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ABSTRACT

Value alignment, which aims to ensure that large language models (LLMs) and
other AI agents behave in accordance with human values, is critical for ensuring
safety and trustworthiness of these systems. A key component of value align-
ment is the modeling of human preferences as a representation of human values.
In this paper, we investigate the robustness of value alignment by examining the
sensitivity of preference models. Specifically, we ask: how do changes in the
probabilities of some preferences affect the predictions of these models for other
preferences? To answer this question, we theoretically analyze the robustness of
widely used preference models by examining their sensitivities to minor changes
in preferences they model. Our findings reveal that, in the Bradley-Terry and the
Placket-Luce model, the probability of a preference can change significantly as
other preferences change, especially when these preferences are dominant (i.e.,
with probabilities near 0 or 1). We identify specific conditions where this sensi-
tivity becomes significant for these models and discuss the practical implications
for the robustness and safety of value alignment in AI systems.

1 INTRODUCTION

Value alignment (Gabriel & Ghazavi, 2021) aims to ensure that AI agents, such as large language
models (LLMs) (OpenAI, 2023; Llama Team, 2024), behave in accordance with human values. It
is critical for ensuring safety and trustworthiness of AI systems. An important component of value
alignment is the modeling of preferences, where preferences of individual or groups of people (e.g.,
citizens of a country) are collected as samples of choices made by the people over options given
contexts of decisions and are then fit by probabilistic frameworks to predict preferences in unseen
contexts. For example, in the Reinforcement Learning from Human Feedback (RLHF) framework,
alternative model outputs for the same prompt are shown to the human subjects in order to elicit
their preferences. A comprehensive set of such preferences are then used to train a reward/pref-
erence model, which is subsequently used to train a target agent via proximal policy optimization
(PPO) (Schulman et al., 2017). Recent value alignment approaches, such as direct policy optimiza-
tion (DPO) (Rafailov et al., 2023), uses reparameterized implicit preference models in its optimiza-
tion objectives.

One of the most widely used preference model in value alignment research is the Bradley-Terry
model (Bradley & Terry, 1952), which is the pairwise case for the more generalized Plackett-Luce
model (Plackett, 1975; Luce, 1959). The study on these for value alignment has been focused on how
to better fit a fixed target distribution of preferences (Rafailov et al., 2023; Azar et al., 2024; Xu et al.,
2024). However, there has been limited exploration of how changes in the probability of a modelled
preference could influence others within these models. Understanding these relationships is crucial
for assessing the robustness of preference models in dynamic or uncertain environments, particu-
larly when observed preferences may shift due to noise, randomness in optimization, or evolving
conditions in the dataset. This is especially relevant when preference models are sensitive to these
shifts, as such sensitivity may lead to significant changes in the probabilities of other preferences. It
is thus an important problem for the robustness and safety of value alignment for AI systems (Anwar
et al., 2024).

This paper explores the robustness of value alignment by examining the sensitivity in preference
models. We ask the core question: under common preference models, how does a change in the
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probabilities of some preferences influences the model’s predictions for other preferences? To an-
swer this question, we begin by outlining the definitions and assumptions of a preference model in
Section 2.1. Next, we explore a general pairwise model in Section 2.2 and show that the proba-
bility of any given preference can be expressed as a function of other preference probabilities. By
analyzing this function, we show that probabilities of pairwise preferences may exhibit sensitivity
to changes in other preferences, particularly when those preferences approach dominance, which is
marked by probabilities near 0 or 1. In Section 2.3, we then examine the Bradley-Terry model as a
special pairwise preference model and identify scenarios where such sensitivity arises. Lastly, we
extend our discussion to the K-tuple Plackett-Luce model in Section 2.4.

The contributions of this paper are three-fold. First, we present a theoretical analysis that reveals
the relation between preference probabilities in general pairwise preference models and the K-tuple
Plackett-Luce model. Second, we show that in all the models studied in this paper, the probability of
a given preference can exhibit sensitivity to changes in other preference probabilities as preferences
approach dominance, potentially compromising robustness of value alignment processes. Further-
more, we identify the exact conditions under which this sensitivity occurs for the Plackett-Luce
model (and the Bradley-Terry model). Third, we discuss the practical implications of our theoretical
analysis for the robustness and safety of value alignment in AI systems.

2 ANALYSIS OF PREFERENCE MODELS

We consider the following value alignment setting in our analysis. Suppose there is a group of human
subjects who share certain values which we hope to align target AI agents with. In a decision-making
context, the values guide the evaluation of the strengths of candidate options, producing a ranking
of these options. A preference is thus a ranking over candidate options, denoted as O = {oi | i =
1, 2, . . . , N}, based on the their corresponding strengths, represented as scores S = {si | si ∈
R, i = 1, 2, . . . , N}. Since it is difficult to directly obtain the scores, we instead query the subjects’
preferences and fit models to estimate the scores of the options. The model then captures the group’s
values by learning and predicting the probability of the subjects expressing any given preference.

2.1 DEFINITIONS

Formally, we define a K-tuple preference as a ranking of K options:
Definition 1. (K-tuple preference.) A K-tuple preference is a ranking oω1

≻ oω2
≻ . . . ≻

oωK−1
≻ oωK

over K items in O. It can equivalently expressed as a K-permutation of O, or
ω =

(
oω1

, oω2
, . . . , oωK−1

, oωK

)
, where 1 ≤ ω∗ ≤ N .

The probability of a particular preference ω (being expressed by a certain group of subjects), denoted
pω , is predicted by a preference model.
Definition 2. (K-tuple preference model.) A K-tuple preference model is a function f that predicts
the probability of a given K-tuple preference. Formally, pω = f(ω), where f : Perm(O,K) →
(0, 1), Perm(O,K) represents the set of all K-permutations of set O, and ω ∈ Perm(O,K).

We will use superscripts to indicate the specific preference model, and subscripts are used to de-
note the corresponding preference. For example, pBT

ij refers to the probability of (oi, oj) under the
Bradley-Terry model, and p(K)

ω to the probability of ω under a K-tuple Plackett-Luce model.
Assumption 1. (Preference models depend only on score differences.) Following assumptions in
traditional preference models (Thurstone, 1927; Bradley & Terry, 1952; Plackett, 1975; Luce, 1959),
we assume that a preference model depends only on the differences between the scores of the op-
tions. Formally, f(ω) = g(sω1

− sω2
, sω1

− sω3
, . . . , sω1

− sωK
, sω2

− sω3
, . . . , sωK−1

− sωK
),

where sωi
denotes the score of option ωi.

