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ABSTRACT

Equivariant Graph Neural Networks have demonstrated exceptional performance
in modeling geometric data frequently observed in natural science research. The
fundamental component of such models is the equivariant operation, which in-
volves operations such as tensor product and scalarization. We present a con-
ceptual framework that unifies the equivariant operations via equivariant basis
decomposition. Within this framework, we generalize the idea of replacing the
equivariant basis with input features to design efficient equivariant operations ca-
pable of modeling different type-l features. To implement this, we propose Scalar
Interaction and design an equivariant network, Scalar Interaction Network (SINet),
with it. SINet’s efficacy extends to efficiently mapping high type-l features while
maintaining a complexity O(L2) with the maximum L, representing a significant
improvement over the O(L6) of tensor-product methods. Empirical results demon-
strate SINet’s capability to model complex quantum systems with high precision
and computational efficiency. Its performance is competitive with current state-
of-the-art methods in the field, showcasing its potential to advance the modeling
of geometric data. This work highlights the potential of scalar interaction as an
building block for constructing equivariant networks and opens up new avenues
for future exploration in these vital fields.

1 INTRODUCTION

Machine learning has emerged as a pivotal tool in natural science research in recent times, driven
by its expansive application in quantum chemistry (Schütt et al., 2019), computational physics
(Kochkov et al., 2021), and structural biology (Jumper et al., 2021). These disciplines have stim-
ulated the exploration of geometric data (Joshi et al., 2023), primarily due to the Euclidean spa-
tial distribution and intrinsic symmetry often inherent in their task-related data (Rupp et al., 2012;
Berman et al., 2000). Consider an instance where one is predicting the force exerted by each atom
within a specific atomic system configuration (Chmiela et al., 2017): any translation or rotation of
the reference coordinates will proportionally transform the force exerted by each atom. To learn
from such symmetric data efficiently necessitates the utilization of models fortified with built-in
equivariance assurances.

In mathematical terms, such correspondence is articulated as group equivariant mapping (Esteves,
2020). For geometric graph modeling, neural networks constructed in accordance with this equivari-
ance have been structured around tensor-product (Weiler et al., 2018; Anderson et al., 2019; Thomas
et al., 2018; Fuchs et al., 2020). The intermediary features of these models consist entirely of direct
sums of the representation space of irreducible representations. These methods employ a flexible
framework to approximate equivariant operations with higher-order irreducible representations by
executing tensor product between the feature and a learnable steerable kernel, coupled with Clebsch-
Gordan decomposition (Weiler et al., 2018). Nevertheless, the computational complexity of such
operations is elevated due to the costly tensor-product operation. Regrettably, the complexity esca-
lates swiftly in relation to the order of irreducible representations. A different trajectory of research
seeks efficiency via scalarization (Satorras et al., 2021; Villar et al., 2021). While these methodolo-
gies are significantly quicker compared to tensor-product, they can only manage scalars and order 1
irreducible representation (vectors in R3) features, rendering higher-order geometric tensors nonvi-
able.

In this study, we articulate a conceptual framework for constructing equivariant operations through
the perspective of equivariant basis decomposition. In essence, our approach reframes the construc-
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tion of extant equivariant operations as the selection of an appropriate basis and weight function.
Our framework successfully amalgamates the majority of existing methods under two broad cate-
gories, fostering a unified understanding of these operations. We spotted that the application of
higher-orders in the feature is not necessary in contradiction to the efficiency. Instead, we propose
using input fragment as the equivariant basis. Thus, we develop a novel equivariant operation which
model interactions between different irreducible representations via scalar interaction. Importantly,
our Scalar Interaction Network (SINet) adeptly manages higher-order representations with its com-
plexity increasing in a quadratic manner, signifying a marked advancement over previous methods.

Finally, we evaluate SINet on QM9 (Rupp et al., 2012) and N -body system (Kwon et al., 2010),
demonstrating its remarkable performance and efficacy. Our comprehensive analysis provides clear
evidence of SINet’s capability to model complex quantum systems with high precision, achieving
state-of-the-art comparable performance in terms of both accuracy and computational efficiency.
The robustness of SINet also extends to larger n-body systems, illustrating its scalability and ver-
satility in handling quantum systems of varying complexities. These results collectively point to
SINet as a valuable tool for advancing computational quantum chemistry and physics, bridging the
gap between theory and computational capability, and paving the way for future investigations in
these critical fields.

