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ABSTRACT

Real-world reasoning often requires combining information across modali-
ties—for example, following a recipe involves connecting textual instructions with
visual cues in a multi-hop process. Yet, most multimodal benchmarks fail to cap-
ture this ability: they typically rely on single images or static sets, where answers
can be inferred from one modality alone. This limitation is mirrored in training
data, where interleaved image–text content rarely enforces complementary, multi-
hop reasoning. As a result, Vision-Language Models (VLMs) frequently halluci-
nate and produce reasoning traces poorly grounded in visual evidence. To address
this gap, we introduce CRUX, a new dataset and benchmark built with a scalable
automatic pipeline for generating complex cross-modal reasoning tasks. CRUX
spans natural images, videos, and text-rich sources, and includes a manually ver-
ified test set for reliable evaluation. Models trained on CRUX show significant
gains in grounded multi-hop reasoning, including strong improvements on SPIQA
and other multi-image benchmarks.

1 INTRODUCTION

As humans, we are constantly interacting with a multimodal world. Real-world tasks often involve
reasoning over multiple, interleaved sources of information – for instance, when following a DIY
tutorial or a recipe, we may find ourselves constantly cross-referencing textual instructions with a
sequence of images (maybe even looking at a YouTube video in the middle!), engaging in a ‘multi-
hop’ process to connect steps, tools, and outcomes (Chang et al., 2022; Luo et al., 2023; Cho et al.,
2024). This requires grounding textual descriptions (e.g., ‘fold the dough’) to specific visual content
(e.g., the actual visual stream of the dough that we see through our eyes) and tracking entities and
states across this sequence.

Despite the importance of such tasks, most existing multimodal benchmarks do not adequately as-
sess this capability. Current benchmarks, while valuable – typically present a single image (Masry
et al., 2022; Liu et al., 2024; Yu et al., 2023; Chen et al., 2024b; Lu et al., 2023), a single video, or
a static set of images (Wang et al., 2024a; Fu et al., 2024; Meng et al., 2024), with questions and
annotation targets primarily in the text domain. Even in datasets designed for multi-stage reasoning
(Zhang et al., 2024a; Nagrani et al., 2024; 2025), the necessary information can often be inferred
from a single modality alone (eg. the video), failing to test true cross-modal grounding. In Figure 1,
we provide an example of the complex reasoning we target. To arrive at the correct answer, a model
must execute a multi-hop process: it must visually identify a ‘gray object to the left of a banana’,
cross-reference text to find the ‘year it was worn’, use that year to find a related ‘event’ requiring
approval, and finally link this back to another textual fact about the object’s installation timeline.
Crucially, the multimodal information is complementary; the visual data provides spatial and at-
tribute information (shape, color, location) while the text provides temporal and abstract context
(years, events) unavailable in the pixels alone.

This gap in evaluation is mirrored by a lack of suitable post-training or supervised fine-tuning (SFT)
data. While a lot of interleaved image and textual data is used during training, it is unclear how
much of it is truly complementary, and hence how much the model is forced to correlate the two
modalitites. Given the scarcity of such complex interleaved data, it is perhaps unsurprising that
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… Behind the frame of the building, the door in image 
1 stands with quiet dignity—its grain worn smooth by 
time and touch, originally crafted by the artisan Eldrin 
Vale. His name may not be on the plaque, but his spirit 
lingers in every joint, every curve, a testament to 
craftsmanship that outlives its moment. … The event
itself—the Road Construction Permit Ceremony—was
not just a formality; it required approval from the year
2023, a year that marked both the culmination of 
planning and the beginning of transformation. In that 
moment, the past and future met: the artisan’s legacy, 
the designer’s vision, and the community’s resolve …

… As seen in image 1, the quiet hum of a city morning 
settles over the sidewalk, where a single cone marks 
the edge of a work zone, its presence a quiet prelude 
to change. The sign visible in image, newly installed
before the Road Construction Permit Ceremony, bears 
a crisp, official label—its message already echoing 
through the planning of what’s to come. …

… other fresh harvests, is not just food but a metaphor: 
a reminder of what grows when patience and passion 
are nurtured. The man in image 2—his weathered
pants tucked into sturdy boots, worn during the year
2023—stands as a symbol of everyday perseverance. 
His stillness speaks volumes, embodying the quiet 
strength of Lila Mendez, whose spirit lives in every …

2
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4
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[ Image 1 ]

[ Image 2 ]

[ Image 3 ]

… The suit visible in the image 3 is more than fabric—
it’s a statement, a symbol of professional identity, 
meticulously tailored to command …

Interleaved Image-Text Context Question

What is the shape of the object in image that was 
installed before the event requiring approval 
from the year when a gray object to the left of a 
banana was worn?

Chain of Thoughts

From image 2, I see pants that is Gray and positioned to 
the left of a banana.

1

From image 1, I see signs that are colorful, and their 
shape is rectangular.

5

From text context, pants was worn during the year 2023.2

From text context, the Road Construction Permit 
Ceremony required approval from the year 2023.

3

From text context, sign was newly installed before the 
Road Construction Permit Ceremony.

4

The question asks about the shape of the object that was 
installed before the event requiring approval from the 
year when a gray object to the left of a banana was worn.

Answer

Rectangular

Figure 1: Multi-hop, multi-modal reasoning. We introduce a new image-text QA task, which
requires complex, multi-hop reasoning to solve. This reasoning includes identifying and linking
appropriate visual and textual elements from interleaved data to answer complex questions. We
automatically collect a new dataset for this task called CRUX (CRoss-modal mUlti-hop reasoning
over interleaved image-teXt).

existing Vision-Language Models (VLMs) struggle on such complex reasoning tasks. As we show in
our experiments, when prompted for step-by-step reasoning, Chain-of-Thought (CoT) traces output
by models are often poorly grounded in the visual evidence, frequently disjoint from the multimodal
context and exhibiting significant hallucination.

In this work, we aim to address this problem by creating a scalable pipeline for generating high-
quality, multi-hop, cross-modal reasoning data. Manually collecting such data is prohibitively ex-
pensive. While recent works have leveraged VLMs and LLMs to scale up data collection (Chen
et al., 2024a; Guo et al., 2024; Huang et al., 2025; Xu et al., 2024; Yang et al., 2025), this approach
has significant drawbacks for our target task. Tasking a VLM to automatically generate complex
reasoning questions is prone to the same grounding failures and hallucinations we seek to measure.
Furthermore, this risks creating cyclical biases, where models are evaluated on data generated by
the very same class of models.

To overcome these challenges, we propose a novel graph-based automatic data generation pipeline
for interleaved image-text content. Our pipeline is built on several key properties: (i) First, we use
graphs as a structured representation of content, capturing entities, attributes, and relationships that
appear in either modality. These are derived from clean and reliable sources, such as manually an-
notated grounded captions; (ii) Second, this structured format allows us to programmatically sample
sub-graphs, guaranteeing the presence of complex, multi-hop relationships between modalities; and
(ii) Finally, given a sampled sub-graph, we use a model to generate a complex question that necessi-
tates multi-hop reasoning to be solved. By design, our pipeline does not require a VLM at any stage
of the question-generation process (a text-only LLM is sufficient), thus avoiding the aforementioned
cyclical biases and grounding issues.

Using this pipeline, we construct a novel dataset called CRUX (CRoss-modal mUlti-hop reasoning
over interleaved image-teXt). Models trained on CRUX show improved cross-modal multi-hop rea-
soning, while our test set—built through our automatic pipeline and refined by human annotators—
serves as a reliable benchmark for this capability.

