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Abstract

Recently, deep learning has made rapid progress in antibody design, which plays a key role
in the advancement of therapeutics. A dominant paradigm is to train a model to jointly gen-
erate the antibody sequence and the structure as a candidate. However, the joint generation
requires the model to generate both the discrete amino acid categories and the continuous
3D coordinates; this limits the space of possible architectures and may lead to suboptimal
performance. In response, we propose an antibody sequence-structure decoupling (ASSD)
framework, which separates sequence generation and structure prediction. Although our ap-
proach is simple, our idea allows the use of powerful neural architectures and demonstrates
notable performance improvements. We also find that the widely used non-autoregressive
generators promote sequences with overly repeating tokens. Such sequences are both out-
of-distribution and prone to undesirable developability properties that can trigger harmful
immune responses in patients. To resolve this, we introduce a composition-based objective
that allows an efficient trade-off between high performance and low token repetition. ASSD
shows improved performance in various antibody design experiments, while the composition-
based objective successfully mitigates token repetition of non-autoregressive models.

1 Introduction

Antibodies are Y-shaped proteins that detect and neutralize the disease-causing agents. Due to high speci-
ficity and binding affinity, they are recognized as one of the most promising drug modalities (Mullard, 2022).
Historically, antibody development relied on experimental and physics-based computational approaches,
which are laborious and time-consuming (Kim et al., 2023). In response, there is a growing trend to inte-
grate deep learning-based approaches for antibody development.

Early deep generative models (Liu et al., 2020; Saka et al., 2021; Akbar et al., 2022) focused only on designing
the antibody sequences, neglecting the importance of antibody structure in functionality (Martinkus et al.,
2024). To address this, Jin et al. (2021) proposed the sequence-structure co-design to generate both antibody
sequences and structures. Many works made notable progress, including Jin et al. (2021); Verma et al. (2023);
Kong et al. (2022); Luo et al. (2022); Wu & Li (2024). Such models are based on the joint prediction of
sequence and structure with a common architecture for both tasks. However, this restricts task-specific
optimization of model architectures, potentially hindering higher sequence-structure modeling performance.
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Additionally, recent works (Melnyk et al., 2023; Kong et al., 2022; Verma et al., 2023; Kong et al., 2023)
show that sequence generation with non-autoregressive models1 achieves faster inference speed and better
performance than the autoregressive counterparts, with its efficacy even extending to protein design (Gao
et al., 2022; Zheng et al., 2023). However, we find that such models generate sequences that are dispro-
portionately dominated by frequently occurring amino acid type (e.g., the natural sequence ARMGSDYDVWFDY
versus non-autoregressive prediction TRYYYYYYYYYDY). Such sequences are out-of-distribution and prone to
undesirable developability properties that can trigger harmful immune responses in patients (Jin et al., 2021;
Wang et al., 2009).

Contribution. In this paper, we propose antibody sequence-structure decoupling (ASSD), a general frame-
work for constructing a highly performant antibody sequence-structure co-design model. Our idea is to
leverage Anfinsen’s dogma, which states that the native conformation of a protein is determined by amino
acid sequence (Anfinsen, 1973). To this end, instead of joint prediction, we decouple the sequence-structure
design into two steps: a sequence design step followed by a structure prediction step. This decoupling ap-
proach is desirable since it allows the suitable choice of model architectures for each task and enables the use
of large-scale sequence databases (without structure information) during the sequence design step. Despite
the simplicity, such a decoupling of sequence-structure co-design has been overlooked in previous works.

We also propose a composition-based objective for antibody sequence generation that resolves the token
repetition problem of non-autoregressive models. Specifically, our key idea is to augment the MLE objective
with the maximization of similarity between amino acid compositions of generated and target sequences. To
this end, we use REINFORCE trick (Williams, 1992; Fu et al., 2015) with respect to the composition vector
which accounts for the rate of amino acids appearing in the sequences. Our idea is to let the model implicitly
learn the dependency between the residues within a sequence, effectively preventing excessive repetition of
any single amino acid.

Our experiments demonstrate that our sequence-structure decoupling approach improves performance in
various antibody design experiments, while our training algorithm effectively prevents excessive token rep-
etitions. Notably, our approach establishes a Pareto frontier over other non-autoregressive antibody design
models, indicating optimal trade-offs between high sequence modeling capacity and low token repetition.
Additionally, we demonstrate that our training algorithm can be generalized to protein design.

2 Related work

Antibody design. Many pioneering works on antibody design predicts only 1D sequences using CNN and
LSTM (Liu et al., 2020; Saka et al., 2021; Akbar et al., 2022). Recently, Melnyk et al. (2023) improved
1D sequence modeling performance by repurposing a pre-trained Transformer-based English language model
for sequence infilling. Frey et al. (2023) also demonstrated the potential of energy/score-based models for
antibody sequence design with a walk-jump sampling scheme.

