because they lack topology-preserving constraints
and temporal coherence. The diffeomorphic registration method [6, 7, 8], which formulates the
registration process as a group of diffeomorphisms in Lagrangian dynamics, is a nice candidate
for topology-preserving motion tracking. However, traditional optimization-based diffeomorphic
registration methods are computationally intensive and sensitive to noises, hindering their applications
in efficient cardiac motion tracking.

Current deep learning-based techniques [9, 10, 11, 12, 13, 14, 15, 16] employ these advanced
imaging modalities to register image pairs within the same patient, and some [14, 15, 16] adopt the
diffeomorphic routine and learn the Lagrangian strain to describe the motion relationship between the
reference frame and subsequent frames, aggregating dynamic information into consecutive cardiac
motions as Lagrangian displacements. Although the above diffeomorphic methods better model the
dynamic and continuous nature of cardiac motion, they still have room for improvement in handling
the long-term temporal relationship in videos. For example, the approach [14] requires segmentation
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Figure 1: Regional Motions in Cardiac: The left sequential MRI frames within a heartbeat cycle
illustrate that motion direction and intensity are completely different between the right atrium and
myocardium during End-diastole and End-systole. Formulate Cardiac Motion as Prior Knowledge:
The right figure depicts the regions of motion trajectory across the heartbeat cycle, alongside the
probability distributions of motion trajectory. Curves (Middle) are the motion trajectory changes of
different MRI sequences (Left). Highlighting the cardiac motion trajectory that follows a certain
pattern can be modelled as prior knowledge via the Gaussian Process (Right).

annotation to generate dense motion trajectories and calculate Lagrangian strain. Additionally,
the methods outlined in [15, 16] are prone to error accumulation as Lagrangian displacements are
integrated without regularizing temporal variations. In spatial views, while the global trajectory
flow may follow a specific pattern, significant variations exist within each region regarding the
phases, amplitudes, and intensities of the motion. For example, Figure 1 shows regions of the Right
Atrium (red) and Myocardium (green) performing the opposite trajectories during the heartbeat cycle.
Conversely, similar regions across different cases exhibit consistent motions. Hence, ignoring the
regional scale may lead to a fragmented understanding of cardiac motion, underscoring the need for
more nuanced analytical approaches. Furthermore, as shown in the right of Figure 1, the deformation
is bounded in the space of periodically specific human cardiac motion variation.

To leverage discussed temporal and spatial information for cardiac motion tracking, we propose
a novel framework named GPTrack. Our GPTrack has several appealing facets: 1) GPTrack
employs the Gaussian Process (GP) to formulate the consistent temporal patterns in the latent space of
diffeomorphic frameworks, promoting the consistency of cardiac motion; 2) GPTrack utilizes position
information in the latent space to encode the statistics of the sequential Gaussian process, by which
we model the region-specific motion and obtain a more precise estimation related to cardiac motion;
3) GPTrack leverages the inherent temporal continuity in cardiac motion by aggregating long-term
relationships through forward and backward video flows, which mimics the forward-backward manner
of classical diffeomorphic registration framework [6]. To evaluate the performance of GPTrack in
cardiac motion tracking, we conduct experiments based on 3D Echocardiogram videos [17, 18] and
4D temporal MRI image [19]. Results in Tables 1, 2 and 3, show the GPTrack enhance the accuracy
of motion tracking performance in a clear margin, without substantially increasing the computational
cost in comparison to other state-of-the-art methods. Our contributions are summarized as follows:

1. We propose a novel cardiac motion tracking framework named the GPTrack. This framework
employs the Gaussian Process (GP) to promote temporal consistency and regional variability in
compact latent space, establishing a robust regularizer to enhance cardiac motion tracking accuracy.

2. The GPTrack framework is designed to capture the long-term relationship of cardiac motion
via a bidirectional recursive manner, and its forward-backward manner mimics the workflows of
the classical diffeomorphic registration framework. By this approach, our method provides a more
accurate and reliable estimation of cardiac motion.

3. Our GPTrack framework achieves state-of-the-art performance on both 3D Echocardiogram
videos and 4D temporal MRI datasets, maintaining comparable computational efficiency. The results
demonstrate that our method adapts effectively across different medical imaging modalities, proving
its utility in different clinical settings.

2 Related Work

2.1 Cardiac Motion Tracking via Non-parametric Registration Approach

Extensive works have been proposed to address registration by optimising within the space of
displacement vector fields. Models related to elastic matching were proposed by [20, 21]. [22] utilized
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statistical parametric mapping for improvement. Techniques incorporating free-form deformations
with B-splines and Maxwell demons were adapted by [1] and [2], respectively. The Harmonic
phase-based method, which utilizes spectral peaks in the Fourier domain for cardiac motion tracking,
was introduced by [23]. This method calculates phase images from the inverse Fourier transforms and
is specifically exploited in the analysis of tagged MRI. Popular formulations [6, 8, 24, 7] introduce
topology-preserved diffeomorphic transforms. In the realm of diffeomorphic registration, inverse
consistent diffeomorphic deformations have been estimated by [6] and [7]. Syn [24] proposed
standard symmetric normalization. RDMM [8] considered regional parameterization based on Large
Deformation Diffeomorphic Metric Mapping [6]. Despite their remarkable success in computational
anatomy studies, these approaches are also time-consuming and susceptible to noise.

2.2 Cardiac Motion Tracking with Deep-Learning based Registration Method

Recent advancements in medical image registration have increasingly leveraged Deep Learning
technologies. Pioneering studies [14, 25, 26, 27, 28] utilize ground truth displacement fields obtained
by simulating deformations and deformed images, typically estimated using non-parametric methods.
These approaches, however, may be limited by the types of deformations they can effectively model,
which can affect both the quality and accuracy of the registration. Unsupervised methods, as discussed
by [9, 10, 15, 29, 30, 31, 32] have shown promise by learning deformation through the warping of a
fixed image to a moving image using spatial transformation functions [33]. These methods have been
extended to include deformable models for single directional deformation field tracking [9, 26, 34] and
diffeomorphic models for stationary velocity fields [32, 35, 36]. Further application of diffeomorphic
models to cardiac motion tracking has been explored by [13, 15, 16, 30, 31]. These models predict
motion fields that are both differentiable and invertible, ensuring one-to-one mappings and topology
preservation. Recent studies in denoising diffusion probabilistic models (DDPM), such as [11]
and [12], have achieved considerable success in registration tasks. However, DDPM-based methods
face challenges in building temporal connections and demand substantial computational resources.
The DL-based optical flow (OF) methods [37, 38, 39, 40] apply widely in nature image motion
tracking. However, as illustrated in [7, 15, 16], due to annotations requirements and photometric
constraints, they cannot be adopted in unsupervised cardiac motion tracking in medical image domains
(See Section A1 in Appendix for detailed discussion).

