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Abstract

Consider a scene submerged underneath a fluctuating
water surface. Images of such a scene, when acquired from
a camera in the air, exhibit significant spatial distortions.
In this paper, we present a novel, computationally efficient
pre-processing algorithm to correct a significant amount
(≈ 50%) of apparent distortion present in video sequences
of such a scene. We demonstrate that when the partially
restored video output from this stage is given as input to
other methods, it significantly improves their performance.
This algorithm involves (i) tracking a small number N of
salient feature points across the T frames to yield point-
trajectories {qi , {(xit, yit)}Tt=1}Ni=1, and (ii) using the
point-trajectories to infer the deformations at other non-
tracked points in every frame. A Fourier decomposition
of the N trajectories, followed by a novel Fourier phase-
interpolation step, is used to infer deformations at all other
points. Our method exploits the inherent spatio-temporal
characteristics of the fluctuating water surface to correct
non-rigid deformations to a very large extent.

1. Introduction
In most computer vision applications, the scene being

imaged and the imaging sensor (camera) are both located
in the same medium (usually air). However there are some
applications, where the scene could be located in water but
imaged by a camera in the air [14], or vice-versa [1]. In such
cases, the images acquired by the camera contain prominent
spatial distortions due to the refraction that occurs at the
boundary between the two media. Moreover, the water-air
boundary can dynamically change its geometry due to ex-
ternal forces such as wind, yielding a dynamic nature to the
refraction phenomenon resulting in time-varying non-rigid
distortion. Such distortion can adversely affect the perfor-
mance of typical computer vision algorithms for tracking
of objects, object or motion segmentation, object detection,
or object recognition. Such tasks arise in applications like
surveillance of marine life [10, 16], of shallow water-beds
[20], or in ornithological applications such as [12]. Hence,

there is motivation to develop algorithms to process the ac-
quired video sequences to remove the spatial distortions.

Previous work in underwater image restoration: This
particular problem is relatively unexplored, with only a
small-sized body of literature. A large subset of this litera-
ture uses some form of optical flow estimation. For exam-
ple, the classical work in [14] estimates dense optical flow
from one frame to another, to trace dense point trajectories.
The restoration is performed by undoing the displacements
estimated w.r.t. the centroid of the point trajectory at each
point. On the other hand, the work in [15] estimates the
non-rigid deformation between each frame of the video se-
quence with an evolving latent image, initialized to be sim-
ply the average of all distorted frames. In similar spirit, the
work in [9] aligns all video frames to a reference, which
is selected to be the least blurred frame. The work in [19]
uses PCA to infer a low-rank dictionary to represent non-
rigid motion fields. The dictionary is trained on simulated
underwater scenes generated by executing the wave equa-
tion. The deformation estimation proceeds by first inferring
dictionary coefficients.

There also exist approaches which are not pivoted on op-
tical flow. For example, the ‘lucky region approach’ from
[7], [22], [8] and [21] identifies distortion-free patches and
mosaics them using graph algorithms. The basic principle
is that such distortion-free patches correspond directly to a
locally flat portion of the water surface. The technique in
[18] frames the restoration problem as a blind deblurring
problem, with the average of all video frames used as input.
The core theory is that if the water surface is a unidirectional
cyclic wave, then the motion blurred average frame can be
represented as the convolution of a single blur kernel with
a latent clean image. The work in [13] trains a deep neural
network to restore single distorted underwater images (not
entire video sequences) by inferring the motion field w.r.t.
an unknown clean image automatically. In [11], a set of
salient feature points are tracked, and the deformation field
is obtained using a compressive sensing framework, by ex-
ploiting the Fourier-sparsity of the latent deformation fields.