2 SE3 EQUIVARIANT OPERATIONS

Deep neural networks (DNNs) are composed of elementary operations. For example, Multi-Layer
Perceptrons (MLPs) are combinations of linear transformations and element-wise non-linearity,
while Convolutional Neural Networks (CNNs) are composed of linear convolution and non-linearity.
As for the equivariant neural network, these operations need to be specialized for preserving the sym-
metry of features and eventually producing the output with a given requirement on the equivariance.
In this section, we will describe the constraint on these operations and introduce two main operations
for describing the interaction between two steerable features.

2.1 PRELIMINARY GROUP REPRESENTATION

Before delving into the details of steerable operations, we first provide a brief introduction to the
steerable features introduced by (Thomas et al., 2018; Weiler et al., 2018; Worrall et al., 2017),
which are rooted in group representation theory. Consider a regression task with input x ∈ X and
label y ∈ Y . As the coordinate system is rotated or translated, the input transforms as x → DX(x)
and the target transforms as y → DY (y). This change of coordinate system can be represented by
an element g from a group G, where G is the SE(3) group for describing rotation and translation in
3D space. The translation of x and y is described by a group action g of G on X and Y . Moreover,
if the mappings DX and DY are linear transformations, they are called representations of group G.
Two representations, D1 and D2, are considered equivalent if there exists a matrix T that satisfies
Equation 1 for all g ∈ G.

D1(g) = TD2(g)T
−1. (1)

According to the Peter-Weyl Theorem (Peter & Weyl, 1927), any finite-dimensional representation
is equivalent to a direct sum of irreducible representations. For the 3D rotation group SO(3), these
irreducible representations are known as Wigner-D matrices, denoted by Dl(g). Dl(g) is a (2l +
1)× (2l+1) unitary matrix that acts on a (2l+1)-dimensional space, which is referred to as a type-l
vector space V l. Equivariant neural networks deal with steerable features in these spaces. Type-0
vectors correspond to scalars, while type-1 vectors represent normal vectors in 3D space, such as
velocity and acceleration. Higher-order type-l vectors may also arise in specific applications such
as predicting higher-order electronic dipole moment. Since the direct sum of different Wigner-D
matrices, D(g) = Dl1(g) ⊕Dl2(g) ⊕ · · · , is still a (reducible) representation of the SO(3) group,
the direct sum of several type-l vectors, h = hl1 ⊕ hl2 ⊕ · · · ∈ H , can also be used as steerable
features. We denote the vector space of steerable feature h by

H = n0V
0 ⊕ n1V

1 · · · ⊕ nLV
L, (2)

where L is the maximum degree of l and nV :=
⊕n

i V is the direct sum of n copies of the same
space V . In equivariant neural networks, a common practice is to assign the same number ni = c
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(a) Tensor product (b) Scalarization

Figure 1: The illustration presents the tensor product and scalarization operations. In (a), the tensor
product is demonstrated between h1 and h2, which belong to 3V 0 ⊕ 3V 1 ⊕ 3V 2. Specifically, the
interaction between a type-1 vector and a type-2 vector is shown, where they are combined using
the tensor product and subsequently decomposed into different vectors through CG-transform. This
process is repeated for each pair of such vectors, followed by a linear combination. (b) depicts the
scalarization process, which exclusively takes type-l vectors and scalars as input. In scalarization,
vector norms are fed into a multi-layer perceptron (MLP) alongside the scalars. The MLP then
produces scalars that can be further combined with the input vectors to construct the output.

for steerable features in the hidden layers. This particular value of c is commonly referred to as the
channels of the steerable features.

2.2 EQUIVARIANT OPERATION

In this section, we give a formal definition for equivariant operations used in equivariant neural
networks. Mathematically, a function L : X → Y is equivariant with respect to a group G if L
commutes with group action for all g ∈ G, as shown in Equation 3.