We study the robustness of value alignment by analyzing the sensitivity of the probability of a
preference w.r.t. other preferences. Intuitively, higher sensitivity means lower robustness because in
this case the probability of a particular preference will fluctuate significantly with minor changes in
the probability of other preferences. Below we define a function’s sensitivity as the rate of change
w.r.t. its arguments. Specifically, we use M -sensitivity to describe situations where the rate of
change exceeds M .
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Definition 3. (M -sensitivity.) Let h be a function defined over x = (x1, x2, . . . , xL), where L ∈ N
is the number of arguments of h. Then h(x) is M -sensitive to xi at point x′ if |∂h(x)/∂xi|x=x′ | >
M and 1 ≤ i ≤ L, where M > 0.

We are also interested in regions where h is M -sensitive, which is defined as follows.

Definition 4. (M -sensitive region.) Let Dom(h) represent the domain of h(x). The M -sensitive
region of h(x) w.r.t. xi is ΩM (h, xi) : {x′ ∈ Dom(h) : |∂h/∂xi|x=x′ | > M}.

Intuitively, we use A (ΩM (h, xi)) =
∫
ΩM (h,xi)

1dx, the area of the region defined by ΩM (h, xi), to
quantify the extent to which h(x) is affect by its M -sensitivity w.r.t. xi. In the following sections,
we will focus on M -sensitivity with M > 1.

2.2 ANALYSIS OF A GENERAL PAIRWISE PREFERENCE MODEL

This section discusses the probability of a pair of options (oi, oj) as p(2)
ij = g(si − sj), where g

is a preference model that predicts the probability pij of the ordered pair (i.e., 2-tuple) (oi, oj)
based on the score difference si − sj ∈ R. A common example is the Bradley-Terry model pBT

ij =
1/ (1 + exp (−(si − sj))). Without restricting the discussion to any specific preference model, we
assume that g(si − sj) satisfies the following properties:

Assumption 2. (Strictly increasing.) g is a strictly increasing function. Therefore, p(2)
ij grows with

si − sj . In other words, oi is more preferred over oj whenever si − sj grows.

Assumption 3. (Limits at infinity.) limx→−∞ g(x) = 0 and limx→+∞ g(x) = 1. Therefore, p(2)
ij is

bounded within (0, 1), and when (si − sj) goes to positive (negative) infinity, p(2)
ij = 1 (or 0).

Assumption 4. (Symmetry.) ∀x ∈ R, g(x) + g(−x) = 1. Therefore, ∀oi, oj ∈ O, p(2)
ij + p(2)

ji =

g(si − sj) + g(sj − si) = 1, meaning a higher preference for oi implies a lower preference for oj .

Assumption 5. (Continuous differentiable.) g(x) is continuously differentiable. Therefore, g and
its derivative are reasonably smooth.

The following lemma says that, in a pairwise preference model, the probability of any given prefer-
ence can be expressed as a function of two other preference probabilities.

Lemma 1. For all oi, oj , ok ∈ O, and under the pairwise model p(2)
ij = g(si − sj) following

assumptions above,

p(2)
ij = g

(
g−1(p(2)

ik) + g−1(p(2)
kj)
)
, (1)

where g−1 : (0, 1) → R is the inverse of g, mapping a probability to a difference of scores.

Proof. p(2)
ij = g(si − sj) = g ((si − sk) + (sk − sj)) = g

(
g−1(p(2)

ik) + g−1(p(2)
kj)
)
.

Lemma 1 is the basis of analysis below as we study p(2)
ij as a function of p(2)

ik and p(2)
kj . It suggests

that under a pairwise preference model, changes in some probabilities (e.g., p(2)
ik and/or p(2)

kj) leads
to changes in other probabilities (e.g., p(2)

ij ). We now study how significant such changes could be
by focusing on the sensitivity of p(2)

ij to p(2)
ik and p(2)

kj . Towards this, we first examine g′ and g−1, the
derivative and the inverse of g, as they are the key components of Eq. (1).

We first consider g′ and show that it must approach 0 at infinity.

Lemma 2. Let g′(x) = dg(x)
dx , then limx→−∞ g′(x) = limx→+∞ g′(x) = 0.

Proof. We prove limx→+∞ g′(x) = 0 by contradiction. Proof for limx→−∞ g′(x) = 0 is similar.

Suppose limx→+∞ g′(x) ̸= 0. Note that by Assumption 2, for all x ∈ R, g′(x) ≥ 0. Then ∃ε0 > 0
such that ∀M > 0, ∃x0 > M with g′(x0) ≥ ε0. Now consider the neighborhood of x0. By
Assumption 5, g′(x) is a continuous function. Since g′(x0) ≥ ε0, there exists δ0 > 0 such that for
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all x ∈ [x0, x0 + δ], g′(x) ≥ ε0/2. As a result, g(x0 + δ0) − g(x0) =
∫ x0+δ0
x0

g′(x)dx ≥ δ0
ϵ0
2 ,

hence g(x0 + δ0) ≥ g(x0) + δ0
ϵ0
2 .

Now take x0 → +∞ (as M goes to infinity). By Assumption 3, limx→+∞ g(x) = 1. Therefore
limx0→+∞ g(x0 + δ0) ≥ 1+ δ0

ϵ0
2 . This implies limx→+∞ g(x) > 1 and contradicts with Assump-

tion 3. Therefore the contrary of our assumption, i.e., limx→+∞ g′(x) = 0, must be true.

We further examine g′ and show the following two lemmas about its monotonicity and symmetry.

Lemma 3. Let g−1 be the inverse of g, then g−1(x) is strictly increasing.

Proof. Let u = g(x1) and v = g(x2), where x1 < x2. Then u < v ⇔ g(x1) < g(x2) ⇔ x1 <
x2 ⇔ g−1(u) < g−1(v). Therefore, g−1 is strictly increasing.

Lemma 4. ∀0 < x < 1, g−1(x) + g−1(1− x) = 0.

Proof. Let u = g−1(x), v = g−1(1 − x). Then g(u) = x, g(v) = 1 − x. By Assumption 2
g(x) + g(−x) = 1. Substituting x with u, we get g(u) + g(−u) = 1 ⇔ x + g(−u) = 1 ⇔
g(−u) = 1 − x = g(v). Since g is strictly increasing by Assumption 2, g(−u) = g(v) ⇔ −u =
v ⇔ u+ v = 0. Therefore, g−1(x) + g−1(1− x) = u+ v = 0.

With all the lemmas above, we are ready to discuss the M -sensitivity of p(2)
ij w.r.t. p(2)

ik. In fact, we
can show that such sensitivity exists for all M > 0, as follows.

Theorem 1. For all M > 0, there exists 0 < p0, p
(2)
kj < 1 such that for all p0 < p(2)

ik < 1, p(2)
ij is

M -sensitive to p(2)
ik.