Overview: In this paper, we present a novel method us-
ing simple principles of physics and geometry that exploits
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the inherent spatio-temporal redundancy of water waves.
We model the water surface to be dominantly a superpo-
sition of constant-velocity waves, in addition to small lo-
cal disturbances that get quickly attenuated. This is a very
general and widely applicable model. A specific form of
this model has been used in [14], in the form of a super-
position of sinusoidal waves. The model in this paper is
more general than that in [14]. In our method, we track
some N salient feature points across the T video frames to
yield point-trajectories {qi , {(xit, yit)}Tt=1}Ni=1. The de-
formations at all other points in every frame are then inter-
polated in a novel manner. The deformation-interpolation
is performed using a Fourier decomposition of the so-called
‘displacement-trajectories’ derived from point-trajectories,
followed by a phase-interpolation step. We observe in real
video sequences, that this step is able to correct for a very
large amount (≈ 50%) of the undesired motion. Extensive
comparisons on real videos show that our method is effi-
cient and advances the performance of the state of the art
methods.

Organization: The main theory (assumptions and al-
gorithm) for our method is explained in Section 2. The
datasets and experiments are described in Section 3, fol-
lowed by a discussion and conclusion in Section 4.

2. Assumptions and Main Algorithm
In this section, we begin by describing the main com-

putational task with greater precision and state the various
assumptions made.

2.1. Assumptions for Image Formation

We consider a stationary single-plane scene being im-
aged. We assume that the scene is present below a fluctu-
ating water surface which is shallow and devoid of turbid-
ity. A video sequence of the scene is acquired by a cam-
era which is located in air. The optical axis of the camera
is aimed vertically downwards at right angles to the plane
containing the scene. Each image (or video-frame) can then
be considered to be acquired under orthographic projec-
tion. The video-frames are assumed to be relatively free
of motion-blur as well as reflection artifacts off the water
surface. All these assumptions are valid in a practical setup,
as we shall demonstrate from our results on real acquisi-
tions in Section 3. These assumptions are also common in
existing literature such as in [19, 18, 14, 15], though [18] ex-
pressly models the motion blur for a specific unidirectional
wave model. Let J̄ be the image acquired by the camera
if the water surface were perfectly still. Such an image is
devoid of spatial distortions. Now, the distorted image J of
the same scene acquired given a wavy water surface, can be
expressed in the form:

J(x̄, ȳ, t) = J̄(x̄+ dx(x̄, ȳ, t), ȳ + dy(x̄, ȳ, t)), (1)

Figure 1. Refractive image formation at a wavy water surface

where (dx(x̄, ȳ, t), dy(x̄, ȳ, t)) is the displacement at the
point (x̄, ȳ) located in the undistorted image J̄ , at time t.
Let z(x, y, t) be the dynamic height of the water surface at
time t, above the plane containing the scene. Let ( ∂z∂x ,

∂z
∂y )

be the height-field derivatives at time t, at point Q on the
water surface, seen in the ray diagram in Fig.1. Q is the
point on the water surface where the ray from point B in
the water gets refracted into the air and forms an image at
point (x, y) on the camera plane at time t, even though the
undistorted coordinates are (x̄, ȳ). Let µ be the refractive
index of water. Then prior work [14] has proved that:

(dx(x̄, ȳ, t), dy(x̄, ȳ, t)) = h(1− 1/µ)
( ∂z∂x ,

∂z
∂y )√

1 + z2x + z2y

(2)

≈ h(1− 1/µ)(
∂z

∂x
,
∂z

∂y
), (3)

where the approximation is valid if ( ∂z∂x )2 + ( ∂z∂y )2 � 1,
i.e. for water waves with small slopes. The main task is to
obtain J̄(x̄, ȳ) for all (x̄, ȳ) with {J(:, :, t)}Tt=1 as input.

2.2. Water Surface Models

In our work, we model the wavy water surface domi-
nantly as a mixture of K constant-velocity unidirectional
waves. This is common in situations where waves are gen-
erated by more than one disturbance to the still water sur-
face. In addition, the water surface may have small local
residual motion that cannot be easily modelled. Such resid-
ual motion is expected to be corrected after our Fourier-
based pre-processing stage from Alg. 1. Mathematically,
the dominant functional form we have is:

z(x, y, t) =

K∑
k=1

αkgk(ωtkt+ ωxkx+ ωyky + ζk), (4)

where αk is the amplitude of the kth wave, ωtk, ωxk, ωyk
stand for its frequency in the t, x, y axes respectively, and ζk
stands for a constant phase-lag. The functions {gk}Kk=1 are
any periodic (not necessarily sinusoidal), real-valued and
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differentiable functions, and they may or may not have the
same functional form as each other. Our method does not
require any estimate or prior knowledge of K.