To summarize, our key contributions are as follows:
1. We present an automatic data generation framework for cross-modal multi-hop reasoning across
diverse domains, ranging from natural images to videos and text-rich sources such as scientific
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papers. Our pipeline leverages graphs as a structured representation of multi-modal content.
2. We use this pipeline to create the CRUX dataset. We will release both a training and test set - the
test set has been verified manually by human raters. Along with the test set, we also benchmark a
number of state-of-the-art VLMs.
3. We further show that models trained on CRUX achieve significant improvements in cross-modal
multi-hop reasoning, with notable improvements on SPIQA (Pramanick et al., 2024) and modest
improvements on other multi-image benchmarks.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Multimodal large language models (MLLMs) have made notable progress in tasks that involve visual
understanding and multi-step reasoning. However, their capabilities remain limited when the task
requires reasoning across multiple modalities and multiple steps—what we refer to as cross-modal
multi-hop reasoning (Chang et al., 2022; Talmor et al., 2021; Reddy et al., 2022; Zhao et al., 2024;
Abaskohi et al., 2024; Wang et al., 2024b; Kim et al., 2024; Akhtar et al., 2025; Foroutan et al.,
2025). In such tasks, the model must integrate information from both images and text, sometimes
across several hops, to draw correct inferences . This limitation becomes especially apparent in set-
tings where inputs are interleaved sequences of text and images, and successful reasoning depends
on identifying and linking the appropriate visual and textual elements based on complex instruc-
tions (Zhou et al., 2024). A key reason for this shortcoming lies in the structure of existing training
datasets, which typically emphasize either isolated visual content or shallow text-image pairs, lack-
ing the deeper compositional reasoning required for multi-hop inference. A recent trend involves
using MLLMs to synthesize multimodal training data (Guo et al., 2024; Chen et al., 2024a; Shi
et al., 2024; Zhang et al., 2024b), but this approach often suffers from errors—especially in visual
perception and hallucination. Moreover, most existing datasets lack explicit reasoning traces and
consist solely of question-answer pairs, providing limited supervision for step-by-step reasoning.

2.2 INTERLEAVED IMAGE-TEXT DATASETS

Interleaved image–text datasets have recently become a standard choice for pretraining VLMs (Zhu
et al., 2023; Laurençon et al., 2023; Li et al., 2024b; Zhang et al., 2025). However, large-scale
interleaved multimodal datasets were developed primarily for pretraining and typically lack precise
alignment between text and images, making them unsuitable as a foundation for cross-modal, multi-
hop reasoning datasets. While pretraining on such data improves general multimodal ability, it
does not guarantee strong performance on tasks requiring fine-grained interleaved understanding.
VEGA (Zhou et al., 2024) targets interleaved image-text comprehension by constructing interleaved
contexts from SciGraphQA (Li & Tajbakhsh, 2023), inserting a relevant image–text pair needed
for answering a question and appending additional content. Yet this approach simplifies cross-
modal interactions. In practice, real-world scenarios involve richer and more complex interleaving,
where multiple images and passages interact in non-trivial ways. Designing datasets that move
beyond weakly aligned interleaved corpora and capture these complexities is essential for advancing
multimodal reasoning.

3 DATA GENERATION FOR CROSS-MODAL MULTI-HOP REASONING

In this work we explore cross-modal multi-hop reasoning using VLMs, as shown in Fig. 1. Ob-
taining suitable data for this task is non-trivial – even prior to annotation, the first challenge is
identifying suitable source data, which contains high-quality image–text interleaved content with
rich multimodal interactions. Once such content is collected, annotation requires identifying con-
nected facts across modalities, formulating multi-hop questions and answers based on these facts,
and ensuring that the supporting facts lead to a unique answer.

To address this challenge, we introduce a novel graph-based automatic data generation framework.
Our framework operates in three stages, illustrated in Figure 2: (1) constructing multimodal con-
tent graphs, (2) generating textual context to accompany visual content, and (3) generating ques-
tion–answer pairs that require cross-modal multi-hop reasoning based on the multimodal content

3
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Figure 2: Overall Process of Cross-Modal Multi-Hop QA Generation. The procedure consists
of three main stages. Multimodal Content Graph Construction: images annotated with scene graphs
are sampled (a), unique entities are extracted and merged (b), and entities with relationships are
generated via LLM prompting (c, d). Textual Context Generation: subgraphs are extracted from the
multimodal content graph (e) to produce complementary textual descriptions (f). Question–Answer
generation: subgraphs are further sampled (g) to enable cross-modal multi-hop reasoning, from
which QA pairs are generated (h).

graph. In the following subsections, we describe each stage in detail. We first describe how our
framework works with images that already contain annotated scene graphs, and then describe exten-
sions to our pipeline that enable us to use videos and scientific papers as well (sec. 3.4).

3.1 MULTIMODAL CONTENT GRAPH CONSTRUCTION

The multimodal content graph lies at the core of our framework. It provides a structured representa-
tion of interleaved image–text content, consisting of entities, attributes, and relationships that appear
in either modality. The graph is designed to encode both intra-modal and cross-modal relationships.

Formulation of Multimodal Content Graphs. We model visual and textual content in interleaved
image–text as a directed graph G = (V, E). Each node v ∈ V represents an entity, either a visual
object in an image or a textual entity. An edge e ∈ E between nodes u and v is represented as a triple
(u, v, r), where r denotes the relation between the two entities within the multimodal content. The
graph is further augmented with an attribute function a(u) that returns the set of attributes associated
with entity u. Finally, a modality function m(·) specifies the modality index: for an entity or relation,
m(·) = i indicates presence in image i, while m(·) = 0 denotes presence in the text.

Graph Construction through Content Augmentation. We begin with a dataset of images an-
notated with scene graphs, which eliminates the need for image generation or potential errors in
scene-graph recognition. Since our target is interleaved image–text content involving multiple im-
ages, we randomly sample between one and six images from the annotated dataset (see Figure 2a).
For each image, we retain only entities that can be uniquely identified by an attribute or by their
relation to another entity, ensuring that each attribute or relation corresponds to exactly one entity
(Figure 2b). This avoids ambiguity during the QA generation phase, where multiple valid answers
could otherwise arise. The scene graphs of the sampled images are then merged into a single content
graph, which serves as the starting point for our framework. To augment this graph with textual in-
formation, we leverage an LLM to add new entities and relations. Specifically, for each image node
in the graph, we prompt the LLM with the full current graph and ask it to generate a plausible entity
and relation connected to that node (Figure 2c). We then apply an additional round of prompting
to create plausible relations among the newly added entities, which serve as bridges across different
visual sources (Figure 2d). The prompts used are provided in Appendix A.2.1. These augmented
entities and relations constitute the textual content; since they are not tied to a specific image, they
naturally serve as bridges that connect entities across different images through related textual nodes.
The resulting graph provides a coherent multimodal context for evaluating cross-modal and multi-
hop reasoning, as it connects concepts drawn from multiple images and textual segments.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 TEXTUAL CONTEXT GENERATION

After graph construction, each sample is represented by a unified graph structure, comprising both
image and text nodes. For each image, we prompt the LLM with a subgraph to generate comple-
mentary textual context. The prompts used are provided in Appendix A.2.2. We begin extracting
the subgraph that includes the corresponding image nodes and all text nodes directly connected to
them, along with the edges between those text nodes. When an edge connects two text nodes that
belong to different images, we handle it by randomly selecting one of the images and expanding its
subgraph to include that edge. Including these edges is essential because they provide the only con-
nections across independent images, enabling the construction of multi-hop reasoning questions and
supporting cross-modal reasoning that spans multiple images. Attributes of image nodes and inter-
image relations are excluded, as these are intended to be inferred from the visual modality during
cross-modal reasoning. The generated passages therefore describe only the augmented text nodes,
relationship between them and their connections to the image nodes. Diverse narrative styles—such
as stories, diary entries, or documentary-style scripts are used that provide linguistic variety. By
combining the generated texts with the images, the framework yields complementary multimodal
content that facilitates cross-modal multi-hop reasoning.