L ◦DX(g)(x) = DY (g) ◦ L(x). (3)

An additional conventional requirement for equivariant operations is that both the input and output
features are steerable. This implies that the group representation on the input and output spaces
should be a direct sum of Wigner-D matrices. Consequently, some mathematically equivariant func-
tions, such as reversible linear transformations x → Ax, become impractical for use in equivariant
neural networks as it change the representation on input space DX(g) to an equivalent representa-
tion ADX(g)A−1, which in general is not the direct sum of Wigner-D matrices. Enforcing steerable
features for all hidden layers offers the advantage of facilitating the construction of the final output
space with a designated group representation. For instance, when predicting 3D vectors, the output
space needs to correspond to D1 representation. Without adhering to this convention, it would be
necessary (and challenging) to track the group representations across all hidden spaces in order to
construct such output space.

We provide a formal definition of an equivariant operation as follows:

Definition 1 A equivariant operation f takes several steerable features {h1 ∈ H1, · · · , hk ∈ Hk}
as input, and outputs a steerable feature ho = f(h1, · · · , hk), s.t.

DHoho = DHof(h1, · · · , hk) = f(DH1h1, · · · , DHkhk). (4)

Some equivariant operations, such as Linear Combination, Layer Normalization, and Gate (Schütt
et al., 2017; Weiler et al., 2018), only take a single feature as input. These operations serve as self-
interactions and introduce non-linearity in equivariant neural networks. However, in this study, we
are primarily interested in operations that take two or more features as input, as they enable modeling
of node-to-node or node-edge interactions in a graph. Broadly speaking, there are two types of such
operations, that is tensor product and scalarization.
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2.3 TENSOR PRODUCT

When an function is mathematical equivariant but does not satisfy definition in 1, the group repre-
sentation D on the output space is not a direct sum of Wigner-D matrices, and thus cannot be used
as equivariant operation. However, since Wigner-D matrices Dl are irreducible representations of
SO(3) group, any representation D can be transformed into the direct sum of {Dli} with the change
of basis. Therefore, an equivariant operation can take two steps: first apply a mathematical equiv-
ariant function to the input features f1(h1, h2) → hmid; then apply a linear transform to translate it
back into steerable features.

The tensor product method serves as an implementation of this concept. When we compute the
tensor product of two features hmid = hl1

1 ⊗hl2
2 , a new representation Dl1 ⊗Dl2 is formed over the

output space V l1 ⊗ V l2 . A remarkable property of the Wigner-D matrix is that the tensor product
Dl1 ⊗ Dl2 can be efficiently decomposed into a direct sum of Wigner-D matrices Dli using the
Clebsch-Gordan (CG) coefficients. These coefficients, denoted as C(l,m)

(l1,m1)(l2,m2)
, rely solely on the

values of l1, l2, li, and indices m1,m2 and is independent of the specific value of h. This conve-
nience makes the tensor product a practical method for designing equivariant operations. A tensor
product operation f1(h1, h2) → ho = hl1

o ⊕ hl2
o ⊕ · · · and each hli

o can be written as Equation 5,
where wli,l1,l2 is a scalar coefficient and can be derived via a MLP. We illustrate the process of
tensor product in Figure 1.

hli
o,m = wli,l1,l2

l1∑
m1=−l1

l2∑
m2=−l2

C
(li,m)
(l1,m1)(l2,m2)

hl1
1,m1

hl2
2,m2

(5)

The tensor product method can effectively manage interactions between vectors of different types.
However, a significant drawback of this approach is its computationally expensive nature, particu-
larly when dealing with large values of L. It has been demonstrated that the computational complex-
ity of the tensor product method scales as O(L6) (Passaro & Zitnick, 2023).

2.4 SCALARIZATION

A special case of an equivariant operation arises when all input and output features are scalars or type-
1 vectors. Consider a set of steerable features h1, h2, . . . , hk that share the same group representa-
tion. Since these representations consist of unitary matrices, (Dhi)

T (Dhj) = hT
i D

TDhj = hT
i hj

remains invariant when transforming the input coordinates. The scalarization method presents a
straightforward algorithm for this scenario. In this equivariant operation, the input vector is first
scalarized, followed by MLPs, and the results are aggregated along the original directions of the in-
put vectors. We illustrate the process in Figure 1. Scalarization is an effective method for modeling
the interaction between vectors. However, one significant limitation of scalarization is that it cannot
change the feature space of input.