3 Methodology

3.1 Diffeomorphic Tracking of Cardiac Motion
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Figure 2: Comparsion between our GPTrack (a) and conven-
tional registration framework (b).

Diffeomorphic motion tracking and
registration techniques are widely
used in medical image analysis be-
cause they seek topology-preserving
mapping between source and target
images [6, 8]. Formally, given the
source image x0 and target image x1,
the diffeomorphic registration aims
at a family of differentiable and in-
vertible mappings {ϕt}t∈[0,1] with
the boundary condition ϕ0 = Id and
ϕ1(x0) = x1, where Id is the iden-
tity mapping. The diffeomorphism
ϕt can be parameterized as its derivatives (velocity field) vt as follows:

dϕt

dt
= vt(ϕt) := vt ◦ ϕt ⇐⇒ ϕt = ϕ0 +

∫ t

0

vs(ϕs)ds, s ∈ [0, 1], (1)

where ◦ is the composition operator. For numerical implementation, the associative property of
the diffeomorphism group indicates ϕt1+t2 = ϕt1 ◦ ϕt2 , and the integral of Equation 1 can be
approximated by ϕt+δ ≈ ϕt + vtδ for t ∈ [0, 1) and small enough δ. In this study, we follow
the parameter settings of [7, 15, 16, 35, 36] and take δ = 1

2N
, N = 7 to discretize the path of

diffeomorphic deformation.
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Figure 3: The overview pipeline of GPTrack (one layer). The x, h, ḣ and z denote input, forward
hidden states, backward hidden states and latent coordinates. Feature f⃗t with probabilistic prior on
the latent space via Gaussian Process then enters the decoder to predict the motion field ϕ. Subscript
t denotes the t-th position in total T moments. elu(·) represent the exponential linear units [42].

3.2 Motion Tracking with Gaussian Process Latent Coding

Our proposed method adopts the generative variational autoencoder (VAE) framework as the backbone
of a diffeomorphic tracking network, as suggested by previous methods [15, 16, 36]. However, as
shown in Figure 2, the first difference between our method and other methods is that ours allows
the registration network to aggregate the spatial information temporally, both forward and backward
(see Figure 2(a)). The conventional approaches [9, 10, 15, 16, 24, 31] only conduct between two
adjacent frames, which ignore the relationship of long-term dependency of the cardiac motion (see
Figure 2(b)). Secondly, despite the large deformation through the path of diffeomorphism, the space
of periodically specific human cardiac motion variation is bounded. Though methods [14, 15, 16]
use Lagrangian strain to formulate the continuous dynamic of cardiac motion, however, without
considering the motion consistency between two adjacent state spaces, the Lagrangian strain is prone
to error accumulation and degrade the tracking performance. To address this problem, we take
the simple yet efficient Bayesian approach, which employs the Gaussian Process (GP) to model
cardiac motion dynamics in the compact feature space, predicting more consistent motion fields over
dynamics parameters. Our proposed GPTrack can also be easily extended to other modalities or
motion-tracking tasks, such as 3D Echocardiogram videos and 4D cardiac MRI.

In this paper, we follow the research [41] that employs the recursive manner in transformer for
sequential data. As shown in Figure 3 left, the GPTrack pipeline comprised the GPTrack layer for
feature extraction, the Gaussian Process (GP) layer for modelling the cardiac motion dynamics, and
the Decoder for motion field estimation. Given the sequential 4D inputs {xt}Tt=1, xt ∈ RH×W×D×1,
where H,W,D, T denote the height, width, depth, length of the input. For each xt, we first decompose
it to P non-overlapping patches of shape p× p× p, where P = H

p ×
W
p ×

D
p and p, H

p ,
W
p , D

p ∈ Z+.
We then embed each patch as a feature with C channels via embedding layers and disentangle
patches with the dimension of RP×C from xt. The GPTrack layer then takes the x, both forward and
backward hidden states h⃗, ⃗h ∈ RP×C as the input, then predicts the motion field ϕ via the decoder
after the GP layer. Note that the initial hidden states of forward h⃗0 and backward ⃗h0 are set as zero.

3.3 Bidirectional Forward-Backward Recursive Cell

The GPTrack layer consists of two independent GPTrack cells that respond to forward and backward
computation. Similar to the [41, 43], adapting the hidden state to maintain and aggregate the sequential
information allows the input with variable length. Meanwhile, the conventional convolutional
neural network or vision in the transformer-based method is limited by the fixed input length.
Furthermore, medical images such as Echocardiogram videos usually consist of hundreds of frames
that cover multiple heartbeat cycles. Hence, parallel computing all frames requires a large amount
of computational consumption, which hinders the application in real scenarios limited by low-
computational devices. To this end, as shown in Tables 1 and 2, our GPTrack is able to formulate the
variable temporal information while maintaining the comparable computational cost.
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Using the forward GPTrack cell shown in the right of Figuer 3 as an example, the xt and h⃗t−1

followed by the addition of learnable position encoding post ∈ RP×C are respectively normalized by
Layer Normalization. The linear self-attention then computes the attentive weight At ∈ RP×C of
combined xt and h⃗t−1. The above operations can be formulated as follows:

At = (δ(WQx)+1)(δ(WKx)+1)TWV x; x = LN(xt+post)⊕LN(⃗ht−1+post) ∈ RP×2C , (2)

whereWQ,WK ,WV ∈ R2C×C are learnable weights of different projection layers named query,
key and value, δ(·) represent the exponential linear units elu(·) [42], LN(·) and ⊕ are the layer
normalization and the concatenation operation, respectively.