2.3. Main Algorithm

Our algorithm consists of many different steps described
in the following sub-sections, presented together in Alg. 1.
The guiding principle behind it can be described as follows.
If the water surface consisted of a single periodic wave,
then all point-trajectories (defined precisely below) would
be cyclic shifts of one another. Due to this, the phase of
their Fourier transforms would form a single plane as de-
fined in Eqn.6. Given just a few salient point trajectories,
this property can be used to estimate the motion at all other
(non-tracked points), and hence remove the undesired ap-
parent motion in the video frames. On the other hand, if
the water surface is the superposition of K different waves,
then a similar approach can still be used provided the K
waves have disjoint supports in the Fourier domain. If their
supports are not disjoint (referred to as ‘conflating frequen-
cies’), then additional motion correction needs to be per-
formed using typical optical flow methods. In either case,
such a Fourier-based method acts as a very efficient pre-
processing step to quickly reduce a large percentage of the
apparent distortion.

2.3.1 Salient feature point tracking

Similar to the technique in [11], the first step of our
method consists of tracking N salient feature points from
the first frame, to yield so-called point-trajectories {qi ,
{(xit, yit)}Tt=1}Ni=1. The coordinates (xit, yit) represent the
position in frame t of the ith point whose (initially unknown)
coordinates in the distortion-free image J̄ are denoted as
(x̄i, ȳi). For salient feature point detection, we rely on a
method based on Difference of Gaussians (DoG) used by
SURF[3]. While more sophisticated methods exist [2], they
are not deemed essential, as we are interested in just a mod-
erate number N ∼ 100 of such points. Any salient point
(xi1, yi1) detected in the first frame was tracked in subse-
quent frames using the well-known KLT tracker. A few
examples of point tracking on real sequences are shown
in the supplemental material folder ‘Motion Reduction’.
While there clearly exist many more advanced tracking al-
gorithms, we noted that the KLT tracker was sufficient for
this application.

2.3.2 Computing displacement trajectories

Each point-trajectory qi corresponds to the unknown
point (x̄i, ȳi) in J̄ . We approximate (x̄i, ȳi) by x̃i ≈∑T
t=1 xit/T, ỹi ≈

∑T
t=1 yit/T . Although this is an ap-

proximation, it is well justified by the assumption that

Figure 2. Scatter plot of phases (vs. X,Y) estimated from dif-
ferent displacement trajectories from a real video (‘Dices’), and
RANSAC-based plane fit. This shows the shift-plane property
(phase factor versus x, y) and lack of it (top right sub-figure) for
four different frequencies.

the average of the surface normals (zx(x, y, t), zy(x, y, t))
across time at any point (x, y) on the water surface, is close
to the vertical line (0, 0, 1) [14]. This is sometimes called
the Cox-Munk law [6]. Our experiments with synthetic and
real video sequences confirm its validity for even as less as
T ∼ 50 frames. This is partly conveyed by Fig.4, where
the image quality metric saturates after T ∼ 50 frames.
Also, an example illustrating the convergence of (x̄i, ȳi) is
included in the supplemental material. With this, our set of
displacements for the ith salient feature point are given as
di , (dix,diy) , {(xit− x̃i, yit− ỹi)}Tt=1. We term these
as ‘displacement-trajectories’, just as in [11].