Proof. We prove this by showing that, for all M > 0, there exists 0 < p0, p
(2)
kj < 1, such that∣∣∣∣∂p(2)

ij

∂p(2)
ik

∣∣∣∣ > M for all p(2)
0 < p(2)

ik < 1. Due to Lemma 1, p(2)
ij = g

(
g−1(p(2)

ik) + g−1(p(2)
kj)
)

. Taking the

partial derivative of p(2)
ij w.r.t. p(2)

ik, by the chain rule we have

∂p(2)
ij

∂p(2)
ik

=
dg
dx

∣∣∣∣
x=g−1(p(2)

ik )+g−1(p(2)
kj)

× dg−1

dp(2)
ik

=
dg
dx

∣∣∣∣
x=g−1(p(2)

ik )+g−1(p(2)
kj)

×
(

dg
dx′

)−1
∣∣∣∣∣
x′=g−1(p(2)

ik )

= g′
(
g−1(p(2)

ik) + g−1(p(2)
kj)
)
· 1

g′
(
g−1(p(2)

ik)
) = A1 ·A2. (2)

Since g(x) is strictly increasing on R, there exists δ > 0 such that g′(δ) > 0.

Let ϵ = g′(δ)
M > 0. Due to Lemma 2, limx→+∞ g′(x) = 0. Therefore, ∃x0 ∈ R s.t. ∀x > x0,

g′(x) < ϵ = g′(δ)
M , or equivalently 1

g′(x) > M
g′(δ) . Consider the A2 part of Eq. (2). Let p0 = g(x0)

and consider all p(2)
ik > p0. Since g−1 is strictly increasing (Lemma 3), g−1(p(2)

ik) > g−1(p0) = x0.
Therefore, ∀p(2)

ik > p0, A2 = 1

g′
(
g−1(p(2)

ik )
) > M

g′(δ) .

Consider the A1 part of Eq. (2). Let p(2)
kj = g

(
g−1

(
1− p(2)

ik

)
+ δ
)
. Due to Lemma 4: A1 =

g′
(
g−1(p(2)

ik) + g−1(p(2)
kj)
)
= g′

(
g−1(p(2)

ik) + g−1(1− p(2)
ik) + δ

)
= g′(δ).

Therefore, there exists δ > 0 and x0 ∈ R, such that ∀p(2)
ij > p0 = g(x0), and p(2)

kj =

g
(
g−1

(
1− p(2)

ik

)
+ δ
)
,
∣∣∣∣∂p(2)

ij

∂p(2)
ik

∣∣∣∣ = A1 ·A2 > g′(δ) M
g′(δ) = M .

Theorem 1 suggests that p(2)
ij could be M -sensitive to p(2)

ik for any M , regardless of how large M is.
Specifically, the proof demonstrates that this sensitivity arises when p(2)

ik approaches a sufficiently
large value (close to 1). Note that the proof only considers the case when x → +∞ when applying

4
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Lemma 2. In fact, it can be shown that similar sensitivity arises when p(2)
ik is sufficiently small. To

conclude, p(2)
ij is sensitive to p(2)

ik when it approaches dominance marked by probabilities near 0 or 1.

The definition of general pairwise model is too abstract for us to gain more intuitive understanding of
the sensitivity demonstrated in Theorem 1. For example, one may want to know the exact sensitivity
of p(2)

ij w.r.t. a given p(2)
ik. It may also be interesting to compare the sensitivity of different preference

models. In the following sections, we study Bradley-Terry model as a concrete pairwise model for
its sensitivity, and extend our discussion to the K-tuple Plackett-Luce models.

2.3 ANALYSIS ON THE BRADLEY-TERRY MODEL

The Bradley-Terry model is a widely-used special case of the general pairwise preference model
discussed in the section above. Under this model, pBT

ij = gBT(si− sj) = 1/ (1 + exp (− (si − sj))).
According to Lemma 1, we write pBT

ij as a function of pBT
ik , p

BT
kj :

pBT
ij =

1

1 + (1− pBT
ik)
(
1− pBT

kj

)
/pBT

ik/p
BT
kj

. (3)

∂pBT
ij /∂p

BT
ik can be derived as

∂pBT
ij

∂pBT
ik

=
pBT
kj

(
1− pBT

kj

)
(
pBT
ik + pBT

kj − 2pBT
ikp

BT
kj − 1

)2 . (4)

When is Bradley-Terry model sensitive? Consider the M -sensitivity of pBT
ij w.r.t. pBT

ik by solving∣∣∂pBT
ij /∂p

BT
ik

∣∣ > M . It turns out that, for M > 1, ΩM (pBT
ij , p

BT
ik) consists of two regions:

Case 1: 0 < pBT
kj <

1

1 +M
, γ0 < pBT

ik < 1,

Case 2: 1− 1

1 +M
< pBT

kj < 1, 0 < pBT
ik < γ0,where γ0 = 1−

√
(1/pBT

kj−1)
M − 1

1/pBT
kj − 2

. (5)

We can compute the area of the regions above, which gives the following corollary.
Proposition 1. The area of ΩM

(
pBT
ij , p

BT
ik

)
, where M > 1, is

A
(
ΩM

(
pBT
ij , p

BT
ik

))
=

1

2
ln

(
M − 1

M + 1

)
+

1

2
√
M

ln

(√
M + 1√
M − 1

)
.

Readers are referred to Appendix B.1 for a proof of Proposition 1. The analysis above can also be
applied to ΩM (pBT

ij , p
BT
kj). Fig. 1 illustrates ΩM (pBT

ij , p
BT
ik) and ΩM (pBT

ij , p
BT
kj). As the figure shows,

consistent with our discussion on the general pairwise model, pBT
ij becomes increasingly sensitive

to pBT
ik and pBT

kj as they approach 0 or 1. Furthermore, the size of M -sensitive region shrinks as M
increases. However, these regions are not negligible even for fairly large values of M .

Below we present an example demonstrating the possible negative consequences of sensitivities. We
discuss further implications of our discussions so far in Section 3.1.
Example 1. Suppose (pDik, p

D
kj) = (0.99, 0.02) are the probabilities specified by a dataset D. The

dataset is used to train two preference models, pBT,1 and pBT,2, which will be deployed on (oi, oj).
Suppose that after training, due to factors such as randomness in optimization or differences in
hyperparameters, the probabilities of (oi, ok) learned by these models deviate by 1% deviation from
the training set. Let (pBT,1

ik , pBT,1
kj ) = (0.9999, 0.02) and (pBT,2

ik , pBT,2
kj ) = (0.9801, 0.02) be the actual

probabilities learned by the model. While this difference appears minor, according to Eq. (3), the
models will behave very differently for (oi, oj), with pBT,1

ij ≈ 0.96 and pBT,2
ij ≈ 0.50. Such difference

arises because, by Eq. (5), (pBT
ik , p

BT
kj) = (0.99, 0.02) belongs to Ω20(p

BT
ij , p

BT
ik), meaning that 1 unit

of deviation in pBT
ik induces more than 20 units of changes in pBT

ij .