3 EQUIVARIANT BASIS AND SCALAR INTERACTION

We have presented two equivariant operations, tensor product and scalarization. While the tensor
product method provides a comprehensive approach for handling different type-l features, it is bur-
dened by high computational costs. On the contrary, the scalarization method is efficient but cannot
model interactions between different type-l features. Therefore, our objective is to devise a more
efficient equivariant operation that can interact between different type-l features and surpasses the
limitations of the tensor product. To accomplish this, we begin by examining equivariant operations
from the perspective of equivariant basis expansion, and see how the tensor product method and
scalarization method are derived with equivariant basis in special cases. Then we introduce the idea
to reduce the computational cost in equivariant operation by REBIF, and propose our algorithm,
scalar interaction.
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3.1 EQUIVARIANT BASIS

Let us consider an equivariant operation denoted as f , which takes steerable features h1 ∈
H1, · · · , hk ∈ Hk as its input. For the simplicity, we use a feature hin to denote the collection
of all the input features and define the group action on all the inputs simultaneously, as show in
Equation 4, with DHin(g)hin. We consider the output ho ∈ V l is a type-l vector. We first define the
equivariant basis of the equivariant operation f .

Definition 2 An equivariant basis for the equivariant operation f : Hin → H l is a collection of
equivariant mappings {e1(hin), e2(hin), . . . , ed(hin)} that are equivariant with the group:

Dl(g)(ei(hin)) = ei(D
Hin(g)(hin)), (6)

and every equivariant operation f : Hin → H l can be expanded using this equivariant basis into d
scalar value functions:

f(hin) =

d∑
i=1

gi(hin)ei(hin), (7)

where gi(hin) is invariant under input transformations, i.e., gi(DHin(g)(hin)) = gi(hin).

In this work, we do not discuss the general method of obtaining an equivariant basis. However, we
demonstrate that both the tensor product and scalarization methods are based on such an equivariant
basis, and they are special cases of the implementation of Equation 7. We first show the relationship
between scalarization method and equivariant basis.

Proposition 1 Let f be an equivariant operation with respect to the O(3) group, taking scalars
s1, s2, . . ., and type-1 vectors u1, u2, . . . , uk as input. Then, one of the equivariant basis is {ui},
and Equation 7 can be written as

f(u1, u2, . . .) =

k∑
i=1

gi(s1, s2, . . . , u1, u2, . . .)ui, (8)

where the functions gi are invariant under the O(3) group.

Equation 8 leads to the scalarization method, which substitutes the input vectors ui for the equivari-
ant basis. We adopt the approach proposed by (Villar et al., 2021) for proving Proposition 1, and
the detailed proof can be found in Appendix A.1. While this substitution is complete only in the
O(3) setting rather than SO(3), the scalarization method remains effective in modeling 3D data and
shows promising performance in related tasks.

The motivation behind the tensor product method can also be described using an equivariant basis.
The earliest instances of the tensor product method were introduced in the context of steerable
convolution on irregular point clouds (Thomas et al., 2018) and regular 3D grids (Weiler et al., 2018).
In these scenarios, the equivariant operation involves two inputs: a 3D vector x and a steerable
feature h. To construct the convolution in Equation 9, the function f must take the form f(x, h) =
κ(x)h for

[κ · h](x) =
∫

κ(x− x′)h(x)dx =

∫
f(x− x′, h(x))dx. (9)

Under this condition, Proposition 2 holds:

Proposition 2 For an equivariant operation f with respect to SO(3) group that takes a type-1
vector x and a steerable feature h as input, and has the form f(x, h) = κ(x)h, then one of the
equivariant basis is ei(x, h), computed with the tensor product of h and the spherical harmonics
Y J(x). And Equation 7 can be written as

f(hin) =

d∑
i=1

gi(||x||)ei(x, h). (10)
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Figure 2: The workflow of Scalar Interaction. It takes two steerable features as input and extracting
the fragments as the basis for different subspaces V l. Then, the inner product is computed between
fragments of the same dimension, which is utilized to generate the coefficients. The output is com-
puted by taking the linear combination of the basis vectors using these coefficients.

