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ABSTRACT

Human-Object Interaction (HOI) detection with vision-language models (VLMs)
has progressed rapidly, yet a trade-off persists between specialization and gener-
alization. Two major challenges remain: (1) the sparsity of supervision, which
hampers effective transfer of foundation models to HOI tasks, and (2) the absence
of a generalizable architecture that can excel in both fully supervised and zero-
shot scenarios. To address these issues, we propose LINK, Learning INstance-
level Knowledge. First, we introduce a HOI detection framework equipped with
a Human-Object Geometrical Encoder and a VLM Linking Decoder. By decou-
pling from detector-specific features, our design ensures plug-and-play compat-
ibility with arbitrary object detectors and consistent adaptability across diverse
settings. Building on this foundation, we develop a Progressive Learning Strategy
under a teacher-student paradigm, which delivers dense supervision over all po-
tential human-object pairs. By contrasting subtle spatial and semantic differences
between positive and negative instances, the model learns robust and transfer-
able HOI representations. Extensive experiments on SWiG-HOI, HICO-DET, and
V-COCO demonstrate state-of-the-art results, showing that our method achieves
strong performance in both zero-shot and fully supervised settings while also ex-
hibiting open-vocabulary capability.

1 INTRODUCTION

Human-Object Interaction (HOI) detection has recently emerged as a rapidly developing field, re-
quiring higher-level visual understanding beyond standard object detection. By focusing on complex
human-centric interactions, HOI detection is essential for applications such as intelligent robotics
and anomalous behavior detection (Liu et al., 2018). Its core goal is to localize human-object pairs
and recognize their interactions as structured triplets: < human, action, object >.

Recently, foundation models pretrained on large-scale multimodal datasets have shown strong ca-
pabilities to provide effective feature representations for downstream tasks. In the field of HOI
detection, numerous studies (Lei et al., 2023; Cao et al., 2024; Ning et al., 2023; Mao et al., 2023;
Lei et al., 2025b; Wu et al., 2023) have successfully used pretrained CLIP models (Radford et al.,
2021) to improve the recognition of rare and unseen interactions, thereby advancing zero-shot and
few-shot learning in HOI detection.

However, existing VLM-based HOI detectors often face an inherent trade-off between specializa-
tion and generalization. Dedicated architectures are typically optimized for fully supervised bench-
marks, yielding strong in-domain performance but struggling in zero-shot and cross-domain settings
due to limited generalization capacity. Conversely, zero-shotoriented methods are commonly built
upon CLIP with lightweight modifications. While effective in recognizing novel HOI categories,
their limited task-specific adaptability leads to suboptimal performance under fully supervised eval-
uation. As illustrated in Figure 1(a), a clear trade-off emerges: methods achieving higher fully
supervised performance often suffer a decline in their corresponding zero-shot performance. A sec-
ond challenge lies in the sparsity of supervision, as shown in Figure 1(b). In visual scenes, humans
and objects form densely connected graph structures, yet ground-truth annotations cover only a
small subset of edges, leaving most instances under-utilized. These ignored cases include not only
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(a) Zero-shot vs. Fully Supervised: A Trade-off Perspective

1) Object Detection from DETR 2) Sparse HOI annotations

(b) Sparse Supervision in HOI Tasks. Although the scene contains 
diverse interactions, only the red pairs (e.g. <person1, lie_on, couch1>), 
are annotated as ground-truth, while valid but unlabeled pairs  (e.g. 
<person1, read/hold, book>) and informative negatives are ignored.

book

Person1 Person2

Couch1 Couch2

Cell phone

lie_on sit_on

holdread,hold

Unlabeled 
Positives 

Informative 
Negatives

GT
Supervised

1) ViT-large 2) ViT-base

Figure 1: Illustration of challenges in HOI detection.

valid but unlabeled pairs, but also informative negatives that could contribute to more robust learn-
ing. Together, these issues highlight the core difficulty of adapting VLMs, pretrained on large-scale
imagetext pairs, to instance-level HOI detection under sparse supervision.

To address these challenges, we propose LINK, Learning INstance-level Knowledge, which inte-
grates architectural innovations with a progressive learning strategy. First, we design a HOI detector
that introduces a Human-Object Geometrical Encoder to capture the spatial relationships of paired
human-object instances, and a VLM Linking Decoder that bridges VLMs with HOI detection by
transforming global semantic representations into fine-grained, instance-level HOI patterns. Second,
we develop a Progressive Learning Strategy. In the first stage, the model is trained with standard su-
pervision to adapt intrinsic knowledge within VLM into HOI-specific patterns. In the second stage,
we leverage this pre-trained model as the teacher, where the student receives sparse GT supervision
while all human-object pairs, including negatives, are further guided by dense distillation losses.
By contrasting subtle spatial and semantic differences between positive and negative instances, the
model learns to resolve ambiguities and acquire more discriminative HOI representations.

Our LINK, offers key advantages. It maintains consistency across diverse scenarios (fully super-
vised, zero-shot, and open-vocabulary) and captures fine-grained spatial and semantic patterns for
robust HOI prediction. Even in cross-domain transfer to synthetic images with drastic semantic
shifts, preserved spatial patterns support reliable decisions. In summary, our main contributions are:

• We propose a HOI detector with a Human-Object Geometrical Encoder and a VLM Link-
ing Decoder. This design strengthens HOI-specific reasoning capacity while avoiding un-
necessary complexity that may compromise generalization. By decoupling from detector-
specific features, LINK achieves plug-and-play compatibility with arbitrary object detec-
tors without fine-tuning.

• We introduce a progressive learning strategy that delivers dense supervision to all candi-
date human-object pairs, enabling the model to capture fine-grained spatial and semantic
distinctions between positive and negative instances. This effectively mitigates the super-
vision sparsity inherent in HOI tasks.

• We conduct the first comprehensive evaluation of HOI detection across diverse foundation
models (CLIP, BLIP, DINOv2, DINO@448, SigLIP2, Florence2), and demonstrate that
+LINK consistently improves all baselines, with the most substantial gains on long-tail
HOIs (≤ 10 samples).

Our method outperforms existing methods by a large margin. For instance, on HICO-DET with an
R50 backbone and ViT-L CLIP, LINK achieves 42.92 / 45.03 mAP on the full / rare sets, surpassing
the previous state-of-the-art by 3.87 / 6.37 mAP, corresponding to relative gains of 9.9% / 16.5%.
Moreover, when scaled up to a Swin-L backbone, LINK further improves to 49.06 / 53.63 mAP.

2 RELATED WORKS

Human-Object Interaction Detection: Human-Object Interaction (HOI) detection is a composite
task that involves localizing humans and objects, as well as recognizing their interactions. Existing
methods can be broadly classified into one-stage and two-stage paradigms. One-stage methods (Liao
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et al., 2020; Chen & Yanai, 2021; Chen et al., 2021; Kim et al., 2021; Zou et al., 2021) aim to jointly
localize objects and infer interactions in a single forward pass. Early approaches, such as PPDM
(Liao et al., 2020) and UnionDet (Kim et al., 2020a), leverage interaction points or union regions
as anchors to guide localization and feature extraction. More recently, Transformer-based archi-
tectures have advanced the field by introducing query-based HOI detectors. In contrast, two-stage
methods (Chao et al., 2018; Gao et al., 2020; 2018; Gkioxari et al., 2018; Gupta et al., 2019; Kim
et al., 2020b; Zhou & Chi, 2019; Liu et al., 2020; Wu et al., 2024) decouple the process into object
detection followed by HOI classification for each human-object pair. This separation offers greater
flexibility, interpretability, and modularity, and has gained increasing attention in recent work. Given
the modular nature of the two-stage paradigm, it is particularly well-suited for designing generaliz-
able and scalable HOI detectors. In this paper, we aim to develop a unified two-stage HOI detector
that performs effectively across both specific benchmarks and generalization scenarios.

Adapting Vision-Language Models: The rapid advancement of vision-language models (VLMs)
(Radford et al., 2021; Li et al., 2023a; 2022; Wang et al., 2021b; Zhang et al., 2022b) has recently
demonstrated strong zero-shot capabilities. This has prompted growing interest in adapting VLMs
for Human-Object Interaction (HOI) detection. For instance, HOICLIP (Ning et al., 2023) em-
ploys a query-based approach to harness visual knowledge from CLIP, achieving zero-shot HOI
enhancement by leveraging CLIPs image-text retrieval capabilities. BCOM (Wang et al., 2024) pro-
poses an occlusion-aware Contextual Mining method that guides the model to recover spatial details
from occluded feature maps, thereby improving robustness in crowded scenes. ADA-CM employs
a Concept-guided Memory to retrieve both domain-specific and domain-agnostic knowledge from
CLIP, enabling a quick adaptation to datasets. More recently, CMMP (Lei et al., 2025b) introduces
conditional multi-modal prompts enriched with priors to decouple visual representation and interac-
tion classification, thereby enhancing the zero-shot HOI detection capability of CLIP-based models.