Instead of designing only 1D sequences, Jin et al. (2021) proposes sequence-structure co-design, which involves
both 1D sequence and 3D structure infilling of CDRs. Specifically, Jin et al. (2021) represents the antibody-
antigen complex with an E(3)-invariant graph and predicts the sequence in an autoregressive fashion. On
the contrary, Kong et al. (2022) constructs an E(3)-equivariant graph to fully capture the 3D geometry and
predicts sequence by a full-shot decoding scheme to speed up inference. Verma et al. (2023) formulates a
coupled neural ODE system over the antibody nodes and further increases inference speed with a single round
of full-shot decoding. Wu & Li (2024) introduces a four-level training strategy with various protein/antibody
databases. Unlike deterministic GNN-based methods, Luo et al. (2022) and Martinkus et al. (2024) adopt
diffusion probabilistic models to generate structures stochastically. Notably, Frey et al. (2023); Martinkus
et al. (2024) supports their approach with laboratory experiments.

Previous approaches predict the sequence and structure jointly, except Martinkus et al. (2024) which intro-
duces a structure-to-sequence decoupling strategy. However, this approach constrains itself to the Structural
Antibody Database (SAbDab) (Dunbar et al., 2014), which is orders of magnitude smaller than sequence

1In this paper, we limit our focus to one- or few-shot non-autoregressive models.
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Figure 1: Schematic structure of an antibody. An antibody consists of a pair of heavy and light chains,
each containing a variable region and constant regions. The variable region consists of three complementarity-
determining regions (CDRs) and its complement called the framework regions. We aim to design heavy chain
CDRs, which contribute the most to antibody-antigen interaction.

databases like the Observed Antibody Space (OAS) (Olsen et al., 2022). In this work, we demonstrate the
superiority of sequence-to-structure decoupling over joint prediction strategy.

Protein design. Due to their relevance, methods in protein design can offer valuable insights into antibody
design. Ingraham et al. (2019) represents the protein structure with a k-nearest neighbor graph and applies
a Transformer-based encoder-decoder model to predict the sequences autoregressively. To fully capture
the complex geometry within the graphs, Jing et al. (2020) introduces geometric vector perceptrons that
can replace MLPs in GNNs. Tan et al. (2023) introduces an additional global module that captures the
global context of the protein structure. To enable an application to a wide range of protein design problems,
Dauparas et al. (2022) adopts an order-agnostic autoregressive model with random decoding orders. Instead,
Gao et al. (2022) adopts a one-shot decoding scheme and drastically improves the inference speed. Recently,
Zheng et al. (2023) showed state-of-the-art performance by incorporating a lightweight structural adapter
into a protein language model.

Notably, Melnyk et al. (2023); Kong et al. (2022); Verma et al. (2023); Gao et al. (2022); Zheng et al. (2023)
adopt non-autoregressive factorization trained with MLE objective or its slight variations. In this paper, we
showcase that this approach promotes highly repetitive sequences and propose a novel training strategy to
mitigate this problem while maintaining a comparable level of performance.

3 Preliminaries and notations

Preliminaries. As shown in Figure 1, an antibody consists of a pair of light chains and heavy chains.
Both the light chain and heavy chain are composed of a variable region (VL;VH) and constant region(s)
(CL; CH1, CH2, CH3). Each variable region could be further decomposed into three complementarity-
determining regions (CDR-L1, CDR-L2, CDR-L3; CDR-H1, CDR-H2, CDR-H3) and a framework region,
which is the complement of CDRs. Following previous works (Jin et al., 2021; Kong et al., 2022; Verma
et al., 2023; Luo et al., 2022; Melnyk et al., 2023), we narrow the scope of our task to sequence-structure
co-design of heavy chain CDRs as they contribute the most to antibody-antigen interaction.

Notations. We denote the amino acid vocabulary set with A. Let L be the number of residues in CDR.
We denote the ground-truth sequence and structure of a heavy chain CDR as s = (s1, . . . , sL) and x =
(x1, . . . , xL) and the predicted sequence and structure as ŝ and x̂. We denote all conditional information
(e.g., framework region, antigen, initializations) as c.

4 Methods

Here, we provide an overview of this section. Our goal is to train a non-autoregressive generator that can
generate the sequence of amino acids and the associated 3D information conditioned on some semantic
information. Motivated by Anfinsen’s dogma, which states that the protein structure is determined by
its amino acid sequence (Anfinsen, 1973), we propose an antibody sequence-structure decoupling (ASSD)
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Figure 2: Overview of antibody sequence-structure decoupling (ASSD) framework. ASSD first
designs CDR sequences with a sequence design model and then predicts the corresponding structure with
a sequence-to-structure model. s, x are the ground-truth, and ŝ, x̂ are the predicted CDR sequence and
structure. c denotes conditional information, e.g., framework region, antigen, and sequence/structure ini-
tialization.

framework that decouples sequence-structure co-design into the sequence design step (Section 4.2), followed
by the structure generation step (Section 4.3). Additionally, we resolve excessive token repetition of non-
autoregressive models with a composition-based sequence-level objective (Section 4.2).

4.1 Problem formulation & algorithm overview

Problem statement. We first formulate our problem for designing an antibody. Following previous
works (Jin et al., 2021; Kong et al., 2022; Verma et al., 2023; Luo et al., 2022; Melnyk et al., 2023), we
narrow the scope of our task to sequence-structure co-design of heavy chain complementarity-determining
regions (CDRs) in the antibody as they contribute the most to antibody-antigen interaction. The heavy
chain CDRs are represented by an amino acid sequence associated with 3D positions. We provide more
information on the antibody structure in Figure 1.