3.3 QUESTION-ANSWER PAIR GENERATION

Once the multimodal content is generated by augmenting images with text, we proceed to generate
cross-modal multi-hop QA pairs. To this end, we sample a subgraph from the multimodal content
graph that represents a chain of facts within the content. Since our goal is cross-modal reasoning,
we ensure that the sampled subgraph includes nodes from both images and text. To guarantee multi-
hop reasoning, we further restrict the subgraphs to have 1 ≤ h ≤ 5 edges, such that answering
the resulting questions requires reasoning over multiple connected facts. Finally, we require the
terminal node in each chain to come from an image. We then select either its entity name or one of
its attributes as the answer, grounding the final reasoning step in the image content. This strategy
improves the reliability of evaluation by preventing the model from guessing answers based solely
on textual biases or hallucinations without performing the correct reasoning. If the terminal node’s
immediate neighbor is textual, we instead use its attribute as the final answer, since the entity name
is already present in the text context.

Given a sampled subgraph (serialized as JSON) and its designated answer, we prompt the LLM
to generate a question under the following constraints: (i) the answer to the generated question
must match the provided target answer; (ii) solving the question must require reasoning over the
entire chain of facts in the subgraph, thereby enforcing cross-modal multi-hop reasoning; and (iii)
intermediate entities should not be mentioned explicitly in the question but instead be recoverable
only through multi-hop inference. The prompts used are provided in Appendix A.2.3. While the QA
pair provides the basis for evaluating cross-modal multi-hop reasoning, we additionally generate a
CoT trace (Wei et al., 2022) to guide the model through the step-by-step reasoning process. Since the
subgraph corresponding to each QA already encodes the complete reasoning chain, we can leverage
it to prompt the LLM to produce a CoT response for the generated question, as in Appendix A.2.4.
This offers extra supervision by explicitly indicating where each piece of information should be
retrieved from within the multimodal context.

Once the QA samples with CoT are generated, we apply an LLM-based staged filtering process
to ensure quality. First, we discard questions that explicitly mention intermediate entities from the
sampled subgraph, thereby ensuring multi-hop reasoning by eliminating potential shortcuts in the
reasoning chain. Next, we filter out questions that can be answered using a single modality. To
perform this test, we provide off-the-shelf LLMs with the nodes and edges corresponding to each
modality; Since visual content is translated into structured text through the graph representation, a
text-only LLM is sufficient. We use three different LLMs and remove a question if all three predict
the correct answer using only one modality (either text or visual). Finally, we prune CoT responses
that are excessively verbose by limiting the output to a maximum of ten sentences.

3.4 EXTENSIONS TO VIDEOS AND TEXT-RICH SOURCES

The data creation pipeline described above is limited in two aspects: (i) first, it relies on images that
have graph annotations, and (ii) the images are independent and unrelated to one another, as well as
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being limited to the natural domain. We would also like to explore text-rich visuals such as tables,
diagrams, and charts that frequently occur alongside textual context in real-world documents (Jia
et al., 2024; Hu et al., 2024; Zhang et al., 2023). To address these gaps, we extend our pipeline to
two additional data sources: (i) still frames from videos, where multiple coherent frames naturally
share contextual information, and (ii) scientific papers, which provide abundant text-rich images.

For video frames, the main challenge is the absence of scene-graph annotations. To address this,
we leverage dense video captioning datasets, where long-form videos are annotated with temporally
localized event descriptions. We select the frames with the highest CLIP similarity to each caption
to ensure that the visual content aligns closely with the description. Although these captions may be
short, they provide sufficient content information to be converted into partial scene graphs—similar
to the manual scene graph annotation process in (Krishna et al., 2017b), where captions are collected
and then transformed into graphs. Concretely, we prompt an LLM to convert these descriptions into
graphs using the prompt detailed in Appendix A.2.5. Sampled frames from a single video may
share entities and relations, and therefore we incorporate this into both the prompting design and the
resulting graphs. After constructing a scene graph across coherent frames, the rest of the pipeline
proceeds as before, except that textual context is now generated once for the entire image set rather
than separately for each image.

In the case of text-rich images, scientific papers inherently provide high-quality interleaved im-
age–text content. Because well-aligned textual descriptions already exist, generating complemen-
tary textual context is unnecessary. Nonetheless, constructing QA pairs would benefit from a graph-
based representation. To this end, we convert the multimodal content—paragraphs, figures, and
tables—into a unified graph structure, treating both figures and rendered tables as images. Given
a paper containing textual content with associated figures and tables, we first construct a content
graph from paragraphs that do not reference any visual elements using LLM, with prompt detailed
in Appendix A.2.6. For paragraphs that reference figures or tables, we prompt the LLM to identify
visual entities and relations, detailed in Appendix A.2.7. Numerical entities, comparisons, and ex-
plicit visual descriptions in these paragraphs are elevated to visual nodes in the graph. To enforce
cross-modal reasoning, the corresponding sentences are then removed from the text body once they
are marked as visual. Finally, once the corresponding multimodal content graph is constructed, QA
generation is performed following the same base pipeline.

4 CRUX

In this section, we describe the implementation details used to create CRUX (sec. 4.1), and then
describe dataset statistics (sec. 4.2).

4.1 DATASET CREATION IMPLEMENTATION DETAILS

Data Sources Most of the dataset comes from GQA (Hudson & Manning, 2019), which provides
natural images annotated with scene graphs that were sampled and incorporated following the
procedure from Section 3.1 to Section 3.3. Beyond these, CRUX was additionally constructed
from video frames and captions obtained from the dense video captioning dataset ActivityNet
Captions (Krishna et al., 2017a), as well as high-quality interleaved image–text data from scientific
papers is obtained from SPIQA (Pramanick et al., 2024).
Models Qwen3-30B-A3B-Instruct-2507 was used at every stage of the data generation pipeline.
For the final filtering of questions and answers, we used Qwen3-30B-A3B-Instruct-2507, Gemma-
3-27b-it and Mistral-Small-3.2-24B-Instruct. (Team, 2025a;b; AI, 2025)

Human Verification For the test set, we recruited 13 English-proficient undergraduate students
majoring in STEM fields to filter out samples that did not adhere to the annotation guidelines. De-
tailed guidelines are provided in Appendix A.1.

4.2 DATASET STATISTICS

CRUX consists of samples, which are unique image sets. Each sample consists of multiple QA
pairs per image set, concatenated into a multi-turn conversation. In total, CRUX consists of 84,179
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Table 1: CRUX Data Statistics. The dataset consists of natural images, video frames and scientific
papers. We report the number of samples and QA pairs, with the proportion of QA pairs involving
image–image reasoning (in addition to image–text reasoning) shown in brackets.