5
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Figure 1: M -sensitive regions of pBT
ij w.r.t. pBT

ik and pBT
kj , for M = {1.01, 2, 3, 5, 10}.

2.4 EXTENSION TO THE K-TUPLE PLACKETT-LUCE MODEL

The Bradley-Terry model can be extended to the more general K-tuple Plackett-Luce model, which
describes probabilities of preferences over K options, where 2 ≤ K ≤ N . In the extended model,
a preference is a K-tuple ω =

(
oω1 , oω2 , . . . , oωK−1

, oωK

)
, where oω∗ ∈ O. The probability of this

preference is defined as:

p(K)

ω =

K−1∏
u=1

exp (swu
)∑K

v=u exp (sωv )
=

K−1∏
u=1

1

1 +
∑K

v=u+1 exp (− (sωu − sωv ))
. (6)

When K = 2, the model degenerates to the Bradley-Terry model.

We are interested in whether sensitivity analysis for Bradley-Terry model can generalize to K-tuple
preference models for cases where K > 2. In particular, we address the following questions: (1)
how p(K)

ω can be expressed as a function of other preference probabilities, (2) its M -sensitivity w.r.t.
these probabilities, and (3) the extent of its sensitivity in comparison with the Bradley-Terry model.
Lemma 5. Let ω be a K-tuple preference, where K > 2. Let ωuv = (ω′

uv; oωu
, oωv

) be a K-
permutation of O with oωu

and oωv
being the last two elements and ω′

uv being any (K − 2)-
permutation of O \ {oωu

, oωv
}. Then p(K)

ω is a function of p(K)
ωvu

/p(K)
ωuv

, where 1 ≤ u < v ≤ K.
More specifically,

p(K)

ω =

K−1∏
u=1

1

1 +
∑K

v=u+1
p
(K)
ωvu

p
(K)
ωuv

. (7)

Proof. Note that there are (K− 1) entries in the product of Eq. (6). Moreover, p(K)
ωuv

and p(K)
ωvu

share
the same first (K − 2) entries because ωuv and ωvu share the same prefix ω′

uv . Therefore,

p(K)
ωvu

p(K)
ωuv

=
exp (sωv

)

exp (sωv ) + exp (sωu)
/

exp (sωu
)

exp (sωu) + exp (sωv )
= exp (−(sωu

− sωv
)) . (8)

Rewriting exp (− (sωu
− sωv

)) in Eq. (6) using Eq. (8) we get Eq. (7).

Since p(K)
ω can be represented as a function of all p(K)

ωuv
and p(K)

ωvu
where 1 ≤ u < v ≤ K, its M -

sensitivity w.r.t. these probabilities can be studied similar to the Bradley-Terry model. Taking the
partial derivative p(K)

ω of p(K)
ωuv

and p(K)
ωvu

, we get

∂p(K)
ω

∂p(K)
ωuv

=
p(K)
ωvu(

αp(K)
ωuv + p(K)

ωvu

)2 · β, ∂p(K)
ω

∂p(K)
ωvu

= − p(K)
ωuv(

αp(K)
ωuv + p(K)

ωvu

)2 · β, (9)
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where

α = 1 +

K∑
t=u+1
t ̸=v

p(K)
ωtu

p(K)
ωut

, β =

K−1∏
l=1
l ̸=u

1

1 +
K∑

m=l+1

p
(K)
ωml

p
(K)
ωlm

. (10)

As 0 < p(K)
ωuv

< 1 for all 1 ≤ u < v ≤ K, it is clear that α ∈ (1,∞) and β ∈ (0, 1).

When is Plackett-Luce model sensitive? Consider the M -sensitive regions of p(K)
ω w.r.t. p(K)

ωuv
.

Solving
∣∣∂p(K)

ω /∂p(K)
ωuv

∣∣ > M , we get ΩM (p(K)
ω , p(K)

ωuv
):

0 < p(K)

ωuv
<

β

4αM
, γ1 − γ2 < p(K)

ωvu
< γ1 + γ2, (11)

where γ1 =
β−2αMp(K)

ωuv

2M and γ2 =

√
β
(
β−4αMp

(K)
ωuv

)
2M .

Similarly, we solve
∣∣∂p(K)

ω /∂p(K)
ωvu

∣∣ > M and get ΩM (p(K)
ω , p(K)

ωvu
):

η1 − η2 < p(K)

ωuv
< η1 + η2, 0 < p(K)

ωvu
<

β

4αM
, (12)

where η1 =
β−2αMp(K)

ωvu

2α2M and η2 =

√
β
(
β−4αMp

(K)
ωvu

)
2α2M .

Proposition 2. A
(
ΩM

(
p(K)
ω , p(K)

ωuv

))
= β2

6αM2 ; A
(
ΩM

(
p(K)
ω , p(K)

ωvu

))
= β2

6α3M2 .

Appendix B.2 provides a proof for this corollary.

The analysis indicates that the M -sensitivity of p(K)
ω w.r.t. p(K)

ωuv
and p(K)

ωvu
is influenced by α and β.

For a constant M , the region of sensitivity diminishes as α increases or β decreases. When α → 1
and β → 1, the M -sensitive region reaches its maximum size. Fig. 2 illustrates ΩM (p(K)

ω , p(K)
ωuv

) and
ΩM (p(K)

ω , p(K)
ωuv

) when α = 1.01 and β = 0.99. It can be observed that significant sensitive regions,
marked by large M , cover cases where p(K)

ωuv
and p(K)

ωvu
are both close to 0.
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pKωuv

0.
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pK ω
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1.01
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5

10

(a) ΩM (p(K)
ω , p(K)

ωuv ).

0.2 0.4 0.6 0.8

pKωuv

0.
2
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8

pK ω
v
u

M=1.01

2

3
5

10

(b) ΩM (p(K)
ω , p(K)

ωvu).

Figure 2: M -sensitive region of p(K)
ω w.r.t. p(K)

ωuv
and p(K)

ωvu
, with α = 1.01, β = 0.99.

