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ABSTRACT

The development of largely human-annotated benchmarks has driven the success
of deep neural networks in various NLP tasks. These benchmarks are collected by
aggregating decisions made by different annotators on the target task. Aggregating
the annotated decisions via majority is still used as a common practice, despite its
inevitable limitation from simple aggregation. In this paper, we establish a novel
classification framework, based on task-specific human preference between a pair
of samples, which provides an informative training signal to capture fine-grained
and complementary task information through pair-wise comparison. Hence, it
improves the existing instance-wise annotation system by enabling better task
modeling from learning the relation between samples. Specifically, we propose a
novel multi-task learning framework, called prefer-to-classify (P2C), to effectively
learn human preferences in addition to the given classification task. We collect
human preference signals in two ways: (1) extracting relative preferences implicitly
from annotation records (for free) or (2) collecting subjective preferences explicitly
from (paid) crowd workers. In various text classification tasks, we demonstrate that
both extractive and subjective preferences are effective in improving the classifier
with our preference learning framework. Interestingly, we found that subjective
preference shows more significant improvements than extractive preference, re-
vealing the effectiveness of explicit modeling of human preferences. Our code and
preference dataset will be publicly available upon acceptance.

1 INTRODUCTION

The recent success of natural language processing (NLP) systems has been driven by, among other
things, the construction of largely human-annotated benchmarks, like GLUE (Wang et al., 2019) or
SQuAD (Rajpurkar et al., 2016). Nevertheless, current NLP benchmarks often include problems
occurring in their construction process, such as annotation artifacts (Gururangan et al., 2018) or
spurious patterns (Kaushik & Lipton, 2018). To alleviate these issues, various approaches have been
recently proposed to construct more robust and effective benchmarks via human-in-the-loop with
model (Kiela et al., 2021; Yuan et al., 2021; Liu et al., 2022) or adversarial sample mining (Kaushik
et al., 2020; Nie et al., 2020; Potts et al., 2021). Despite such a careful selection of samples to
annotate, it is relatively under-explored how to aggregate the annotations and assign the label, to fully
exploit the advantage of these benchmarks.

For example, most NLP data collection still follows a long-standing custom for annotation voting
called majority voting (Snow et al., 2008; Hovy et al., 2013) that aggregates multiple annotators’
judgments into majority-voted ones. This labeling with majority voting, however, inevitably discards
the valuable information embedded in multiple annotators’ assessments and their disagreements, such
as the inherent difficulty of instance (Pavlick & Kwiatkowski, 2019) or uncertainty from the task’s
subjectivity (Alm, 2011). As the modern NLP systems are extending the interest to a greater variety
of social issues and subjective tasks (Uma, 2021), such as humor detection (Simpson et al., 2019)
and racist language detection (Larimore et al., 2021), the capability of modeling the fine-grained,
distributional opinions from multiple annotators becomes more important.

To address the limitation of the simple labeling method, various approaches have been recently
proposed, such as label smoothing (Fornaciari et al., 2021; Leonardelli et al., 2021). However, they
are still limited by the discretized annotation space and the limited number of annotators, resulting in
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Figure 1: (a) Example of a pair-wise preference in the sentiment classification. (b) Effect of preference
learning. It makes the classifier capture the fine-grained task information; e.g., predictions of classifier
become more aligned with human annotations. Test samples are divided into Hard, Normal, Easy
based on the annotators’ disagreement. (c) Improvement from the collected preference and P2C in
various aspects, e.g., better accuracy and calibration. More results are presented in Section 4.2.

coarse-grained modeling of the task. Hence, it inspires us to investigate a new and complementary
direction for capturing fine-grained task information, by relatively ordering a pair of two texts and
better calibrating them with respect to the task, using human preference.

Contribution. In this paper, we establish a new classification framework based on human preference
between pair of samples, e.g., which text is more positive for sentiment classification (see Figure
1(a)), in addition to the task annotations. Learning with human preference has been demonstrated in
multiple domains, including reinforcement learning (Christiano et al., 2017) and generative models
(Ziegler et al., 2019), by training the model to follow human behavior and achieve the complex goal
with better modeling of the task. While this direction is under-explored in the classification regime,
it could provide an informative training signal by capturing the complementary task information
through ‘pair-wise’ comparison that cannot be captured with ‘instance-wise’ evaluation (see Figure
1(b)). Hence, it would effectively improve the classifier, as shown in Figure 1(c).

Specifically, we propose a novel multi-task learning framework, coined prefer-to-classify (P2C),
to effectively train the model from both classification and preference learning tasks. We introduce
diverse multiple preference heads beside the classification head of the model to learn from preference
labels. Then, we apply a consistency regularization between them for imposing the model to have
higher confidence in classification with the preferred samples. We also develop two advanced
sampling schemes to select more informative text pairs during the training.

To train P2C, we collect two types of human preference labels: extractive preference and subjective
preference. Extractive preference is constructed from the existing annotation records in datasets
‘without additional cost’; if one sample has been less voted than the other, we treat the latter as a
relatively higher preference between the two samples. One may argue that the extracted preferences
are somewhat artificial (yet for free) and implicit signals, as they are not obtained from direct
comparison by human. To alleviate this, we also collect subjective preferences for 5,000 pairs of texts
from (paid) crowd workers by directly asking them which text is more preferred to the task label.

We demonstrate the effectiveness of preference learning via P2C in addition to given task-specific
labels, on both extractive and subjective preference labels. In six text classification datasets, P2C with
extractive preference exhibited 7.59% and 4.27% relative test error reduction on average, compared
to the training with majority voting and the previous best method to learn using annotation records,
respectively. Moreover, our newly-collected subjective preference labels show clear advantages over
the extractive ones, not only with the improvement in task performance but also with better calibration
and task modeling; for example, 6.09% of expected calibration error while 9.19% from the same
number of task labels. Overall, our work highlights the effectiveness of pairwise human preference
for better task learning; we suggest that NLP benchmarks should include annotation records, instead
of just providing majority-voted labels, or collect human preferences.

2 IMPROVING TEXT CLASSIFICATION VIA PREFERENCE LEARNING

In this section, we present prefer-to-classify (P2C), a new preference learning framework for text
classification. Our main idea is to take advantage of the preference between two input samples to
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train the classifier by providing the complementary learning signal from a pair-wise comparison
that cannot be captured from the instance-wise task labels. In Section 2.1, we describe the problem
settings and preliminaries. Then, in Section 2.2, we elaborate on the specific components of P2C for
learning from human preferences. Figure 2 presents the overview of our framework.

2.1 PRELIMINARIES

Problem description. We describe the problem setup of our interest under a text classification
scenario with K classes. Let D denote the given training dataset consisting of tuples (x, ytask) ∈ D
where x = [x1, . . . , xL] is the sequence of input tokens xi, and ytask is the target task label. Our
goal is to train a classifier fθ := Wtask ◦ gϕ, composed with Transformer-based language model
backbone gϕ (e.g., BERT (Devlin et al., 2019)) and a random initialized classification head Wtask, to
minimize the task-specific loss Ltask such as a cross-entropy loss where p(x) = Softmax

(
fθ(x)

)
.

The common standard to determine the target label is one-hot labeling to the majority voted one
i.e., ytask ∈ [0, 1]K , which aggregates multiple annotations on one single sample. To address the
limitation of the majority voting, different labeling approaches have recently been explored by
utilizing annotators’ disagreements for the training, such as soft-labeling (Fornaciari et al., 2021).