To be specific, we let A denote the amino acid vocabulary set and L the number of residues in the CDR.
The CDR is represented by the sequence s = (s1, . . . , sL) and the positional information x = (x1, . . . , xL)
where si ∈ A corresponds to a particular type of amino acid and xi ∈ Rm×3 the associated 3D positional
information with m backbone atoms. Our goal is to train a generator pθ(s, x|c) for the amino acid sequence
s and the positional information x, given the conditional information c, e.g., the framework region, antigen,
and initialization.

Algorithm overview. In ASSD, we parameterize the generator pθ,ϕ(s, x|c) as a sequential composition of
sequence design module pθ(s|c) and the structure prediction module pϕ(x|s, c), i.e., we let pθ,ϕ(s, x|c) =
pθ(s|c)pϕ(x|s, c). This decoupling is motivated by a well-known postulate in molecular biology, called
Anfinsen’s dogma, which states that the native conformation of a protein is determined solely by its amino
acid sequence (Anfinsen, 1973). We provide an overview of our algorithm in Figure 2.

Additionally, we consider a non-autoregressive sequence generative model where the amino acids are predicted
independently from each other, i.e., pθ(s|c) =

∏L
i=1 pθ(si|c), as recent works (Kong et al., 2022; 2023;

Verma et al., 2023; Zheng et al., 2023) demonstrate both faster speed and better performance compared
to the autoregressive counterparts. However, since the non-autoregressive models generate sequences with
excessively repetitive tokens, we propose a new loss function to prevent this.

4.2 Sequence design

In this section, we introduce the training algorithm and implementation details for a sequence-only antibody
design model pθ(s|c). Our insight is that the repetitive tokens from the generator stem from the mode-
covering behavior of MLEs, i.e., each amino acid prediction aims for an average of different modes, i.e., the
most frequent element. To overcome this limitation, we augment MLE training with a new mode-seeking
training objective based on the compositional similarity of protein sequences that mitigates the repetitive
token problem.
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Figure 3: Example
to illustrate token
repetition problem.

Intuitions for repetitive sequences. We are motivated by the observation that
non-autoregressive sequence generators exhibit the degenerate behavior of generating
excessive token repetitions, e.g., s = ARGYYYYYYY where A, R, G, Y ∈ A are the possible
types of amino acids. However, this is critical evidence that the generator fails to
learn the underlying dataset – i.e., the generated sequences are out-of-distribution.
Also, overly repetitive sequences should be avoided since they may cause developabil-
ity issues such as aggregation that trigger harmful immune responses in patients (Jin
et al., 2021; Wang et al., 2009).

To better illustrate this problem, consider a hypothetical example with five possible
amino acids {A, R, G, Y, D}. The training dataset consists of the same conditional in-
formation c and sequences s in Figure 3. The MLE objective of a non-autoregressive
model pθ(s|c) =

∏L
i=1 pθ(si|c) is given by

LMLE(θ) =
N∑

n=1

L∑
i=1

log pθ(s(n)
i |c) =

L∑
i=1

N∑
n=1

ℓce(s(n)
i , pi),

where p = (p1, . . . , pL) = fθ(c) is the head output distribution. If we train the model with this objective, it
assigns the highest likelihood to the sequence YYYYYY which is overly repetitive (proof in Appendix A). Such
a phenomenon indeed occurs for antibody or protein sequences, where in certain regions, some residues have
a higher frequency than others (Nikula et al., 1995; Shi et al., 2014).

Loss function. We train our sequence-only antibody design model pθ(s|c) on the loss function Lseq(θ) =
LNLL(θ) + αLcomp(θ), where LNLL(θ) is the negative log-likelihood (NLL) objective, Lcomp is the proposed
composition-based loss function that regularize the repetitive tokens, and α > 0 is some hyperparameter. In
particular, given a sample (s, c) from the dataset, the loss function is defined as follows:

LNLL(θ) = − log pθ(s|c), Lcomp(θ) = Eŝ∼pθ(·|c)[d(s, ŝ)],

where d(s, ŝ) is any sequence-level metric between input amino acid sequence s and the reconstructed amino
acid sequence ŝ. Following the existing NLP literature (Mathur et al., 2019; Kim et al., 2021; Zhang et al.,
2019), we propose to use the cosine similarity defined as follows:

d(s, ŝ) = −CosineSimilarity(y, ŷ) = − y⊤ŷ

∥y∥∥ŷ∥
,

where y, ŷ is the composition vector of the sequence s, ŝ that counts the occurrence of each amino acid type
in the sequence. For example, yj =

∑L
i=1 1j(si) where 1j is a binary indicator that has the value of one if

the amino acid si is the j-th type in the vocabulary A and zero otherwise.

Training with REINFORCE. To train our generator, we use the REINFORCE trick (Williams, 1992; Fu
et al., 2015) with a baseline b = E(s,c)∼B[d(s, ŝ)] to reduce the variance of the gradients (Appendix B). This
results in the following training objective:

Lseq(θ,B) = E(s,c)∼B

[
−

L∑
i=1

log pθ(si|c) + α · [d(s, ŝ)− b] log pθ(ŝ|c)
]

. (1)

We describe the full algorithm in Algorithm 1.