Comparing Bradley-Terry and Plackett-Luce model. In the analysis above we have shown that
K-tuple Plackett-Luce models (including the Bradley-Terry model) have non-empty M -sensitive
regions for any M > 1. Below we compare the area of M -sensitive regions for these two models,
namely, A

(
ΩM

(
pBT
ij , p

BT
ik

))
and A

(
ΩM

(
p(K)
ω , p(K)

ωuv

))
.

7
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Theorem 2. Let pBT
ij , pBT

ik be the probabilities of (oi, oj) and (oi, ok) respectively under the Bradley-
Terry model. Let p(K)

ω , and p(K)
ωuv

be the probabilities of preference ω and ωuv under a K-tuple
Plackett-Luce model. Then ∀M > 1 and K > 2,

A
(
ΩM

(
pBT
ij , p

BT
ik

))
> A

(
ΩM

(
p(K)

ω , p(K)

ωuv

))
.

Sketch Proof. To prove that A
(
ΩM

(
pBT
ij , p

BT
ik

))
= 1

2 ln
(

M−1
M+1

)
+ 1

2
√
M

ln
(√

M+1√
M−1

)
> β2

6αM2 =

A
(
ΩM

(
p(K)
ω , p(K)

ωuv

))
, we denote the left hand side as L. Note that tanh−1 (x) = 1

2
ln(x+1)
ln(x−1) , so

L = − tanh−1
(

1
M

)
+ 1√

M
tanh−1

(
1√
M

)
. Further note that tanh−1( 1

M ) =
∑∞

k=0
(1/M)2k+1

2k+1 , so

we can expand L and show that L > 1
6

1
M2 > β2

6αM2 . Appendix B.3 presents a full proof.

The theorem indicates that K-tuple preference models, with K > 2, are more robust than the
Bradley-Terry model. Further implications of this theorem are discussed in Section 3.2.

3 IMPLICATIONS

We outline the implications of our analysis for robustness and safety for value alignment.

3.1 DOMINANT PREFERENCES IMPACT ROBUSTNESS OF VALUE ALIGNMENT

In practice, any preference dataset D can only provide preference probabilities for a subset of all
possible preference. To link this setting to our earlier discussions, assume the dataset D provides
pDik and pDkj to train a Bradley-Terry model pBT to predict pij . If pDik and pDkj expresses dominance,
making (pBT

ik , p
BT
kj) fall in the M -sensitive region of pBT

ij for some large M , then training-time pertur-
bations that lead to minor changes in pBT

ik in the trained model may result in significant changes in
the model’s prediction of pij . Concretely, the following consequences could arise:

1. Preference models with similar behaviors on training set may assign drastically different prob-
abilities to unseen preferences. This has been demonstrated in Example 1.

2. Minor changes in the data distributions within the training set may lead to significant changes
in the learned preference models. For example, consider datasets D1 and D2 with different
probabilities for (oi, ok) and (ok, oj). Suppose (pD1

ik , pD1

kj ) = (0.9999, 0.02) and (pD2

ik , pD2

kj ) =

(0.9801, 0.02). If two preference models pBT,1 and pBT,2 are trained to align perfectly with the
distribution in the D1 and D2 respectively, similar to Example 1, the two models will assign
0.95 and 0.50 to (oi, oj).

Trade-off in preference modeling for value alignment. While we use Bradley-Terry model to
discuss the consequences above, they are applicable to general pairwise models that follow Assump-
tion 1-5, and with slightly modification, to K-tuple Plackett-Luce models. This gives a fundamental
trade-off in preference modeling for value alignment, i.e., one has to either (1) handle reduced ro-
bustness to model dominant preferences, or (2) weaken dominant preferences to improve robustness.
The choice of trade-off could vary depending on the purpose of the preference model. For example,
(1) may be preferable when training models only used to suppress unsafe behaviors in limited do-
mains, and (2) may be preferable when training general-purpose models where lowered robustness
could cause unexpected behaviors for unseen preferences in broad domains.

3.2 LONGER TUPLES OF PREFERENCES MAY IMPROVE ROBUSTNESS

From Theorem 2 we know that, when K > 2, K-tuple Plackett-Luce model is more robust than the
pairwise Bradley-Terry model (K = 2). It is natural to extend this discussion to compare Plackett-
Luce models with different K. Recall that by Proposition 2, A

(
ΩM

(
p(K)
ω , p(K)

ωuv

))
= β2

6αM2 , which
suggests that K-tuple models are more robust when α increases and β decreases. When does this

happen? As indicated by Eq. (10), α = 1 +
K∑

t=u+1
t ̸=v

p(K)
ωtu

p
(K)
ωut

and β =
K−1∏
l=1
l ̸=u

1

1+
K∑

m=l+1

p
(K)
ωml

p
(K)
ωlm

. Given that

8
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the ratio
p(K)
ωvu

p
(K)
ωuv

= exp (sωv
− sωu

) depends only on the difference of scores, changing K does not

cause changes in this ratio. Therefore, as K increases, more positive terms are added to α, resulting
in its increase. Likewise, since β is a product of K constants lying between 0 and 1, an increase
in K results in a decrease of β. This finding suggests that for a fixed M , modeling preferences
using longer tuples (i.e., increasing K) leads to smaller M -sensitive areas and yields more robust
models. However, using longer preference tuples comes at the expense of higher data collection
costs, especially when the number of options increases.

4 EXPERIMENTS

It is noteworthy that AI agents such as LLMs are not preference models, but are trained to
align with explicit or implicit preference models. Therefore, it is necessary to verify that the
sensitivity presented in Section 2 also exists in trained AI agents, when they are trained using
datasets with extremely dominant preferences. Towards this goal, we use a set of three options
Oa = {dog,cat,bird} to synthesize a series of datasets that contain pairwise preferences
about animals in Oa, with controllable distribution of preferences. In our dataset, a sample con-
tains a question like “Which one do you prefer, a oi or a oj?”, a chosen answer
like “I prefer ow.”, and a rejected answer like “I prefer ol.”, where oi, oj ∈ Oa and
(ow, ol) ∈ Perm ({oi, oj}). Appendix C details the templates for the questions and answers.
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Figure 3: Preferences of Llama-3-8B-Instruct after being trained on constructed datasets
with dominant preferences. Each data point in the figure represents one model trained on a partic-
ular dataset D(ωa, p

D
12, p

D
23). pL

∗ are preference probabilities learned by the model. Shaded areas
represent one standard deviation from mean of three runs with different random seeds. △ and □
markers indicate probabilities that are specified and unspecified by the dataset, respectively.