Preference learning. In this paper, we use a human preference between two data instances as a
complementary learning signal to train the classifier. Specifically, the preference signals reflect the
relative suitability between the two input samples concerning the given task. We assume that the
human preferences, i.e., preference labels, of the given dataset are available.1 Then, our goal is training
a preference predictor to learn from the given human preferences, by predicting which one among the
two input samples is more preferred. To this end, we formulate a preference learning as a supervised
learning problem following the approaches in other domains such as reinforcement learning and
generative modeling (Christiano et al., 2017; Ziegler et al., 2019; Lee et al., 2021). Given a pair of
two different input tokens (x0,x1) and task label ytask, a preference label ypref is additionally given;
it indicates which input is preferred considering ytask, i.e., ypref ∈ {0, 1, 0.5}, where 1 indicates
x1 ≻ x0 (i.e., x1 is preferred than x0), 0 indicates x0 ≻ x1, and 0.5 implies an equally preferable
case. Each preference label is stored in a dataset D as a quadruplet (x0,x1, ytask, ypref). Then, we
predict a preference using the preference predictor hψ following (Bradley & Terry, 1952):

Pψ[x
1 ≻ x0; ytask] =

exp
(
hψ(x

1, ytask)
)∑

i∈{0,1} exp
(
hψ(xi, ytask)

) (1)

where xi ≻ xj implies that input i is preferable to input j. The underlying assumption of this model
is that the probability of preferring an input depends exponentially on its output. Then, the preference
predictor hψ is trained through supervised learning with the given human preferences, by minimizing
the binary cross-entropy loss as follow2:

Lpref = − E
(x0,x1,ytask,ypref)

∼D

[
ypref logPψ[x

1 ≻ x0; ytask]+(1−ypref) logPψ[x0 ≻ x1; ytask]
]

(2)

2.2 PREFER-TO-CLASSIFY (P2C)

Next, we present our specific techniques to train the classifier with preference labels: (a) multi-task
learning of classification and preference learning, (b) consistency regularization between classification
and preference learning, and (c) informative pair sampling using disagreement or inconsistency.

Multi-task learning with preference labels. To effectively learn from the given preference label
ypref and the task label ytask, we train the classifier fθ via a multi-task learning (Ruder, 2017;
Sener & Koltun, 2018) of both classification and preference learning. Specifically, we model the
preference predictor hψ in Eq. 1 upon the classifier fθ similar to the case of Wtask. The preference
prediction head Wpref is added on the output of Transformer backbone gϕ(x) and task label ytask,
i.e., hψ(x, ytask) =Wpref ◦ [gϕ(x); ytask]3 where fθ(x) =Wtask ◦ gϕ(x).

1See Section 3 for two different practical scenarios on how preference labels are collected.
2Equally preferable case is learned by imposing the same coefficients (ypref = 1− ypref = 0.5) in Eq. 2.
3[gϕ(x); ytask] means the concatenation between gϕ(x) and ytask.
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Figure 2: Illustration of Prefer-to-Classify (P2C) framework.

Preference modeling with diverse multi-preference heads. In addition, we introduce multiple
preference heads {W (t)

pref}Tt=1 to fully exploit the given preference labels, through the advantage of
classifier ensemble (Ganaie et al., 2021). Each preference head is independently random initialized
and trained with Lpref in Eq. 2. Since the different initialization is limited to impose the diversity
between {W (t)

pref}Tt=1 during the training, we add a regularization Ldiv to encourage the diverse
prediction for each preference head by maximizing KL-divergence between them (Wang et al., 2021):

Ldiv =
−1

T − 1

T∑
j=1,j ̸=i

DKL

(
Pψ(i)(x1,x0; ytask)||Pψ(j)(x1,x0; ytask)

)
(3)

where Pψ(x
1,x0; ytask) is the predictive distribution of the preference predictor hψ, i.e.,

Pψ(x
1,x0; ytask) =

[
Pψ[x

1 ≻ x0; ytask], Pψ[x
0 ≻ x1; ytask]

]
. Overall, we train the classifier

with the following multi-task learning objective Lmulti under hyper-parameter λdiv:

Lmulti = Ltask + Lall
pref + λdivLdiv (4)

where Lψ
(t)

pref indicate the preference learning objective with each head ψ(t) and Lall
pref =

∑T
t=1 L

ψ(t)

pref.

Consistency regularization between classification and preference learning. Even though multi-
task learning is an effective way to train the model, it is still unclear whether or not the model can
capture the relations between the two tasks explicitly. Accordingly, we hypothesize that a more
preferred instance should have a higher confidence from the classifier, i.e., py(x1) > py(x

0) if
x1 ≻ x0 with the given task label y. Hence, to impose the model explicitly follows this intuition, we
further propose a consistency regularization between the two tasks as follow:

Lcons = yprefmax{0, py(x1)− py(x
0)}+ (1− ypref)max{0, py(x0)− py(x

1)} (5)

Additionally, when the degree of preference is explicitly provided, i.e., ypref ∈ [0, 1] (see Section
4.1 of extractive preference case) rather than ypref ∈ {0, 1, 0.5}, we further extend this consistency
regularization with margin m which represents the degree of preference:

Lcons = yprefmax{0,m−∆py(x
1,x0)}+ (1− ypref)max{0,∆py(x1,x0)−m} (6)

where ∆py(x
1,x0) = py(x

0)− py(x
1). We note that the previous consistency regularization Eq. 5

becomes the special case of Eq. 6 with m = 0. Overall, our training loss of the classifier is as follow:

Ltrain = Lmulti + λconsLcons (7)

where λcons is a hyper-parameter.

Selecting informative pairs. As the number of pairs of samples (x0,x1) is proportional to the square
of the number of training samples, it is difficult to obtain the preference label for all possible pairs,
and even harder to learn from them even if we have all the preference labels. Hence, we propose
the following advanced sampling scheme to maximize preference learning’s effectiveness during
training: (1) Disagreement-based sampling, which selects pairs of instances with high variance across
multiple preference predictors {hψ(i)}Ti=1, and (2) Inconsistency-based sampling, which seeks to
reduce the mismatched pairs with high consistency loss Lcons in Eq. 5. We evaluate the effects of
these sampling methods in Appendix C.
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Table 1: Examples of the collected extractive and subjective preference sets.

A: I got 3 veggies and a side of fries for over a 11
dollars if you like homecooked food

B: She listened to my ideas, asked questions to get a
better idea about my style, and was excellent at offering
advice as if I were a total pleb.

Sentiment: Positive, Extractive Preference: A ≻ B, Subjective Preference: B ≻ A

A: This was the best movie. Movie was entertaining
but not as good as the original

B: The restaurant was not busy, but everything was
ready for a big crowd if needed. We love this place.

Sentiment: Positive, Extractive Preference: No preference, Subjective Preference: B ≻ A

A: Drove 15 miles out of my way for them to tell me
on the speaker at 9:58 it’s closed. i am pissed

B: Wow, the service was like I was staying at San
Quentin for 2 to 4 years.

Sentiment: Negative, Extractive Preference: B ≻ A, Subjective Preference: A ≻ B

A: I never get it for the holiday. B: The casino was full, with the slots hitting.
Sentiment: Neutral, Extractive Preference: A ≻ B, Subjective Preference: B ≻ A

3 COLLECTION OF PREFERENCE LABELS

In this section, we provide two different ways of collecting human preferences to prepare the
ground-truth preference labels for our training: extractive and subjective preferences.

3.1 EXTRACTING IMPLICIT PREFERENCES FROM DATA ANNOTATION RECORDS

I came here and ordered 
and it was exceptional. 

Mario and Carlos cut our 
meat exactly the way we 

wanted the property 

Sentiment: Positive Subjective
Preference

Text A

Text B

Text A
is more 
positive

Extractive
Preference

Crowd workersAnnotation Records

Is Text B positive? (3/5)

Is Text A positive? (5/5)

Text A seems to be more 
positive than Text B

Figure 3: Comparison between extractive
and subjective preference labels.