3 METHOD

In this section, we first review the problem formulation in VLM-based two-stage HOI detection
methods (3.1). We then introduce our proposed unified HOI architecture (3.2), which consists of a
HO Geometrical encoder and a VLM Linking decoder. Next, we present our Progressive Learning
Strategy (3.3).

3.1 PRELIMINARY: PROBLEM FORMULATION.

The architecture of a two-stage VLM-based HOI detection framework is illustrated in Figure 2.
In this paradigm, an off-the-shelf object detector is first employed to localize entities. Following
standard practice, DETR is used to generate all bounding boxes B, which are divided into human
boxes Bh and object boxes Bo. For each box, a corresponding featureeither object queries in DETR
or ROI-aligned featuresis extracted and used as a unary query for subsequent interaction reasoning.
This results in the mappings Qh ↔ Bh and Qo ↔ Bo. By enumerating all possible human-object
pairs, we construct Qh-o, where each query corresponds to a pair of boxes [Bh,Bo].

We then refine Qh-o via an encoder-decoder architecture as Qh-o = Decoder(Encoder(Qh-o),F),
where F denotes external features, such as feature maps extracted from CLIP or backbone. The
output interaction logits are predicted by Lh-o = FFN(Qh-o). As a result, for each human-object
pair, the model outputs a prediction in the form of 〈Bh, Lh-o,Bo, Co〉, where Co is the object cate-
gory. In the practical training process, supervision is applied only to valid queries Qm-those where
both the human and object bounding boxes have an Intersection over Union (IoU) above 0.5 with
ground-truth boxes. Formally, matched queries are denoted as M and defined as:

M =
󰀋
Qh-o

󰀏󰀏 IoU(Bh,Bgt
h ) ≥ 0.5 ∧ IoU(Bo,Bgt

o ) ≥ 0.5
󰀌

(1)

Where Bh, Bo are predicted human and object boxes, respectively. The overall training objective is
to optimize the model parameters θ by minimizing the expected HOI classification loss over matched
queries:

θ∗ = argmin
θ

EI∼X [LM(Φθ(I,B),GT )] , (2)

where Φθ denotes the HOI detector, LM is the multi-label classification loss computed over the
matched queries M, and X is the training dataset, I represents the input image.
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Figure 2: Overview of our framework. (Sec. 3.1) Baseline: an VLM-based two-stage HOI archi-
tecture. (Sec. 3.2) HO Geometrical Encoder: integrates ROI features with bounding box encodings
and pairwise geometric relations (IoU, direction, size, etc) to model human-object dependencies.
(Sec. 3.3) VLM Linking Decoder: refines pairwise queries via Geometry-aware and semantic-native
cross-attention, and projects them with a CLIP-initialized head to predict HOI triplets.

3.2 MODEL ARCHITECTURE.

Object Detector and Vision Encoder. To ensure architectural generality, we do not use the dataset-
specific object queries produced by a fine-tuned DETR. Instead, we obtain unary queries via ROI
Align, using the feature maps extracted from a VLM pretrained on large-scale data and the detected
bounding boxes. Specifically, given human and object boxes Bh and Bo, we apply ROI Align on
the feature map F ∈ RH×W×C to extract the corresponding unary queries Qh and Qo, both of
dimensionality C.

Human-Object Geometrical Encoder. Since VLMs such as CLIP are pre-trained with image-
level contrastive objectives, they primarily capture global semantic information. Compared to the
object queries in DETR, their spatial awareness and region-level discrimination are relatively lim-
ited, which motivates the introduction of Geometry-aware query refinement. To this end, we encode
each bounding box using its normalized center and size with sinusoidal positional encoding. Specif-
ically, given a bounding box B = (x1, y1, x2, y2) and image size (W,H), we normalize the box as
B̂, We then compute the center and size as C and S: B̂ =

󰀃
x1

W , y1

H , x2

W , y2

H

󰀄
, C = 1

2 (x̂1+ x̂2, ŷ1+ ŷ2),
S = (x̂2 − x̂1, ŷ2 − ŷ1). Apply sinusoidal encoding to each: PE(B) = PE(C) ⊕ PE(S), where
PE(·) is the standard 2D sinusoidal positional encoding function and ⊕ denotes vector concatena-
tion. The resulting spatial embeddings are added to the unary queries Qh and Qo, and further refined
through a self-attention mechanism. This process can be expressed as: Q = Self-Attn(Q+ PE(B)),
Next, we construct pairwise human-object queries Qh-o. Specifically, we iterate over all possible
human-object combinations and concatenate their features to form paired queries, expressed as:

Qh-o = Linear(C[Qi, Qj ]),where i ∈ H, j ∈ O ∪H. (3)

Here, H and O denote the sets of detected humans and objects, respectively. The notation C denotes
concatenation. The inclusion of j ∈ H allows the model to capture human-human interactions.

Previously, we defined unary positional encodings. To enrich the pairwise representation with
instance-level spatial awareness, we further encode the geometric relation between each human-
object pair using pairwise spatial encoding, following UPT (Zhang et al., 2022a). This produces a
spatial relation vector Ri,j for each pair (i, j). We then fuse the queries Qh-o with their correspond-
ing spatial encodings Ri,j through a Multi-Modal Fusion (MMF) module. The fusion process is
defined as: x = LN1(FC1(Qh-o)), y = LN2(FC2(Ri,j)) and z = MLP(ReLU(Concat[x, y])),
where FC1, FC2 are linear projections to a shared embedding space, LN1,LN2 are LayerNorm lay-
ers, and MLP is a multi-layer perceptron that produces the final fused representation. The output z
serves as the final output of the encoder, i.e., the refined pairwise query Qh-o.
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Figure 3: Progressive Learning Strategy (a) Student-teacher framework: the student model is
trained from scratch with sparse GT supervision, while the pretrained teacher provides dense guid-
ance via multi-level knowledge distillation. (b) Three levels of knowledge alignment: logits-level,
query-level, and feature-map level, where instance-level matching enables fine-grained supervision
on spatial and semantic representations.

At this stage, we decouple the features from the object detector and derive queries solely based
on VLM features and detected bounding boxes, thereby mitigating detector-induced biases. Mean-
while, it enhances spatial awareness and produces paired H-O instances for subsequent reasoning.

VLM Linking Decoder. In the decoder, we perform cross-attention between the pairwise queries
Qh-o and the VLM feature map F ∈ RH×W×C to aggregate both spatial cues and semantic infor-
mation. Building on standard cross-attention, we design a VLM Linking structure consisting of a
spatial branch and a semantic branch.

The spatial branch reduces the dimensionality of the feature map through a connector module,
forming a latent bottleneck that interacts with Qh-o. This branch focuses on capturing fine-grained
geometric relationships and spatial cues within the scene. To further enhance spatial reasoning, we
adopt the attention-guidance mechanism proposed in PViC (Zhang et al., 2023), where positional
encodings derived from bounding boxes are used to constrain the attention maps.

In contrast, the semantic branch expands Qh-o and performs attention in the high-dimensional
native space of the VLM, enabling richer aggregation of high-level semantics. While the spatial
branch enhances fine-grained modeling, the semantic branch leverages global representations to
improve transferability. The outputs of both branches are fused by concatenation followed by a
feed-forward network:

Qn
h-o = Linear(Qh-o), F l = MLP(F ), (4)

Qout = MLP
󰀃
CAbe(Qh-o, F

l) c©CA(Qn
h-o, F )

󰀄
, (5)

where F l denotes the compressed feature map from the latent branch, MLP is a multi-layer per-
ceptron used for final fusion, and c© indicates concatenation. Here, CA(·) refers to the standard
cross-attention, while CAbe(·) is a box-encoding-guided modified cross-attention. Finally, Qout is
passed through an FFN initialized with CLIP text embeddings to generate the final HOI logits.

3.3 PROGRESSIVE LEARNING STRATEGY

We propose a unified architecture that establishes a strong baseline for adapting foundation models
to HOI detection. Building upon this foundation, we further introduce a knowledge learning strategy
based on a teacher-student paradigm to alleviate the challenge of sparse supervision.

First, we leverage our architecture to construct a pure baseline by pre-training it on HOI data using
only the original ground-truth annotations, which serves as the Teacher Model. Thanks to the ar-
chitectural design, the teacher model transforms the frozen image-level representations from VLMs
into learnable instance-level representations tailored for HOI tasks.

Second, we employ the pre-trained model to perform teacher-student transfer paradigm, as illus-
trated in Figure 3 Left. The Student Model is jointly supervised by both ground-truth annota-
tions and guidance from the pre-trained teacher. Since the teacher and student share the same
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input and architecture, we achieve one-to-one aligned human-object instances. This alignment en-
ables knowledge transfer across all candidate human-object pairs, rather than being restricted to the
limited subset defined by matched queries.