A dataset D(ωa, p
D
12, p

D
23) is synthesized based on three parameters: (1) ωa = (ωa1, ωa2, ωa3),

a permutation of O, (2) pD12, the probability of ωa1 preferred over ωa2 in the dataset, and (3)
pD23, the probability of ωa2 preferred over ωa3 in the dataset. The dataset contains no sam-
ples comparing ωa1 and ωa3, thus providing no explicit information about p13. For example,
D ((dog,bird,cat), 0.99, 0.01) is a dataset where dog is preferred over bird in 99% of the
samples, and bird over cat in 1% of the samples, with no samples comparing dog and cat
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provided. We generate datasets based on different permutations of Oa to avoid potential impacts of
existing bias about animals in the target language model.

To examine the sensitivity of trained models when dominant preferences present in the dataset,
we fix pD12 = 0.99 and vary pD23 from 0 to 1 with a step size of 0.05 for all the datasets. In
each experiment, a Llama-3-8B-Instruct (HuggingFace, c) model is trained on one of the
datasets using the DPO algorithm; training is repeated three times with different random seeds.
After training, the model is tested for its preference on pL

13 and pL
23, where pL

∗ denotes the pref-
erence probabilities of the learned preference model. We query the trained model with question
“Do you prefer o1 (o2) or o3?” for 200 times under different random states and use the
frequency of o1 (o2) being preferred to estimate pL

13 and pL
23.

Results. The result is illustrated in Fig. 3, from which two observations can be drawn. First, the
preference of trained model exhibits a significant shift in learned probabilities (from near 0 to near
1) despite comparatively minor changes in the distribution of training samples. Second, models with
identical values of pL

13 (pL
23) could exhibit substantially different pL

23 (pL
13). These findings align with

the implications discussed in Section 3.1 On the other hand, we also notice that not all significant
changes occur in M -sensitive regions. We conjecture that this inconsistency may be attributed to
factors such as biases in the LLMs and difficulties in optimization, and we defer further explorations
of this issue to future work. Since our analysis only depend on preference probabilities of trained
models rather than training details, such inconsistencies does not contradict our conclusions. Details
of the experiments and extra results can be found in Appendix C.

5 RELATED WORKS

Value alignment for AI systems (Gabriel & Ghazavi, 2021; Ji et al., 2023) is a critical challenge
in ensuring that AI systems act in accordance with human values. Significant efforts in the field
have focused on developing frameworks that can align the behavior of AI agents with human pref-
erences (Wirth et al., 2017; Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022; Dong
et al., 2023; Huang et al., 2023; Duan et al., 2024). The Bradley-Terry model (Bradley & Terry,
1952) and the Plackett-Luce model (Luce, 1959; Plackett, 1975) have been a widely used frame-
work for modeling pairwise preferences for value alignment. Methods like RLHF (Ouyang et al.,
2022), for example, uses human preferences to train reward models under the Bradley-Terry model.
Direct policy optimization (DPO) (Rafailov et al., 2023) has emerged more recently as an alternative
approach, which integrates implicit preference modeling into policy training. More recently, further
improvements on preference optimization (Azar et al., 2024; Xu et al., 2024; Tajwar et al., 2024;
Liu et al., 2024; Song et al., 2024) have been proposed.

The robustness of preference models has been studied in decision theory (Maccheroni et al., 2006;
Ben-Tal et al., 2010; Guo & Xu, 2021). However, there has been limited study of the sensitivity of
these models for robustness of value alignment in the presence of evolving and noisy preferences.

6 CONCLUSION

In this paper, we show that in popular preference models, the probability of a given preference could
be sensitive to minor changes in other preference probabilities. For the Bradley-Terry model and the
Plackett-Luce model, we identify the situations where such sensitivity arises. Experiments verify the
existence of these sensitivities on LLMs trained with DPO. Furthermore, we discuss implications
of our findings on the robustness of value alignment. Specifically, we suggest that (1) there is a
trade-off between the robustness of value alignment and modeling dominant preferences, and (2)
employing K-tuple preference models with K ≥ 3 could mitigate the sensitivities in preference
models and improve the robustness of value alignment.

Limitations. The analysis of this paper assumed that preference models strictly follow the math-
ematical definitions with Assumption 1-5. Real-world agents, such as LLMs, are usually not pref-
erence models but are only trained with preference models. Therefore, these agents may exhibit
similar but not exact sensitivities predicted by the theoretical analysis. Furthermore, the paper as-
sumes a finite set of options, which is theoretically limited but probably less worrying in practice.
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STATEMENTS

Ethics Statements. This paper presents a sensitivity analysis on preference models used for value
alignment in AI systems. While the findings themselves are neutral, the identified sensitivity could
potentially be exploited by malicious parties to compromise the preference modeling process, lead-
ing to undesirable outcomes in the AI systems that are intended to be value aligned.

Reproducibility Statements. The assumptions used for the sensitivity analysis are fully explained
in the main text as. All lemmas, theorems, and propositions are accompanied by proofs, either in
the main text or in the appendix. Implementation details for experiments have been provided in
Section 4 and Appendix C.

REFERENCES

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, Benjamin L. Edelman,
Zhaowei Zhang, Mario Günther, Anton Korinek, José Hernández-Orallo, Lewis Hammond, Eric J.
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He He, Atoosa Kasirzadeh, Yejin Choi, and David Krueger. Foundational challenges in assuring
alignment and safety of large language models. CoRR, abs/2404.09932, 2024.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Danial Guo, Daniele Calandriello, Michal
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A NOTATION AND TERMS

Table A1: Table of Notation and Terms.

Functions

f, g, h Real functions.

g−1 The inverse of function g.

Data

O The set of options.

oi The ith option.

Perm(O,K) The set of all K-permutations of set O.

ω A preference represented by a K-tuple, which is a ranking of K options from O.

ωi The ith entry of tuple ω.

Probabilities

pω The probability of preference ω in general, without specifying any preference model.

p(2)
ij The probability of preference (oi, oj), under a general pairwise preference model.

pBT
ij The probability of preference (oi, oj), under the Bradley-Terry model.

p(K)
ω The probability of preference ω, under the K-tuple Plackett-Luce model.

pDω The probability of preference ω in the dataset D.

pL
ω The probability of preference ω learned by a preference model.

Terms

M -sensitivity Defined in Definition 3.

M -sensitive region Defined in Definition 4.

B PROOF

B.1 PROOF OF PROPOSITION 1

Corollary. (Replica of Proposition 1) The area of ΩM

(
pBT
ij , p

BT
ik

)
for M > 1 is

A
(
ΩM

(
pBT
ij , p

BT
ik

))
=

1

2
ln

(
M − 1

M + 1

)
+

1

2
√
M

ln

(√
M + 1√
M − 1

)
.