In order to raise the descendant hidden state h⃗t that aggregates information before t + 1 moment.
The attentive weight At then conducts the element-wise addition with ancestral positional encoded
h⃗t−1. Additionally, the At takes the positional encoded xt as the residual connection and applies the
addition operation. The Feed Forward Network denoted as FFN(·), is then introduced to output the
feature of t-th moment. The formulation can be written as follows:

h⃗t = At + LN(⃗ht−1 + poss) ∈ RP×C , f⃗t = FFN(LN(At + LN(xt + poss))) ∈ RP×C . (3)

In the Bidirectional Forward-Backward Recursive Cell, both forward and backward share the same
computation processes through the GPTrack cell. The only difference between the two directions is
that the forward process starts from the first moment x0 of input while the backward starts from the last
moment xT . Hence, the feature ft in t-th moment is formulated as ft = f⃗t + ⃗ft, ft ∈ RP×C , where
f⃗t aggregate the forward information from 0 to t, while the ⃗ft aggregate the backward information
from the last frame to the t-th frame.

3.4 Gaussian Process in Cardiac Motion Tracking

The primary objective of integrating the Gaussian Process (GP) is to establish a probabilistic prior
in the latent space that incorporates prior knowledge. Specifically, it posits that cardiac motion
across different individuals within the same region should yield similar motion fields in latent space
encodings. Furthermore, as illustrated in Figure 1, cardiac structures within an individual that are
spatially distant or exhibit motions in opposite directions should consistently adhere to the periodic
pattern of motion.

Initially, we define a covariance (kernel) function for the GP layer as depicted in Figure 3. We design
the prior for the latent space processes to be stationary, mean square continuous, and differentiable
in sequential motion fields. This design stems from our expectation that the latent functions should
model cardiac motion more prominently than visual features. Consequently, we anticipate the latent
space to manifest continuous and relatively smooth behaviour. To this end, we employ the isotropic
and stationary Matern kernel (refer to Equation 4) to fulfil the required covariance function structure:

κ(xt, xt−1) = σ
21−ν

Γ(ν)
(
√
2ν

D(xt, xt−1)

l
)νKν(

√
2ν

D(xt, xt−1)

l
), (4)

where ν, σ, l > 0 are the smoothness, magnitude and length scale parameters, Kν is the modified
Bessel function, and D(·, ·) denotes the distance metric between features of two consecutive motion
fields. Our goal is to formulate cardiac motion as robust prior knowledge applicable to unseen data.
To address this, we propose a position-related distance measurement.

As outlined in section 3.3 and referenced in [44], we utilize a learnable parameter ˙pos ∈ RP×C

as the spatial positional encoding for each region, which provides relative or absolute positional
information about the decomposed patches. To capture the periodic temporal positional information
of cardiac motion, distinct from the spatial encoding ˙pos, we apply sine and cosine functions of
various frequencies as temporal encoding { ˜post}Tt=1, ˜post ∈ RP×C for each moment. The overall
positional encoding at moment t is formulated as:

post = ˙pos · ˜post ∈ RP×C , where ˜post(t, i) = I(i=2k)sin(t ·n− 2k
C ) + I(i=2k+1)cos(t ·n− 2k

C ). (5)

The i denotes the i-th position of C channels, and n is the scaling factor. We assign independent
GP priors to all values in {zt}Tt=1, zt ∈ RP×C to disseminate temporal information between frames
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in the sequence. During this process, we regard the sequential output {ft}Tt=1 of GPTrack as noise-
corrupted versions of the ideal latent space encodings, formulating the inference as the following GP
regression model with noise observations:

zt ∼ GP
(
µ(post), κ

(
post−1, post

))
, ft = zt + ϵt, ϵt ∼ N (0, σ2),

where σ2 is the noise variance of the likelihood model set as the learnable parameter in GPTrack.
The above Gaussian process can be treated as the temporal sequence with intrinsic Markov property,
and we adopt the methodology of connecting the Gaussian process with state space model [45]
to decrease its computational complexity from O(T 3) to O(T ), where T is the number of time
step. Concretely, the Gaussian process of Equation 6 corresponds to the following linear stochastic
differential equation:

d

dt
z(t) = Az(t) + bw(t), f(t) = hT z(t) + ϵ(t), ϵ(t) ∼ N (0, σ2), (6)

with the solution as:

z(t) = exp(t−r)A z(r) +

∫ t

r

exp(t−s)A bw(s)ds, ∀r < t,

f(t) = hTz(t) + ϵ(t), ϵ(t) ∼ N (0, σ2),

(7)

where z(t) := (z(t), d
dtz(t)), w(t) is the zero-mean Gaussian random process, and h := (0, 1)T is

used for modelling observation model. The state transition matrix (vector) A and b can be calculated
from the covariance function κ of the Gaussian process. For the Matern kernel shown in Equation 4,
we take ν = 3

2 , and corresponding state transition matrix A and vector b [46] read as:

A =

(
0, 1

− 3
l2 ,−

2
√
3

l

)
, b = (0, 1)T. (8)

Then we can discretize Equation 7 and get its weakly equivalent state-space model of Equation as:

zt = Φt zt−1 + nt, ft = hTzt + ϵt, ϵ(t) ∼ N (0, σ2), t = 1, . . . , T, (9)

where Φt = expD(post,post−1)A, nt ∼ N (0,ΦtbQw(t − 1, t)bTΦT
t ), and Qw(t, t − 1) is the co-

variance of w(t). Given the initial value z0 ∼ N (µ0,Σ0) with µ0 = 0 and Σ0 = diag(σ
2

2 , 3σ2

l2 ), we
can sequentially calculate the posterior distribution zt|f1:t−1 ∼ N (µt,Σt) and zt|f1:t ∼ N (µt,Σt)
using update criterion of Kalman filter for state space model [47] as:

µt ← Φtµt−1, Σt ← ΦtΣt−1Φ
T
t +Σ0 −ΦtΣ0Φ

T
t ,

µt ← µt + kt(ft − hTµt), Σt ← Σt − kth
Tµt, t = 1, . . . , T,

(10)

where kt := Σth
hΣth+σ2

is the optimal Kalman gain at time t. The output of the GP layer in t-th
moment thus can be formulated as zGP

t = ReLU(ktzt), where ReLU is the activation function. In
the final, the t-th motion field θt is obtained by decoder from the zGP

t .