Implementation. Our sequence-structure decoupling approach enables the use of a large-scale sequence
database during the sequence design step. We implicitly exploit this advantage by adopting a protein lan-
guage model (pLM) as the sequence generator. In particular, we choose ESM2-650M (Lin et al., 2023) as our
starting point for training and use the LoRA fine-tuning strategy (Hu et al., 2021) (details in Appendix C).
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Algorithm 1 Training sequence design model
Require: Antibody sequence dataset D = {(s, c)}, antibody sequence generator pθ(s|c).

repeat
Sample B = {(s(i), c(i))}M

i=1 ∼ D.
for i = 1, . . . , M do

Sample ŝ(i) ∼ pθ(s|c(i)) and compute d(s(i), ŝ(i)).
end for
Compute b = 1

M

∑M
i=1 d(s(i), ŝ(i)) and update θ ← arg minLseq(θ,B) as in Equation (1).

until converged

Algorithm 2 Training structure prediction model
Require: A trained antibody sequence generator pθ(s|c), a sequence-to-structure model pϕ(x|s, c), and

antibody sequence-structure dataset D = {(s, x, c)}.
repeat

Sample B = {(s(i), x(i), c(i))}M
i=1 ∼ D.

for i = 1, . . . , M do
Sample ŝ(i) ∼ pθ(s|c(i)) and predict x̂(i) ∼ pϕ(x|ŝ(i), c(i)).

end for
Update ϕ← arg minLstruct(ϕ,B) as in Equation (2).

until converged

4.3 Structure prediction

Here, we describe our sequence-to-structure design model pϕ(x|s, c). We train the sequence-to-structure
model based on the following loss function:

Lstruct(ϕ,B) = E(s,x,c)∼BEŝ∼pθ(·|c)

[
1
L

L∑
i=1

ℓhuber(xi, x̂i)
]

, (2)

where ℓhuber is the Huber loss to avoid numerical stability (Jin et al., 2021; Kong et al., 2022), x̂ =
(x̂1, . . . , x̂L) ∼ pϕ(·|ŝ, c) is the predicted structure given the predicted sequence ŝ, and pθ(·|c) is the fixed
sequence generative model trained using the loss function proposed in Section 4.2. Note that we train the
model to predict the structure from generated antibody sequence ŝ instead of the ground-truth sequence from
the dataset. This is to prevent poor generalization performance during inference, caused by the exposure
bias (Arora et al., 2022; Bengio et al., 2015; Ranzato et al., 2016).

Exposure bias may occur since during training, the model conditions on ground-truth sequence, while during
inference, it conditions on its sequence predictions. This discrepancy leads to error accumulation, where
initial mistakes propagate and compound, causing the generated sequence to deviate significantly from
realistic outputs. Consequently, using ground-truth sequence for training may severely undermine the model
robustness (Arora et al., 2022; Bengio et al., 2015; Ranzato et al., 2016). We empirically demonstrate the
benefit of using the generated sequence as input to the structure prediction model in Appendix D.

While one could consider any graph neural network (GNN) to generate the structural information, we
adopt the architecture of MEAN (Kong et al., 2022) as our structure prediction model. In ablations, we
demonstrate that our sequence-structure decoupling approach can improve the performance of any GNN-
based joint sequence-structure co-design model.2

2We note that antibody structure prediction models such as IgFold (Ruffolo et al., 2023) cannot predict the structure of
incomplete sequences like CDR and thus perform poorly under this setting.
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Table 1: AAR, RMSD, and prep on CDR-H1 of SAbDab dataset. AR denotes autoregressive
models and NAR denotes non-autoregressive models. The best and suboptimal are bolded and underlined,
respectively, with prep restricted to non-autoregressive models. ASSD (MLE) achieves the best performance,
while ASSD (MLE + RL) reduces prep with comparable performance.

Models CDR-H1
AAR(↑) (%) RMSD(↓) prep(↓) (%)

AR
LSTM 39.47±2.11 - 0.00±0.00
AR-GNN 48.39±4.72 2.90±0.17 0.00±0.00
RefineGNN 42.03±2.88 0.87±0.10 0.00±0.00

NAR

MEAN 59.32±4.71 0.91±0.10 0.29±0.49
LM-Design 64.88±1.96 - 0.02±0.06
ASSD (MLE) 69.41±2.72 0.80±0.09 0.02±0.06
ASSD (MLE + RL) 68.71±2.25 0.86±0.09 0.00±0.00

5 Antibody design experiments

Overview. In this section, we evaluate our model on four antibody benchmark experiments, including
the SAbDAb benchmark (Section 5.1), RAbD benchmark (Section 5.2), antibody affinity optimization (Sec-
tion 5.3), and CDR-H3 design with docked templates (Section 5.4).

Baselines. We select LSTM, AR-GNN, and RefineGNN as the autoregressive baselines with implemen-
tations provided in Jin et al. (2021). For non-autoregressive baselines, we adopt MEAN and LM-Design
adapted for antibody design. We have not included Verma et al. (2023); Wu & Li (2024); Martinkus et al.
(2024); Frey et al. (2023) as baselines as their training codes are not publicly available. The training details
of ASSD and baselines are provided in Appendix C.