The proof of this proposition is provided in Appendix A.2, which subsequently yields the formula
for the tensor product as described in (Weiler et al., 2018).

Similar to the scalarization method, the formulation of tensor product method is complete only
within this specific context. There exist equivariant operations that cannot be represented using the
tensor product method, such as f(x, h) = ||x||||h||h. Nevertheless, the tensor product remains
a powerful operation utilized in numerous equivariant networks. Additionally, the introduction of
non-linear operations further enhances the expressive capacity of the tensor product method.

3.2 REPLACE EQUIVARIANT BASIS WITH INPUT FEATURE

Definition 2 provides a perspective on equivariant operations, by decomposing them into two steps:
constructing an equivariant basis and developing invariant scalar functions (coefficients). From this
point of view, scalarization method is efficient than tensor product method since it does not compute
new basis in the operation. They replace the equivariant basis with components of the input feature.
While the current scalarization method is limited to accepting only scalars and type-1 vectors as
inputs, we recognize that this approach eliminates the need for computing the equivariant basis and
can be readily extended to incorporate steerable features with different type-l vectors. We refer to
this method as Replacing Equivariant Basis with Input Feature (REBIF for brevity). The formal
definition of REBIF is as follows:

Definition 3 REBIF. For an equivariant operation f : Hin → V l, REBIF involves substituting the
equivariant basis with all the fragments hl ∈ V l from the collection of input features hin.

Another key motivation for constructing equivariant neural networks using REBIF arises from the
observation of a common pattern in existing equivariant neural networks. Firstly, in most equivariant
networks, there is no introduction of new l-type features beyond the first layer. Secondly, equivariant
neural networks typically have a channel size c that is significantly larger than 2l + 1. This ensures
a high probability that the fragments within the input features can span the entire output space. We
provide numerical analysis supporting this claim in subsection 5.2.

3.3 SCALAR INTERACTION NETWORK

REBIF serves as a general framework for reducing the computational complexity associated with
equivariant operations. Various approaches exist for constructing the invariant function gi in Equa-
tion 7. In this study, we propose a straightforward and intuitive architecture known as Scalar In-
teraction. This architecture computes scalar values of the input features by taking inner products
between vectors of the same type-l, and employs a MLP to determine the coefficients gi(hin). The
framework of Scalar Interaction is depicted in Figure 2. Scalar Interaction offers a concise formula
and enables message interaction between fragments of different type-l without relying on the tensor
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product method. It reduces the computational complexity from O(L6) to O(L3). Further details
regarding computational complexity and expressiveness are discussed in Appendix B.

4 RELATED WORKS

In this section, we focus on equivariant neural networks that work on irregular 3D data.

Scalarization. The idea of scalarization is first proposed in SchNet (Schütt et al., 2017) and
DimeNet (Gasteiger et al., 2020). SphereNet (Coors et al., 2018), PaiNN (Schütt et al., 2021) fol-
lows these work. EGNN (Satorras et al., 2021) propose a flexible paradigm with is E(n) equivariant.
GMN (Huang et al., 2022) extends it with multi vectors setting.

Tensor Product. Tensorfield Networks (TFN), (Thomas et al., 2018) and NequIP (Batzner et al.,
2022) use graph neural network with equivariant linear message passing. SEGNN (Brandstetter
et al., 2022b) introduces non-linear message passing with steerable MLP. SE(3)-Transformer (Fuchs
et al., 2020) uses dot product to construct invariant attention for message passing, followed by Torch-
MD (Thölke & Fabritiis, 2022) and EQGAT (Le et al., 2022). Equiformer (Liao & Smidt, 2022)
propose MLP attention an non-linear message for construct more expressive transformer.

Regular Representation. Another line of work construct equivariant network by lifting and group
convolution (Finzi et al., 2020; Hutchinson et al., 2021). These method also face a trade-off between
computational complexity and performance as a result of discretization and sampling.