Split Statistic Natural Images Videos Scientific Papers

Train

# of Samples 49,151 8,010 27,018
Avg. Images per Sample 3.8 3.5 3.7
Avg. Text Tokens per Sample 2,442 649 5,443
# of QA 152,368 (0.0%) 16,020 (21.6%) 81,054 (6.1%)

Test

# of Samples 990 583 415
Avg. Images per Sample 4.4 5.2 7.7
Avg. Text Tokens per Sample 2,930 802 5,338
# of QA 990 (0.0%) 583 (34.0%) 498 (5.3%)

Table 2: Results on CRUX. Comparison of proprietary, open-source, and fine-tuned multimodal
language models across natural images, videos, and scientific papers. Models Fine-tuned with
CRUX are highlighted in bold with grey background. EM: exact match, Ref. Acc: reference accu-
racy.

Model #Param Natural Image Video Scientific Paper

EM F1 Ref. Acc EM F1 Ref. Acc EM F1 Ref. Acc

Proprietary Models

GPT-4o - 24.0 26.6 94.4 11.7 16.3 72.2 5.1 11.0 56.5
GPT-4o-mini - 23.7 25.7 94.8 12.4 16.7 70.5 4.9 10.2 55.3

Open-Source Models

Phi3.5-Vision 4B 7.9 8.5 62.16 10.1 12.2 38.4 3.3 6.5 1.0
Qwen2.5-VL (7B) 7B 21.2 22.0 57.5 8.6 9.9 39.5 7.3 8.8 24.6
Qwen2.5-VLCRUX 7B 52.3 52.7 93.4 35.0 37.6 44.3 12.8 18.9 40.8
LLaVA-Onevision 7B 5.8 19.6 0.0 18.4 24.0 0.0 1.8 8.2 0.0
InternVL2.5 8B 20.3 21.3 49.0 13.9 17.8 12.4 4.2 7.6 12.6
Idefics2 8B 15.4 15.9 1.5 19.7 22.3 2.7 2.4 5.2 0.2
Idefics2CRUX 8B 50.8 51.0 92.5 22.8 25.4 40.1 12.4 18.6 25.7
Qwen2.5-VL (72B) 72B 26.6 27.8 90.2 16.1 18.3 76.9 7.7 9.9 59.2

samples in training and 1,988 in testing, and 249,442 QA pairs in the training set and 2,207 QA pairs
in the test set. Table 1 presents the statistics for each data source. Note how the majority of QA pairs
are generated from natural images annotated with scene graphs. Some QA pairs also include image-
image reasoning in addition to image–text reasoning. This proportion varies across the different
domains. For natural images consisting of independent images, this proportion is 0% (as none of the
images are related). For videos composed of sequential frames, the proportion is highest, at 21.6%
in the training set and 34.0% in the test set. For scientific papers, the corresponding proportions are
6.1% and 5.3%.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Base Models We evaluate both open-source and proprietary models. For open-source models, we
evaluate Qwen2.5-VL (Bai et al., 2025), LLaVA-Onevision (Li et al., 2024a), Idefics2 (Laurençon
et al., 2024), Intern2.5-VL (Chen et al., 2024c), Phi3.5-Vision (Abdin et al., 2024). For proprietary
models we use GPT-4o and GPT-4o-mini (Hurst et al., 2024).

Training Settings We perform supervised fine-tuning with LoRA (Hu et al., 2022) on multi-image
vision-language models, specifically Qwen2.5-VL-Instruct and Idefics2-8B. Each fine-tuned models
are notated as Qwen2.5-VLCRUX and Idefics2CRUX. Training is conducted on CRUX using a mixture
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Table 3: Performance on SPIQA with direct QA and CoT. Results of Idefics2 models fine-tuned
on Mantis instruction tuning set and additional CRUX training set. We measure performance both
in direct answer and answer with CoT trace. Model fine-tuned with dataset including CRUX shows
remarkable performance improvement. Metrics include M: METEOR, R-L: ROUGE-L, C: CIDEr,
B-F1: BERTScore F1, and Ret: Retrieval accuracy.

Model Train Data CoT SPIQA test-A SPIQA test-B SPIQA test-C
Ret M R-L C B-F1 Ret M R-L C B-F1 Ret M R-L C B-F1

Idefics2 – ✗ - 2.3 2.1 2.6 28.3 - 0.8 1.1 0.4 25.8 - 0.3 0.1 0.1 30.6
Idefics2 – ✓ 8.7 9.1 15.4 26.4 47.8 12.7 4.2 10.3 13.8 43.2 14.2 3.0 6.0 9.5 38.8

Idefics2 Mantis-Inst. ✗ - 6.5 14.4 43.4 45.7 - 2.7 7.3 9.6 39.6 - 1.6 8.8 18.5 43.2
Idefics2 Mantis-Inst. ✓ 37.1 5.6 7.7 9.0 41.9 29.4 2.7 5.3 4.4 39.8 37.7 2.6 3.2 14.0 37.2

Idefics2 Mantis-Inst. + CRUX ✗ - 19.0 33.3 127.4 63.1 - 6.9 16.6 31.4 50.9 - 5.7 18.4 45.0 53.4
Idefics2 Mantis-Inst. + CRUX ✓ 58.9 16.3 24.1 50.7 55.9 32.5 7.0 11.3 5.0 46.6 44.0 4.5 12.1 25.4 43.5

Table 4: Performance on other benchmarks. Models trained with our dataset achieve performance
that is consistently higher or at least comparable across all benchmarks, compared to those trained
without it.

Model Train Data FCMR MuirBench BLINK MP-DocVQA

Idefics2 - 40.5 26.2 45.2 46.7
Idefics2 Mantis-Inst. 44.9 33.1 45.7 48.2
Idefics2 Mantis-Inst. + CRUX 50.5 32.6 47.6 49.8

of direct-answer and chain-of-thought (CoT) responses, so a single model is trained jointly on both
data types.

Evaluation Details Evaluation spans natural images, video, and scientific papers, with Exact Match
(EM) and F1 as metrics. We also report Reference Accuracy, measuring whether the model cor-
rectly identified the necessary images to answer the question. All prompts use CoT, and models are
instructed to explicitly reference the relevant image.

5.2 RESULTS ON CRUX

Table 2 reports results across natural images, videos, and scientific papers. Open-source models
without fine-tuning perform poorly. They often fail to localize the relevant image or, even when
successful, provide incorrect answers due to visual perception errors or the inability to connect
information across modalities. Fine-tuning on CRUX leads to substantial gains across all domains.
Qwen2.5-VLCRUX achieves the best EM and F1 score for natural images, its reference accuracy
reaching the level of proprietary models. Idefics2CRUX which didn’t have the capability to find
the relevant sources to answer the question improved substantially. The relatively high scores in
the video domain for LLaVA-OneVision and Idefics2 were obtained while they were instructed to
engage in reasoning, they provided short answers that fortunately turned out correct.