The first method is to extract human preference signals
from the existing datasets without extra cost. Our high-
level assumption is that annotation records of each data,
which are naturally gathered during the construction of
dataset, implicitly encode the preference between data
samples. For example, if one sample has higher voting
(9 out of 10), i.e., less disagreement, than the other
sample (6 out of 10), we assume that the former has a
relatively higher preference. We call this implicit human
preference as extractive preference. Since the extractive
preference is derived from existing sources of data, it
can be obtained for any pair of samples without additional cost.

3.2 COLLECTING SUBJECTIVE PREFERENCES FROM CROWD WORKERS

Although the extractive preferences are easy to obtain and intuitive, they are sub-optimal since they
are not obtained from the direct comparison of the pair of sentences by human labeler. Hence, to
the best of our knowledge, we collect the first preference dataset for the text classification. Our
dataset is collected based on paired samples from DynaSent-R2 dataset (Potts et al., 2021) for
sentiment classification task. To be specific, we gather the subjective preference of the pairs by asking
crowd workers to answer “which sentence is more positive (neutral, or negative)?” using Amazon’s
Mechanical Turk crowd-sourcing platform (Crowston, 2012). Then, each worker should select one of
the two sentences or answer “No Preference”. Following (Nie et al., 2020), we initially provide each
pair of sentences to two crowd workers. If two workers give the same preference label, this pair is
labeled with that. If they disagree, we ask a third crowd worker to break the tie. If they still fail to
reach a consensus, this pair is labeled with “No Preference”.

Under this procedure, we first gather 1,000 subjective preference labels of randomly selected pairs of
sentences. Then, we dynamically collect the additional subjective preference labels to maximize the
information of collected pairs, motivated by the recent dynamic benchmark constructions (Kiela et al.,
2021; Nie et al., 2020). Namely, we first train the model with existing subjective preference labels.
Then, we find the most informative pairs in the aspect of trained model, using the disagreement-based
sampling introduced in Section 2.2 and query their preference labels in next stage. We select an equal
number of pairs for each class to balance the label distribution. Overall, starting with 1,000 random
pairs, we collect the preference of 2,000 pairs at each round and iterate this procedure for 2 rounds,
i.e., a total of 5,000 pairs’ subjective preference labels are collected. The used interface for gathering
the preference label and more detailed statistics are presented in Appendix B. Also, Table 1 shows
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some examples in our extractive and preference sets. Here, the advantage of subjective preference
compared to extractive one could be observed by providing more accurate pair-wise preference.

4 EXPERIMENTS

In this section, we validate the effectiveness of the proposed P2C with the extractive preference labels
(for free) in Section 4.1 and the subjective preference labels (payed) in Section 4.2, respectively.

4.1 EXPERIMENTS WITH EXTRACTIVE PREFERENCE FROM ANNOTATION RECORDS

Datasets. To extract preferences from the annotation records, we extensively investigate the publicly
available datasets providing such information and use the following six text classification datasets.
All datasets have the annotation records from 5 annotators for each sample. DynaSent (Potts et al.,
2021) is a sentiment classification benchmark with ternary (positive/negative/neutral) sentiments. It
is dynamically constructed through multiple iterations of training a classifier model and finding its
adversarial text inputs. We use the dataset from the first round, (1) DynaSent-R1, and from the second
round, (2) DynaSent-R2, the dataset for our experiments. Standford politeness corpus (Danescu-
Niculescu-Mizil et al., 2013) is a binary classification benchmark for predicting whether the given
sentence is polite or impolite. Since there are two different input domains within this benchmark,
we split them into two different datasets: (3) Polite-Wiki from Wikipedia, and (4) Polite-SE from
StackExchange, following the original paper. Offensive agreement dataset (Leonardelli et al., 2021)
is a binary classification benchmark for predicting whether the given sentence is offensive or not.
Since some of the original samples are not available anymore publicly, we only utilize the available
samples while keeping the setups of original dataset: (5) Offensive. (6) MultiNLI (Williams et al.,
2018) is a crowd-sourced collection of sentence pairs annotated with textual entailment information.
As the only validation set includes the annotation records, we split it into 8:1:1 for training, validation,
and test sets. Detailed description and pre-processing procedures are presented in Appendix A.1.

Baseline methods. We first compare the proposed P2C to a naı̈ve training using majority voting
without consideration of disagreement, denoted by (a) Vanilla. Then, since our method with extractive
preference can be viewed as a new way to utilize the annotators’ disagreement from the annotation
records, we compare P2C with a wide range of disagreement learning methods, as listed as follows;
(b) Soft-labeling (Fornaciari et al., 2021): using the probabilistic distribution of annotations as soft
labels for training; (c) Margin (Sharmanska et al., 2016): training the model with hinge loss by
setting a margin proportional to the annotators’ agreements; (d) Filtering (Leonardelli et al., 2021):
removing the training samples with a high disagreement. Following (Leonardelli et al., 2021), we
discard the samples with 3 agreements among 5 annotators, and use majority voting for the others;
(e) Weighting (Uma et al., 2021): using weighted cross-entropy with smaller weights for the samples
with high disagreements; (f) Multi-annotator (Davani et al., 2022): training the multiple classification
heads for each annotation and using its ensemble for the evaluation. Furthermore, since we train
the model with pair of samples, we also consider the baseline considering a pair-wise training, (g)
Class-wise Self-Knowledge Distillation (CS-KD) (Yun et al., 2020): adding regularization between
sample pair that forces the similar predictive distribution between the same class samples. More
details about baselines are described in Appendix A.2.

Training details. All the experiments are conducted by fine-tuning RoBERTa-base (Liu et al.,
2019) using Adam optimizer (Kingma & Ba, 2015) with a fixed learning rate 1e-5 and the default
hyper-parameters of Adam. For all text classification tasks, the model is fine-tuned using the specified
disagreement learning method with batch size 16 for 20 epochs. In the case of P2C, we use T = 3

preference heads {W (i)
pref}Ti=1 and 2-layer MLPs for each Wpref. We choose hyper-parameters from

a fixed set of candidates based on the validation set: λcons, λdiv ∈ {1.0, 0.1}. We sample the pair of
instances with the same majority voted labels for the efficiency, and apply the consistency loss with
margin (Eq. 6) by using the difference of annotation as the margin m. More details and experimental
supports for the design choices can be found in Appendix A.3 and C, respectively.

Results. We compare P2C with various disagreement learning schemes to fine-tune RoBERTa-
base classifier for each dataset. Table 2 summarizes the results on six text classification datasets.
Remarkably, P2C consistently outperforms the baseline methods for all six datasets. To be specific,
P2C exhibits 7.59% relative test error reduction compared to the vanilla method in the average.
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Table 2: Test accuracy of finetuned RoBERTa classifiers with each annotation method on 5 different
text classification datasets. All the values and error bars are mean and standard deviation across 5
random seeds. The best and the second best results are indicated in bold and underline, respectively.

Method Offensive Polite-Wiki Polite-SE MNLI DynaSent-R1 DynaSent-R2

Vanilla 75.88±0.72 89.35±1.53 70.00±1.49 81.92±0.70 80.43±0.30 71.23±1.05

Soft-labeling 76.08±1.44 89.57±1.76 70.35±1.68 82.67±0.50 81.10±0.33 72.15±1.59

Margin Loss 76.67±1.18 88.51±0.93 70.51±1.16 81.41±0.63 80.42±0.23 69.27±0.98

Filtering 76.13±1.18 89.50±0.87 68.28±2.43 82.13±0.67 80.38±0.34 69.86±0.78

Weighting 76.17±1.18 89.65±1.46 68.38±1.67 82.48±0.49 80.21±0.41 71.81±1.12

Multi-annotator 76.50±1.98 89.88±1.82 69.39±2.84 82.61±0.70 81.14±0.55 71.97±1.25

CS-KD 75.75±0.66 89.65±1.84 70.10±1.29 82.32±0.23 80.63±0.27 71.81±0.67

P2C (Ours) 77.81±0.21 91.06±0.64 71.21±0.93 83.15±0.29 81.27±0.46 73.06±0.31
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Figure 4: Additional experiments with P2C on DynaSent-R2. (a) Average L1 distance between the
predictions and the soft labels obtained from the annotation records. The lower distance (↓) means
better alignment with annotators. (b) Reliability diagram shows accuracy as a function of confidence.
Perfect calibration is plotted by dashed diagonals (⧸). (c) Expected Calibration Error (ECE) to
quantitatively measure the calibration of the classifier. The lower ECE (↓) means better calibration.