2.3.3 Fourier decomposition

First, let us consider the case of a single wave, i.e. K = 1 in
Eqn.4, and z(x, y, t) = α1g1(ωt1t+ωx1x+ωy1y+ζ1). We
will soon generalize to the case when K > 1. The displace-
ments di across time at any point (x̄i, ȳi) turn out to form a
cyclic sequence. This can be understood from Eqn.3 (with
or without the small-wave approximation) given the cyclic
nature of z. Hence, the respective displacement-trajectories
di and dj at any two points (x̄i, ȳi) and (x̄j , ȳj), i 6= j,
are cyclic shifts (in time) of each other. This shift is equal
to the effective distance between the two points covered by
the wave, i.e. (x̄i − x̄j , ȳi − ȳj) · (ω̂x1, ω̂y1), divided by
the wave velocity 2π

T
√
ω2

x1+ω
2
y1

. Here (ω̂x1, ω̂y1) is the unit-

norm direction vector of the wave. Since the wave velocity

3
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is constant, by the Fourier shift theorem we have

F [dix](u) = exp
(
− ι2πu(a∆x,i,j + b∆y,i,j)

T

)
F [djx](u),

(5)

and likewise for diy,djy with the same phase factor. Here
u is the frequency, ∆x,i,j , x̄j − x̄i, ∆y,i,j , ȳj − ȳi,
ι ,

√
−1, F is the 1D Fourier operator (applied inde-

pendently for x and y components), and (a, b) are con-
stants independent of t, x, y but directly proportional to
(ωx1, ωy1). Hence the Fourier domain phase shifts between
di and dj at frequency u are given as: φu,j − φu,i =(
2πu(a∆x,i,j + b∆y,i,j)/T

)
%2π, where % represents the

remainder after division (mod). From this expression, we
see that the phase factors of the displacement-trajectories dj

for all j ∈ {1, ..., N} form a plane of the following form:

φu,j =
(
2πu(ax̄j + bȳj + c)/T

)
%2π. (6)

The unknown parameters are (a, b, c) where c is a constant
offset, φu,j is the dependent variable, and x̄j , ȳj are inde-
pendent variables. We hereafter refer to this as the shift-
plane property, illustrated in the Fig.2 for the K > 1 case
(see also Sec. 2.3.5). Although we refer to it as a plane,
it is strictly speaking a small number of parallel planes,
due to the % operator in Eqn.6. Given N ≥ 3 points, the
plane parameters can be estimated using a least squares fit
that minimizes

∑N
j=1,j 6=i

∑T−1
u=0

(
φu,j−

(
2πu(ax̄j + bȳj +

c)/T
)
%2π

)2
. Of course, one usually prefers a larger N as

well as a RANSAC-based robust plane fit to handle errors
in the displacement-trajectories (that may arise due to errors
in point-trajectories). Given the estimates of a, b, c, we can
obtain the displacement-trajectory at any point (x̄m, ȳm) in
the image domain, including points which were not tracked,
by (i) using Eqn.6 to find φu,m, and (ii) using Eqn.5 to de-
termine dm treating dj as reference, without loss of gen-
erality. Thus, our algorithm makes use of inherent spatio-
temporal properties of water waves to interpolate the de-
formation field for the whole image, starting with a small
number of point-trajectories. In contrast, standard optical
flow algorithms are not designed to exploit this information
and only use local spatial regularizers of different types, or
(much less commonly) local temporal regularization as well
[4]. However, our method uses global properties of the wa-
ter waves. A sample result of our technique on a synthetic
single wave dataset is shown in the supplemental material.
This geometric treatment however is no longer applicable
when K > 1, which is the more general model. In such a
case, even though the displacement-trajectories caused due
to constituent waves are shifted versions of each other, the
superimposed displacement-trajectories are no longer shifts
of each other. That is, the shift-plane property is violated.
To deal with this issue, we perform a Fourier decomposition

of each displacement-trajectory di, given as follows:

dix =

T−1∑
u=0

βu,i,xfu;diy =

T−1∑
u=0

βu,i,yfu, (7)