3.5 Overall Loss of Tracking a Time Sequence of Cardiac Motion

The decoder takes the Gaussian-process coding {zGP
t }Tt=1 as velocity filed to composite the diffeo-

morphic motion field ϕ according to the criterion of Section 3.1. Here, we adopt the training loss of
[15, 16], which minimizes the integration of four components summarized as follows: a) Dissimilari-
ties of tracking results between adjacent states from both forward and backward; b) Smoothness of
motion fields between adjacent states from both forward and backward; c) Dissimilarities of tracking
results between the start state and each state; d) Smoothness of motion fields between the start state
and each state. The overall loss function L is formulated as:
T−1∑
t=1

[Lkl(xt, xt+1)︸ ︷︷ ︸
a)

+α1(Lsm(ϕt:t+1) + Lsm(ϕt+1:t)︸ ︷︷ ︸
b)

) + α2 Lnc(xt+1, x1 ◦ ϕ0:t+1)︸ ︷︷ ︸
c)

+α3 Lsm(ϕ1:t+1)︸ ︷︷ ︸
d)

],

where α1, α2 and α3 are loss weights, and ϕt1:t2 is the motion field from state t1 to t2.
Lkl(xt, xt+1) = KL(q(zGP

t |xt;xt+1)||p(zGP
t |xt;xt+1))+KL(q(zGP

t |xt+1;xt)||p(zGP
t |xt+1;xt))

is the summation of forward and backward VAE losses with latent coding zGT
t , posterior distribution

q and conditional distribution p, Lnc is the negative normalized local cross-correlation metric, and
Lsm(ϕ) = ||∇ϕ||22 is the ℓ2-total variation metric.
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4 Experiment

4.1 Datasets

CardiacUDA [17]. The CardiacUDA dataset collected from two medical centers consists of 314
echocardiogram videos from patients. The video is scanned from the apical four-chamber heart (A4C)
view. In this paper, we conduct training and validation in the A4C view that consists of 314 videos
with 5 frame annotations in the Left/Right Ventricle and Atrium (LV, LA, RV, RA). For testing, we
report our results in 10 videos with full annotation provided by the CardiacUDA.

CAMUS [18]. The CAMUS dataset provides pixel-level annotations for the left ventricle, my-
ocardium, and left atrium in the Apical two-chamber view, which consists of 500 echocardiogram
videos in total. There are 450 subjects in the training set with 2 frames annotated in the Left Ventricle
(LV), Left Atrium (LA) and Myocardium (Myo) in the end-diastole (ED) and end-systole (ES) of the
heartbeat cycle. The remaining 50 subjects without any annotation masks belong to the testing set.

ACDC [19]. The ACDC dataset consists of 100 4D temporal cardiac MRI cases. All data provide
the segmentation annotations corresponding with the Left Ventricle (LV), Left Atrium (LA) and
Myocardium (Myo) in the end-diastole (ED) and end-systole (ES) during the heartbeat cycle.

4.2 Implementation Details

Training. We trained the model using the Adam optimizer with betas equal to 0.9 and 0.99. The
training batch size of the model was set to 1. We trained for a total of 1000 epochs with an
initial learning rate of 5e−4 and decay by a factor of 0.5 in every 50 epochs. During training, for
CardiacUDA [17] and CAMUS [18], we resized each frame to 384× 384 and then randomly cropped
them to 256× 256. All frames were normalized to [0,1] during training. In temporal augmentation
of datasets [17, 18], we randomly selected 32 frames from an echocardiogram video with a sampling
ratio of either 1 or 2. For ACDC [19], we resampled all scans with a voxel spacing of 1.5 × 1.5 ×
3.15mm and cropped them to 128× 128× 32, normalized the intensity of all images to [-1, 1]. For
spatial data augmentation of all datasets, we randomly applied flipping, rotation and Gaussian blurring.
In CardiacUDA, we split the dataset into 8 : 2 for training and validation. During testing, we reported
results in 10 fully annotated videos. In the CAMUS [18] dataset, videos without annotation are used
for only training, while we randomly split the remaining 450 annotated videos into 300/50/100 for
training, validation and testing. In the ACDC [19], following the [11, 12], we split the training set in
the ratio of 90 and 10 for training and testing. The reproduced methods strictly follow the official
code and the description in the paper. For all experiments, We use Intel(R) Xeon(R) Platinum 8375C
with 1× RTX3090 for both training and inference. All reproduced methods strictly followed the
training settings with their original paper in the same experimental environment.

Inference. For CardiacUDA and CAMUS, we resized videos to 384× 384, cropped to 256× 256 in
central and normalized to [0,1]. We sample 32 frames that cover the segmentation annotation. When
the sequence has more than 32 frames, the extra frames will be removed from the sequence, except
for the first and the last one. The ACDC dataset remains the same sampling strategy as training in the
inference stage, without any argumentation except for normalizing intensity to [-1,1].

Evaluation Metrics. For the evaluation of the quality of registered target frames, we follow [12] to
use the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [48] to measure
whether the Lagrangian motion field is accurately estimated between the first frame and the following
wrapped frames. We also use the Dice [49] score to measure the discrepancy between tracked and
ground-truth cardiac segmentation. For CardiacUDA [17], only the first frame and corresponding
segmentation are provided for tracking the following 32 frames, then report the averaged results by
the above metrics in these 32 frames. For CAMUS [18] and ACDC [19], frame and segmentation of
the ED stage are used to track the go-after frames, and we report all the metrics in the ES stage. We
evaluate diffeomorphic property by computing the percentage of non-positive values of the Jacobian
determinant det(Jϕ) ≤ 0 (%) on the Lagrangian motion field. In order to access the evaluation of
comparing the physiological plausibility following the [50, 51], we also compute the mean absolute
difference between the 1 and Jacobian determinant (||Jϕ| − 1|) over the tracking areas. For a fair
comparison, we evaluate the computational efficiency and report the computational time in seconds
(Times), the parameter quantities in millions (Params), and the tera-floating point operations per
second (TFlops). We also provide the result evaluated by Hussdorf Distance (HD) in Tables B1, B2
and B3 of Appendix Section B.
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Table 1: The performance1 of different registration methods in Cardiac-UDA dataset [17]. Results
were reported in structures (RV, RA, LV, LA) and the overall averaged Dice score (Avg. %).