Furthermore, compared to the previous best disagreement learning method of each dataset, P2C
exhibits 4.27% relative test error reduction on average. These results show that extractive preferences
successfully provide complementary training signals to the classifier from the pair-wise preference,
and demonstrate the effectiveness of P2C as a training method to utilize the annotation records.

Next, on DynaSent-R2, we conduct additional experiments to verify depthly how P2C improves
the classifier. We first check whether the prediction of the trained model with P2C is similar to the
annotators’ judgment. Specifically, we compare the L1 distance between the predictions and the soft
labels obtained from the data annotation records in Figure 4(a). We verify that P2C achieves the
lowest distance to the soft labels, showing the validity of our preference learning for better modeling
of given task. Moreover, we verify that a calibration of the classifier is also improved as a result of
pair-wise preference modeling. To be specific, we first provide a reliability diagram (Yun et al., 2020),
which plot the expected sample accuracy as a function of confidence of classifier in Figure 4(b). We
remark that the plotted identity function (dashed diagonal) implies perfect calibration (Guo et al.,
2017), and our method is the closest one among the baselines. This calibration effect of P2C is also
verified through the additional quantitative metric, Expected Calibration Error (ECE), in Figure 4(c).
Here, we commonly adopt the temperature scaling to measure ECE following (Guo et al., 2017).

To verify the effectiveness of each component of P2C, we perform the ablation experiments and the
results are presented in Table 3. It is observable that diverse multi-preference heads improve the
effectiveness of preference labels with better modeling compared to the single preference head (2-4th
rows). In addition, consistency regularization between classification and preference heads enables
the classifier to fully utilize the pair-wise training signal to solve the task, hence the performance is
significantly improved (5th row). The performance is further improved by selecting the informative
pairs during the training (6th row). More results are presented in Appendix C.

4.2 EXPERIMENTS WITH SUBJECTIVE PREFERENCE FROM CROWD-WORKERS

Setups. As described in Section 3.2, we collect subjective preference labels of the samples on
DynaSent-R2, and use them to fine-tune RoBERTa-base. All other training setups and details are
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Table 3: Ablation study with each component of P2C. Test accuracy of finetuned RoBERTa classifiers
on DynaSent-R2 and Offensive are compared. All the values and error bars are mean and standard
deviation across 5 random seeds. The best results are indicated in bold.

Method T Ltask Lpref Ldiv Lcons Sampling DynaSent-R2 Offensive

Vanilla - ✓ - - - - 71.23±1.05 75.88±0.72

Preference 1 ✓ ✓ - - - 71.84±0.78 75.90±1.15

3 ✓ ✓ - - - 71.92±0.66 76.43±0.32

3 ✓ ✓ ✓ - - 72.05±1.30 76.67±1.38

3 ✓ ✓ ✓ ✓ - 72.67±0.89 77.67±0.99

P2C (Ours) 3 ✓ ✓ ✓ ✓ ✓ 73.06±0.31 77.81±0.21

Table 4: Results of finetuned RoBERTa classifiers with different ways to obtain the labels on
DynaSent-R2. Ntask and Npref indicate the number of used task labels and preference labels,
respectively. dhard and deasy are the l1 distance to annotations with hard and easy samples. Here, the
difficulty is defined on the disagreement between annotators. All the values and error bars are mean
and standard deviation across 5 random seeds. The best results are indicated in bold.

Method Ntask Npref Accavg(↑) Acchard / Acceasy(↑) ECE(↓) dhard / deasy(↓)
Vanilla 7.5k - 69.03±1.29 59.33±2.57 / 80.00±1.22 9.25±1.39 0.856±0.01 / 0.405±0.03

Task Labels 12.5k - 71.17±1.35 57.86±2.31 / 84.21±1.05 9.19±1.36 0.878±0.04 / 0.327±0.02

Extractive Preference 7.5k 5k 71.36±1.19 61.16±1.91 / 83.11±1.78 6.75±0.78 0.847±0.03 / 0.351±0.03

Subjective Preference 7.5k 5k 71.74±1.04 62.08±0.94 / 83.01±1.27 6.09±0.31 0.828±0.02 / 0.356±0.02

same as described in Section 4.1 except that the consistency regularization (Eq. 5) is now used,
since the explicit degree of preference is not available from the subjective preference. In this section,
we mainly compare P2C with different types of the preference labels: Extractive and Subjective
preference labels. But the subjective preference labels have been collected for limited number of pairs
of sentences (5,000) due to the cost, they are not available for all pairs of samples unlike extractive
one. Hence, we also limits the availability of extractive preference labels only for the same pairs of
texts with subjective preference, to directly compare the effect of different preference labels.

Results. We first verify the effectiveness of collected subjective preference labels compared to other
types of labels. To this end, we consider the scenario that the specific types of labels are additionally
obtained on top of the existing task labels; task labels could be more collected with additional training
samples or preference labels between the existing samples could be obtained.4 Table 4 summarizes
the experimental results. Here, it is observed that subjective preference labels is the most effective for
improving the test accuracy (Accavg) along with better calibration. Remarkably, it is noticeable that
the preference labels significantly improves the accuracy on relatively hard samples (Acchard) while
the additional task labels are effective for the relatively easy samples.5

Furthermore, to clearly demonstrate the advantage of subjective preference labels compared to
the extractive one, we conduct additional experiments in Figure 5; as subjective preferences are
collected with multiple rounds (Npref = 1,000 → 3,000 → 5,000), we evaluate the effectiveness
of preference labels for all rounds in Figure 5(b), by controlling the number of preference labels
of extractive preference and subjective preference. Remarkably, P2C with subjective preference
outperforms P2C with extractive preference for all cases with only a few thousand samples. Also,
the performance of P2C is further improved when we extend the number of available preference
labels via pseudo-labeling as denoted in the dotted lines (See details in Appendix D). The advantage
of subjective preference is clearly shown when we take a closer look at the evaluation results on
more challenging scenario: the accuracy on the mis-predicted test samples by vanilla model, and
alignments with annotations on both hard and easy samples. These results indicate that obtaining the
explicit preference labels directly collected from annotators are better than extracting the implicit
ones from the data annotation records.

4Here, to facilitate the experimental comparison, we assume that the annotation cost for preference labels
stays the same as that for task labels, although it is arguable.

5We define the difficulty based on the disagreement of annotators, i.e., more disagree indicates more difficult.
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(a) Distribution of preference labels (b) Test accuracy improvements (c) Comparison of predictions

Figure 5: Comparison between two different types of preference labels (Extractive and Subjective) on
DynaSent-R2. (a) Distribution of collected labels. x0 ≻ x1 indicates that sample x0 is preferred than
x1 when considering ytask. (b) Overall test accuracy increases as more preference labels are used
upon the existing task labels. (c) Subjective preference shows better performance on the mis-predicted
test samples by Vanilla and closer alignment to annotators’ agreements.