As shown in Figure 3, traditional supervision (black dashed arrow) covers only a limited set of an-
notated human-object instances. In contrast, our learning strategy provides adaptive supervision for
all potential instances (orange dashed arrow), delivering richer and more comprehensive guidance.
Moreover, it facilitates knowledge transfer across multiple levels, further enhancing the models
ability to capture complex interaction patterns. We adopt knowledge transfer losses with Kullback-
Leibler (KL) divergence: KDKL(fstu, ft) = KL (σ(ft/τ) 󰀂σ(fstu/τ)), where fstu and ft denote the
student and teacher features or logits, σ(·) is the softmax function, and τ is a temperature factor.

Feature Map. We perform knowledge transfer at the feature map level by aligning the repre-
sentations produced by the VLMs using a lightweight adapter. Let Fstu, Ft ∈ RC×H×W de-
note the feature maps from the student and teacher models, respectively. To address poten-
tial mismatches in spatial and channel dimensions, we align the teachers feature map to match
the students. Specifically, we first apply bilinear interpolation to adjust the spatial resolution:
F ′

t = Interpolate(Ft, size = (Hstu,Wstu)), followed by trilinear interpolation to align the channel
dimension: F ′′

t = Interpolate(F ′
t , size = (Cstu, Hstu,Wstu)). Both feature maps are then flattened

into shape HW × C, and the loss is computed as: Lfeat
KD = KD(Fstu, F

′′
t ).

Query. Thanks to our unified architecture, we design a fully mirrored student-teacher paradigm in
which both the HO Geometrical encoder and VLM Linking decoder share identical structures. This
symmetry enables query-level knowledge transfer across all human-object pair queries throughout
the entire model. Formally, the query-level transfer loss is defined as:

Lquery
KD =

1

Le

Le󰁛

ℓ=1

KD(Q(ℓ)
e,stu,Q

(ℓ)
e,t ) +

1

Ld

Ld󰁛

ℓ=1

KD(Q(ℓ)
d,stu,Q

(ℓ)
d,t ), (6)

where Le and Ld denote the number of layers in the encoder and decoder, respectively. Q(ℓ)
e,stu and

Q(ℓ)
e,t represent the sets of student and teacher queries at the ℓ-th layer of the encoder. Similarly, Q(ℓ)

d,stu

and Q(ℓ)
d,t denote the student and teacher queries at the ℓ-th decoder layer. The function KD(·, ·)

computes the average token-wise distillation loss between corresponding query sets.

Logits. We perform knowledge transfer at the logits level, which provides multi-label interaction
guidance for each human-object pair. This also captures richer contextual information in the distribu-
tion of logits over potential human-object interactions. Additionally, we follow previous two-stage
methods (Zhang et al., 2023) and combine the predicted logits with detection confidence scores. The
final score is computed as: Ψs = log

󰀓
P

1+exp(−Os)−P

󰀔
, where P denotes the confidence score of

the paired bounding boxes and Os is the predicted HOI logit. The distillation loss at the logits level
is then defined as: Llogits

KD = KD (Ψ(Fstu),Ψ(Ft)).

Now, we extend the original training objective by applying knowledge transfer across all human-
object pairs and at multiple levels G, as in the following objective:

θ∗ = argmin
θ

EI∼X
󰀅
LM(Φθ(I,B),GT ) +

󰁛

g∈G
KDg(Φθ(I,B),Φt(I,B))

󰀆
(7)

where Φt is the teacher model and KDg denotes the knowledge distillation loss at level g, which
includes feature map, query, and logits-level supervision.

4 EXPERIMENTS

Implementation Details. We trained two scales of object detectors for fair comparison with prior
work: DETR (Carion et al., 2020) with a ResNet-50 (He et al., 2016) backbone, and H-Deformable-
DETR (Jia et al., 2023) with a Swin-Transformer-Large (Liu et al., 2021) backbone. Both detectors
are pretrained on MS-COCO (Lin et al., 2014) and fine-tuned on the target datasets following stan-
dard practice. ROI-aligned features are extracted at a resolution of 7 × 7 using average pooling.
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Table 1: Zero-shot performance comparison under RF-UC, NF-UC, and UO settings. HM denotes
the harmonic mean. The best result in each column is in bold, the second best is underlined. The
symbol † indicates results with CLIP-ViT-L as the VLM.

Method RF-UC NF-UC UO

HM Unseen Seen Full HM Unseen Seen Full HM Unseen Seen Full

Fully-supervised methods
PViC (Zhang et al.) 27.85 24.45 32.36 30.78 26.80 24.74 29.23 28.07 25.07 19.13 36.37 33.50
HOICLIP (Ning et al.) 29.40 25.53 34.85 32.99 27.22 26.39 28.10 27.75 21.28 16.20 30.99 28.53
LOGICHOI (Li et al.) 29.79 25.97 34.93 33.17 27.34 26.84 27.86 27.95 20.68 15.67 30.42 28.23
GEN-VLKT (Liao et al.) 25.91 21.36 32.91 30.56 24.19 25.05 23.38 23.71 15.42 10.51 28.92 25.63
Zero-shot oriented methods
ADA-CM (Lei et al.) 30.63 27.63 34.35 33.01 31.76 32.41 31.13 31.39 – – – –
CLIP4HOI (Mao et al.) 31.59 28.47 35.48 34.08 29.72 31.33 28.26 28.90 32.25 31.79 32.73 32.58
BCOM† (Wang et al.) 31.45 28.52 35.04 33.74 32.43 33.12 31.76 32.03 – – – –
CMMP (Lei et al.) 31.07 29.45 32.87 32.18 30.85 32.09 29.71 30.18 32.40 33.76 31.15 31.59
EZ-HOI (Lei et al.) 31.38 29.02 34.15 33.13 32.03 33.66 30.55 31.17 32.66 33.28 32.06 32.27
HOLa (Lei et al.) 32.69 30.61 35.08 34.19 33.35 35.25 31.64 32.36 34.65 36.45 33.02 33.59

LINK 33.42 32.25 34.68 34.19 34.07 33.72 34.42 34.25 33.73 34.05 33.41 33.66
LINK† 39.40 38.51 40.33 39.97 35.14 34.63 35.67 35.43 37.92 38.24 37.61 37.91

Table 2: Zero-shot comparison under UV setting.

Method UV
HM Unseen Seen Full

Fully-supervised methods
PViC (Zhang et al.) 23.84 19.58 30.48 28.95
HOICLIP (Ning et al.) 27.69 24.30 32.19 31.09
LOGICHOI (Li et al.) – – – –
GEN-VLKT (Liao et al.) 24.76 20.96 30.23 28.74
Zero-shot oriented methods
ADA-CM (Lei et al.) – – – –
CLIP4HOI (Mao et al.) 28.35 26.02 31.14 30.42
BCOM† (Wang et al.) – – – –
CMMP (Lei et al.) 29.13 26.23 32.75 31.84
EZ-HOI (Lei et al.) 28.64 25.10 33.49 32.32
HOLa (Lei et al.) 31.09 27.91 35.09 34.09
LINK 29.29 27.01 32.00 31.30
LINK† 31.92 27.22 38.36 36.88

Table 3: Few-shot comparison on HICO-DET
and V-COCO datasets.

We adopt AdamW with a weight decay of 10−4, training for 15 epochs with FocalBCE loss. The
learning rate is decayed to 20% of its initial value after the 10th epoch. For KD losses, the temper-
ature coefficient is set to τ = 2.0. In our main comparisons, we follow prior work and use CLIP
as the visionlanguage backbone. The connector module projects features into a 384-dimensional
space. Unless otherwise specified, the teacher model is CLIP ViT-L/14@336px. Additional details
are provided in the supplementary material.

4.1 COMPARISON WITH STATE-OF-THE-ARTS

Zero-shot Results. Table 1 and 2 reports zero-shot performance under four standard settings: RF-
UC (Rare-First Unseen Combination), NF-UC (Non-Rare First Unseen Combination), UO (Unseen
Object) and UV (unseen Verb). HM denotes the harmonic mean between seen and unseen categories.
Our method consistently outperforms both fully-supervised and zero-shot-oriented approaches. In
our experiments, LINK uses CLIP ViT-Base for both teacher and student, while LINK† uses CLIP
ViT-Large. Across the four zero-shot settings, LINK achieves two best and two second-best results
among SOTA methods. Under the RF-UC setting, our method achieves an unseen score of 32.25,
surpassing the previous best result of 30.61 by +1.64. When scaling up to the ViT-Large, the perfor-
mance further improves. Similarly, under the NF-UC and UO settings, our model attains harmonic
means of 35.14 and 37.92, respectively, establishing new state-of-the-art performance. These results
highlight the strong generalization ability of our method to unseen HOI categories and validate its
robustness in open-world scenarios.

Few-shot Results. We further evaluate few-shot performance on HICO-DET and V-COCO against
state-of-the-art methods, as illustrated in Figure 3. Our method consistently achieving the best re-
sults across both benchmarks from 1-shot to 32-shot settings. Interestingly, we observe a trade-off
in prior works: fully-supervised method PViC performs well on V-COCO but lags on HICO-DET,
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Table 4: Comparison with state-of-the-art on HICO-DET and V-COCO. Results are grouped
into fully-supervised v.s zero-shot oriented methods. Bold indicates the best performance. All
experiments are conducted under a fair setting where the teacher and student use the same scale
VLM, such as CLIP-ViT-B to CLIP-ViT-B.