where fu is the T × 1 Fourier basis vector at frequency
u, and βu,i,x = |βu,i,x|∠φu,i, βu,i,y = |βu,i,y|∠φu,i are
the corresponding complex-valued (scalar) Fourier coeffi-
cients1. Note that all K constituent waves in Eqn.4 con-
tribute to βu,i,x, βu,i,y for any u, i. Now consider the ideal
case when the dominant Fourier components of the K con-
stituent waves in Eqn.4 have disjoint support in the fre-
quency domain. In such a setting, all the supports will obey
shift-plane property. Hence, given a frequency u, only one
of the K waves (say the lth wave) has a significant contribu-
tion to βu,i,x, βu,i,y and other waves have a relatively minor
contribution. For a different frequency ũ, some other wave
(say the l̃th wave) could be the sole major contributor. We
term this the ‘Fourier separation’ property (FSP). For any
given u, the signals {βu,i,xfu}Ni=1 denote the contribution
of frequency u, i.e. dominantly only one of the K waves, to
dix (likewise for y). As per FSP, for a fixed u, each of these
signals are shifted versions of each other, on the lines of the
K = 1 formulation. Hence the phase factors {φu,i}Ni=1 of
the Fourier coefficients {(βu,i,x, βu,i,y)}Ni=1 lie close to a
planar surface of the following form:

φu,i = (2πu(aux̄i + buȳi + cu)/T )%2π, (8)

with unknown plane parameters au, bu, cu. For differ-
ent frequencies, the phase factors will lie close to differ-
ent planar surfaces (hence the subscript u in the parame-
ters au, bu, cu). The parameters can be determined using
RANSAC as explained before. Also due to FSP, the val-
ues {|βu,i,x|}Ni=1 (i.e. the magnitudes of the Fourier coeffi-
cients) are all equal, and can be denoted as |βu,x| (likewise
for y). In practice, we computed a median value.

2.3.4 Motion correction

For motion correction, first the plane parameters au, bu, cu
are obtained for every u. However for computational effi-
ciency, this is done only for those frequencies that account
for 99% of the signal energy. In our experiments, we found
that a set S of just about 15-20 frequencies (out of T/2)
sufficed for this. Thereafter for every non-tracked point
(x̄m, ȳm), we compute φu,m from Eqn.8. Armed with this,
the complete trajectory dm can be approximated as follows:

dm,x =
∑
u∈S
|βux|∠φu,mfu;dm,y =

∑
u∈S
|βuy|∠φu,mfu.

(9)
1Note that βu,i,x, βu,i,y have the same phase (cf Eqns. 5, 6) and pos-

sibly different magnitudes.
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Note that we drop the subscript m in the magnitude of
the Fourier coefficient |βux|, |βuy|, for reasons explained in
Sec. 2.3.3. In this manner, using the special spatio-temporal
properties of water waves, the displacement-trajectories at
all points in the image domain can be interpolated.

2.3.5 Handling conflating frequencies

Our algorithm is able to accurately estimate the
displacement-trajectories at all pixels in the image do-
main from a small set of salient feature point-trajectories,
if the FSP is indeed true. However there can certainly arise
cases where two or more constituent waves have partly
overlapping dominant supports in the Fourier domain.
In such a case, there will be a subset of frequencies
Cf from {0, 1, ..., T − 1} at which the aforementioned
phase-shifts will not form a plane - see Fig.2 for a com-
parison. To detect such ‘conflating frequencies’, we first
perform the least squares plane fit for each frequency
u on a subset T of {di}Ni=1. For each point (x̄j , ȳj) in
{1, ..., N}−T , the predicted partial displacement-trajectory
is du

j,x , fu|βux|∠φu,j (likewise for y). We consider u
to be a conflating frequency if du

j,x and du
j,y do not yield

a positive correlation with displacement-trajectories in
{dj}Nj=1 for most j ∈ {1, ..., N} − T .

If the K waves have some conflating frequencies, then
the initial motion correction step based on Eqn.9 has to be
modified. Instead, we find partial displacement-trajectories
for every pixel (x̄j , ȳj) as follows:

d̃j,x =
∑

u∈S−Cf

|βu,x|∠φu,jfu; d̃j,y =
∑

u∈S−Cf

|βu,y|∠φu,jfu.