5 RELATED WORKS

Preference learning from human feedback. Preference learning is about modeling the preference
using a set of instances, associated with an order relation (Fürnkranz & Hüllermeier, 2010). Since
it is much easier for humans to make relative judgments, i.e., comparing behaviors as better or
worse, preference-based learning becomes an attractive alternative; hence, the extensive research
has been conducted to address this problem by proposing different techniques to learn from human
judgements (Bıyık et al., 2020; Chu & Ghahramani, 2005). One of the most representative fields that
adopt preference-based learning is Reinforcement Learning (RL), to learn RL algorithms from the
preferences rather than the explicit design of reward function (Wirth et al., 2017). After the successful
scale-up of preference-based learning with deep neural networks (Christiano et al., 2017; Lee et al.,
2021), this research direction has been extensively explored in other domains such as NLP (Stiennon
et al., 2020; Ziegler et al., 2019) and computer vision (Kazemi et al., 2020), especially focused on the
generation tasks, e.g., text summarization and image generation. However, preference-based learning
is yet under-explored for classification tasks, despite its great potential to provide the complementary
training signals via pair-wise comparison of samples.

Labeling beyond majority voting. With the rapid advance of DNNs thanks to improvements in
computational resources (Jouppi et al., 2017) as well as algorithmic breakthroughs (Devlin et al.,
2019), the existing NLP benchmarks easily become obsolete and hence suffer to keep up with
the model’s development. To alleviate this, various approaches have been recently explored to
construct more challenging and robust benchmarks using a human-in-the-loop (Nie et al., 2020)
or dynamic benchmarking system (Kiela et al., 2021). But, it is relatively under-explored how to
annotate for utilizing them maximally. Even most of the recent NLP benchmarks still follow a
long-standing custom for their annotation; obtaining multiple annotators’ judgements on the same
data instances and aggregating them with majority voting (Hovy et al., 2013). This aggregation,
however, has a risk of sacrificing the valuable nuances embedded in the annotators’ assessments
and their disagreements. Hence, various approaches have been recently explored to exploit this
information better and successfully improve the performance of DNNs in various NLP tasks; for
example, Fornaciari et al. (2021) constructs soft labels from annotation records. Also, Leonardelli
et al. (2021) suggests to remove the samples with high disagreement. However, these methods are
still limited due to the discretization of annotation space and the limited number of annotators. Hence,
it inspires us to investigate an independent and complementary direction.

6 CONCLUSION

In this paper, we introduce task-specific human preferences between pairs of samples as a new and
complementary data annotation to improve the existing text classification system, which relies on
instance-wise annotations. To this end, we propose a novel multi-task learning framework, called
prefer-to-classify (P2C), to effectively train the classifier from both task and preference labels, and
demonstrate this framework under two different cases of human preference labels. We hope that our
work could motivate other researchers for better data annotation and data usage in the future, e.g.,
suggesting to include annotation records instead of just providing majority-voted labels, in order to
better learn the task from disagreed annotations.

9
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ETHICS STATEMENT

While the advantage of the proposed method has been demonstrated, some limitations exist. For
example, as we have assume the availability of task labels before applying our method, one could
wonder that the relative importance between task labels and preference labels for constructing the
datasets from scratch, i.e., the order of priority for collecting annotations among task labels and
preference labels. If the number of given task labels is too small, then the task labels can be more
effective than subjective preference labels. However, we highlight that our P2C could still benefit this
case with the extractive preference as shown in Table 12. Also, the gain from subjective preference
labels is enlarged after enough task labels are collected, demonstrating the complementary effect of
preference labels upon the task labels as we are motivated initially. Lastly, this new framework is
expected to be more effective in the domains that input samples are hard to collect as it provides the
additional task information, e.g., medical domain.

REPRODUCIBILITY STATEMENT

We describe the implementation details of the method in Section 4 and Appendix A.3. Also, we
provide the details of the datasets and baselines in Appendix A.1 and A.2, respectively. We also
provide our code in the supplementary material. All the used packages are along with the code. In our
experiments, we use a single GPU (NVIDIA TITAN Xp) and 8 CPU cores (Intel Xeon E5-2630 v4).
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Appendix

Prefer to Classify:
Improving Text Classifier via Pair-wise Preference Learning

A EXPERIMENTAL DETAILS

A.1 DATASETS

As described in Section 4.1, we have used the five text classification datasets obtained from the
following three different sources, which release the annotation records during the construction of
the datasets. Here, all datasets have the annotation records of 5 different annotators for each data;
however, the annotators can be different among data, i.e., there are more than 5 annotators in overall.
For the tokenization of given data, we commonly set the maximum length L as 256.

DynaSent (Potts et al., 2021) is a sentiment classification benchmark with ternary (posi-
tive/negative/neutral) sentiments. It is dynamically constructed through multiple iterations of training
a classifier model and finding its adversarial samples by involving a human annotator in the loop. In
our experiments, we use the dataset from the first round, (1) DynaSent-R1, and the dataset from the
second round, (2) DynaSent-R2. DynaSent-R1 comprises 80,488 training samples, 3,600 validation
samples, and 3,600 test samples, respectively. DynaSent-R2 comprises 13,065 training samples,
720 validation samples, and 720 test samples. All the validation and test samples are fully balanced
between the three classes. DynaSent dataset and more details of the dataset are officially available at
https://github.com/cgpotts/dynasent.

Standford politeness corpus (Danescu-Niculescu-Mizil et al., 2013) is a binary classification
benchmark for predicting whether the given sentence is polite or impolite. Since there are two
different input domains within this benchmark, we split them into two different datasets: (3) Polite-
Wiki from Wikipedia, and (4) Polite-SE from Stack Exchange, following the original paper (Danescu-
Niculescu-Mizil et al., 2013). Here, two classes: polite and impolite, are defined as the top and,
respectively, bottom quartile of sentences when sorted by their politeness score. The classes are
therefore balanced, with each class consisting of 1,089 samples for the Wikipedia domain and 1,651
samples for the Stack Exchange domain. We split each dataset into an 8:1:1 ratio to construct training,
validation, and test datasets. The source data and more details of the dataset is officially available at
https://www.cs.cornell.edu/˜cristian/Politeness.html.

Offensive agreement dataset (Leonardelli et al., 2021) is a binary classification benchmark for
predicting whether the given sentence is offensive or not. Each sentence is collected from Twitter
using Twitter public APIs, based on the hashtags and keywords on three different domains: Covid-19,
US Presidential elections and the Black Lives Matter (BLM) movement. Remarkably, some of the
original samples are not available anymore due to the elimination of tweets from the user-side; for
example, 10,735 samples are collected initially (Leonardelli et al., 2021), but only 6,513 samples
are now available. To address the issue of the reduced number of samples, we slightly modify
the dataset to keep the setups of the original paper, e.g., balanced among the classes and domains.
Specifically, we gather the given splits of the dataset into the unified one and then re-split it as much
be balanced as possible. This re-constructed dataset has 2,400 training samples, 400 validation
samples, and 400 test samples. Also, the ratio between Covid-19, Election, and BLM is 3:3:2.
The dataset is officially available with the request to authors at https://github.com/dhfbk/
annotators-agreement-dataset.

Multi-Genre Natural Language Inference (MultiNLI) (Sener & Koltun, 2018) is a crowd-sourced
collection of 433k sentence pairs annotated with textual entailment information: for a given premise
sentence, one should classify whether the given hypothesis sentence is entailment, neutral, or
contradiction to the premise (ternary classification). Since the annotation records are only available
with validation set, we construct the datasets by splitting it into 8:1:1 for training, validation, and
test sets. This re-constructed datasets has 15,717 training samples, 1,964 validation samples, and
1,966 test samples. The source data and more details of the dataset is officially available at https:
//cims.nyu.edu/˜sbowman/multinli.
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A.2 BASELINES

We first introduce some notations for a clear explanation. For each sample x, there are annotation
records ny(x) ∈ NK where K is the number of class and nvote(x) =

∑
y ny(x) is the number

of votes6. Then, the majority voted target label is obtained by finding the most agreed labels, i.e.,
ytask(x) = argmaxy nvote(x), and simply denoted by ytask. Here, our goal is to train a classifier
fθ := Wtask ◦ gϕ, composed with Transformer-based language model backbone gϕ (e.g., BERT
(Devlin et al., 2019)) and a random initialized classification head Wtask, where the prediction for x is
obtained with softmax, i.e., p(x) = Softmax

(
fθ(x)

)
. For the analysis in Figure 4, we only include

four baselines with high performance based on the results in Table 2.