Metrics. Our main sequence and structure modeling evaluation metrics are amino acid recovery (AAR)
and root mean squared deviation (RMSD), respectively. AAR is defined as AAR(s, ŝ) =

∑L
i=1 I(si = ŝi)/L,

where ŝ is the generated CDR sequence and s is the ground-truth CDR sequence. RMSD is defined by
comparing Cα coordinates of generated and ground-truth CDR structures, following Jin et al. (2021); Kong
et al. (2022). Although there is a controversy about whether AAR and RMSD are suitable metrics, they
are still the most widely used metrics across the antibody/protein literature to assess sequence/structure
modeling abilities. Further justifications and discussions on evaluation metrics are in Section 8.

As none of the antibody sequences in the SAbDab dataset contain more than six token repetitions, we
define a sequence with more than six repetitions as repetitive. Based on this definition, we develop a new
metric called the percentage of repetitive tokens, prep. Given a model’s sequence predictions D̂ = {ŝ(n)}N

n=1,
prep =

∑N
n=1 I(ŝ(n) is repetitive)× 100%/N .

5.1 SAbDab benchmark

In this section, we evaluate the sequence and structure modeling performance for CDR-H1, CDR-H2, and
CDR-H3 using the Structural Antibody Database (SAbDab) (Dunbar et al., 2014).

Data. Following Kong et al. (2022), we select 3977 IMGT-numbered (Lefranc et al., 2003) complexes from
SAbDab that contain the full heavy chain, light chain, and antigen sequence and structure. We then split
the complexes into train, validation, and test sets according to the CDR clusterings. Specifically, we use
MMseqs2 (Steinegger & Söding, 2017) to assign antibodies with CDR sequence identity above 40% to the
same cluster, where the sequence identity is computed with the BLOSUM62 substitution matrix (Henikoff &
Henikoff, 1992). Then we conduct a 10-fold cross-validation by splitting the clusters into a ratio of 8:1:1 for
train/valid/test sets, respectively. Detailed statistics of the 10-fold dataset splits are provided in Appendix E.
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Table 2: AAR, RMSD, and prep on CDR-H2 of SAbDab dataset. ASSD (MLE) achieves the best
performance, while ASSD (MLE + RL) reduces prep with comparable performance.

Models CDR-H2
AAR(↑) (%) RMSD(↓) prep(↓) (%)

AR
LSTM 30.41±2.47 - 0.00±0.00
AR-GNN 38.03±2.81 2.30±0.16 0.00±0.00
RefineGNN 32.05±2.23 0.79±0.06 0.00±0.00

NAR

MEAN 48.85±2.32 0.88±0.07 0.03±0.08
LM-Design 55.31±3.92 - 0.02±0.07
ASSD (MLE) 62.10±3.87 0.73±0.06 0.02±0.07
ASSD (MLE + RL) 61.07±0.08 0.78±0.06 0.00±0.00

Table 3: AAR, RMSD, and prep on CDR-H3 of SAbDab dataset. ASSD (MLE) achieves the best
performance, while ASSD (MLE + RL) reduces prep with comparable performance.

Models CDR-H3
AAR(↑) (%) RMSD(↓) prep(↓) (%)

AR
LSTM 15.82±1.63 - 0.00±0.00
AR-GNN 18.72±0.82 3.60±0.58 0.03±0.07
RefineGNN 24.44±1.94 2.24±0.14 0.11±0.13

NAR

MEAN 36.50±1.60 2.23±0.07 27.40±9.23
LM-Design 37.58±1.16 - 29.40±10.01
ASSD (MLE) 39.56±1.39 2.21±0.08 9.22±3.76
ASSD (MLE + RL) 38.67±1.64 2.19±0.09 7.02±2.91

Results. Table 1, Table 2, and Table 3 presents our results on the SAbDab benchmark. First, we highlight
that ASSD trained with the MLE objective outperforms all baselines in AAR and RMSD. However, its
prep is much higher than the autoregressive baselines, implying that some of its sequence designs are invalid.
Training with our MLE-RL objective in Equation (1) successfully reduces token repetitions, while maintaining
a similar performance. In particular, for CDR-H1 and CDR-H2, we reduced token repetition to 0; for CDR-
H3, we reduced prep to 7.02%, which corresponds to a 23.86% reduction in token repetition compared to the
MLE-only objective.

We focus on CDR-H3 to showcase that prep can be further decreased by increasing α in the objective function.
Figure 4(a) show shows that our approach establishes a Pareto frontier over other non-autoregressive baselines
in terms of prep and AAR. Note that prep can be reduced to a level comparable to autoregressive models
while maintaining AAR above 30%, a level of performance required for CDR design models (Melnyk et al.,
2023). This contrasts MEAN and LM-Design, whose prep is above 25% despite the high AAR.

5.2 RAbD benchmark

In this section, we assess the ability to model CDR-H3 on the RosettaAntibodyDesign (RAbD) dataset, a
benchmark containing 60 diverse antibody-antigen complexes curated by Adolf-Bryfogle et al. (2018).