5 EXPERIMENTS

We implement scalar interaction based on the e3nn library. We implement two models. The first
model uses scalar interaction layer to compute message between the neighbor nodes and do equivari-
ant message passing between neighbor nodes. This model is called SiNet. Since scalar interaction
cannot create new l− type features if the input doesn’t contain such features, we adopt a single ten-
sor product layer to construct the node embedding. The tensor product operation here is performed
between scalars and other features, thus its computational complexity is the same as a Linear layer,
which will not limit the speed of SiNet. Furthermore, we notice that the state-of-the-art results on
QM9 prediction task are achieved by models with more complex structure like attention. Therefore,
we propose an equivariant transformer based on scalar interaction for this task. We name this model
SiFormer. The implementation details is in Appendix D.

5.1 THE RUNNING SPEED

The speed of scalar interaction operation. As one of the most significant benefits of SINet,
the computation complexity is much smaller that tensor product method, especially when the input
feature has a large maximum l. Therefore, we made some experiments to compare the running
speed of SINet with tensor product based method. We test a single operation with input h1 ∈
ncV0⊕ncV1⊕· · ·⊕ncVL and h2 ∈ V0⊕V1⊕· · ·⊕VL since this is a normal setting in equivariant
neural networks, where h1 is the node feature and thus have multiple channels, and h2 denotes the
edge features and are usually a single channel. The results are show in Figure 3. Furthermore, we
construct a model using SINet to show its performance, the result is included in Appendix D.1.

5.2 THE COMPLETENESS OF BASIS

One of the motivations behind REBIF is the expectation that the input features will span a "large"
subspace of each vector space V l, facilitated by the substantial channel size relative to the vector
dimension. To evaluate the completeness of REBIF, we record the inputs of the Scalar Interaction
at various layers during the QM9 experiments (see subsection 5.3) and analyze the extent to which
the input features can serve as a basis. To this end, we construct L matrices, each containing all
the l-type features hl

i, organized as a matrix H l = (hl
1, · · · , hl

cl
) ∈ R(2l+1)×cl . Subsequently, we

compute the metric: r(l) = rank(Hl)
2l+1 , where rank(·) determines the rank of a matrix, and 2l + 1
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(a) (b) (c) (d)

Figure 3: The comparison between the tensor product and scalar interaction methods is presented
in terms of running speed and the completeness of the basis. In (a), we examine the running time
of both methods for different values of L, while keeping the number of channels nc fixed at 64.
(b) depicts the running time for varying nc with a maximum L of 3. Furthermore, we analyze the
completeness metric r of node features for different tensor product layers in (c), and for Scalar
Interaction layers in (d).

denotes the dimension of hl
i. r(l) quantifies the ratio of linearly independent input features to the

total number of basis vectors. If the input features can span the entire vector space, r will equal 1.
We calculate this metric for all nodes, obtaining the mean and variance. The results are presented in
Figure 3. Importantly, we observe that in tensor product-based methods, features spanning a substan-
tial portion of the vector space are achieved after the first layer. Since tensor product operations can
generate new basis vectors in each layer, all types of features rapidly span the entire space within two
layers. In SINet, new basis vectors are not generated through equivariant operations starting from
the second layer. However, due to message passing, which aggregates information from a node’s
neighbors, the completeness continues to increase as the number of layers grows. More discussion
is provided in Appendix D.2.

5.3 QM9: REGRESSION ON SCALAR LABELS

Dataset. The QM9 dataset consists of quantum chemical properties for small molecules composed
of up to 29 atoms with atomic types including H, C, N, O, and F. Each datum includes 3D coordinates
and atom types. This dataset is commonly used to evaluate the ability of equivariant networks to
regress the chemical properties for each molecule. We adopt the data splitting method of () and use
110k, 10k, and 11k molecules for the training, validation, and testing sets, respectively. We train our
model by minimizing the mean absolute error (MAE) between predictions and labels. Details of the
training are provided in the Appendix D.3.

Table 1: Result of regression on QM9 dataset.