5.3 RESULTS ON OTHER BENCHMARK

While the CRUX results are encouraging, a central question is whether fine-tuning on CRUX induces
genuine cross-modal reasoning ability, and how CRUX-style data impacts performance when incor-
porated into large-scale instruction tuning. To investigate this, we evaluate on Mantis-Instruct (Jiang
et al., 2024), a dataset of 721K multi-image instruction–response pairs. We compare the zero-shot
performance of Idefics2 under two settings: (i) fine-tuned solely on Mantis-Instruct, and (ii) fine-
tuned jointly on Mantis-Instruct and CRUX. We evaluate on benchmarks that For evaluation we test
SPIQA (Pramanick et al., 2024), a scientific open-ended QA dataset where models are given multi-
ple figures and tables along with its corresponding captions, and the model needed to identify which
image to refer at. We also evaluate on FCMR (Kim et al., 2024), a financial cross-modal multi-hop
benchmark where the model needs to jointly reason over text, table and chart. MuirBench (Wang
et al., 2024a) and BLINK (Fu et al., 2024) are used to test multi-image visual perception. MP-
DocVQA (Tito et al., 2023) to test multi-page document understanding. For evaluation, we consider
diverse benchmarks spanning multiple domains. SPIQA (Pramanick et al., 2024) assesses scientific
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Table 5: Impact of Data Scaling. Results of fine-tuning on the original CRUX training set and on
the CRUX training set augmented with off-the-shelf models. Performance is reported on the CRUX
test set across three domains: natural images, videos, and scientific papers. EM: exact match, Ref.
Acc: reference accuracy.

Model Finetuned Natural Image Video Scientific Paper
EM F1 Ref Acc EM F1 Ref Acc EM F1 Ref Acc

Qwen2.5-VL-7B - 21.2 22.0 57.5 8.6 9.9 39.5 7.3 8.8 24.6
Qwen2.5-VL-7B CRUX 52.3 52.7 93.4 35.0 37.6 44.3 12.8 18.9 40.8
Qwen2.5-VL-7B CRUX Augmented 57.6 58.1 95.0 32.1 35.1 44.6 12.8 19.4 41.7

open-ended QA, where models must select the relevant figures or tables given multiple candidates
along with its caption—a setting closely aligned with our task. FCMR (Kim et al., 2024) mea-
sures financial cross-modal multi-hop reasoning across text, tables, and charts. MuirBench (Wang
et al., 2024a) and BLINK (Fu et al., 2024) focus on multi-image visual perception, while MP-
DocVQA (Tito et al., 2023) evaluates multi-page document understanding. Evaluation metrics vary
across tasks: n-gram based metrics and retrieval accuracy (aligned with CRUX reference accuracy)
are used for SPIQA, F1 score for FCMR, and accuracy for the remaining benchmarks.

The experimental results indicate that incorporating CRUX yields consistent performance improve-
ments. As shown in Table 3, models fine-tuned with CRUX generate responses that more closely
align with ground-truth references and exhibit substantial gains in retrieval accuracy, exceeding 20
points on the test-A split. These findings highlight CRUX’s effectiveness in enabling models to
identify and reason over relevant information in interleaved multimodal contexts. Table 4 further
demonstrates generalization across benchmarks. On FCMR, despite CRUX not being explicitly
designed for multi-hop financial reasoning, we observe marked gains in F1. For multi-image per-
ception, performance improves on BLINK, with only a minor drop on MuirBench. Finally, CRUX
enhances MP-DocVQA results, underscoring improved reasoning over long, multi-page documents.

5.4 IMPACT OF DATA SCALING

Furthermore, we demonstrate the effectiveness of automatic data augmentation using off-the-shelf
models in enhancing cross-modal multi-hop reasoning capabilities. We augment the CRUX training
set based on natural images. Specifically, we generate scene graphs with the scene graph genera-
tion model EGTR (Im et al., 2024) and generate object attributes with Qwen2.5-VL. Through this
process, we construct additional 100K QA pairs. The training results are shown in Table 5. Fine-
tuing with augmented CRUX leads to substantial performance gains, showing approximately 164%
and 10% relative improvements on the F1 score for natural images compared to the non–fine-tuned
model and the model fine-tuned on CRUX, respectively. For scientific papers, the augmented CRUX
also achieves relative improvements of approximately 120% and 3% compared to the non–fine-tuned
model and the model fine-tuned on CRUX, respectively. However, the effect of data augmentation
is limited for video domain. We conjecture that this is due to the difference in data characteristics:
while natural images consist of independent images, video still frames are composed of sequential
images. Moreover, the distribution differs because the number of QA pairs generated from natural
images is substantially larger, which we believe contributed to this outcome. Despite these limita-
tions, data augmentation with model-generated data demonstrates scalable and robust improvements,
highlighting the strength of our pipeline for enriching multimodal reasoning tasks.

6 CONCLUSION

We explored the challenge of cross-modal multi-hop reasoning, where solving a task requires weav-
ing together complementary evidence from interleaved text and images. To advance this capability,
we introduced CRUX, built through a novel graph-based pipeline that yields scalable, high-quality
training and evaluation data. Fine-tuning on CRUX delivers notable gains across diverse bench-
marks, and our augmentation experiments demonstrate a practical path to further scaling. We believe
CRUX provides a foundation for developing models with more robust and grounded multimodal rea-
soning.
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A APPENDIX

A.1 HUMAN VERIFICATION GUIDELINE

For each sample, raters are provided with:

• One or more images (e.g., natural photographs, video frames, or figures from research
papers).

• A textual context (such as generated descriptions or filtered text).
• A question and its corresponding answer.
• The subgraph used to generate the question–answer pair.

A.1.1 GUIDELINE FOR TASK

The task of the rater is to judge whether the given question–answer pair constitutes a valid example
of cross-modal multi-hop reasoning. Each sample must be classified into one of three categories:

• Keep: Valid example that should be included in the benchmark.
• Discard: Invalid example that should not be included in the benchmark.
• Unsure: Uncertain case that requires further review or discussion.

A.1.2 CHECKLIST FOR DECISION-MAKING

To ensure consistency, the raters receive a checklist to decide whether to Keep or Discard a sample.

Keep the sample if:

• The question can only be answered by integrating both image(s) and text.
• The reasoning requires multi-hop inference (chaining across multiple entities, edges, or

modalities).
• The answer is correct, unambiguous, and consistent with the given evidence.
• The question is natural, clear, and does not contain awkward phrasing or hallucinations.
• There is only one answer and no other alternatives that fit the evidence.

Discard the sample if:

• The question can be answered using only text or only image(s) without cross-modal rea-
soning.

• The reasoning does not actually require multi-hop (i.e., a single entity lookup is enough).
• The answer is incorrect, incomplete, or contradictory.
• The question is ill-posed (ambiguous, nonsensical, ungrammatical, or explicitly revealing

the reasoning trace).
• The question ignores information from the subgraph or incorrectly conveys relationships.
• There are multiple valid answers or the answer is subjective.
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A.2 PROMPTS FOR DATA GENERATION

A.2.1 GRAPH CONSTRUCTION PROMPT

We employ six types of Text Node Generation Prompts. Below, we present three representative
examples. In addition, we include the Edge Generation Prompt.

Text Node Generation Prompt Type 1
You are generating a fact about an object or entity that appears in an image.

Inputs you will receive:
- Object: the target entity.
- Image Caption: a one-sentence description of the whole image involving the object/entity.
- Object Caption: a short description focusing specifically on the object/entity.

Task:
Generate exactly one NEW fact about the object/entity in the category: Authorship / Creation
/ Discovery.

Rules:
- The fact must be NON-VISUAL (cannot be inferred from appearance or caption).
- The fact must be NON-COMMONSENSE (not universally true or obvious).
- Do not contradict either caption.
- Avoid mythical, fantasy, or obviously fictional names, rituals, or events.
- Names can be synthetic but should sound plausible.