(10)
These partial displacement-trajectories can be used to cor-
rect the deformations partially by simply applying the re-
verse deformation field to every frame. We have observed
that the partial displacement-trajectories (obtained via the
Fourier stage) account for ≈ 50% of the original motion in
a median sense. Details about the quantification of reduc-
tion in motion are explained in Sec. 3.2.1.

2.3.6 Comments about our algorithm

Our Fourier-based method acts as a geometrically- and
physically-motivated initial step for further distortion
removal by other techniques. As we shall further
demonstrate in Section 3, for videos with large mo-
tion, state of the art techniques by themselves are un-
able to yield results of the same quality without ini-
tial motion correction with the Fourier-based method.

Input : Distorted video J
Output: Restored image J̃

1 Track N feature points to obtain point-trajectories
{qi}Ni=1 as per Sec. 2.3.1.

2 Compute displacement trajectories {di}Ni=1 as per
Sec. 2.3.2.

3 For each di, compute Fourier decomposition as per
Eqn.7 as per Sec. 2.3.3.

4 For every u, perform RANSAC-based plane fitting to
the phase factors {φu,i}Ni=1 of the Fourier
coefficients from the previous step as per Eqn.8.

5 Identify non-conflating frequencies, and compute the
partial displacement-trajectories using Eqn.10 in Sec.
2.3.5.

6 Perform initial motion correction from the partial
trajectories to get an intermediate restored video.

7 Pass this partially restored video as input to other
methods, which will yield restored image J̃ .

Algorithm 1: Algorithm to Restore Video

Since the method uses RANSAC-based linear interpola-
tion, it is robust to the presence of moderate levels of out-
liers in the form of reflection or blur. This is because we are
able to interpolate the optical flow (at least partially) in all
such places based on physical wave properties. We note that
our algorithm does not break down even if the Fourier sep-
aration property is not obeyed for a few conflating frequen-
cies. This is because we are automatically able to detect the
conflating frequencies and do not use them for motion cor-
rection (Eqn.10). In such cases, we cannot obtain the full
deformation from Sec. 3.2.1 and Eqn.10.

It is to be noted that our method is very different from the
bispectral approach in [22] which chooses ‘lucky’ (i.e. least
distorted) patches, by comparing to a mean template. In that
method, the Fourier transform is computed locally on small
patches in the spatial domain for finding similarity with
corresponding patches from a mean image. On the other
hand, our Fourier decomposition is temporal. The idea of
dense optical flow interpolation (not specific to underwater
scenes) from a sparse set of feature point correspondences
has been proposed in the so-called EpicFlow technique [17].
The interpolation uses non-parametric kernel regression or
a locally affine method. However our method uses physi-
cal properties of water waves and also considers temporal
aspects of optical flow, which is missing in EpicFlow.

Lastly, our approach is also significantly different from
[11]. There the entire spatio-temporal displacement vec-
tor field, represented as a 3D complex valued signal
d(x, y, t) = dx(x, y, t) + ιdy(x, y, t), is considered
Fourier-sparse and sampled by means of salient feature
point tracking. To be effective, it typically requires a larger
number of point-trajectories. On the other hand, our method
considers independent Fourier decompositions of individ-
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Figure 3. Point-trajectories at four different salient points in a real
video sequence. As mentioned in 3.1, this verifies that the water
waves are not unidirectional

ual point- or displacement-trajectories, and can work with a
smaller number of trajectories.

3. Experimental Results
In this section, we present our results on two datasets of

real video sequences, gathered from different sources. All
image and video results are available in the supplemental
material.

3.1. Description of datasets

We demonstrate our algorithm on two sets of real video
sequences: Real1 initially used in [11], and Real2 initially
used in [19]. Real1 contains real video sequences (of size
∼ 700 × 512 × 101 with a 50 fps camera) of laminated
posters kept at the bottom of a water-tank in a ‘wave-flume’,
where waves were generated using paddles. The sequences
showed distortions that could not have emerged from sin-
gle cyclic waves. An example of this can be seen in Fig.3,
since the point trajectories at different salient features are
not cyclic shifts of each other. Real2 contains three video
sequences of size ∼ 300× 250× 101, acquired at 125 fps.