Method Configuration
Backbone / VLM

HICO-DET (Default) (Known Obj.) V-COCO
Full Rare N-rare Full Rare N-rare APS2

role

Fully-supervised methods
KI2HOI (Xue et al.) R50 / CLIP-B 34.20 32.26 36.10 37.85 35.89 38.78 65.0
HOICLIP (Ning et al.) R50 / CLIP-B 34.69 31.12 35.74 37.61 34.47 38.54 64.8
CLIP4HOI (Mao et al.) R50 / CLIP-B 35.33 33.95 35.74 37.19 35.27 37.77 66.3
LOGICHOI (Li et al.) R50 / CLIP-B 35.47 32.03 36.22 38.21 35.29 39.03 65.6
DP-ADN (Gao et al.) R50 / CLIP-B 35.91 35.82 35.94 38.99 39.61 38.80 64.8
HORP (Geng et al.) R50 / CLIP-L 38.61 36.14 39.34 40.98 38.25 41.79 68.3
InterProDa (Jia et al.) R50 / CLIP-L 42.67 45.21 41.92 – – – –
DebiaHOI (Yang et al.) R50 / CLIP-L 42.93 42.41 43.11 44.97 44.20 45.23 72.1
PViC (Zhang et al.) Swin-L / – 44.32 44.61 44.24 47.81 48.38 47.64 68.0
MP-HOI (Yang et al.) Swin-L / CLIP-L+SD 44.53 44.48 44.55 – – – –
HORP (Geng et al.) Swin-L / CLIP-L 47.53 46.81 47.74 51.24 50.78 51.38 71.1
Zero-shot oriented methods
CMMP (Lei et al.) R50 / CLIP-B 33.24 32.26 33.53 36.32 34.87 36.75 61.2
ADA-CM (Lei et al.) R50 / CLIP-B 33.80 31.72 34.42 37.06 35.43 37.55 61.5
EZ-HOI (Lei et al.) R50 / CLIP-B 33.15 29.11 34.36 36.38 31.93 37.71 63.5
HOLa (Lei et al.) R50 / CLIP-B 35.41 34.35 35.73 38.59 36.43 39.10 –
LAIN (Kim et al.) R50 / CLIP-B 36.02 35.70 36.11 – – – 65.1
LINK R50 / CLIP-B 37.43 37.18 37.50 40.46 40.30 40.51 66.5
CMMP (Lei et al.) R50 / CLIP-L 38.14 37.75 38.25 40.93 40.68 41.16 64.0
ADA-CM (Lei et al.) R50 / CLIP-L 38.40 37.52 38.66 41.25 40.41 41.50 64.0
EZ-HOI (Lei et al.) R50 / CLIP-L 38.61 37.70 38.89 41.65 40.75 41.91 65.4
HOLa (Lei et al.) R50 / CLIP-L 39.05 38.66 39.17 42.13 41.18 42.42 66.0
LINK R50 / CLIP-L 42.92 45.03 42.20 45.79 47.00 45.67 68.1
UniHOI (Cao et al.) R50 / BLIP-2-OPT-2.7B 40.06 39.91 40.11 42.20 42.60 42.08 68.3
BC-HOI (Hu et al.) R50 / BLIP-2-OPT-2.7B 43.01 45.76 42.18 45.35 47.94 44.57 70.6
LINK R50 / BLIP-2-OPT-2.7B 43.72 45.82 43.10 46.11 47.71 45.62 68.5
CMMP (Lei et al.) Swin-L / CLIP-L 44.26 45.48 43.89 47.15 48.36 46.79 65.5
ADA-CM (Lei et al.) Swin-L / CLIP-L 44.99 45.98 44.69 47.77 49.08 47.38 65.7
EZ-HOI (Lei et al.) Swin-L / CLIP-L 45.22 46.15 44.94 47.63 48.03 47.51 66.1
HOLa (Lei et al.) Swin-L / CLIP-L 36.17 34.39 36.70 38.48 36.32 39.13 –
LINK Swin-L / CLIP-L 49.06 53.63 47.60 51.34 56.29 49.86 69.2

Table 5: Comparison on SWiG-HOI, demonstrating the open-vocabulary capability.

Method N-rare Rare Novel Full
Wang (Wang et al., 2021a) 10.93 6.63 2.64 7.98
THID (Wang et al., 2022) 17.67 12.82 10.04 13.26
AMP-HOI (Xue et al., 2024a) 19.77 14.00 9.74 14.29
MP-HOI-S (Yang et al., 2024) 20.28 14.78 - 12.61
GEN-VLKT (Liao et al., 2022) 20.91 10.41 - 10.87
CMD-SE (Lei et al., 2024b) 21.46 14.64 10.70 15.26
SGC-Net 23.67 16.55 12.46 17.20
LINK (ours) 24.37 17.88 12.15 17.97

whereas zero-shot-oriented method ADA-CM† shows the reverse trend. We attribute this inconsis-
tency to dataset scale differences that V-COCO contains only 24 HOI categories, while HICO-DET
comprises 600. In contrast, our model maintains strong performance across both datasets.

Comparison under Fully-Supervised Settings. Main results on HICO-DET and V-COCO
Benchmarks are presented in Table 4. On HICO-DET, our method achieves state-of-the-art per-
formance across different model scales, including R50+ViT-B, R50+ViT-L, and Swin-L+ViT-L.
Our small-scale model achieves 38.52 and 37.06 mAP on the Full and Rare subsets, respectively-
outperforming the previous best query-free method (33.80 / 31.72 mAP) with relative improvements
of 14.0% and 16.8%. Notably, while retaining the flexibility benefits of query-free designs, our
method surpasses even all specific-query based methods on standard benchmarks. When scaling
up to Swin-L+ViT-L, our model achieves 47.42 mAP, a +2.89 mAP gain over the prior best, high-
lighting excellent scalability. On V-COCO, our method also achieves competitive performance and
outperforms prior two-stage methods, including ADA-CM (Lei et al., 2023) and PViC (Zhang et al.,
2023) by a large margin.

Comparison on Open-Vocabulary benchmark SWiG-HOI. As shown in Table 5, our method
achieves a new SOTA with 17.97 mAP on the full set, outperforming the previous best by 2.71 mAP
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Figure 4: Experiments on Diverse Foundation Models. Our method (+LINK, striped bars)
consistently improves the performance of all baselines with various foundation models: includ-
ing contrastive vision-language learning-CLIP and BLIP; self-supervised learning-DINOv2 and
DINO@448; and multitask multimodal pretraining-SigLIP2 and Florence2. Notably, LINK pro-
vides the largest gains on long-tail HOIs (≤ 10 samples), highlighting its generalization capability.

Table 6: Ablation on HICO-DET under fully-
supervised setting.

# Encoder Decoder Full Rare N-Rare

A1 Self-Attn Cross-Attn 36.10 33.67 36.97
A2 Self-Attn VLM-Link 39.23 39.76 39.02
A3 Geometrical Cross-Attn 38.30 35.46 39.31
A4 Geometrical VLM-Link 41.20 41.43 41.13

A5 + Logit-level KD 41.89 43.82 41.27
A6 + Query-level KD 42.34 43.62 41.84
A7 + Map-level KD 42.92 45.03 42.20
A8 + multi-teacher (CLIP + SigLIP) 43.54 45.58 42.93

Table 7: Ablation under zero-shot RF-UC set-
ting.

# Encoder Decoder HM Unseen Seen Full

A1 Self-Attn Cross-Attn 31.74 30.23 33.36 32.54
A2 Self-Attn VLM-Link 35.47 34.78 36.17 35.84
A3 Geometrical Cross-Attn 34.55 33.54 35.60 35.10
A4 Geometrical VLM-Link 36.89 36.21 37.60 37.32

A5 + Logit-level KD 37.77 37.24 38.31 38.10
A6 + Query-level KD 39.10 38.30 39.92 39.48
A7 + Map-level KD 39.40 38.51 40.33 39.97

(a relative 17.8%). We also obtain the best results on both Non-Rare (24.37 mAP, +13.6%) and
Rare (17.88 mAP, +22.1%) subsets. Notably, our method achieves 12.15 mAP on the novel HOIs.
demonstrating strong generalization capability.

In summary, the above comparative experiments demonstrate that our method excels in both spe-
cialization (three standard benchmarks) and generalization (zero-shot and few-shot settings), without
sacrificing one for the other.

Ablation Studies. We conduct ablation studies on HICO-DET under both fully-supervised and
zero-shot RF-UC settings, as shown in Table 6 and Table 7. Notably, Our baseline (A1) adopts a
standard self-attention encoder over ROI features and a cross-attention decoder that attends to VLM
representations, forming a plain baseline. First, we evaluate the impact of our architectural design.
Introducing the HO Geometrical Encoder (A3) or VLM Linking decoder (A2) each improves per-
formance over the baseline (A1), while combining both (A4) yields the best results, confirming
their complementary benefits. Second, we investigate our instance-level knowledge learning strat-
egy. Progressive integration of logit-level (A5), query-level (A6), and map-level (A7) distillation
further boosts performance. Finally, employing multiple teachers (A8) achieves the highest gain
in the fully-supervised setting, while in the zero-shot setting, instance-level learning still provides
improvement, raising the harmonic mean by +2.51. These results demonstrate the effectiveness of
both our architectural components and the proposed knowledge learning strategy.