Proof. By Definition 4,

A
(
ΩM

(
pBT
ij , p

BT
ik

))
=

∫∫
ΩM(pBT

ij ,pBT
ik )

1 dpBT
ij dpBT

ik .

Recall that Eq. (5) defines ΩM (pBT
ij , p

BT
ik) as:

Case 1: 0 < pBT
kj <

1

1 +M
, γ0 < pBT

ik < 1,

Case 2: 1− 1

1 +M
< pBT

kj < 1, 0 < pBT
ik < γ0,where γ0 = 1−

√
(1/pBT

kj−1)
M − 1

1/pBT
kj − 2

.
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Due to symmetry, case 1 and case 2 have the same area. Therefore, A(ΩM (pBT
ij , p

BT
ik)), denoted |Ω|

for conciseness, is simply twice the area of case 2 (or case 1):

|Ω| = 2×
∫ 1

M
M+1

1−

√
(1/pBT

kj−1)
M − 1

1/pBT
kj − 2

dpBT
kj , M > 1.

Let x = pBT
kj . Some algebra gives the following:

|Ω| = 2×

∫ 1

M
M+1

x− 1

2x− 1
dx+

∫ 1

M
M+1

√
(1−x)x

M

2x− 1
dx

 = 2× (|Ω|1 + |Ω|2) . (B1)

|Ω|1 can be easily computed as

|Ω|1 =
1

4
ln

(
M − 1

M + 1

)
+

1

2(1 +M)
. (B2)

Computing |Ω|2 is a bit more elaborating. Let x = cos2 θ, then

|Ω|2 =
1√
M

∫ 0

θ0

sin θ cos θ

2 cos2 θ − 1
× (−2 sin θ cos θ)dθ =

1√
M

∫ θ0

0

2 sin2 θ cos2 θ

2 cos2 θ − 1
dθ,

where θ0 = arcsin
√

1
M+1 .

Since 2 cos2 θ − 1 = cos 2θ and sin θ cos θ = 1
2 sin 2θ, we have

|Ω|2 =
1

2
√
M

∫ θ0

0

sin2 2θ

cos 2θ
dθ =

1

2
√
M

∫ θ0

0

1− cos2 2θ

cos 2θ
dθ =

1

2
√
M

∫ θ0

0

sec 2θ − cos 2θ dθ

=
1

4
√
M

(
1

2
ln

1 + sin 2θ

1− sin 2θ
− sin 2θ

)∣∣∣∣θ0
0

. (B3)

Now that sin θ0 =
√

1
M+1 , we know cos θ0 =

√
1− sin2 θ0 =

√
M

M+1 and sin 2θ0 =

2 cos θ0 sin θ0 = 2
√
M

M+1 . Substituting into Eq. (B3), we get

|Ω|2 =
1

4
√
M

ln

√
M + 1√
M − 1

− 1

2(M + 1)
. (B4)

Substituting Eq. (B2) and Eq. (B4) into Eq. (B1), we get |Ω| = 1
2 ln

(
M−1
M+1

)
+ 1

2
√
M

ln
(√

M+1√
M−1

)
,

which proves Proposition 1.

B.2 PROOF OF PROPOSITION 2

Corollary. (Replica of Proposition 2) A
(
ΩM

(
p(K)
ω , p(K)

ωuv

))
= β2

6αM2 ; A
(
ΩM

(
p(K)
ω , p(K)

ωvu

))
=

β2

6α3M2 .

We only prove ΩM

(
p(K)
ω , p(K)

ωuv

)
= β2

6αM ; ΩM

(
p(K)
ω , p(K)

ωvu

)
can be proved similarly. Recall that

Eq. (11) defines ΩM

(
p(K)
ω , p(K)

ωuv

)
as

0 < p(K)

ωuv
<

β

4αM
, γ1 − γ2 < p(K)

ωvu
< γ1 + γ2, (B5)

where γ1 =
β−2αMp(K)

ωuv

2M and γ2 =

√
β
(
β−4αMp

(K)
ωuv

)
2M .
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Therefore,

A
(
ΩM

(
p(K)

ω , p(K)

ωuv

))
=

∫ β
4αM

0

∫ γ1+γ2

γ1−γ2

1 dp(K)

ωvu
dp(K)

ωuv

=

∫ β
4αM

0

2γ2dp(K)

ωuv

= −
(
β
(
β − 4αp(K)

ωuv

))3/2
6αβM

∣∣∣∣∣
β

4αM

0

=
β2

6αM
, (B6)

which proves Proposition 2.

B.3 FULL PROOF OF THEOREM 2

Theorem. (Replica of Theorem 2) Let pBT
ij , pBT

ik be the probabilities of (oi, oj) and (oi, ok) respec-
tively under the Bradley-Terry model. Let p(K)

ω , and p(K)
ωuv

be the probabilities of preference ω and
ωuv under a K-tuple Plackett-Luce model. Then ∀M > 1 and K > 2,

A
(
ΩM

(
pBT
ij , p

BT
ik

))
> A

(
ΩM

(
p(K)

ω , p(K)

ωuv

))
.

Proof. Let L = A
(
ΩM

(
pBT
ij , p

BT
ik

))
= 1

2 ln
(

M−1
M+1

)
+ 1

2
√
M

ln
(√

M+1√
M−1

)
. Note that tanh−1 (x) =

1
2
ln(x+1)
ln(x−1) , so L = − tanh−1

(
1
M

)
+ 1√

M
tanh−1

(
1√
M

)
.

Further note that tanh−1( 1
M ) =

∑∞
k=0

(1/M)2k+1

2k+1 . Therefore,

L =

∞∑
k=0

− (1/M)2k+1

2k + 1
+

1√
M

∞∑
k=0

(1/
√
M)2k+1

2k + 1

=

∞∑
k=0

− (1/M)2k+1

2k + 1
+

∞∑
k=0

(1/M)k+1

2k + 1

=

∞∑
k′=1

(
(1/M)k

′

2k′ − 1
− (1/M)2k

′−1

2k′ − 1

)

=

∞∑
n=1

(
1

4n− 1

1

M2n
− 2n

(4n+ 1)(2n+ 1)

1

M2n+1

)
=

∞∑
n=1

Ln. (B7)

Since M > 1, we have

Ln =
1

4n− 1

1

M2n
− 2n

(4n+ 1)(2n+ 1)

1

M2n+1
>

1

4n− 1

1

M2n
− 2n

(4n+ 1)(2n+ 1)

1

M2n
> 0.

By only keeping the first term of Eq. (B7), and note that α > 1 and 0 < β < 1, we get

L > L1 =
1

3

1

M2
− 2

15

1

M3
>

1

3

1

M2
− 2

15

1

M2
=

1

5

1

M2
>

1

6

1

M2
>

β2

6αM2
.