2D Methods LV ↑ RV ↑ LA ↑ RA ↑ Avg. ↑ ||J | − 1| ↓ det(Jϕ) ≤ 0 ↓ PSNR ↑ SSIM ↑ Times (s) ↓ Params (M) ↓ TFlops ↓
(256×256) Non-rigid Registration

LDDMM [6] 69.44±6.9 70.61±5.3 57.03±12 70.78±5.3 69.22±5.2 13.12±11.05 25.67±23.41 26.45±2.7 76.44±2.4 *177.9±2.3 - -
RDMM [8] 70.50±7.3 71.12±6.3 57.10±12 72.22±6.0 70.84±6.3 5.102±1.067 8.602±6.350 26.80±2.6 76.92±1.9 *241.0±3.5 - -

ANTs (SyN) [24] 73.51±6.6 74.12±5.7 60.49±14 74.69±4.6 73.71±5.8 16.09±8.031 40.06±28.56 27.96±2.4 76.52±2.5 *156.4±4.1 - -
Deep Learning Based Registration

VM-SSD [10] 74.26±8.3 74.85±5.2 66.78±18 76.24±7.4 75.86±4.2 0.374±0.021 0.262±0.305 29.01±2.5 75.89±1.8 0.011±0.0 0.118 0.010
VM-NCC [10] 74.04±7.2 76.20±5.9 67.54±14 77.36±4.2 76.51±4.2 0.685±0.052 0.905±1.229 28.53±2.5 75.77±2.3 0.011±0.0 0.118 0.010
SYMNet [36] 75.21±7.5 75.33±6.1 69.67±11 77.78±5.5 76.60±4.2 0.454±0.048 0.631±0.108 28.56±2.5 76.87±2.0 0.101±0.0 0.449 0.125
VM-DIF [9] 73.53±7.5 76.37±5.6 68.10±15 78.55±6.1 76.83±5.0 0.387±0.066 0.437±0.508 28.80±2.2 76.87±1.8 0.011±0.0 0.109 0.010

Ahn SS, et al. [31] 75.66±7.6 77.24±6.3 71.41±17 79.20±6.9 77.04±4.3 3.107±1.156 2.664±0.827 29.86±2.5 77.59±2.4 0.017±0.0 7.783 0.851
DiffuseMorph [12] 77.02±6.0 80.45±5.5 72.50±12 80.81±5.3 79.27±5.2 0.319±0.043 0.339±0.478 29.48±2.0 77.02±2.5 0.103±0.0 90.67 0.227
DeepTag [15, 16] 76.83±7.5 80.13±4.8 72.87±14 80.98±4.2 79.41±3.5 0.273±0.056 0.027±0.022 28.53±2.5 76.40±2.3 0.011±0.0 0.107 0.010

GPTrack-M (Ours) 76.94±7.6 81.72±6.4 73.13±16 80.85±6.4 81.64±2.8 0.286±0.069 0.119±0.084 31.28±2.0 78.22±2.4 0.013±0.0 0.467 0.015
GPTrack-L (Ours) 77.07±8.0 82.57±7.1 73.11±15 81.24±6.4 82.11±2.7 0.250±0.044 0.019±0.017 31.57±2.0 78.70±2.1 0.016±0.0 5.161 0.041

GPTrack-XL (Ours) 78.51±7.9 82.48±6.0 73.43±12 81.20±5.9 82.37±2.7 0.279±0.085 0.027±0.023 32.03±2.4 80.04±2.4 0.026±0.0 7.536 0.053

Table 2: The performance1 of different registration methods in ACDC [19] dataset. Results reported
in structures (RV, LV, Myo) and overall averaged Dice score (Avg. %).

3D Methods
(128×128×32)

RV ↑ LV ↑ Myo ↑ Avg. ↑ ||J | − 1| ↓ det(Jϕ) ≤ 0 ↓ PSNR ↑ SSIM ↑ Times (s) ↓ Params (M) ↓ TFlops ↓
Non-rigid Registration

LDDMM [6] 73.61±8.5 65.62±8.5 56.44±13 72.39±18 451.8±162.3 653.5±371.2 31.20±3.8 84.59±6.0 *1533±8.4 - -
RDMM [8] 76.43±7.8 69.50±9.1 62.19±14 75.51±12 144.2±63.67 266.0±165.3 31.66±3.9 84.36±5.4 *1715±26 - -

ANTs (SyN) [24] 75.30±7.4 66.92±8.6 58.03±11 74.64±13 15.82±22.30 57.26±37.74 30.92±3.6 84.26±5.6 *1166±16 - -
Deep Learning Based Registration

VM-SSD [10]] 79.83±7.1 74.27±9.0 64.44±15 77.56±12 3.144±2.242 4.602±3.485 32.61±3.7 83.88±5.2 0.015±0.0 0.327 0.767
VM-NCC [10] 81.60±6.5 77.00±8.6 67.90±13 79.90±11 0.260±0.070 0.079±0.058 34.68±3.3 85.01±5.5 0.015±0.0 0.327 0.767
VM-DIF [9] 81.50±6.6 75.50±9.2 65.90±14 78.90±12 0.286±0.074 0.083±0.063 33.48±3.5 84.22±5.1 0.015±0.0 0.327 0.767

SYMNet [36] 80.46±6.4 77.81±9.4 66.22±14 79.47±13 0.341±0.062 0.121±0.054 32.91±3.5 83.55±4.9 0.414±0.0 1.124 0.226
NICE-Trans [52] 79.97±6.0 78.55±8.1 67.02±11 79.66±10 0.278±0.071 0.093±0.044 33.08±3.0 83.88±4.7 0.486±0.0 5.619 0.280

DiffuseMorph [12] 82.10±6.7 78.30±8.6 67.80±15 80.50±11 0.237±0.068 0.061±0.038 34.73±3.6 84.30±5.2 0.458±0.0 0.327 0.642
CorrMLP [53] 80.33±6.5 80.07±7.8 70.51±14 80.44±8.6 0.248±0.055 0.059±0.022 34.90±2.9 84.27±4.5 0.070±0.0 13.36 0.303