Various Foundation Models. Beyond CLIP, we further evaluate our method across a diverse set
of foundation models with different pre-training paradigms, including contrastive learning (BLIP),
vision-only self-supervised learning (DINOv2, DINO@448), and multitask multimodal pre-training
(SigLIP2, Florence2). As illustrated in Figure 4, our method successfully adapts to all these models
within a unified architecture, establishing strong baselines (solid bars in different colors). Further-
more, by incorporating our proposed learning strategy, performance is consistently and significantly
improved (striped bars). Notably, +LINK enhances the detection of rare interactions, an essential
capability for real-world HOI applications where long-tail categories are common and critical.
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5 CONCLUSION

In this paper, we presented a unified HOI detection framework that combines a HO Geometrical En-
coder with a VLM Linking decoder, enabling seamless integration with diverse foundation models
and object detectors while ensuring consistent performance across different scenarios. To address
the limitations of sparse annotations, we introduced an instance-level knowledge learning strategy
under a self-distillation paradigm, which provides dense and adaptive supervision across all hu-
manobject pairs. Extensive experiments on HICO-DET, V-COCO, and SWiG-HOI demonstrate that
our method achieves state-of-the-art performance and generalizes well across settings. Importantly,
+LINK substantially improves the recognition of rare interactions, highlighting its value for real-
world HOI applications where long-tail categories are both common and critical.
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A APPENDIX

A.1 OVERVIEW OF THE PROPOSED LINK

To develop a VLM-based HOI detector that performs robustly across both specific and generalizable
scenarios, our work is guided by two central questions: How can we design a unified and universal
HOI detection architecture that maintains consistent performance across different settings? How
can we generate dense and informative supervision signals to better guide HOI learning, especially
under sparse annotations? To this end, we propose the Learning Instance-level Knowledge frame-
work (LINK), a generalizable and modular architecture for HOI detection built upon vision-language
models (VLMs). As illustrated in Fig. 2 of the main paper, LINK consists of two key components:
a HO Geometrical Encoder that models pairwise spatial relationships between humans and ob-
jects to enhance contextual reasoning, and a VLM-Linking Decoder that fuses native and latent
representations for robust HOI prediction across diverse tasks. On top of this architecture, we intro-
duce an Instance-level Knowledge Learning strategy that adopts a fully mirrored teacher-student
paradigm. This design enables multi-level supervisionspanning features, queries, and logitsover all
candidate human-object pairs. Unlike traditional methods that only supervise ground-truth matches,
our strategy generates adaptive and learnable signals to distinguish both positive and negative in-
stances at fine granularity. Together, this unified design ensures plug-and-play compatibility with
different object detectors and foundation models, while our dense supervision paradigm enhances
generalization to rare, zero-shot, and open-vocabulary settings. The proposed LINK framework thus
provides a scalable, transferable, and high-performance solution for modern HOI detection.
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HICO-DET V-COCO SWiG-HOI

Figure 5: Distribution of widely-used HOI datasets: HICO-DET, V-COCO and SWiG-HOI.

A.2 DATASETS FOR HOI DETECTION

Our experiments are conducted on three widely used HOI detection benchmarks: HICO-DET, V-
COCO, and SWiG-HOI. Below, we provide a detailed overview of each dataset in terms of compo-
sition and scale.

HICO-DET is an HOI detection benchmark extended from the HICO classification dataset. It in-
cludes 600 HOI categories, formed from 80 object categories and 117 verb categories. The dataset
contains a total of 47,100 images (37.6k for training and 9.5k for testing), with approximately 151.2k
annotated interaction instances (117.8k for training and 33.4k for testing). It supports diverse inter-
action modeling and exhibits a clear long-tail distribution139 of the 600 HOI categories have fewer
than 10 training samples. Evaluation is typically conducted under three settings: Full (all 600 cate-
gories), Rare (long-tail HOIs), and Non-Rare (the remaining categories).

V-COCO is a smaller-scale HOI dataset built on MS-COCO Lin et al. (2014), focusing on recogniz-
ing common actions. It defines 24 HOI categories involving 80 object categories and 24 verbs. The
dataset consists of 10.3k images (5.4k for training and 4.9k for testing) and approximately 26.2k
annotated interactions (13.8k for training and 12.4k for testing).

SWiG-HOI is a large-vocabulary HOI benchmark derived from the SWiG and DOH datasets. It
features a highly diverse interaction space and open-vocabulary combinations, making it suitable for
evaluating generalization and long-tail performance. It defines 14,130 HOI categories from 1,000
object categories and 407 verb categories. The dataset includes 54.6k training images and 13.6k
test images, with a total of 99.8k annotated interaction instances (80.2k for training and 19.6k for
testing).

Overall, HICO-DET serves as a widely adopted benchmark; V-COCO offers compact annotations
in standardized COCO scenes; and SWiG-HOI is designed for large-scale open-world evaluation.
Our method, with its unified architecture, is capable of adapting to diverse scenariosincluding open-
vocabulary, zero-shot, few-shot, and low-label settings. Its effectiveness has been thoroughly evalu-
ated across all three datasets.

A.3 ADAPTABILITY TO OBJECT DETECTORS

Thanks to our architecture’s fully decoupled design, LINK is inherently adaptable to a wide range
of object detectors. Specifically, our model does not rely on any detector-specific features or inter-
mediate representations. Instead, it solely requires bounding boxes as input and performs spatial
encoding based on the geometry of human-object pairs.

This design enables plug-and-play compatibility with arbitrary object detectors, such as Faster
R-CNN, YOLO, DETR, Deformable DETR or even visual grounding MLLMs, without requiring
any fine-tuning or feature alignment. As a result, LINK provides a flexible and efficient solution
that can be readily deployed across different detection backbones and application domains, while
maintaining consistent performance and minimizing adaptation overhead.

Table 8 presents a cross-detector evaluation on the HICO-DET dataset to assess the adaptability of
our architecture. The results compare our method (top) and PViC Zhang et al. (2023) (bottom) under
five different object detectors, including DETR-R50*, Deformable DETR, H-Deformable DETR
with Swin-L backbone, and two YOLO variants.

The rows marked with * indicate that both methods are trained using DETR-R50 as the object
detector. When directly replacing the detector at inference timewithout any additional fine-tuningour
method maintains robust performance across all detectors. This highlights the plug-and-play nature
of our architecture, which is fully decoupled from detector-specific features and relies solely on
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Variants Full Rare Non-Rare

Ours
DETR-R50* 43.54 45.58 42.93
Deformable-DETR-R50 41.66 45.65 40.46
H-Deformable-DETR-SwinL 49.06 53.63 47.60
YOLOv12-nano 27.12 25.77 27.52
YOLOv11-X 30.62 28.46 31.13

PViC Zhang et al. (2023)
DETR-R50* 34.32 31.62 35.13
Deformable-DETR-R50 18.72 13.49 20.28
H-Deformable-DETR-SwinL 15.83 10.94 17.29
YOLOv12-nano 14.42 10.72 15.51
YOLOv11-X 13.63 9.90 14.75

Table 8: Cross-detector evaluation on HICO-DET. Both methods are trained with DETR-R50
(*). Our method generalizes well to new detectors without fine-tuning, while PViC degrades signif-
icantly, showing its reliance on detector-specific features.

bounding box inputs for interaction reasoning. In contrast, PViC and similar prior methods exhibit
significant performance degradation when the detector is changed, with mAP dropping to nearly
unusable levels. This illustrates their strong coupling with detector-specific features and the need
for costly re-training whenever the detection backbone is modified.

These results demonstrate that our method offers superior flexibility and generalization, making it
more practical for real-world deployment.

A.4 MORE IMPLEMENTATION DETAILS

Training Setup. We build our implementation upon the official open-source codebase of PViC
Zhang et al. (2023), extending it to support our proposed LINK framework. All experiments are
conducted using PyTorch with 8 NVIDIA RTX 4090 GPUs (24GB each). Our method is hardware-
friendly: we train the model for 15 epochs with a total batch size of 16, using 4 GPUs under
Distributed Data Parallel (DDP) training. Following PViC, we adopt the same preprocessing and
loading pipeline for the HICO-DET and V-COCO datasets. Additionally, we generalize the data
interface and configuration system to support arbitrary datasets in the same manner, including the
large-scale SWiG-HOI dataset introduced earlier.