(1) Vanilla: as described in Section 2.1, the model fθ is trained with the following training loss:

Ltrain = ℓxe(p(x), ytask)

(2) Soft-labeling (Fornaciari et al., 2021): instead of using majority voted label ytask, it use the
soft-labels q(x) = ny(x)/nvote(x) with a cross entropy loss:

Ltrain = ℓxe(p(x), q(x)) =
∑
y

−qy(x) log py(x)

(3) Margin Loss (Sharmanska et al., 2016): instead of using majority voted label and cross entropy
loss, it use the soft-labels q(x) as a margin for the multi-class hinge loss:

Ltrain =
∑
y

max{0, qy(x)− py(x)}

(4) Filtering (Leonardelli et al., 2021): following the setups in the original paper, we exclude the
ambiguous samples that have a low argeement between the annotators. Specifically, we exclude the
samples with nytask = 3 since there are 5 annotators for all considered datasets.

Ltrain = 1[nytask(x) > 3] ℓxe(p(x), ytask)

(5) Weighting (Uma et al., 2021): using weighted cross entropy that down-weigh the samples with a
low argeement:

Ltrain = w(x) ℓxe(p(x), ytask)

where w(x) = nytask(x)/nvote(x).

(6) Multi-annotator (Davani et al., 2022): instead of aggregating the different annotators’ annotation
records, it introduce multiple classification heads W (t)

task for learning from each annotator’s annotation
y
(t)
task. Since each annotator does not annotate all the samples, we simply separate the nvote(x)

annotations and train each of classification head where t = 1, . . . , nvote. For the inference of test
samples, the ensemble of multiple classification heads is used.

Ltrain =
1

nvote(x)

∑
t

ℓxe(p
(t)(x), y

(t)
task)

where p(t)(x) =W
(t)
task ◦ gϕ(x).

(7) CS-KD (Yun et al., 2020): for each sample x, the sample x̂ within the same class, defined by
majority voted label ytask, is also sample and the consistency regularization is additionally imposed
between their prediction with a temperature τ . Following the original paper, we use τ = 4.

Ltrain = ℓxe(p(x), ytask) + ℓxe(p̃(x), p̃(x̂))

6All the used datasets commonly have nvote = 5
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Algorithm 1 Prefer-to-Classify (P2C) with extractive preference labels

Input: Classifier from a pre-trained language model fθ, training dataset D with preference labels
{(x0,x1, ytask, ypref)|x0,x1 ∈ D}, preference predictors {hψ(t)}Tt=1, mini-batch size B, and
hyper-parameter λcons

1: for each iteration do
2: Draw a mini-batch B = {(xi, ytask,i)Bi=1} and the corresponding pairs with preference labels

B̃ = {(x̃i, ypref,i)Bi=1} from D with the inconsistency-based sampling (see Section 2.2)
3: Obtain fθ(x) by forwarding B, then calculate Lmulti in Eq. 4
4: Obtain hψ(x) by forwarding B and B̃, then calculate Lcons in Eq. 6
5: Update parameters θ and ψ(t) to minimize Ltrain = Lmulti + λconsLcons

6: end for

Algorithm 2 Prefer-to-Classify (P2C) with subjective preference labels

Input: Classifier from a pre-trained language model fθ, original training dataset D = {(xi, yi)},
collected dataset D̃ with preference labels {(x0,x1, ytask, ypref)|x0,x1 ∈ D} where |D̃| =
Npref, preference predictors {hψ(t)}Tt=1, a mini-batch size B and hyper-parameter λcons

1: for each iteration do
2: Draw a mini-batch B = {(xi, ytask,i)Bi=1} from D
3: Draw an another mini-batch B̃ = {(xi, x̃i, ytask,i, ypref,i)Bi=1} from D̃
4: Obtain fθ(x) by forwarding B, then calculate Lmulti in Eq. 4
5: Obtain hψ(x) by forwarding B̃, then calculate Lcons in Eq. 5
6: Update parameters θ and ψ(t) to minimize Ltrain = Lmulti + λconsLcons

7: end for

where p̃(x) = Softmax(fθ(x)/τ).

A.3 PREFER-TO-CLASSIFY (P2C)

In this section, we describe the details of P2C. We first note that the details are slightly different
between extractive preference learning (Section 4.1) and subjective preference learning (Section 4.2)
due to the difference in experimental setups between them. As described in Section 4, we commonly
use T = 3 preference heads {W (i)

pref}Ti=1 and 2-layer MLPs with tanh activation for each Wpref. We
choose hyper-parameters from a fixed set of candidates based on the validation set; λpref ∈ {1.0, 0.1}.
Also, we only sample the pair of instances with the same majority voted labels for the efficiency.

In case of learning with extractive preference in Section 4.1, we apply the consistency regularization
with margin (Eq. 6) by using the difference of annotation as the margin m. Specifically, we set
a margin of class y between two samples x1 and x0 as the difference of their soft-labels my =
qy(x

1)− qy(x
0), defined in Section A.2. Then, we apply the consistency regularization to all classes

y ∈ [0, 1]K . In addition, we apply the inconsistency-based sampling for the experiments with
extractive preference labels based on the superior experimental results, presented in Section C.

In the case of learning with subjective preference in Section 4.2, we apply the consistency regular-
ization without margin (Eq. 5) since the explicit degree of preference is not given. Also, since the
number of pairs with subjective preference labels is limited, we use all of them in training without
applying sampling methods described in Section 2.2. We introduce the additional mini-batch from
these pairs to optimize the model with consistency regularization. The full procedures of P2C with
extractive and subjective preference are described in Algorithm 1 and 2, respectively.
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Figure 6: Interface to collect subjective preference labels from crowd workers for sentiment classifi-
cation based on DynaSent-R2 (Potts et al., 2021).

B COLLECTION OF PREFERENCE LABELS

B.1 INTERFACE

As described in Section 3.2, we gather the subjective preference of the pairs by asking crowd workers
to answer “which sentence is more positive (neutral, or negative)?” using Amazon’s Mechanical Turk
crowd-sourcing platform (Crowston, 2012). Figure 6 shows the interface used to collect subjective
preference labels from crowd workers for sentiment analysis based on DynaSent-R2 (Potts et al.,
2021). The top provides the instructions, and then one example is shown. The whole task has 10 items
per Human Interface Task (HIT). Workers were paid US$0.8 per HIT on average, and all workers
were paid for their work. To improve the quality of collected preference labels, we only hire the
Master workers identified as high-performing workers from Amazon’s Mechanical Turk system.

B.2 MORE DETAILS AND ANALYSIS OF EXTRACTIVE AND SUBJECTIVE PREFERENCE SETS

Extractive preference. For a formal description of the process of collecting extractive preference,
we borrow some notations introduced in Section A.2. As described in Section 3.1, we obtain the
extractive preference label ypref by comparing the number of votes nytask(x) with the given task label
ytask: if nytask(x

1) > nytask(x
0), then we assign ypref = 1 where it indicates x1 ≻ x0. Similarly,

we assign ypref = 0 when nytask(x
1) < nytask(x

0) and ypref = 0.5 when nytask(x
1) = nytask(x

0),
respectively. To reduce the noisy signal and focus on the effective pair, we only compare the samples
that have the same majority voted labels, i.e., ytask(x1) = ytask(x

0). The resulting distribution of
extractive preference labels for each data is presented in Figure 7 and 8.