DeepTag [15, 16] 81.89±7.0 79.10±7.5 70.37±13 80.83±12 0.185±0.067 0.044±0.025 33.64±3.4 83.09±4.9 0.015±0.0 0.362 0.113
Transmatch [54] 81.22±7.0 80.34±6.8 71.21±12 81.35±9.8 0.226±0.050 0.077±0.054 33.89±3.3 84.78±4.9 0.325±0.0 70.71 0.603
FSDiffReg [11] 82.70±6.1 80.90±7.7 72.40±12 82.30±9.6 0.214±0.054 0.054±0.026 35.34±3.5 85.85±5.2 1.106±0.0 1.320 0.855

GPTrack-M (Ours) 81.65±7.0 80.77±7.5 71.53±16 81.45±10 0.209±0.081 0.047±0.035 34.82±3.2 85.78±5.3 0.022±0.0 0.418 0.201
GPTrack-L (Ours) 82.78±5.6 81.16±6.8 71.71±14 82.38±11 0.182±0.072 0.035±0.022 34.99±3.0 85.62±4.9 0.023±0.0 0.942 0.204

GPTrack-XL (Ours) 82.91±5.8 81.23±8.2 72.86±9.0 82.65±10 0.178±0.024 0.032±0.021 35.52±3.1 86.19±5.0 0.034±0.0 1.094 0.205

4.3 Results

Table 3: The segmentation performance1 of dif-
ferent cardiac structures in the CAMUS [18].

Methods
(256×256)

CAMUS (Dice%)
LV LA Myo Avg.

VM-NCC [10] 79.50±6.8 80.10±9.7 67.70±9.3 75.80±7.0

SYMNet [36] 85.24±7.0 82.77±9.6 76.36±6.2 81.84±4.5

VM-SSD [10] 86.30±6.7 85.20±9.3 77.90±6.9 83.10±4.5

Ahn SS, et al. [31] 86.42±7.2 83.95±8.9 75.68±8.4 82.33±4.1

DiffuseMorph [11] 85.76±5.9 84.49±8.7 76.65±6.3 83.57±4.5

VM-DIF [9] 87.70±6.0 85.40±10 80.40±6.3 84.50±3.7

DeepTag [15] 87.60±4.5 87.90±6.1 79.00±6.8 84.80±5.1

GPTrack-XL (Ours) 88.63±4.6 89.13±8.0 80.37±7.3 85.29±4.2

Result of 3D Echocardiogram Video. In Table 1,
we compare our method with state-of-the-arts 2D
registration [9, 10, 12, 15, 31, 52] and non deep
learning [6, 8, 24] methods in CardiacUDA dataset.
In comparison to DeepTag [15], our GPTrack-XL
reach 82.37% and 12.75 in DICE and HD scores
with the best non-positive Jacobian determinant
value, which denotes the learned motion field is
smooth. The registration quality of our method
also achieved the best with 32.03 (3.50 ↑) and
80.04 (3.64 ↑) in PSNR and SSIM compared to
the second-best method, respectively. Though GP-
Track introduces more learnable parameters and requires a small amount of additional computation,
slightly increases inference time and TFlops compared to DeepTag [15] and VM-DIF [9]. GPTrack
surpasses all other methods in the registration and verifies the necessity of formulating a strong
temporal relationship among frames by using the recursive manner. Tables 1 and 3 show registration
results of cardiac structures (LV, RV, LA, RA, Myo). Compared to other methods, our GPTrack can
outperform existing baseline methods by a substantial margin. In areas such as the left atrium (LA)
and left ventricular (LV), which usually cause larger deformation, our method can also provide better
alignment than other approaches.

1Segmentation results are reported in the Dice score (%). Bold, underline denote the best results and the
second best performance. The superscript * indicates computational time reported in only CPU implementation.
We use the t-test for statistical significance analysis, where the p-value between the two methods is p < 0.05,
indicating statistically significant improvements
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Syn [24]               VM-SSD [10]            VM-DIF [9]        Ahn,S.S, et al. [33]       DeepTag [15]        Our GPTrack          Ground Truth

Figure 4: The visualization in 3D Echocardiogram video of motion tracking error. We visualised
the last frame of tracking result and ground truth from 32 consecutive frames in CardiacUDA [17].
Colours Red, Blue, Green and Orange denote cardiac structures RA, RV, LV and LA, respectively.

Syn [24]               VM-SSD [10]            VM-DIF [9]       DiffuseMorph [12]       DeepTag [15]        FSDiffReg [11]         Our GPTrack          Ground Truth

Figure 5: The visualization in 4D Cardiac MRI of motion tracking error. We visualised the result of
the last frame tracking from ED to ES and corresponding ground truth in ACDC [17]. Colours Red,
Blue, and Green denote cardiac structures MYO, LA, and LV, respectively.

As shown in Figure 4, the tracking error of our GPTrack and other methods show a significant
difference in LA (Labelled by Orange Colour) and LV (Labelled by Green Colour) when compared
to the ground truth. The methods [24, 10, 9, 31] present inaccuracy tracking results due to lack of the
constraints on the consecutive motion and ignore the long-term temporal information. These results
further verify that our specifically designed GPTrack for modelling motion patterns is more suitable
for cardiac motion tracking on echocardiography.

Result of 4D Temporal Cardiac MRI Dataset. We compare our GPTrack method against with the
state-of-the-art deep learning based methods [9, 10, 11, 12, 15] and different Non-rigid approaches [6,
8, 24]. As illustrated in Table 2, our GPTrack-XL achieves the best average DICE score of 82.65
compared to FSDiffReg [11] with 82.30. In registration quality, our GPTrack-XL reaches the highest
scores, 31.52 and 86.19, in PSNR and SSIM, respectively. Moreover, our Jacobian determinant on
deformation fields shows numbers comparable to other methods with the diffeomorphic constraint.
All results are based on our fast and lightweight model, reducing around 96.93% inference time,
17.2% model parameters and 76.02% computational consumption (TFlops) compared to the second-
best performance. In comparison to the diffusion-based method [12, 11], which requires enormous
computation that hinders real-time inference and is nearly impossible to deploy in real scenarios,
the GPTrack preserve light-weight and considerable performance by formulating cardiac motion
patterns as the Gaussian process latent coding and bidirectionally understand the cardiac motion. The
visualization result in Figure 5 also indicates our GPTrack can achieve better tracking accuracy.