Data. We use the SAbDab dataset as the train/validation set and the RAbD dataset as the test set. We
eliminate antibodies in SAbDab whose CDR-H3 sequences are in the same cluster as the RAbD dataset,
then split the remaining clusters into train and validation sets with a ratio of 9:1. This gives 3418 and 382
antibodies for the training and validation sets, respectively.
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Figure 4: Effect of α on AAR and prep. The color bar represents the value of α in the MLE-RL objective.
(a) Result for CDR-H3 of SAbDab benchmark. ASSD approach achieves the Pareto frontier over the non-
autoregressive baselines. (b) Result for CATH 4.2 (left) and CATH 4.3 (right) benchmarks. LM-Design
trained with our MLE-RL objective maintains performance comparable to ProteinMPNN, while reducing
prep significantly.

Table 4: AAR, Cosim, TM-score, RMSD, and prep on RAbD dataset. AR denotes autoregressive
models and NAR denotes non-autoregressive models. The best and suboptimal are bolded and underlined,
respectively, with prep restricted to non-autoregressive models. ASSD (MLE) and ASSD (MLE + RL) achieve
the best performance, with ASSD (MLE + RL) achieving the lowest prep among NAR models.

Models AAR (↑) (%) Cosim (↑) TM-score (↑) RMSD (↓) prep (↓) (%)

A
R

LSTM 16.15 0.5462 - - 0.00
AR-GNN 18.85 0.5963 0.9630 3.56 0.00
RefineGNN 26.33 0.5797 0.9648 1.80 0.00

N
A

R

MEAN 37.15 0.5832 0.9806 1.82 8.33
LM-Design 38.77 0.5869 - - 15.00
ASSD (MLE) 40.81 0.6015 0.9825 1.78 5.00
ASSD (MLE + RL) 40.53 0.6157 0.9830 1.76 3.33

Metrics. In addition to AAR and RMSD, we include cosine similarity (abbreviated CoSim) and TM-
score (Zhang & Skolnick, 2004; Xu & Zhang, 2010) to evaluate the sequence composition similarity and
global structural similarity.

Results. We report our results in Table 4. ASSD with MLE-only training achieves the highest AAR.
While maintaining a similar level of AAR, we reduce token repetition by 33.4% with our MLE-RL objective
function. Additionally, ASSD shows the highest structure modeling capacity, reflected by a high TM-score
and low RMSD. This indicates the superiority of our sequence-structure decoupling approach over the joint
sequence-structure co-design models like MEAN, RefineGNN, and AR-GNN.

5.3 Antibody affinity optimization

The goal of this task is to optimize the binding affinity of a given antibody-antigen complex by re-designing
the CDR-H3 sequence and structure. Following Kong et al. (2022), we pre-train the models on the
SAbDab dataset and fine-tune them with the ITA algorithm (Yang et al., 2020) on the SKEMPI V2.0
dataset (Jankauskaitė et al., 2019). To evaluate the change in binding affinity ∆∆G, we use the official
checkpoint of the oracle f from Shan et al. (2022). Since ∆∆G evaluation requires structure, only sequence-
structure co-design models are used as the baselines.

ITA algorithm. Following Kong et al. (2022), we adopt the ITA algorithm adjusted for continuous prop-
erties. The algorithm consists of two parts – (1) augmenting the dataset and (2) training the model on the
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Table 5: Change in binding affinity ∆∆G after affinity optimization on SKEMPI V2.0 dataset.
The best and suboptimal are bolded and underlined, respectively, with prep restricted to non-autoregressive
models. ASSD (MLE) generates re-designs with the highest binding affinities on average. ASSD (MLE +
RL) achieves similar performance, while reducing prep by 16.67%.

Random* AR-GNN RefineGNN MEAN ASSD (MLE) ASSD (MLE + RL)
∆∆G(↓) +1.520 -2.279 -5.437 -7.199 -8.454 -8.162
prep(↓) (%) - 0.000 3.774 50.943 11.321 9.434

Table 6: Average binding affinity of re-designed complexes from docked templates, measured in
Rosetta Energy Units. ASSD (MLE) designs antibodies with the highest binding affinities, while ASSD
(MLE + RL) achieves similar performance with prep reduced by 66.7%.

RefineGNN MEAN ASSD (MLE) ASSD (MLE + RL)
Affinity (↓) 3036.17 815.32 624.65 666.90
prep(↓) (%) 0.00 11.67 10.00 3.33

augmented dataset. To augment the dataset D, we select an antibody-antigen complex from D and generate
M = 20 candidate structures with the model. If a candidate is valid and exhibits f < 0, we add it to D and
form the augmented dataset Q. Then, we fine-tune the model on Q. We repeat this two-step process for
T = 20 iterations. The details of this algorithm are in Appendix F.

Results. As shown in Table 5, ASSD generates re-designs with the lowest binding affinities on average. By
training ASSD with the MLE-RL objective (Equation (1)), we can reduce prep by 16.67% while maintaining a
similar level of performance. Note that this corresponds to 81.48% reduction in token repetition with better
performance compared to MEAN, whose approximately half of its re-designed sequences are repetitive and
thus out-of-distribution. For better comparison, we also provide the effect of random mutation from Kong
et al. (2022), denoted Random*.