Hyper-parameters. We adopt the Focal Loss for classification with two key parameters: alpha
= 0.5, gamma = 0.1, controlling the loss weighting and focusing factor. We filter pre-
dicted instances using a confidence threshold of box-score-thresh = 0.05, and retain
a dynamic number of predictions per image within the range of min-instances = 3 to
max-instances = 15. In the zero-shot setting, we apply a top-k filtering strategy for can-
didate verbs and objects, with zs-topk = 10 and a scaling factor zs-topk-factor = 1.8
to dynamically adjust the number of retained interaction candidates based on instance confidence.

Loss Details. As described in the main paper, our training objective combines a standard focal loss
for HOI classification with a set of auxiliary losses designed to support instance-level knowledge
learning under a teacher-student paradigm. The overall objective is given by:

θ∗ = argmin
θ

EI∼X
󰀅
LM(Φθ(I,B),GT ) +

󰁛

g∈G
KDg(Φθ(I,B),Φt(I,B))

󰀆
(8)

Here, LM denotes the focal loss applied to the main classification outputs, and KDg represents a set
of knowledge distillation objectives at different levels g ∈ G, including logits, queries, and feature
maps. Specifically, we assign the following weights to the instance-level auxiliary losses:

• loss logits: 1.0 (Ground Truth classification logits)
• loss query native: 1.0 (decoder native branch)
• loss query latent: 1.0 (decoder latent branch)
• loss feat map: 0.5 (intermediate feature maps)
• loss query encoder: 0.5 (encoder HO queries)

In practice, we find that varying these weights does not significantly affect the model’s final perfor-
mance, indicating that our learning strategy is robust to hyperparameter settings. The chosen values
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Method mF1 mPrec mRec
Full Rare N.Rare Full Rare N.Rare Full Rare N.Rare

HOI Detection Based on R50-DETR OB Detection Prompting
Qwen-vl-max 0.1719 0.1523 0.1777 0.2030 0.1585 0.2164 0.1833 0.1546 0.1919
Claude-3.5-sonnet 0.1895 0.2429 0.1736 0.2071 0.2553 0.1927 0.2099 0.2554 0.1963
GPT-o4-mini 0.2082 0.2058 0.1958 0.2271 0.2120 0.2173 0.2419 0.2186 0.2337
GPT-o3 0.2758 0.3310 0.2592 0.2792 0.3507 0.2579 0.3328 0.3430 0.3297
Gemini-2.5-flash 0.2680 0.3347 0.2481 0.2754 0.3412 0.2557 0.3305 0.3659 0.3199
Gemini-2.5-pro 0.3161 0.4010 0.2908 0.3084 0.4145 0.2767 0.3937 0.4287 0.3833
CMMP (0.48B) 0.3324 0.3024 0.3414 0.3324 0.3024 0.3414 0.4352 0.3448 0.4622
ADA-CM (0.44B) 0.3414 0.3133 0.3498 0.3225 0.3181 0.3238 0.4469 0.3611 0.4715
Ours (0.52B) 0.3671 0.3542 0.3710 0.3351 0.3538 0.3296 0.4982 0.4149 0.5231

HOI Detection Based on Ground Truth OB Detection Prompting
Qwen2.5-vl-72b 0.2338 0.2486 0.2294 0.2801 0.2681 0.2836 0.2317 0.2440 0.2281
Qwen-vl-max 0.2930 0.2605 0.3027 0.3320 0.2754 0.3489 0.2935 0.2606 0.3033
Claude-3.5-haiku 0.1000 0.0871 0.1038 0.1156 0.1001 0.1202 0.1302 0.1025 0.1384
Claude-3.5-sonnet 0.2652 0.3145 0.2505 0.2815 0.3333 0.2660 0.3019 0.3405 0.2904
Claude-4-sonnet 0.2485 0.2303 0.2539 0.2619 0.2440 0.2673 0.2844 0.2473 0.2954
Claude-4-opus 0.3044 0.2931 0.3077 0.3232 0.3103 0.3271 0.3378 0.3146 0.3447
GPT-4o-mini 0.1306 0.1881 0.1134 0.1450 0.1976 0.1292 0.1455 0.2007 0.1290
GPT-4o 0.2832 0.3334 0.2590 0.3083 0.3490 0.2861 0.3162 0.3425 0.2981
GPT-o4-mini 0.3631 0.4111 0.3463 0.3943 0.4236 0.3830 0.3791 0.4360 0.3596
GPT-o3 0.4676 0.5152 0.4533 0.4657 0.5287 0.4469 0.5328 0.5607 0.5244
Gemini-2.0-flash 0.2708 0.3020 0.2615 0.3026 0.3126 0.2997 0.2866 0.3200 0.2767
Gemini-1.5-pro 0.2933 0.3854 0.2595 0.3291 0.3853 0.3053 0.3084 0.4060 0.2726
Gemini-2.5-flash 0.4224 0.4697 0.4082 0.4548 0.4815 0.4469 0.4475 0.4963 0.4330
Gemini-2.5-pro 0.4623 0.4977 0.4517 0.5044 0.5377 0.4944 0.4797 0.5150 0.4692

CMMP (0.48B) 0.4476 0.4648 0.4425 0.4077 0.4515 0.3947 0.6032 0.5742 0.6119
ADA-CM (0.44B) 0.4581 0.4257 0.4678 0.4197 0.4017 0.4251 0.6139 0.5303 0.6389
Ours (0.52B) 0.5009 0.5342 0.4910 0.4667 0.5185 0.4512 0.6443 0.6243 0.6502

Table 9: Comparison with MLLMs. Higher is better. Top-3 values in each column are color-coded.

are primarily aimed at balancing the relative magnitudes of each loss term, ensuring that no single
component dominates the overall training objective.

These components collectively provide multi-level, instance-aware supervision across both encoder
and decoder, helping the student model to more effectively distinguish fine-grained human-object
interactions.

A.5 COMPREHENSIVE COMPARISON WITH MULTIMODAL LARGE LANGUAGE MODELS

To enable a fair and reproducible comparison, we define a standardized evaluation protocol and
output format for applying Multimodal Large Language Models (MLLMs) to the HOI detection
task. Since MLLMs typically produce textual outputs, we explicitly define both the input-output
structure and formatting rules for extracting HOI predictions.

Output Format Definition. The MLLM is expected to produce a structured output in the following
format:

HOI_result = {
"boxes": [...], # list of [x1, y1, x2, y2]
"classes": [...], # class IDs aligned with boxes
"interactions": [ # list of HOI triplets

{"human_idx": int, "object_idx": int, "verb": int},
...

]
}

Formatting Rules:

• Indices human idx and object idx refer to entries in the boxes list.
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• Class ID 0 corresponds to human; others indicate object categories.

• For multiple verbs, use multiple entries with shared indices and distinct verb IDs.

• The output must be JSON-compatible.

We observe that directly prompting MLLMs to perform object detection and HOI predictioneither
through supervised fine-tuning or in a zero-shot settingremains highly challenging due to their lim-
ited spatial grounding capabilities. To address this, we provide MLLMs with the object detectors
predictions (i.e., bounding boxes and class labels) as part of the input prompt. This strategy enables a
fair comparison between MLLM-based models and traditional two-stage HOI detectors, by aligning
their input structure and evaluation procedure.

By clearly defining the task, unifying the input format, and standardizing the output representation,
we make it possible to evaluate MLLMs on HOI detection in a structured and consistent manner.
This also allows structured predictions to be extracted from free-form text generated by different
MLLMs, making quantitative comparisons across models both feasible and fair.

Evaluation Metrics Since MLLMs generate textual outputs rather than full confidence scores over
all possible categories, traditional metrics such as mean Average Precision (mAP) are not well-
suited for evaluation in this setting. Therefore, we adopt three alternative metrics: mean F1 score
(mF1), mean precision, and mean recall to better reflect the accuracy of MLLM-based HOI pre-
dictions. We follow the standard matching logic used in prior HOI works: a predicted human-object
interaction is considered a true positive if and only if:

• Both the predicted human and object bounding boxes have an Intersection-over-Union
(IoU) greater than 0.5 with the corresponding ground truth boxes;

• The predicted object category and interaction (verb) label match the ground truth.

This ensures a fair and consistent evaluation for both MLLM-based and conventional HOI detection
methods.

Results. We evaluate a series of models under two settings: (1) R50-DETR Object Detection
Prompting, where detected boxes and class labels from R50-DETR are provided as prompts; and
(2) Ground Truth (GT) Object Detection Prompting, where oracle boxes and class labels are used.
The compared models include MLLMs (e.g., Qwen, GPT, Gemini, Claude series) and HOI-specific
methods (e.g., CMMP, ADA-CM, Ours). In the R50-DETR prompting setting, ours achieves the
highest mF1 score (36.71%), outperforming both the sota HOI method baseline (CMMP, 33.24%)
and all MLLMs (best being Gemini-2.5-pro, 31.61%). Similar trends are observed for mPrecision
and mRecall, where our method achieves 33.51% and 49.82%, respectively. This demonstrates
that our method is more robust under detection noise and better captures interaction semantics even
when the input object detections are imperfect. In the GT prompting setting, which isolates the
HOI prediction capability by removing detection errors, our method again achieves the highest per-
formance: mF1 of 50.09%, mPrecision of 46.67%, and mRecall of 64.43%. These results exceed not
only MLLMs (e.g., GPT-4o-mini at 36.31%, Gemini-2.5-pro at 46.23%) but also prior HOI methods
like CMMP (44.76%) and ADA-CM (45.81%).