4.4 Ablation Study

The Scale of Model Hyper-parameters. Table 4 shows the settings of the 2D/3D GPTrack-M/L/XL.
For the 3D echocardiogram video dataset and 4D cardiac MRI dataset, the GPTrack with different
scales has different patch sizes and dimension numbers. Referring to the result performed by Tables 3,
1 and 2, the registration result can be boosted by increasing the layers number and dimension size of
GPTracks according to different requirements.
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Table 4: The ablation study of the different config-
urations of our 2D / 3D GPTracks (M, L, XL).

Model Layer Patch Size Dim GFlops Param (M)

GPTrack-M 2 / 2 16 / 8 64 / 32 1.54 / 20.1 0.467 / 0.418
GPTrack-L 2 / 2 16 / 8 256 / 64 4.18 / 20.4 5.161 / 0.942

GPTrack-XL 4 / 4 16 / 8 256 / 64 5.39 / 20.5 7.536 / 1.094

Table 5: Ablations of Bi-Directional (Bi-direct.)
and Gaussian Process (GP) of GPTrack-XL.

Bi-direct. GP Dice.Avg det(Jϕ) ≤ 0

79.83±3.1 0.048±0.040

80.81±2.8 0.052±0.047

81.21±2.7 0.039±0.031

82.37±3.2 0.027±0.023
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Figure 6: The Tracking Error performed by different methods in 32 consecutive frames of Car-
diacUDA [17] full annotated set.

The Ablation of Bidirectional Recursive Manner and Gaussian Process. Table 5 illustrates the
Bi-directional layer in GPTracks can better formulate both forward and backward motion fields by
aggregating the temporal information of the cardiac heartbeat cycle. The Gaussian Process models
cardiac motion with strong prior knowledge from data, which makes more accurate predictions
of the deformation field. The Figure 6 illustrate the tracking error from 1-st to 32-th frame in
CardiacUDA [17] full annotated set. Our GPTrack and the DeepTag [15] both use the Lagrangian
strain. However, the accuracy degrades significantly without aggregating the temporal information
and GP when the input length increases. As shown in Figure 6, the tracking error after the 20-th frame
becomes larger by using only Lagrangian strain, while introducing GP and bidirectional recursive
methods can efficiently eliminate the tracking error by predicting more accurate motion fields.

5 Conclusion and Limitation

In this paper, we proposed a new framework named GPTrack to improve cardiac motion tracking
accuracy. GPTrack innovatively aggregates both forward and backward temporal information by using
the bidirectional recurrent transformer. Furthermore, we introduce the Gaussian Process to model
the variability and predictability of cardiac motion. In experiments, our framework demonstrates the
state-of-the-art in 3D echocardiogram and 4D cardiac MRI datasets. The limitation of our framework
is that we use positional encoding as the prior knowledge of the cardiac motion, which may degrade
the tracking performance in out-of-domain datasets. In our future work, we will build a more robust
representation of cardiac motion and further our work across different medical domains. We also
provide the illustration of Broader Impacts, please see Section A2 in Appendix.
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Appendix

A1 Difference Between Optical Flow and Diffeomorphism Mapping

Optical flow (OF) based methods, often applied in object tracking of video sequences, have been
explored by [3, 4, 5]. However, their effectiveness in medical imaging is limited due to challenges
in accommodating large deformations and the inherent low quality of certain medical imaging
modalities [4, 55], such as echocardiogram videos.

With the progression of deep learning, neural networks have also been employed to predict optical
flow, which is crucial for predicting dynamic motion trajectories in video sequences. Notable
implementations include FlowNet [37], iterative methods by [39], and self-supervised learning
approaches by [38] and [56]. However, while supervised methods require a ground truth annotation
for training cost functions [37, 39, 40, 57, 58], unsupervised approaches depend on photometric loss
to ensure motion consistency [38, 56, 59], which can be challenging to obtain in medical images.

Last but not least, OF-based methods do not necessarily preserve topology, non-globally one-to-one
(objective) smooth and continuous mapping with derivatives that are invertible. In cardiac motion
tracking, we consider the deformation in each point of the adjacent frame to remain one-on-one
mapping and be invertible for forward and backward deformation fields. Directly using the OF-based
method to predict the motion field of cardiac motion may lead to incorrect estimation.

A2 Broader Impacts

Our work focuses on cardiac motion tracking with an unsupervised framework named GPTrack. The
GPTrack framework has the potential to support medical imaging physicians, such as radiologists and
sonographers, in observing the cardiac motion of patients. This is a fundamental task for assessing
cardiac function, and we are able to provide decision support and improve analysis efficiency and
analysis reproducibility in clinical scenarios.

Moreover, our new framework illustrates that cardiac motion can be formulated as strong prior
knowledge, which is able to be utilised to enhance tracking accuracy. Also, our work presents several
advantages that help us make progress towards these benefits, which improve the performance of
automated motion field estimation algorithms. The method not only improves the precision of motion
tracking and segmentation in both 3D and 4D medical image modailites [17, 18, 19, 60, 61, 62] but
also provides a comprehensive observation of motion information to radiologists and sonographers to
facilitate human assessment. However, this work may still remain gaps between real-world clinical
utilization due to medical image analysis being a low failure tolerance application. The meaning
of this work is to present a new direction for cardiac motion tracking, which is different from the
conventional approach. In the current stage, the trained model in public datasets and the results
presented are not specific to provide support for clinical use.
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B Additional Quantitative Results and Visualization

We provide the experiment reported on Hussdorf Distance (HD) for datasets CardiacUDA [17],
CAMUS [18] and ACDC [19] in Tables B1, B2 and B3, respectively. Furthermore, the consequent
tracking results of 3D echocardiogram and 4D Cardiac MRI are presented in Figures B1 and B2.

Table B1: The performance of different registration methods in CardiacUDA [17]. Results report in
Structures (LV, RV, LA, RV) and overall averaged Dice score (Avg. %). Segmentation results are
reported in the Hussdorf Distance (HD). Bold, underline denote the best results and the second-best
performance, respectively.

Methods
(256×256)

CardiacUDA
LV RV LA RA Avg.