Subjective preference. To address the limitation of the extractive preference from the annotation
records, we collect the subjective preference labels from crowd workers using the inference in Figure
6. As described in Section 3.2, we dynamically collect the subjective preference labels. Here, to
increase the effectiveness of the constructed preference dataset, we query the pairs with the unique
anchor sample where x1 is denoted as an anchor sample of given pair (x1,x0). Also, we only query
the pairs of the samples that have the same majority voted labels as in the case of extractive preference
labels. Figure 5(a) shows the distribution of collected preference labels. We remark that the collected
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(a) Offensive (b) Polite-Wiki (c) Polite-SE

Figure 7: Distribution of the extractive preference labels from the annotation records.

(a) MultiNLI (b) DynaSent-R1 (c) DynaSent-R2

Figure 8: Distribution of the extractive preference labels from the annotation records.

subjective preference labels are different compared to the extractive ones: collected subjective
preferences shows 40.3 % correspondence with the extractive preference labels, respectively.
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B.3 MORE EXAMPLES IN EXTRACTIVE AND SUBJECTIVE PREFERENCE SETS

In Table 5, we present more examples in our extractive and subjective preference sets on DynaSent-R2
dataset, similar to Table 1.

Table 5: More examples in our extractive and subjective preference sets on DynaSent-R2.

A: The prices were great and the service was friendly,
which is why I’m surprised by my overall feeling of
the place.

B: I entered the college apartment and was shocked,
everything was neat and tidy.

Sentiment: Positive, Extractive Preference: B ≻ A, Subjective Preference: A ≻ B

A: The atmosphere is great, Nikko our server was
personable, knowledgeable and just all-around great,
and the food is looking so delicious.

B: The loaded fries were to die for.

Sentiment: Positive, Extractive Preference: No preference, Subjective Preference: A ≻ B

A: The food was surprisingly similar to a chain restau-
rant such as applebee’s or Friday’s.

B: The soup and pad Thai arrived soon after we or-
dered.

Sentiment: Neutral, Extractive Preference: A ≻ B, Subjective Preference: B ≻ A

A: I have a laptop but it acts like a phone. B: The baby cooed and laughed without understanding
the gravity of the situation.

Sentiment: Neutral, Extractive Preference: A ≻ B, Subjective Preference: B ≻ A

A: Went on a Thursday night with my two boys, got a
table right away close to the kitchen.

B: They provided great service and did a wonderful
job with my greasy hair and heavy makeup.

Sentiment: Positive, Extractive Preference: No Preference, Subjective Preference: B ≻ A

A: We requested a new tech and that guy said it was a
major leak and the would need to charge $7,000.

B: Teacher warned the teenagers not to enter the short
cut because trespassers will be severely punished

Sentiment: Neutral, Extractive Preference: No Preference, Subjective Preference: A ≻ B

A: The food is not fresh and delicious. B: They treat customers like they want their money.
Sentiment: Negative, Extractive Preference: A ≻ B, Subjective Preference: B ≻ A

A: After check in I had to search for the room without
any direction. It was horrible.

B: That food blender worked great, as a paper weight.

Sentiment: Negative, Extractive Preference: No Preference, Subjective Preference: A ≻ B

A: The menu choices were too narrow. B: The waiter seem to be busy else where in the back
and would show up a few moments after I was started
to wonder if he’d left. It was awful.

Sentiment: Negative, Extractive Preference: No Preference, Subjective Preference: B ≻ A

B.4 EXAMPLES OF EXTRACTIVE PREFERENCE SETS ON DIFFERENT DATASETS

In this section, we present more examples of extractive preference sets on another datasets used in
Section 4.1. Specifically, we present the examples of Polite-SE dataset in Table 6 and the examples
of MultiNLI in Table 7, respectively.
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Table 6: Examples of the collected extractive preference sets on Polite-SE dataset.

A: @Praetorian: You had me into tears. I agree to you
but is that going to help me with my question?

B: This is not really enough to tell what can be the
problem. Have you tried debug you code, for example
trace something in the conditions (so the function what
have to be called is called properly or not)?

Politeness: Impolite, Extractive Preference: A ≻ B

A: Usually compilers should generate a good code for
such algorithms. Did you check what assembly a C
compiler is generating?

B: Why do you want to view the code? Maybe if you
give a better description of what you want to do? :)

Politeness: Polite, Extractive Preference: No Preference

A: Please don’t downvote without stating your reason.
Should this perhaps be turned into a wiki question?

B: Homework? Who told you that checking the pre-
condition is a bad idea?

Politeness: Impolite, Extractive Preference: B ≻ A

A: He has said its for ASP! or am I missing something? B: Sorry but I never saw any application breaking after
deleting/moving.folders... usually they just reconfigure
and restore to defaults. What exactly did break for you?

Politeness: Impolite, Extractive Preference: No Preference

A: Could you describe the problems you are having?
Are you logging the response codes?

B: @den: OK, so the rectangles are represented as two
points. Is this a vector representation or a raster?

Politeness: Polite, Extractive Preference: A ≻ B

Table 7: Examples of the collected extractive preference sets on MultiNLI dataset.

A: (premise) This is arguably starting to distort the
practice of science itself. (hypothesis) This began to
distort scientific practice.

B: (premise) This number represents the most reliable,
albeit conservative, estimate of cases closed in 1999 by
LSC grantees. (hypothesis) This is an actual verified
number of closed cases.

Textual Entailment: Entailment, Extractive Preference: A ≻ B

A: (premise) Uh-huh well maybe well i’ve enjoyed
talking to you okay bye-bye. (hypothesis) I liked talk-
ing to you.

B: (premise) And then I was off, the world exploding
behind me. (hypothesis) The world exploded behind
me.

Textual Entailment: Entailment, Extractive Preference: No Preference

A: (premise) I am surprised though that we do have so
many that are in politics down here (hypothesis) I am
surprised that not many of them are in politics down
here.

B: (premise) Outside, set in manicured gardens, are
the remains of the Abbey of Holyrood. (hypothesis)
The gardens containing the remains of the Abbey of
Holyrood are in disarray and not well-kept.

Textual Entailment: Contradiction, Extractive Preference: No Preference

A: (premise) After the purge of foreigners, only a few
stayed on, strictly confined to Dejima Island in Na-
gasaki Bay. (hypothesis) A few foreigners were left
free after the purge on foreigners.

B: (premise) It sure will well good to talk to.
(hypothesis) That is unlikely and this conversation has
gotten us nowhere.

Textual Entailment: Contradiction, Extractive Preference: B ≻ A

A: (premise) Trying Your Luck. (hypothesis) Think
carefully and calculate your way to a certain victory.

B: (premise) Emeralds? (hypothesis) Are they wearing
emeralds?

Textual Entailment: Neutral, Extractive Preference: B ≻ A

20



Under review as a conference paper at ICLR 2023

C MORE ABLATION STUDY

In this section, we provide more ablation studies on the design choices of P2C. Here, all experiments
are conducted on DynaSent-R2 (Potts et al., 2021) and Offensive (Leonardelli et al., 2021) datasets
with extractive preference labels, as same as we have done in Section 4.1. The values and error bars
are the mean and standard deviation across five random seeds. The results with the chosen design in
Section 4.1 are underlined.

Multiple Preference head for preference learning. In Section 2.2, we introduce multi-preference
heads with diversity regularization (Eq. 3) to effectively learn the given preference labels. To see
the effect, we compare it with two different designs for preference heads: 1) single-preference head
and 2) multi-preference heads without diversity regularization. Remark that the other components,
consistency regularization, and inconsistency-based sampling, are still applied to separately verify
the effect from different designs of the preference head. As shown in Table 8, one can verify that a
single preference head is not enough to exploit the given preference labels fully; hence, the empirical
gain is relatively small compared to multi-preference heads. Also, it is observable that the proposed
regularization is more effective to impose the diversity than only relying on the random initialization.

Table 8: Effect of different designs for preference head.