In particular, our method shows superior performance on Rare interactions (mF1-Rare: 53.42%) and
Non-Rare interactions (mF1-N.Rare: 49.10%), indicating both generalization ability and capacity
for modeling long-tail HOI categories. Compared to other HOI methods, our approach yields con-
sistent improvements across all splits. Overall, these results validate the effectiveness of our unified
HOI detection framework, outperforming both MLLMs and previous dedicated HOI approaches
under both detection-prompted and oracle-prompted settings.

A.6 SPATIAL AND SEMANTIC EMPHASES

Spatial vs. Semantic Emphasis. To further assess the impact of our proposed LINK module, we
investigate how foundation models vary in their spatial and semantic emphasis within a unified HOI
detection architecture. Specifically, we compare two representative baselines: CLIP-large, which is
semantic-oriented due to its image-text contrastive pretraining, and DINOv2-large, which is spatial-
oriented via visual-only self-supervised learning.
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Full Spat. Sema. Both Hard

DINOv2-large – Baseline v.s +LINK
37.39 65.7 24.4 48.8 16.4
41.40 ↑ 58.1 ↓ 46.5 ↑ 51.7 ↑ 19.4 ↑
CLIP-large – Baseline v.s +LINK
41.2 31.4 63.0 49.3 17.0
43.3 ↑ 42.9 ↑ 61.4 ↓ 51.7 ↑ 19.1 ↑
Florence2-Base – Baseline v.s +LINK
38.9 50.9 48.1 51.8 19.9
41.8 ↑ 51.1 ↑ 51.3 ↑ 52.5 ↑ 20.3 ↑

Figure 6: Spatial vs. Semantic emphasis in foundation models for HOI detection and the impact of
our method.

On the 9.6K test images (covering 33K HOI instances), we categorize samples into four subsets
based on the normalized performance difference between CLIP and DINOv2: (1) Semantic-Oriented
(CLIP − DINOv2 > 0.25), (2) Spatial-Oriented (DINOv2 − CLIP > 0.25), (3) Both (|CLIP −
DINOv2| ≤ 0.25), and (4) Hard cases (CLIP < 0.4 and DINOv2 < 0.4).

As shown in Figure 6, DINOv2 achieves strong performance on spatial dominated cases (Spat.:
65.7) but performs poorly on semantic-heavy samples (Sema.: 24.4), revealing a strong spatial bias
and limited capacity for high-level semantic reasoning. After integrating our LINK module, this
disparity is greatly mitigated (Spat.: 58.1 vs. Sema.: 46.5), resulting in enhanced generalization
across categories and a clear improvement in overall mAP (from 37.4 to 41.4).

In contrast, CLIP initially demonstrates a semantic preference (Sema.: 63.0 vs. Spat.: 31.4). With
the addition of LINK, spatial sensitivity is substantially improved (Spat.: 42.9), while semantic
strength remains largely preserved (Sema.: 61.4), leading to balanced capability and improved per-
formance on hard samples (17.0 → 19.1).

Even for Florence2-Base, which is pretrained using multimodal multitask learning and exhibits more
balanced behavior, LINK continues to deliver consistent improvements across all subsetsspatial,
semantic, both, and harddemonstrating its universal adaptability and effectiveness in addressing
spatial-semantic imbalance in diverse foundation models.

A.7 VISUALIZATION RESULTS

To provide a more intuitive understanding of our models behavior, we present qualitative results of
HOI detection on both real and synthetic images in Figure 7.

As shown in Figure 7(a), on real-world test images from HICO-DET, our method demonstrates
strong instance awareness and precise HOI reasoning. For example, in the second image of the first
row, our model accurately identifies the action feed for all relevant bird instances (bird0bird4),
while also distinguishing the hold action exclusively for bird0. Notably, it correctly predicts no
interaction for the background birds, showcasing its ability to selectively recognize meaning-
ful human-object pairs amidst complex scenes. In the fourth image of the same row, our model
successfully disambiguates multiple overlapping interactions involving the same object. It predicts
that both the man and the woman are sit on the bench, while additionally identifying the wom-
ans action of hold and talk on cellphone as a distinct HOI triplet. This demonstrates the
models capacity to capture layered and concurrent human-object relations in everyday scenes.

In Figure 7(b), we further demonstrate the models zero-shot generalization on synthetic and out-
of-domain images. Despite visual domain shifts, our model continues to detect plausible HOI
triplets (e.g., ride horse, brush with toothbrush, use cell phone) with high fi-
delity, highlighting its cross-domain robustness and ability to generalize to unseen scenarios.

A.8 CROSS-DOMAIN EVALUATION

In this section, we evaluate the cross-domain generalization ability of our method and compare it
against previous methods. As illustrated in Table 10, we consider multiple domain shift settings,
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(a) HOI Predictions on Real Images (HICO-DET Test Set)

(b) HOI Predictions on Synthetic Images (Cross-domain Zero-shot Setting)

Figure 7: Visualization of HOI predictions on both real and synthetic images. (a) HOI detection
results on real images from the HICO-DET test set demonstrate strong instance awareness and pre-
cise interaction reasoning. (b) Cross-domain zero-shot predictions on synthetic images highlight the
models generalization ability and robustness to visual domain shifts.

where the domain on the left side of the arrow indicates the training domain, and the right side
denotes the testing domain. Specifically, SWiG, H, and V refer to the SWiG-HOI, HICO-DET, and
V-COCO datasets, respectively. For example, SWiG → HICO indicates that the model is trained
on SWiG-HOI and directly evaluated on HICO-DET without any fine-tuning. The setting Real →
Synthetic evaluates the model trained on real-world images and tested on synthetic/generated ones,
with partial visualization results presented in the previous section (Figure 7).

These results highlight the superior cross-domain These results underscore the strong cross-domain
generalization capability of our approach. Across all evaluated settings, our method achieves sub-
stantial improvements over prior works. Notably, in the SWiG→HICO setting, our model signifi-
cantly outperforms PViC (26.64 vs. 9.73 on Full, and 30.95 vs. 13.66 on Rare), demonstrating the
high transferability and generality of the learned representations.

In the HICO→V setting, despite both datasets containing real-world images with differing verb
and object distributions, our model achieves 52.8 mAP, surpassing the previous best of 47.2 by
CMMP. This highlights the effectiveness of our HO Geometrical encoder and VLM Linking de-
coder in capturing robust, transferable features across varying interaction patterns. Furthermore, in
the Real→Synthetic scenariowhere substantial shifts in visual appearance, object style, and contex-
tual cues existour model maintains strong performance (35.91 / 34.91), outperforming all baselines.
These results collectively demonstrate the robustness and adaptability of our framework under di-
verse and challenging domain shifts.

How to Generate Synthetic Images with Annotations. In the evaluations reported in Table 10,
we use the original test sets of SWiG-HOI, HICO-DET, and V-COCO for the respective settings.
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Method SWiG→HICO-DET SWiG→V-COCO HICO-DET→V-COCO Real→Synthetic

PViC 9.73 / 13.66 38.2 45.1 33.70 / 31.32
MP-HOI — / — 44.2 — — / —
ADA-CM — / — — 46.6 29.87 / 28.17
CMMP — / — — 47.2 29.43 / 28.52
Ours 26.64 / 30.95 51.2 52.8 35.91 / 34.91

Table 10: Cross-domain HOI detection results. Each entry reports mAP scores (Full / Rare when
available) on the target domain without fine-tuning. Our method consistently outperforms prior
works across all cross-domain settings.

(a) mAP v.s. Epochs.

Method Perf GFLOPs Times

UPT 31.66 60.9 3h47m
PViC 34.69 62.1 4h02m
CMMP 33.24 114.0 3h24m
CMMP† 38.14 168.0 6h18m

LINK-B 38.52 80.1 4h16m
LINK-B* 39.43 79.9 4h56m
LINK-L 43.25 252.5 6h48m
LINK-L* 43.82 251.9 6h04m
Teacher model require an additional
one-time cost of 4h12m.

(b) Comparison with SOTAs.

Figure 8: This illustrates the performance progression over epochs and the total time required for
training. All experiments are conducted on four NVIDIA-RTX-4090 GPUs.

However, for the Real → Synthetic evaluation, we need to generate synthetic images with corre-
sponding HOI annotations to enable quantitative assessment.

To this end, we adopt InteractDiffusion Hoe et al. (2024), a condition-controlled image generation
framework based on Stable Diffusion that extends existing pre-trained text-to-image (T2I) diffusion
models to better incorporate human-object interaction conditioning. Specifically, we use the Inter-
actDiffusion model built upon the Stable Diffusion XL version. We take the bounding boxes from
the HICO-DET test set as layout guidance and use their corresponding ground-truth HOI triplets
as text prompts. These two signals, layout and text, are jointly fed into model to generate realistic
images that reflect the specified interactions. This approach allows us to synthesize a new test set of
images with known annotations, enabling systematic evaluation of HOI models under domain shifts
from real to synthetic data.