5.4 CDR-H3 design with docked templates

Here, we explore a more challenging setting where both CDR-H3 and the binding complex are unknown.
The goal of this task is to generate CDR-H3 designs with higher binding affinities in this challenging setting.

Data. We modify the RAbD test set from Section 5.2 to create docked templates. More concretely, we first
segregate each antibody-antigen complex into a CDR-H3-removed antibody and antigen, which is then used
to generate 10,000 docked templates with MEGADOCK (Ohue, 2023). Among them, we include the top-10
scoring docked templates in the test set.

Evaluation. We prepare the best validation checkpoints from Section 5.2 and generate CDR-H3 re-design
for each docked template in the test set. We then evaluate the binding affinities of the re-designed complexes
with pyRosetta (Chaudhury et al., 2010) including the side-chain packing. Considering the risk of docking
inaccuracy, we report the binding affinities of the top-scoring re-design for each antibody-antigen complex
following Kong et al. (2022).

Results. Table 6 shows our results. Although ASSD trained with regular MLE objectives performs the
best, about 10% of its generated sequences are overly repetitive. By training the model with the MLE-RL
objective, we reduce prep to 3.33%, a level comparable to the autoregressive model RefineGNN.

6 Protein design experiments

In this section, we demonstrate that our training algorithm is generalizable to single-chain protein design
with CATH 4.2 and CATH 4.3 benchmarks. Specifically, we train LM-Design (Zheng et al., 2023) with
our objective at varying levels of α and report the sequence modeling performance with AAR and sequence
validity with prep. As none of the sequences in CATH 4.2 and CATH 4.3 test sets contain over ten repeated
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Table 7: Antibody benchmark results of the joint sequence-structure co-design models and their
decoupled variants. All variants use ESM2-650M as the sequence design model and thus share the same
results for AAR. The decoupled variants improve both AAR and RMSD across all CDRs.

SAbDab RAbD
AAR (↑) (%) RMSD (↓) AAR (↑) (%) RMSD (↓)

AR-GNN 17.47 3.638 18.81 3.237
AR-GNN* 41.32 2.807 40.45 3.199
RefineGNN 23.49 2.173 22.43 1.716
RefineGNN* 41.32 2.000 40.45 1.581
MEAN 35.39 2.188 37.15 1.686
MEAN* 41.32 2.180 40.45 1.672

tokens, we define a sequence with more than ten token repetitions as repetitive. We also report the result of
ProteinMPNN (Dauparas et al., 2022) for comparison.

Results. Figure 4(b) shows our results on CATH 4.2 (left) and CATH 4.3 (right) benchmarks. Both
LM-Design and ProteinMPNN, trained with their original objective, achieve high prep, indicating that a
considerable portion of its sequence predictions are out-of-distribution. By increasing α in the MLE-RL
objective (Equation (1)), we reduce the prep while maintaining a decent level of sequence recovery. In
particular, our objective allows achievement of prep ∼0% for CATH 4.2 and ∼5% for CATH 4.3, while
maintaining AAR similar to ProteinMPNN.

7 Ablations

7.1 Effect of sequence structure decoupling

Thus far, we have validated that the sequence-structure decoupling approach with ESM2-650M and MEAN
outperforms other models in antibody benchmark experiments. Here, we demonstrate that our decoupling
approach can improve the performance of other joint sequence-structure co-design models (i.e., RefineGNN,
AR-GNN) by revisiting the benchmarks experiments in Section 5.1 (SAbDab) and Section 5.2 (RAbD) with
a focus on CDR-H3 region.

Baselines. We select AR-GNN, RefineGNN, and MEAN as our baselines. We also create the decoupled
variants of each model by using ESM2-650M for the sequence design model and each baseline as a structure
prediction model. We denote each variant with an asterisk *.

Training. We train the baselines with the objectives proposed in their original papers (Jin et al., 2021;
Kong et al., 2022). For the decoupled variants, we train ESM2-650M with the cross-entropy objective and
each structure prediction model with the same objective as the baseline. To fully reveal the benefit of our
approach, we train all models to their full capacity by setting the training epochs to 9999 and patience to
10.

Results. Table 7 shows that the decoupled variants outperform the original joint prediction models. This
demonstrates the advantage of task-specific optimization with the ASSD framework. We note that all variants
use ESM2-650M as the sequence design model and thus share the same results for AAR.

7.2 Data leakage of ESMs

In this section, we address the potential concern regarding the influence of data leakage from protein language
models on our performance. To address this concern, we repeat the experiment on the SAbDab benchmark
(Section 5.1) by training the corresponding Transformer architecture from scratch.

Results. As shown in Table 8, Table 9, and Table 10, our approach still achieves the best results, excluding
the baseline that uses ESM. This indicates that the high performance is mainly due to sequence-structure
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Table 8: AAR, RMSD, and prep on CDR-H1 of SAbDab dataset. ASSD still achieves the best
performance without using ESM. This suggests that its performance is mainly driven by sequence-structure
decoupling rather than data leakage of ESMs.