Output format (JSON only):
{{
"subject": "<the given object/entity>",
"relation": "<the relation type>",
"object": "<the new entity, formatted as ’type (name)’>"
}}

Examples:
- {{"subject": "chair", "relation": "designed by", "object": "artisan (Liora Vex)"}}
- {{"subject": "compass", "relation": "invented by", "object": "engineer (Tavian Sorrell)"}}
- {{"subject": "man", "relation": "discovered", "object": "invention (Quantum Lens)"}}

Object: {object}
Image Caption: {image_caption}
Object Caption: {object_caption}

Figure 3: Text Node Generation Prompt Type 1.
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Text Node Generation Prompt Type 2
You are generating a fact about an object or entity that appears in an image.

Inputs you will receive:
- Object: the target entity.
- Image Caption: a one-sentence description of the whole image involving the object/entity.
- Object Caption: a short description focusing specifically on the object/entity.

Task:
Generate exactly one NEW fact about the object/entity in the category:
Human Involvement / Institutional Association.

Rules:
- The fact must be NON-VISUAL (cannot be inferred from appearance or caption).
- The fact must be NON-COMMONSENSE (not universally true or obvious).
- Do not contradict either caption.
- Avoid mythical, fantasy, or obviously fictional names, rituals, or events.
- Names can be synthetic but should sound plausible.

Output format (JSON only):
{{
"subject": "<the given object>",
"relation": "<the relation type>",
"object": "<the new entity, formatted as ’type (name)’>"
}}

Examples:
- {{"subject: "man", "relation": "employed by", "object": "company (TechNova)"}}
- {{"subject: "boy", "relation": "friend of", "object": "person (Elias Thorn)"}}

Object: {object}
Image Caption: {image_caption}
Object Caption: {object_caption}

Figure 4: Text Node Generation Prompt Type 2.
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Text Node Generation Prompt Type 3
You are generating a fact about an object or entity that appears in an image.

Inputs you will receive:
- Object: the target entity.
- Image Caption: a one-sentence description of the whole image involving the object/entity.
- Object Caption: a short description focusing specifically on the object/entity.

Task:
Generate exactly one NEW fact about the object/entity in the category:
Temporal / Historical Facts.

Rules:
- The fact must be NON-VISUAL (cannot be inferred from appearance or caption).
- The fact must be NON-COMMONSENSE (not universally true or obvious).
- Do not contradict either caption.
- Avoid mythical, fantasy, or obviously fictional names, rituals, or events.
- Names can be synthetic but should sound plausible.

For years/ages, make them synthetic but plausible (e.g., "year (2005)", "4 years").
Every object exists in the current year so the year or age should not be out of
a reasonable range.

Output format (JSON only):
{{
"subject": "<the given object>",
"relation": "<the relation type>",
"object": "<the new entity, formatted as ’type (name)’>"
}}

Examples:
- {{"subject": "car", "relation": "manufactured in", "object": "year (2005)"}}
- {{"subject": "dog", "relation": "has age", "object": "4 years"}}
- {{"subject": "spoon", "relation": "made in", "object": "year (2010)"}}

Object: {object}
Image Caption: {image_caption}
Object Caption: {object_caption}

Figure 5: Text Node Generation Prompt Type 3.
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Edge Generation Prompt
You are given a list of entities in the format "type (name)".
Your task is to generate plausible synthetic relations between these entities.

### Rules:
- Each output must be a JSON object with the format:
{{

"subject": "<entity from the list>",
"relation": "<synthetic relation connecting it to another entity>",
"object": "<entity from the list>"

}}

- The ’subject’ and ’object‘’ must always come from the given list.
- Relations must be plausible. If there is no reasonable relation, the output should be
an empty list.
- Do not invent new entities outside of the given list.
- Output only a list of JSON objects (no extra text).

### Example:
Input:
["institution (Museum of Oracles)", "event (Expo 2020)", "artifact (Singing Blade)",
"concept (Eternal Silence)"]

Output:
[

{{"subject": "institution (Museum of Oracles)", "relation": "preserves",
"object": "artifact (Singing Blade)"}},

{{"subject": "concept (Eternal Silence)", "relation": "inspires",
"object": "artifact (Singing Blade)"}},

{{"subject": "event (Expo 2020)", "relation": "hosts",
"object": "institution (Museum of Oracles)"}},

{{"subject": "artifact (Singing Blade)", "relation": "represents",
"object": "concept (Eternal Silence)"}},

{{"subject": "institution (Museum of Oracles)", "relation": "exhibits",
"object": "event (Expo 2020)"}},

]

### Input:
{list_of_entities}

### Output:

Figure 6: Edge Generation Prompt.
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A.2.2 TEXTUAL CONTEXT GENERATION PROMPT

For the Textual Context Generation Prompt, we define a set of diverse context types. These include
Story/Narrative, Newspaper Article, Comedy Sketch, Diary Entry, Poem, Song Lyrics, Documentary
Script, Blog Post, Motivational Speech, Promotional Article, Movie Scene Description, and Social
Media Post. We randomly use one of them in each prompt.

Textual Context Generation Prompt
You are writing a {context_type}.

The following entities and relations must be included:

Entities:
[Entities list]

Relations:
[Relations list]

Detailed Guidelines:
1. Explicit Image References
- Every entity that contains "(Image N)" MUST be explicitly tied to its image number in the
text. Do this by phrases like "as seen in image N", "shown in image N", or "visible in
image N".
- Every entity that contains "(Image)" MUST be described as appearing in that image. Do this
by phrases like "as seen in the image", "shown in the image", or "visible in the image".
- Example: Instead of writing "The telephone pole is maintained by Veridian Grid Solutions",
write "The telephone pole shown in image 1 is maintained by Veridian Grid Solutions."

2. Inclusion of All Entities & Relations
- Every entity listed above MUST appear in the generated text.
- Every relation MUST be expressed clearly, connecting the subject and object naturally.
- You may rephrase the relation semantically, but the meaning must remain intact.

3. Integration into Natural Writing
- Blend the entities and relations into a flowing narrative appropriate for the chosen
context type ({context_type}).
- Avoid bullet-point style in the output; it must read like a coherent piece of writing.
- The writing should be creative but faithful to the factual structure provided.

4. No Contradictions or New Visual Details
- Do NOT invent or assign new visual attributes to entities (e.g., do not say "the pole is
red" if not given).
- You may add context, background, or imaginative framing, but it must not contradict the
given information.

5. Optional Creative Expansion
- You may enrich the text with atmosphere, tone, or style fitting the chosen context type.
- Added information must support, not override, the provided facts

Figure 7: Textual Context Generation Prompt.
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A.2.3 QUESTION-ANSWER PAIR GENERATION PROMPT

Question-Answer Pair Generation Prompt
You are given a list of structured graph triples sampled from a graph. Each triple is a
JSON object with the keys "subject", "relation", and "object". Your task is to generate a
multi-step question that requires reasoning across ALL the provided triples step-by-step.
The question must not be answerable using only a subset of the triples.

Guidelines:
- The question must not mention any entities that should be inferred. All the intermediate
entities should be inferred step-by-step.
- The final answer to the question must be the last "object" entity in the last triple
- Always mention the image reference in the question if it exists
(e.g., "object in the image").
- Break the question into two sentences if it is too long or complex to keep it clear and
understandable in one sentence. The second sentence should add new context, not repeat
the same information from the first.

Generate a multi-step question and answer, and respond with ONLY a valid JSON object in the
following format:
{{
"question": "...",
"answer": "..."