3.2. Description of parameters and comparisons

In all the datasets, we tracked around N = 256 salient
feature points. In rare cases, there were tracking errors lead-
ing to trajectory outliers. However, such outliers were fil-
tered out during the RANSAC-based plane fitting step. We
evaluate the performance using two measures (1) the re-
duction in the amount of non-rigid distortions after Fourier
stage and (2) improvement in recovered image quality

Figure 4. Effect of increase in number of frames T (top) and num-
ber of salient points N (bottom) on restoration performance for
Fourier method. Notice that the SSIM values get saturated after a
small T and N

(measured by SSIM and NMI) when Fourier method is used
as pre-processing step. Both these measures are explained
in the following subsections respectively.

3.2.1 Motion reduction

This quantity indicates the percentage of the distortion esti-
mated (and hence removed) by the Fourier stage. It is cal-
culated as follows: (i) The Fourier interpolation step is per-
formed using displacement trajectories at a set of N points
which we denote as P1. We obtain the displacement trajec-
tories at some N2 salient feature points, {dj}N2

j=1 at some
N2 salient feature points, which form a set P2 which is dis-
joint fromP1. (ii) We estimate the displacement trajectories
{d̂j}N2

j=1 at locations in P2 using the Fourier model, per-
forming interpolation via Alg.1 from displacement trajecto-
ries at points only in P1 without using those in P2. Then,
we compute the measure of the motion reduction given

6
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FM LWB FM + LWB SBR FM+SBR
Time MR (%) NMI SSIM NMI SSIM NMI SSIM NMI SSIM NMI SSIM

Real1
Cartoon 1m 42s 54.91% 1.164 0.848 1.152 0.836 1.179 0.870 1.173 0.843 1.232 0.890
Checker 2m 3s 35.53% 1.166 0.809 1.105 0.660 1.164 0.845 1.158 0.791 1.186 0.824

Dices 1m 36s 47.65% 1.109 0.814 1.086 0.783 1.132 0.869 1.100 0.758 1.154 0.876
Bricks 1m 35s 54.56% 1.119 0.699 1.118 0.673 1.140 0.775 1.128 0.686 1.159 0.770

Elephant 1m 40s 44.70% 1.081 0.589 1.068 0.584 1.093 0.699 1.075 0.516 1.119 0.724
Eye 1m 41s 58.95% 1.203 0.915 1.155 0.903 1.209 0.940 1.179 0.913 1.265 0.941

Math 1m 22s 62.99% 1.106 0.816 1.067 0.766 1.141 0.885 1.100 0.841 1.163 0.857
Real2

Middle 1m 12s 40.03% 1.113 0.586 1.163 0.761 1.171 0.815 1.189 0.782 1.187 0.775
Small 0m 58s 29.47% 1.118 0.505 1.151 0.688 1.144 0.704 1.153 0.741 1.142 0.654
Tiny 1m 46s 10.05% 1.142 0.587 1.167 0.654 1.157 0.689 1.161 0.657 1.154 0.625

Table 1. Comparison of various methods on video sequences w.r.t. Running Time, Motion Reduction, NMI, SSIM. Higher SSIM and NMI
are better.

as MR , medianj∈{1,...,N2}‖d̂j − dj‖2/‖dj‖2. Hence,
this measure indicates how much of the original motion the
Fourier stage is able to predict.

3.2.2 Fourier method as pre-processing stage for other
methods

The Fourier Method (FM) predicts a significant amount
(≈ 50%) of non-rigid distortions, and hence acts as a de-
sirable pre-processing step before other algorithms for mo-
tion reduction can be used. We compare two state of the art
methods with and without our Fourier-based pre-processing
step, to demonstrate that in almost all cases, the Fourier-
based step significantly improves their performance. We
demonstrate these results on (1) the two-stage method in
[15] consisting of spline-based registration followed by Ro-
bust Principal Component Analysis[5] (SBR) which is con-
sidered state of the art for underwater image restoration; (2)
the method from [19] using learned water bases (LWB).