Methods Task
Units

α
a30

∆ε
meV

εHOMO

meV
εLUMO
meV

µ
D

NMP (Gilmer et al., 2017) † .092 69 43 38 .030
SchNet (Schütt et al., 2017) .235 63 41 34 .033
Cormorant (Anderson et al., 2019) † .085 61 34 38 .038
LieConv (Finzi et al., 2020)† .084 49 30 25 .032
DimeNet++ (Klicpera et al., 2020) .044 33 25 20 .030
TFN (Thomas et al., 2018)† .223 58 40 38 .064
SE(3)-Transformer (Fuchs et al., 2020) † .142 53 35 33 .051
EGNN (Satorras et al., 2021) † .071 48 29 25 .029
PaiNN (Schütt et al., 2021) .045 46 28 20 .012
TorchMD-NET (Thölke & Fabritiis, 2022) .059 36 20 18 .011
SphereNet (Coors et al., 2018) .046 32 23 18 .026
SEGNN (Brandstetter et al., 2022b) † .060 42 24 21 .023
EQGAT (Le et al., 2022) .053 32 20 16 .011
Equiformer (Liao & Smidt, 2022) .046 30 15 14 .011
SINet (Ours) .058 41 22 20 .023
SiFormer (Ours) .056 33 18 15 .014

† denotes using different data partition
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Results. We evaluated SINet’s performance on the first five targets, and the results are presented
in Table 1. Our experiments show that SINet outperforms TFN and EGNN, indicating that scalar
interaction is a more powerful method for equivariant operations. The ablation study in Table 3a
shows the benefits of introducing higher order type of vectors. SiFormer, which uses scalar interac-
tion to construct a graph transformer, achieves results comparable to other state-of-the-art methods,
providing evidence that SINet can serve as a building block for more complex architectures.

5.4 N-BODY SYSTEM: REGRESSION ON 3D VECTOR LABELS

Table 2: Result of regression on N-body system.

Methods SE(3)-Tr. TFN NMP Radial Field EGNN SEGNN SINet

MSE .0244 .0155 .0107 .0104 .0070 .0043 .0044

Dataset. N-body system dataset consists of the dynamical simulation of 5 charged particles in
three dimension space. The regression target is the particle positions after 1,000 timesteps, which
is 1−type vectors. We build the experimental setting follow the work of (Brandstetter et al., 2022a).
We use the relative position xi, velocity vi and the norm of velocity as input, embed edge features
as spherical harmonics Y m

l (xj − xi), and construct node attributes with the edge features and the
embeddings of velocity. The details are provided in Appendix D.4.

Results. The results of SINet and other baseline models are shown in Table 2. SINet demonstrates
comparable results to SEGNN while offering the advantage of being approximately four times faster,
primarily due to its avoidance of tensor product operations. In addition, we conduct an ablation study
to investigate the impact of using different values of L in SINet, which is presented in Table 3b. The
results indicate that the best performance is attained when L = 1. This observation aligns with the
findings from the SEGNN experiment, suggesting that it may be attributed to the fact that the targets
primarily consist of l = 1 vectors.

Table 3: Ablation studies of SINet on the max type L

(a) QM9

L 1 2 3 4

MAE (meV) 28 26 23 23

(b) N-body system

L 1 2 3 4 5

MSE .0044 .0047 .0049 .0049 .0046

6 LIMITATIONS AND DISCUSSION

The proposed Scalar Interaction method utilizes REBIF and avoids generating new vector bases.
Consequently, if the fragments of the input features fail to span the output space, the expressiveness
of the method is limited. One possible approach to alleviate this limitation is to introduce more tensor
product operations at the first layer of the neural network. Furthermore, since the scalar interaction
method calculates the inner product of input feature fragments, the information retained in these
scalars determines the universality of the formula. The first fundamental theorem for O(d) (Villar
et al., 2021) demonstrates that inner products contain all the necessary information for constructing
O(d) invariant functions for type-1 vectors. However, for other type-l vectors, there may be a loss
of information. Future research can explore alternative methods for constructing scalars.

7 CONCLUSION

In this study, we introduce Scalar Interaction as a novel equivariant operation that utilizes REBIF to
reduce the computational complexity associated with tensor product operations. We employ Scalar
Interaction as a building block to construct equivariant models, namely SINet and SiFormer. We
evaluate the performance of these models on a real-world dataset, demonstrating the effectiveness
of scalar interaction.
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