}}

Triples:
[
{{"subject": "blue", "relation": "is the color of", "object": "cord (Image)"}},
{{"subject": "cord", "relation": "used during", "object": "event (Product Launch Demo)"}},
{{"subject": "event (Product Launch Demo)", "relation": "event (Product Launch Demo)

hosts utility company (Veridian Grid Solutions)", "object": "utility company (Veridian
Grid Solutions)"}},

{{"subject": "utility company (Veridian Grid Solutions)", "relation": "utility company
(Veridian Grid Solutions) maintained by telephone pole", "object": "telephone pole"}},

{{"subject": "telephone pole (Image)", "relation": "is", "object": "black"}}
]
Notes:
- The answer must be "black" because it is the last object in the last triple.
- The following entities should not be mentioned directly in the question as they
are inferred step-by-step: cord, event (Product Launch Demo), utility company (Veridian
Grid Solutions), telephone pole.
Output:
{{
"question": "What is the color of the object in the image that maintains the company that
hosts the event, where the event uses a blue object that is to the left of camera?",
"answer": "black"

}}

Triples:
[
{{"subject": "research team (Savanna Ecology Project)", "relation": "research team

(Savanna Ecology Project) studied giraffe", "object": "giraffe"}},
{{"subject": "giraffe (Image)", "relation": "is", "object": "walking"}}

]
Notes:
- The answer must be "walking" because it is the last object in the last triple.
- The following entity should not be mentioned directly in the question as it is inferred
step-by-step: giraffe.
Output:
{{
"question": "What is the entity in the image doing that is studied by the research team
known as the Savanna Ecology Project?",
"answer": "walking"

}}

Triples:
[
{triples}

]
The answer must be "{last_object}" because it is the last object in the last triple.
The following entities should not be mentioned directly in the question as they are inferred
step-by-step: {’, ’.join(intermediate_objects)}.
Output:

Figure 8: Question-Answer Pair Generation Prompt.
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A.2.4 COT RESPONSE GENERATION PROMPT

CoT Response Generation Prompt
You are given a question, its correct answer, and a subgraph that contains the entities and
relations supporting the QA pair.
Your task is to generate a detailed chain-of-thought reasoning output that explains step by
step how the answer follows from the question.

Requirements for the reasoning:
1. Explicitly mention the source of each piece of information:
- If the evidence comes from an image, say "from image X".
- If the evidence comes from a figure/table, say "from figure/table Y".
- If no image or figure/table is involved, assume the information is from the text context

and say "from the text context".
2. Trace through the relevant entities and relations in the subgraph in logical order.
3. End with the conclusion that matches the provided answer.
4. The reasoning should read naturally, as if another model is thinking through the problem

step by step.
5. Assume the reader is looking at the images/figures/tables and the text context to answer

the question.
6. The subgraph is only for reference. The actual reader will not see the subgraph so don’t

generate as if the reader is seeing the subgraph. Don’t say anything like "from the
subgraph", "the relation shows", or "the entity indicates".

7. Do not generate any unnecessary reasoning steps that repeat the same information which is
already mentioned in previous steps.

Question: What action is performed by individual trained at the institution in the image?
Answer: continues dancing around room
Subgraph: [
{{’subject’: ’institution (Central Academy of Contemporary Movement)’,
’object’: ’young woman’,
’relation’: ’young woman trained under institution

(Central Academy of Contemporary Movement)’}},
{{’subject’: ’young woman’,
’object’: None,
’relation’: ’dancing around room’,
’image’: ’image 3’}}]

Chain-of-thought reasoning:
The question asks what action is performed by the person trained at the institution.
From the text context, the institution is the Central Academy of Contemporary Movement,
and a young woman trained there.
From image 3, I can see the woman is dancing around the room.
Therefore, the action performed is dancing around room.

Question: What method has lower time cost compared to the another method that is based on an
algorithm used to obtain the traditional CVT through iterative updates until
convergence?

Answer: time cost
Subgraph: [
{{’source_entity’: "Lloyd’s algorithm",
’target_entity’: ’CVT’,
’relationship_description’: "The traditional CVT is usually obtained by Lloyd’s algorithm,
iteratively performing updates after each assignment step until convergence is reached."}},

{{’source_entity’: ’SLIC’,
’target_entity’: "Lloyd’s algorithm",
’relationship_description’: "SLIC generates superpixels based on Lloyd’s algorithm"}},

{{’source_entity’: ’SLIC’,
’target_entity’: ’FLIC’,
’relationship_description’: ’FLIC’s time cost is lower than SLIC’s time cost’,
’figure’: ’Figure 4’}}]

Chain-of-thought reasoning:
The question asks about what method has lower time cost compared to another method based on
an algorithm for computing the traditional CVT.
From the text context, the traditional CVT is obtained by Lloyd’s algorithm, which
iteratively updates until convergence.
From the text context, the method SLIC is based on Lloyd’s algorithm.
From Figure 4, it is shown that FLIC’s time cost is lower than SLIC’s time cost.
Therefore, the method with lower time cost is FLIC.

Question: {question}
Answer: {answer}
Subgraph: {subgraph}
Chain-of-thought reasoning:

Figure 9: CoT Response Generation Prompt.
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A.2.5 CAPTION-TO-GRAPH CONVERSION PROMPT

Video Caption to Graph Conversion Prompt
You will be given a list of captions (one per scene, in order).
Each caption is paired with a time range.

Your job is to produce BOTH a global entity inventory and per-scene graphs, in two separate
sections.

REQUIREMENTS:

1. Entities section:
- Deduplicate entities across all captions into a single global inventory.
- Assign IDs as stringified integers ("1","2","3").
- Always include "attributes": [].
- Attributes = static/descriptive properties (e.g., "red", "wooden", "wearing hat").
- Do not include transient states (e.g., "sitting", "throwing") here.
- If multiple similar entities are indistinguishable -> group them (e.g., "two dogs").
- If entities are clearly distinct -> create differentiated forms (e.g., "bag_1", "bag_2").
- Do not include interactions with other entities here.
- IMPORTANT: If two entity mentions occur in overlapping or adjacent time ranges, they are
considered coreference *candidates*.

- Merge them into the same global entity only if the semantics clearly indicate they are
the same entity
- (e.g., "former president" at 3s-10s and "man gives a speech" at 5s-12s).

2. Scenes section:
- Each caption corresponds to a scene labeled "Scene N" with its time range (use the given
order, even if time ranges overlap).
- Each scene has a key "relations".
- "relations" is a list of relation triples for that scene.
- Each relation triple must have:

- "source": source entity ID
- "target": target entity ID OR null (if no second entity is involved)
- "relation": a **brief phrase** (not a full sentence) that concisely describes the
action or interaction
(e.g., "dog chases cat", "man hands bag to woman", "gives a speech").

- A relation exists if:
- At least two distinct entities interact, OR
- A single entity performs an action (then target = null).

- If no valid relations exist for a scene, output "relations": [].

3. General:
- Separate the "entities" section from the "scenes" section.
- Keep relations directional and minimal; avoid redundant inverses.
- Do not invent entities not grounded in captions.

OUTPUT FORMAT:

{{
"entities": [

{{"id":"1","entity":"ENTITY NAME","attributes":[]}}
],
"scenes": [

{{
"scene":"scene_1",
"relations":[

{{"source":"1","target":"2","relation":"brief phrase describing interaction between entity 1
and entity 2"}},

{{"source":"1","target":null,"relation":"solo action"}}
]
}}

]
}}

INPUT CAPTIONS:
{annotated}

Figure 10: Video Caption to Graph Conversion Prompt.
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A.2.6 GRAPH TRANSFORMATION FOR PARAGRAPH NOT CONTAINING FIGURE REFERENCE
PROMPT

Paragraph(without figure reference) to Graph Transformation Prompt
-Goal-
Given a scientific text and a list of scientific entities, identify ALL relations
expressed in the paragraph.