Single-Pref Multi-Pref Heads Multi-Pref Heads
Dataset Head without diversity with diversity

DynaSent-R2 72.22±0.55 72.75±0.42 73.06±0.31

Offensive 77.08±0.57 77.25±0.92 77.81±0.21

Auxiliary loss for preference learning. As described in Section 2.2, we use a consistency regulariza-
tion (Eq. 5 and 6) between classification and preference learning as an auxiliary loss for learning
preference; specifically, consistency regularization with margin (Eq. 6) is used in Section 4.1. To
clarify the effectiveness of this regularization, we compare it with 1) consistency regularization
without margin (Eq. 5). We also compare it 2) soft-labeling, which also uses the annotation records to
construct soft-labels instead of the preference and margin. Here, we use random sampling instead of
inconsistency-based sampling since it is designed explicitly for consistency regularization while using
the multi-preference heads. Table 9 shows the results of these auxiliary losses; although consistency
regularization is effective in improving the performance without margin, the gain is smaller than
the consistency regularization with margin since the latter utilizes the additional knowledge about
the given preference label. In addition, the result with soft-labeling validate that the gain from our
consistency loss is not from the use of the annotation records but from the regularization that imposes
the following intuition: more preferred instance should have a higher confidence from the classifier.

Table 9: Effect of different auxiliary losses to learn from the given preference labels.

Soft Consistency Consistency
Dataset -labeling without margin with margin

DynaSent-R2 72.29±0.88 72.40±0.71 72.67±0.89

Offensive 77.04±1.05 77.54±0.95 77.67±0.99

Sampling of pairs for preference learning. To improve the efficiency of preference learning by
sampling the informative pairs during the training, we introduce two advanced sampling methods:
(1) disagreement-based sampling and (2) inconsistency-based sampling in Section 2.2. Remark that
the other components, consistency regularization with margin and multi-preference heads, are still
applied to verify the effect from different sampling methods separately. In Table 10, we compare both
sampling methods to random sampling. Here, one can verify that both ways are more effective than
random sampling, and the inconsistency-based sampling is slightly better than the disagreement-based
sampling. Hence, we commonly used inconsistency-based sampling for in Section 4.1.
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Table 10: Effect of different sampling methods with preference learning.

Dataset Random Disagreement Inconsistency

DynaSent-R2 72.67±0.89 72.73±0.66 73.06±0.31

Offensive 77.67±0.99 77.75±1.49 77.81±0.21

Sensitivity to Ldiv. To verify the sensitivity of our method with Ldiv, we conduct the experiments
by introducing λdiv, a coefficient of Ldiv, and varying it to investigate its effect. In Table 11, one can
observe that KL divergence does not dominate the entire loss until the certain level of λdiv including
the original value (λdiv=1), but it can diverge with too large value (e.g., λdiv = 10). Hence, we
recommend to use the original value or investigate λdiv with smaller than 1.

Table 11: Effect of diversity regularization between multi-preference heads with λdiv.

Dataset λdiv = 0 λdiv = 1 λdiv = 2 λdiv = 10

DynaSent-R2 72.75±0.42 73.06±0.31 71.44±0.68 57.05±2.14

Offensive 77.25±0.92 77.81±0.21 75.35±1.03 65.05±6.70
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D ADDITIONAL EXPERIMENTAL RESULTS

Smaller training samples. Here, we validate the effectiveness of P2C with extractive preferences
for the smaller training samples. Specifically, we control the number of training samples (N ) of the
DynaSent-R2 dataset fromN = 250 toN = 4000, and compare our method with three representative
baselines with high performance: Vanilla, Soft-labeling, and Multi-annotator. As shown in Table 12,
P2C shows significant improvement, especially when the dataset size is smaller. We also remark that
P2C shows consistent improvement for all cases while other baselines do not.

Table 12: Results with the smaller training samples.

Method N = 250 N = 500 N = 1000 N = 2000 N = 4000

Vanilla 54.89±2.46 60.36±2.98 63.61±0.92 66.50±0.76 68.69±1.41

Soft-labeling 57.75±2.35 60.03±1.46 62.81±1.45 66.78±1.16 68.17±1.09

Multi-annotator 57.33±3.23 61.39±1.76 63.00±0.87 66.19±0.84 68.78±1.46

P2C (Ours) 58.94±1.16 61.83±1.15 64.13±1.04 67.72±0.46 69.83±0.64

Semi-supervised learning with the collected preference labels. As the collection of preference
labels induce the additional cost, especially with subjective preference, it would be beneficial if there
is another way to fully exploit the collected labels; hence, we validate that the gain from limited
preference labels can be further enlarged with the semi-supervised learning scenario. We remark that
semi-supervised learning is well known to be effective for better utilization of limited labeled data
(Berthelot et al., 2019; Kim et al., 2020). To verify the effectiveness of this approach, we conduct the
following experiments: using trained P2C models with given 5,000 preference labels, we generate
pseudo labels for the preference of each pair. Here, we clarify that we generate “pseudo” preference
labels (i.e., pair-wise) for unlabeled pair data for semi-supervised learning while we assume that
task labels (i.e., instance-wise) for all training data are still available. Then, we train another model
with P2C using these “pseudo preference labels”. As summarized in Table 13, we observe the clear
improvements with this approach, and the gain is much larger with subjective preference, which
indicates the informativeness of these preference labels. We also remark that there is still room for
improvement from the advanced semi-supervised learning approaches such as iterative refinement
(Ziegler et al., 2019) or confidence thresholding (Park et al., 2022).

Table 13: Semi-supervised learning with the collected preference labels with pseudo-labeling method.

Method Vanilla Extractive Preference Subjective Preference

Original 71.23±1.05 71.94±1.96 72.40±0.62

Semi-sup 71.23±1.95 72.11±0.92 73.08±0.42

Compatibility with other types of models. While we have previously used a model built over
RoBERTa-base (Liu et al., 2019), the proposed P2C is not limited to the specific model. To verify this,
we conduct additional experiments based on DynaSent-R2 with extractive preference labels from the
annotation records. As shown in Table 14, the proposed P2C consistently improves the test accuracy
of classifiers built over one-hot encoded vectors (Galke & Scherp, 2022) as well as other language
models (BERT-base (Devlin et al., 2019), ALBERT-base (Lan et al., 2020), and RoBERTa-large).

Table 14: Results with other types of models.

Method One-hot encoding BERT-base ALBERT-base RoBERTa-large

Vanilla 54.42±0.77 67.26±1.15 62.72±0.73 75.62±0.60

P2C (Ours) 55.47±0.82 68.26±0.56 65.00±1.13 77.71±0.36

Different number of annotations. In addition, we validate that pair-wise human preference could
be a more efficient annotation than the existing instance-wise task labels. To this end, we conduct
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additional experiments on DynaSent-R2 with subjective preference labels by varying the number of
additional annotations (N ) upon the existing 7.5k task labels, similar to Table 4.
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Figure 9: Interpolated results of Table 15

As shown in Table 15, it is verified that the pair-wise
human preference even requires fewer annotations to
achieve the same level of test accuracy; for example,
it requires 29.8% fewer annotations than instance-wise
task label to achieve 70.5% test accuracy. Here, we es-
timate the number of annotations at 70.5% test accuracy
by interpolating the results with polynomial approxima-
tion (Pedregosa et al., 2011).7 Also, we note the pro-
posed framework has an additional advantage; it could
provide an effective solution, especially when input data
acquisition is expensive, such as medical datasets or
human-in-the-loop benchmarks.

Table 15: Results with different number of additional annotations (N ).

Method N = 0 N = 500 N = 1000 N = 1500 N = 2000 N = 2500

Task Labels 69.03±1.29 69.47±0.58 70.14±0.50 70.33±0.90 70.58±0.73 70.75±1.29

Subjective Preference 69.03±1.29 69.99±1.32 70.33±0.85 70.61±1.31 70.89±0.75 71.09±1.55

7We use 5 degree for interpolation, and code is available at https://scikit-learn.org/stable/
auto_examples/linear_model/plot_polynomial_interpolation.html
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