For quality assessment referring to ground truth, we used
the following measures: (i) visual inspection of the restored
video Jr as well as its mean-frame J̄r, (ii) normalized
mutual information (NMI) between J̄r and J̄ (grayscale),
where J̄ is the ground-truth image representing the undis-
torted static scene, and (iii) SSIM (grayscale) between J̄r
and J̄ . All the values were calculated after normalizing
the intensities of each image to the range [0, 1]. We did
not compare with [18] since it is modelled on unidirectional
wave motion assumption (whereas we assume more general
wave models), and due to unavailability of publicly released
code. Likewise, we did not compare with [9] due to un-
availability of publicly released code. We did not compare
with the deep-learning technique in [13], since it did not
perform well in comparison to SBR and LWB. This might
be because, the deep-learning technique is designed to do
restoration from a single distorted image and does not take

into account the extra temporal information available in the
video sequences. Please see Table.1 of [11] for the quanti-
tative comparison of [13] w.r.t SBR and LWB. We also did
not compare with [11] since it is based on the sparsity of the
motion vector field and reducing the magnitude of motion
does not alter it’s performance much.

3.3. Discussion of results

The numerical results are presented in Table 1. The mean
images (post-restoration) for a sample video, restored by
various methods, are presented in Fig.5. The supplemental
material contains results on 10 videos (videos and mean im-
ages post-restoration) for all methods. Also, Fig.6 higlights
local SSIM errors between the mean image produced by
restoration with various methods w.r.t. the ground truth im-
age. The SSIM Overlay Image is created in the following
manner 0.7 × RestoredImage + 0.3 × (1 − SSIM-Map) ×
Red-Color. Such a visualization highlights the low SSIM
regions with brighter shades of red color. The figure shows
that pre-processing the state of the art methods with Fourier
method reduced the structural dissimilarity of the restored
image w.r.t the ground truth. Our Fourier method was
able to achieve around ≈ 50% motion reduction in a me-
dian sense, as indicated by the MR column in the Table 1.
Also, the table further conveys that the Fourier based pre-
processing stage has increased the recovered image quality
for all videos for [19] and 7 out of 10 videos for [15]. Also,
in the 3 videos where Fourier did not perform well, preced-
ing SBR with FM improved the image quality at the cen-
tral regions. However, the overall SSIM value got reduced
due to artifacts at the borders. This can be observed in the
SSIM overlay images inside ’Collage MeanImages’ folder
in the supplemental material folder. 4 shows the variation in
SSIM wrt number of frames and number of tracked salient
feature points. It can be observed that both the plots attain
saturation after a small number of points. When it comes to
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Figure 5. Left to right, top to bottom order: mean frame of the
video after restoration by the following methods: FM; LWB [19],
FM followed by LWB; SBR [15], FM followed by SBR. Zoom
into pdf for better view. See supplemental material for more re-
sults. Notice that geometric distortions in LWB and SBR are cor-
rected when those were preceded by Fourier method.

computational time, SBR and LWB take more than an hour
for a single video. As indicated in 1, Fourier based pre-
processing step just adds one and a half minutes on average
to the processing time and significantly improves the image
quality.

Figure 6. SSIM Overlay : For each of the two set of videos, Left
to right, top to bottom order: LWB, FM + LWB, SBR, FM+SBR.
More red implies more deviation of the restored image from the
ground truth. Notice that pre-processing by FM significantly re-
duces the dissimilarity with the ground truth. See supplemental
material for more results.

4. Conclusion

We have presented a novel method for removal of refrac-
tive distortions induced in images of scenes imaged from air
but situated underneath a fluctuating water surface, based on
a novel usage of Fourier decomposition for interpolating op-
tical flow sequences starting from a very small set of point-
trajectories. We have demonstrated that the state of the art
methods can be significantly improved with this computa-
tionally inexpensive pre-processing step. We believe that
the presented video results can be further improved by more
accurate modelling of attenuation of water waves. Future
work could also involve restoration for scenes with moving
objects, with depth variation in the scene, or in the presence
of reflective artifacts off the water surface.
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