-Steps-
1. Use the paragraph text only (no figures/tables).
2. Extract any relation between entities that is explicitly stated in the text.
3. For each valid relation, output a JSON object with:

- source_entity (must come from the provided entities list)
- target_entity (must come from the provided entities list, or null if not applicable)
- relationship_description (short, factual, and grounded in the text)

4. Do NOT invent entities that are not in the input entities list.
Do NOT invent relations and do NOT use prior knowledge.

5. Output must be valid JSON as a list of relation objects (not wrapped in another key).
6. Each relation dictionary must be one line (compact JSON style).
7. Do not include any text outside the JSON.
8. If there are no relations, return an empty list: []

Output Format Example:
[
{{"source_entity": "Entity1", "target_entity": "Entity2", "relationship_description":

"Description of relation grounded in text"}},
{{"source_entity": "Entity3", "target_entity": null, "relationship_description":

"Another relation grounded in text"}}
]

######################
Entities:
{entities_json}

Referenced Paragraph:
{paragraph}

######################
Output (JSON only):

Figure 11: Paragraph(with figure reference) to Graph Transformation Prompt.
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A.2.7 GRAPH TRANSFORMATION FOR PARAGRAPH CONTAINING FIGURE REFERENCE
PROMPT

Paragraph(with figure reference) to Graph Transformation Prompt
-Goal-
Given a scientific text (with one or more figure/table captions and references)
and a list of scientific entities, identify ONLY the relations that are
explicitly supported by the figures/tables.

-Steps-
1. Use both the paragraph text and the provided figures/tables.
2. Extract a relation ONLY IF it is directly grounded in the figure or table:
- Numerical results or metrics reported in the figure/table. Include numerical values if
available.
- Explicit comparisons shown in the figure/table (e.g., "X outperformed Y").
- Visual descriptors of figure elements (e.g., "yellow line corresponds to Model A").

3. Ignore the following completely:
- Interpretations, hypotheses, or explanations
(e.g., "improvements are due to larger size").
- Background details (methods, datasets, phases, tasks, architectures).

4. For each valid relation, output a JSON object with:
- source_entity (must come from the provided entities list)
- target_entity (must come from the provided entities list, or null if not applicable)
- relationship_description (short, factual, and grounded in the figure/table)
- figure (the figure_label where the relation is supported, never null)
- idx (list of one or more sentence indices where relation appears, e.g. [0] or [1,2])

5. Do NOT invent entities that are not in the input entities list. Do NOT invent relations
and do NOT use prior knowledge.

6. Output must be valid JSON as a list of relation objects (not wrapped in another key).
7. Each relation dictionary must be one line (compact JSON style).
8. Do not include any text outside the JSON.
9. If there are no figure/table-grounded relations, return an empty list: []

Output Format Example:
[
{{"source_entity": "Entity1", "target_entity": "Entity2", "relationship_description":

"Description of relation grounded in figure/table", "figure": "FigureX", "idx": [0]}},
{{"source_entity": "Entity3", "target_entity": null, "relationship_description":

"Another relation grounded in figure/table", "figure": "TableY", "idx": [1,2]}}
]

######################
Figures:
{figures_json}

Entities:
{entities_json}

Indexed Paragraph Sentences:
{sentences_text}

######################
Output (JSON only):

Figure 12: Paragraph(with figure reference) to Graph Transformation Prompt.
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Under review as a conference paper at ICLR 2026

A.3 QUALITATIVE EXAMPLES OF CRUX BENCHMARK

[ Image 1 ]

[ Image 2 ]

[ Image 4 ]

Interleaved Image-Text Context Question

What color is the item in the image that is 
engineered by the designer responsible for the 
concept symbolized by the structure the person 
is touching?

Answer

Silver

[ Image 3 ]

2

3

… the man—whose name, according to the gym’s 
outdated sign, is “Greg”—is currently engaged in what 
the Alpine Rescue Academy (Alpine Rescue Academy) 
once called a controlled challenge. A concept
(controlled challenge) so profound, it was designed by
designer Elias Truven in 1983, the same year the 
organization itself was founded. …

… Greg, though we’ll never know his real name—
trained by the Alpine Rescue Academy. A man who 
once thought “controlled challenge” meant “don’t 
panic when you’re 20 feet up a wall with no idea how 
to get down.” He was told the wall symbolizes concept
(controlled challenge), but he just sees it as a wall. …

… And speaking of carabiners—this one, visible in the
image, was engineered by Elias Truven himself. A man 
so precise, he once calibrated a coffee grinder to 
measure the exact moment a bean should pop. He also 
advised Mira Tollen on her rope tension algorithms. …

… The hook, visible in the image, was originally 
crafted by artisan Mael Tobin—yes, the same Mael 
Tobin who once made a chandelier out of old bicycle 
chains and a broken toaster. …

Chain of Thoughts

From image 1, the man is touching climbing wall.1

From image 2, color of the carabiner is silver.5

From text context, climbing wall symbolizes 
concept(controlled challenge).

2

From text context, concept(controlled challenge) is 
designed by designer Elias Truven.

3

From text context, carabiners were engineered by Elias 
Truven himself.

4

The question asks about the color of the item that is 
engineered by the designer responsible for the concept 
symbolized by the structure the person is touching.

1

5

4

Figure 13: CRUX example from video source.

Interleaved Image-Text Context Question

What happens when the component that is part 
of the method designed to neutralize the adverse 
effects of community bias on other modalities is 
removed?

Answer

Removing text-feature alignment leads to worse 
results than removing text-to-text alignment.

Chain of Thoughts

From text context, Cross-lingual Text Alignment 
Regularization neutralizes the adverse effects of 
community bias on other modalities.

1

From text context, text-feature alignment is a sub-
component of Cross-lingual Text Alignment 
Regularization.

2

From image 3, removing text-feature alignment leads to 
worse results than removing text-to-text alignment

3

The question asks about the effect when the component 
that is part of the method designed to neutralize the 
adverse effects of community bias on other modalities is 
removed.

… To mitigate this bias and potential risks, we
introduce Cross-lingual Text Alignment Regularization
(CTR) to learn language-independent text
representations and neutralize the adverse effects of
community bias on other modalities. CTR comprises
three components: Text augmentation \hspace{2mm} 
We first adopt the dropout strategy …

… Text-feature alignment \hspace{2mm}To further 
alleviate information redundancy and obtain the 
shared cross-lingual text representation, we first 
normalize the augmented embedding pairs 𝑍𝑒

𝐴

, 𝑍𝑒
𝐵ℝ𝑁𝐷 … Text-to-text alignment : Similarly, the text-

to-text alignment decorrelates the cross-correlation 
matrix along with feature dimension D. …

… Researchers have used machine-translated non-
English corpora and techniques like masked language 
model (MLM) and contrastive learning to unify cross-
lingual representations . However, MLM-based 
representations still separate languages, as shown in 
Fig \ref{1a} and \ref{1b}. …

… Visualization of image embeddings with or without 
CTR. fig: tsne img vis \end{wrapfigure} In all tasks, 
the combinations of all learning objectives achieve the 
highest performance, highlighting each component's 
crucial role in Med-UniC. Med-UniC, when integrated 
with CTR, …

[ Image 1 ]

[ Image 2 ]

[ Image 3 ]

[ Image 4 ]

3

1

2

2

Figure 14: CRUX example from scientific paper source.
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