C EXPERIMENT DETAILS

C.1 IMPLEMENTATION

Training and inference of large language models uses two NVIDIA-A100 GPUs each with 40 gi-
gabytes of video memory. An 8-bit version of the AdamW optimizer (Loshchilov & Hutter, 2019)
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provided by the Hugging Face’s Bitsandbytes package (HuggingFace, a) is used to train the
LLMs. In each experiment session, an LLM is trained using DPO for one epoch with learning rate
set to 5 × 10−6 and temperature of DPO loss β′ set to 0.1. Note that these details are not impor-
tant for reproducibility, as the purpose of training is to fit LLMs to the dominant preferences in the
dataset. The sensitivity should arise whenever LLMs exhibit strong preferences, regardless of how
they were trained.

C.2 SAMPLE GENERATION

We generate a series of datasets D(ωa, p
D
12, p

D
23) based on Oa = {dog,cat,bird}, where ωa

is one of the six permutations of Oa, pD12 = 0.99, and pD23 varies from 0 to 1 with a step size of
0.05. Each sample in a generated dataset contains (1) a question, (2) a chosen answer, and (3) a
rejected answer. When generating a sample for a specific dataset D, we first randomly sample a pair
of options (oi, oj) from Oa. Then, we sample from Bernoulli(pDij) to determine, for this sample,
whether the chosen answer prefers oi or oj . The rejected answer will be set to express the opposite
preference as the chosen one. We use the following templates to generate questions and answers,
where <A> and <B> are replaced with the actual options.

Question Templates
1. "If you had to choose between <A> and <B>, which would you prefer?",
2. "Would you rather have <A> or <B>?",
3. "Given the choice of <A> and <B>, which one appeals to you more?",
4. "Between <A> and <B>, which would you be more likely to select?",
5. "If you could only pick one, would you go for <A> or <B>?",
6. "When deciding between <A> and <B>, which would you favor?",
7. "In your opinion, is <A> or <B> the better option?",
8. "Faced with <A> and <B> as alternatives, which would you lean towards?",
9. "If you were presented with <A> and <B>, which would you gravitate to?",
10. "Weighing the merits of <A> against <B>, which comes out on top for you?",
11. "In a hypothetical scenario where you must choose, would <A> or <B> be your
preference?",
12. "If forced to decide, would you opt for <A> or <B>?",
13. "Considering the pros and cons, which do you find more appealing: <A> or <B>?",
14. "If <A> and <B> were your only options, which would you choose?",
15. "When comparing <A> to <B>, which one stands out as more desirable to you?",
16. "In a situation where you can’t have both, would you prioritize <A> or <B>?",
17. "If you had to advocate for either <A> or <B>, which would you support?",
18. "Imagining a world with only <A> or <B>, which would you want to exist?",
19. "If you could only choose one, would it be <A> or <B>?",
20. "When push comes to shove, would you side with <A> or <B>?"

Answer Templates
1. "I prefer <A> over <B>.",
2. "I would choose <A> rather than <B>.",
3. "<A> appeals to me more than <B>.",
4. "I just prefer <A>.",
5. "I’m more drawn to <A> than <B>.",
6. "If I had to pick, I’d go with <A> over <B>.",
7. "<A> is my preferred choice when compared to <B>.",
8. "I find <A> to be a better option than <B>.",
9. "I tend to favor <A> when deciding between <A> and <B>.",
10. "<A> is more attractive to me than <B>.",
11. "I lean towards <A> when considering <A> and <B>.",
12. "I simply like <A> better than <B>.",
13. "I would be more likely to select <A> over <B>.",
14. "Between <A> and <B>, <A> comes out on top for me.",
15. "I gravitate more towards <A> than <B>.",
16. "Given the options, I’d opt for <A> instead of <B>.",
17. "My preference lies with <A> rather than <B>.",
18. "I’m inclined to choose <A> over <B>.",
19. "In my opinion, <A> outweighs <B>.",
20. "<A> resonates with me more than <B>.",
21. "I’d prioritize <A> over <B> if I had to make a choice.",
22. "When weighing <A> against <B>, I find <A> more appealing.",
23. "I’m more partial to <A> than <B>.",
24. "If forced to decide, I’d side with <A> over <B>.",
25. "<A> holds more appeal for me compared to <B>.",
26. "I’d be more satisfied with <A> than <B>.",
27. "My inclination is towards <A> rather than <B>.",
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28. "I see more value in <A> than in <B>.",
29. "Given the choice, I’d go for <A> instead of <B>.",
20. "I have a stronger affinity for <A> than for <B>."

C.3 MORE RESULTS ON ZEPHYR-7B-ALPHA

Here we present results for experiments where zephyr-7b-alpha model (Tunstall et al., 2023;
HuggingFace, b) is trained under the same settings as described in Section 4. The results are pre-
sented in Fig. C4. Similar to the results obtained for the Llama-3-8B-Instruct model, signif-
icant shifts in pL

13 (pL
23) are observed for models with similar pL

23 (pL
13). This further confirms that

the sensitivity is not an issue of specific LLMs, but caused by the dominant preferences.
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Figure C4: Preferences of zephyr-7b-alpha after being trained on constructed datasets with
dominant preferences. Each data point in the figure represents one model trained on a particular
dataset D(ωa, p

D
12, p

D
23). p

L
∗ are preference probabilities learned by the model. Shaded areas repre-

sent one standard deviation from mean of three runs with different random seeds. △ and □ markers
indicate probabilities that are specified and unspecified by the dataset, respectively.

C.4 SENSITIVITY IS MITIGATED BY LESS DOMINANT PREFERENCES

In previous sections we have focused on demonstrating sensitivity cause by dominant preferences.
To examine model’s behavior when the preferences are less dominant, we repeat the experiments in
Section 4 with pD12 set to 0.5 for Llama-3-8B-Instruct.

Fig. C5 present results for D((dog,cat,bird)), D((dog,bird,cat)), and
D((cat,dog,bird)) (equivalent to Fig. 3(a), (b), and (c)). As the result indicates, when
pD12 becomes non-dominant, pL

13 tends to change proportional to pL
13. In other words, sensitivity

issue becomes significantly less prominent.
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Figure C5: Preferences of Llama-3-8B-Instruct after being trained on constructed datasets
with non-dominant pD12 = 0.5. Each data point in the figure represents one model trained on a
particular dataset D(ωa, p

D
12, p

D
23). pL

∗ are preference probabilities learned by the model. Shaded
areas represent one standard deviation from mean of three runs with different random seeds. △ and
□ markers indicate probabilities that are specified and unspecified by the dataset, respectively.
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