Non-rigid Registration
LDDMM [6] 18.12±3.9 17.33±3.2 16.94±3.4 16.77±3.6 17.27±3.0

RDMM [8] 17.47±3.2 17.69±3.4 16.36±3.2 15.97±2.9 17.01±2.3

ANTs (SyN) [24] 17.02±7.5 16.44±5.6 15.81±4.6 16.35±6.1 16.42±2.5

Deep Learning Based Registration
VM-SSD [10] 17.09±3.3 16.11±2.6 15.60±2.8 15.46±3.2 16.11±2.4

VM-NCC [10] 16.84±2.9 15.78±3.1 15.93±3.4 15.16±2.3 15.88±2.5

SYMNet [36] 15.63±2.7 15.24±2.9 16.18±3.6 15.52±2.4 15.67±2.6

VM-DIF [9] 16.16±3.1 15.11±2.7 16.02±4.4 15.68±3.1 15.73±2.3

Ahn,S.S, et al. [31] 16.63±2.7 15.13±3.0 16.45±3.1 14.91±2.5 15.48±2.6

DiffuseMorph [12] 16.26±2.7 15.28±2.5 14.60±3.2 14.77±3.4 15.54±3.2

DeepTag [15] 15.81±2.8 15.68±1.9 14.39±2.6 13.70±2.4 14.94±2.4

GPTrack-M(Ours) 14.63±2.6 14.77±3.0 12.19±2.5 13.94±2.1 13.87±2.3

Table B2: The performance of different registration methods in CAMUS [18] dataset. Results report
in Structures (LV, RV, Myo) and overall averaged Dice score (Avg. %). Segmentation results are
reported in the Hussdorf Distance (HD). Bold, underline denote the best results and the second-best
performance, respectively.

Methods
(256×256)

CAMUS
LV RV Myo Avg.

Non-rigid Registration
LDDMM [6] 7.210±3.8 10.65±7.7 6.592±2.3 7.305±2.5

RDMM [8] 6.307±3.4 9.584±6.7 6.911±2.5 6.831±2.6

ANTs (SyN) [24] 6.644±3.7 10.29±8.3 6.134±2.3 7.166±2.3

Deep Learning Based Registration
VM-SSD [10] 5.769±3.0 8.755±7.6 5.231±1.9 6.240±1.8

SYMNet [36] 5.544±3.5 9.131±7.2 5.466±2.8 6.499±2.0

VM-NCC [10] 5.454±3.3 9.094±7.5 5.190±2.1 6.521±2.1

VM-DIF [9] 5.382±2.8 8.749±6.6 5.137±1.8 6.304±1.6

Ahn,S.S, et al. [31] 5.628±3.2 8.701±7.3 5.478±1.9 6.072±1.7

DiffuseMorph [12] 5.396±2.7 8.358±6.4 5.066±1.8 5.854±1.8

DeepTag [15] 5.207±3.1 7.651±6.1 4.870±2.2 5.388±1.6

GPTrack-M(Ours) 4.722±2.8 6.857±5.7 4.904±1.8 4.945±1.1
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Table B3: The performance of different registration methods in ACDC [19] dataset. Results report
in Structures (LV, RV, Myo) and overall averaged Dice score (Avg. %). Segmentation results are
reported in the Hussdorf Distance (HD). Bold, underline denote the best results and the second-best
performance, respectively.

Methods
(256×256)

ACDC
LV LA Myo Avg.

Non-rigid Registration
LDDMM [6] 5.817±2.4 6.662±2.9 6.337±2.8 6.562±2.1

RDMM [8] 5.430±2.5 6.268±2.4 5.953±2.2 5.728±1.5

ANTs (SyN) [24] 5.676±2.3 6.547±2.6 6.211±2.7 6.242±1.6

Deep Learning Based Registration
VM-SSD [10] 4.708±1.8 4.814±1.7 5.647±2.4 4.942±1.2

VM-NCC [10] 4.745±2.1 5.153±1.9 5.231±2.6 5.336±1.3

VM-DIF [9] 4.466±2.1 4.782±1.9 5.365±2.6 4.802±1.5

SYMNet [36] 4.864±2.3 5.149±2.1 5.552±2.7 5.254±1.9

NICE-Trans [52] 4.626±1.9 4.805±2.1 5.096±2.4 4.993±1.6

CorrMLP [53] 3.850±1.8 4.061±1.7 3.653±2.4 3.812±1.3

DiffuseMorph [12] 4.102±1.9 4.054±2.3 4.184±2.0 3.977±1.2

DeepTag [15, 16] 3.336±1.6 3.651±2.1 3.284±2.2 3.552±1.3

Transmatch [54] 3.904±1.9 3.855±2.1 3.770±1.9 3.716±1.4

GPTrack-M(Ours) 3.285±1.4 3.170±1.8 3.030±1.8 3.361±1.1

FSDiffReg [11] 2.970±1.3 3.298±2.0 2.862±1.8 3.283±1.2

GPTrack-XL(Ours) 3.147±1.5 3.028±1.9 2.844±1.8 3.145±1.1

Frame 1 (ED)         Frame 2             Frame 3             Frame 4              Frame 5            Frame 6             Frame 7          Frame 8 (ES)

Figure B1: The visualization in 4D Cardiac MRI of estimated motion field and motion tracking
results. We visualised the tracking result of the first frame (ED) to the last frame (ES) in ACDC [17].
Colours Red, Blue, and Green denote cardiac structures MYO, LA, and LV, respectively.
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Frame 1           Frame 2           Frame 3           Frame 4           Frame 5           Frame 6           Frame 7          Frame 8 

Figure B2: The visualization in 3D Echocardiogram video of estimated motion field and motion
tracking error. We visualised tracking results from the first frame to the last frame, with ground
truth from 8 consecutive frames in CardiacUDA [17]. Colours Red, Blue, Green and Orange denote
cardiac structures RA, RV, LV and LA, respectively.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Main claims are presented in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We already discuss the limiations in the last section.

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We prove the full set of assumptions and a complete (and correct) proof in our
paper.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the experimental results can be reproduced and we promise that all code
will be made publicly.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All datasets in experiments are public datasets, all code will be made publicly.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have described all the training and testing details.

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars, standard deviation and all details of result are presented in paper.

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see the implementation details.

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We promise that all research conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics.

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to Appendix A.2.

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No dataset or generative data.

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: For all datasets, we have acquired the license and permission for dataset usage.

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: N/A

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not involve crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not involve crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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