A.9 COMPUTATIONAL COMPLEXITY ANALYSIS

Our training pipeline involves an additional pre-training stage for a teacher model, followed by stu-
dent training supervised by both ground-truth annotations and teacher guidance. While this design
raises potential concerns regarding computational resources and training time, we empirically show
that these costs remain within a reasonable range.

As illustrated in Figure 8, our method achieves competitive performance within just one epoch and
reaches full convergence in 15 epochs, significantly faster than prior methods in terms of conver-
gence speed. Thanks to this rapid convergence, our method requires fewer total epochs. Although
the overall training time is slightly longer due to the inclusion of teacher supervision, the increase
is acceptable given the performance gains. Moreover, our method maintains computational effi-
ciency during inference. For instance, LINK-B achieves 38.52 mAP with only 80.1 GFLOPs. Since
the teacher-student paradigm is used solely during training, it does not incur any additional cost at
inference time, ensuring that the model remains efficient.

In summary, our method converges faster and delivers a favorable balance between training cost and
final model efficiency.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.10 SCALABILITY

We visualize the performance of various methods across different computational scales in Figure 9,
plotting mAP against GFLOPs on a logarithmic axis.

Ours
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Figure 9: Our method exhibits nearly linear performance growth with respect to GFLOPs under the
logarithmic scale, demonstrating excellent scalability. Moreover, across all model sizes, our method
consistently achieves state-of-the-art performance compared with existing methods.

Our method demonstrates exceptional scalability, exhibiting an almost linear performance trend
(yellow dashed arrow) as computational capacity increases under log-scale GFLOPs. When
equipped with a Swin-Large backbone and further scaled via a ViT-Giant VLM, our LINK model
reaches 50.5 mAP on HICO-DET dataset, markedly outperforming all existing methods.

In contrast, VLM-based methods such as CMMP and EZ-HOI display progressively diminishing
performance gains as model size increases (blue/green dashed arrow), deviating substantially from
linear scaling and revealing clear marginal returns. Moreover, nonVLM-based pipelines such as
UPT and PViC are unable to leverage large-scale pretrained models to effectively scale up.

These results collectively underscore the superior scaling characteristics of our method, enabling
consistent and efficient utilization of expanding computational and representational capacity.

A.11 PLUG-AND-PLAY WITH OPEN-VOCABULARY DETECTORS

Open-vocabulary Detectors HICO-DET (Default) HICO-DET (Known-Object) HICO → V-COCO

Full Rare N-rare Full Rare N-rare APS2
role

YOLO-world-s 27.07 29.83 26.24 30.06 32.37 29.37 33.61
YOLO-world-m 30.35 33.40 29.45 33.39 36.00 32.62 37.31
YOLO-world-l 32.64 36.51 31.49 35.98 40.06 34.76 39.28
YOLO-world-x 33.73 37.30 32.66 36.98 40.65 35.88 40.35
Grounding-DINO swin-tiny 32.97 38.21 31.40 35.96 40.76 34.52 36.56
Grounding-DINO swin-base 39.69 45.99 37.81 42.42 47.94 40.77 46.55
Qwen3-VL-8B 39.61 45.05 37.99 42.02 47.37 40.42 –

Table 11: Comparison of various OVD models on HICO-DET (Default and Known-Object settings)
and cross-dataset transfer from HICO-DET to V-COCO.
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We conduct extensive evaluations across several state-of-the-art open-vocabulary detectors (OVDs),
including YOLO-World (s/m/l/x), Grounding-DINO (Swin-Tiny/Base), and Qwen3-VL-8B. None
of the detectors are fine-tuned on the target dataset, and our LINK model is also not adapted to any
detector, making the entire pipeline fully training-free and plug-and-play.

For a fair comparison, we adopt the following configurations:

• YOLO-World: input resolution of 640 and score threshold of 0.25.
• Grounding-DINO: box threshold of 0.35 and text threshold of 0.25.
• Qwen3-VL: top p=0.8, top k=20, temperature=0.2, max tokens=2048; outputs are nor-

malized to [0, 1000].

Despite being entirely training-free, our method achieves strong and consistent performance across
all evaluated OVDs. Notably, combining LINK with Grounding-DINO (Swin-Base) even sur-
passes several approaches that rely on fine-tuned detectors.

We further evaluate the HICO → V-COCO transfer setting, where a LINK model trained on HICO-
DET is directly paired with each OVD. Our method remains robust under this cross-dataset setting,
demonstrating the scalability and strong generalization ability of our design.

Qwen3-VL-8B YOLO-World-X GroundingDINO Swin-Base LINK Prediction (Based on GroundingDINO) 

Figure 10: Qualitative results comparing OVD detections (first three columns) with HOI predic-
tions produced by LINK using GroundingDINO detections (last column). Although OVDs output
numerous proposals, LINK reliably identifies the correct human-object pairs and interactions.

We also present qualitative comparisons illustrating how different open-vocabulary detectors behave
in real scenes and how LINK leverages their outputs for HOI reasoning. The first three columns vi-
sualize the raw detection results from Qwen3-VL-8B, YOLO-World-X, and GroundingDINO Swin-
Base, respectively. These detectors often generate a large number of candidate boxes with hetero-
geneous confidence distributionsan inherent challenge when performing HOI reasoning in a fully
training-free setting.
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Despite these inconsistencies, the last column shows that LINK produces accurate and semantically
coherent HOI predictions when directly paired with GroundingDINO Swin-Base, without any fine-
tuning on either detector or HOI model. Notably, in the third row, the scene contains many irrelevant
object proposals (e.g., multiple cars in the background and a baseball glove near the player), yet
LINK successfully filters out distractors and identifies the correct human-object interaction. It out-
puts meaningful interaction labels such as hold, wield, and swing for the baseball bat, demonstrating
the robustness and strong generalization capability of our method under noisy OVD detections.

A.12 ROBUSTNESS UNDER INACCURATE DETECTED BOXES.

Perturbation Type Perturbation Strength
0.0 0.2 0.4 0.6 0.8 1.0

Full 42.93 42.69 42.25 41.03 39.41 38.05
Box-Shift Rare 45.03 44.60 44.08 42.95 41.33 40.30

Non-Rare 42.20 42.02 41.61 40.35 38.73 37.27

Full 42.93 42.81 42.33 41.49 40.03 38.30
Box-Scale Rare 45.03 44.89 43.92 42.92 41.03 39.10

Non-Rare 42.20 42.09 41.78 40.96 39.63 37.97

Table 12: Robustness analysis under spatial perturbations. We report mAP for Full, Rare, and Non-
Rare subsets across different perturbation strengths for both box shifting and box scaling.

To evaluate architectural robustness, we introduce two forms of spatial perturbation: box-shift and
box-scale. For box-shift, a bounding box with width w, height h, and center (Cx, Cy) is perturbed
by uniformly sampling a new center within [Cx ± δw] and [Cy ± δh]. For box-scale, the width
and height are randomly rescaled within the range [(1− δ), (1 + δ)]. We evaluate δ ∈ [0, 1], and
the corresponding results are summarized in Table 12. Even under severe perturbation (e.g., δ =
1.0), our method maintains over 38.0 mAP, which is comparable to the undisturbed performance
of several state-of-the-art approaches (e.g., CMMP, ADA-CM, EZ-HOI). Under mild perturbation
(e.g., δ = 0.2), the performance degradation is negligible (less than 0.3 mAP). Redundant detections
are not a concern in our setting, as they can be reliably handled using standard NMS suppression.

This robustness stems from our VLM Linking Decoder, which does not rely solely on geometric
cues or ROI features. Each decoder layer attends to the global VLM representation, which remains
stable even when box coordinates are perturbed, enabling reliable HOI reasoning. As illustrated in
Fig. 11, small boxes perturbations do not affect the predictions of our LINK model.

Original Shifted Scaled-Down Scaled-Up

Figure 11: Visualization of bounding-box perturbations: Shifted, Scaled-Down, and Scaled-Up.

Figure 12: Robust HOI prediction under redundant detection boxes.

Moreover, the plug-and-play experiments with diverse open-vocabulary detectors (Table 11) fur-
ther support this conclusion from a complementary perspective: although different OVDs pro-
duce bounding boxes that vary greatly in confidence distribution, density, and localization bias,
our method remains fully training-free, plug-and-play, and consistently strong across all detectors.
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A.13 INSUFFICIENT SPATIAL UNDERSTANDING IN CLIP

(a) Layer-wise PCA Visualization of CLIP-ViT-L/14@336px

(b) Layer-wise PCA Visualization of DINOv2-base

Figure 13: Layer-wise PCA visualization of patch embeddings. CLIP v.s DINOv2

ROI Feature1

ROI Feature2

ROI Feature3

ROI Feature1

ROI Feature2

ROI Feature3

Figure 14: CLIPs feature-map tokens exhibit insufficient spatial variability.
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