Models CDR-H1
AAR(↑) (%) RMSD(↓) prep(↓) (%)

AR
LSTM 39.47±2.11 - 0.00±0.00
AR-GNN 48.39±4.72 2.90±0.17 0.00±0.00
RefineGNN 42.03±2.88 0.87±0.10 0.00±0.00

NAR
MEAN 59.32±4.71 0.91±0.10 0.29±0.49
ASSD (MLE) 68.94±2.90 0.86±0.19 0.02±0.06
ASSD (MLE + RL) 65.23±4.59 0.87±0.12 0.02±0.05

Table 9: AAR, RMSD, and prep on CDR-H2 of SAbDab dataset. ASSD still achieves the best
performance without using ESM. This suggests that its performance is mainly driven by sequence-structure
decoupling rather than data leakage of ESMs.

Models CDR-H2
AAR(↑) (%) RMSD(↓) prep(↓) (%)

AR
LSTM 30.41±2.47 - 0.00±0.00
AR-GNN 38.03±2.81 2.30±0.16 0.00±0.00
RefineGNN 32.05±2.23 0.79±0.06 0.00±0.00

NAR
MEAN 48.85±2.32 0.88±0.07 0.03±0.08
ASSD (MLE) 60.39±3.53 0.79±0.08 0.02±0.07
ASSD (MLE + RL) 60.23±4.76 0.83±0.07 0.02±0.07

decoupling rather than data leakage. Our findings are consistent with Wu & Li (2024) and Wang et al.
(2022), which show that protein language models alone are insufficient for antibody-related tasks.

8 Discussions

Conclusion. In this paper, we proposed antibody sequence-structure decoupling (ASSD), a general frame-
work for highly performant sequence-structure co-design models, and a composition-based objective for
reducing token repetitions for non-autoregressive models. Experiments on various benchmarks demonstrate
that our approach achieves high sequence-structure modeling capacity with limited token repetitions com-
pared to previous works.

Structure-based drug design. A key consideration is whether using a pre-trained protein language model
for sequence design overlooks essential principles of structure-based drug design by not explicitly conditioning
on structural information. However, recent wet lab experiments (Hie et al., 2024) demonstrate that pre-
trained protein language models can successfully design functional antibody sequences with high binding
affinity, even without explicit structure modeling. Our work builds on this empirical finding, assuming
that ESM has implicitly captured structural information, as evidenced in Hie et al. (2024) and Lin et al.
(2023). Additionally, the proposed ASSD framework is adaptable to sequence design models that condition
on structural data, suggesting a promising direction for future research.

Limitations and future work. A limitation of our work is using AAR and RMSD to assess the antibody
design models. Both metrics cannot measure the functional properties of the designed antibodies, which are
important in real-life drug discovery pipelines. However, currently, there is no standardized metric for assess-
ing the functional properties; thus, AAR and RMSD are the most widely used metrics for antibody/protein
design tasks (Jin et al., 2021; Kong et al., 2022; 2023; Verma et al., 2023; Melnyk et al., 2023; Luo et al., 2022;
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Table 10: AAR, RMSD, and prep on CDR-H3 of SAbDab dataset. ASSD still achieves the best
performance without using ESM. This suggests that its performance is mainly driven by sequence-structure
decoupling rather than data leakage of ESMs.

Models CDR-H3
AAR(↑) (%) RMSD(↓) prep(↓) (%)

AR
LSTM 15.82±1.63 - 0.00±0.00
AR-GNN 18.72±0.82 3.60±0.58 0.03±0.07
RefineGNN 24.44±1.94 2.24±0.14 0.11±0.13

NAR
MEAN 36.50±1.60 2.23±0.07 27.40±9.23
ASSD (MLE) 37.44±1.48 2.23±0.07 25.32±12.2
ASSD (MLE + RL) 37.84±1.21 2.24±0.10 21.57±14.78

Wu & Li, 2024). A related limitation is that the amino acid composition used to construct our composition-
based objective is not a functional property. Therefore, promising future research would be developing and
training antibody design models based on functional property evaluators.

For discussions on why non-autoregressive models may outperform autoregressive models biological tasks,
we refer readers to Appendix H.
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A Proof for hypothetical example
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Figure 5: Sequence dataset for hypothetical example in Section 4.1.

We here provide proof for the hypothetical example in Section 4.1. Following from Section 4.1, the MLE
objective is given by:

LMLE(θ) =
L∑

i=1

N∑
n=1

ℓce(s(n)
i , pi)

where p = (p1, . . . , pL) = fθ(c) is the head output distributions. We can re-parameterize the objective for
each pi as:

LMLE(pi) =
N∑

n=1
ℓce(s(n)

i , pi)

where
∑

pi = 1 is the constraint. We then compute the optimal p∗
i subject to this constraint with Sequential

Least Squares Programming (SLSQP):

1p∗
1 =

(
0,

2
4

,
1
4 ,

1
4 , 0

)
, p∗

2 =
(

0,
3
4

,
1
4 , 0, 0

)
, p∗

3 =
(

1
4 ,

2
4

, 0,
1
4 , 0

)
p∗

4 =
(

0,
2
4

,
1
4 , 0,

1
4

)
, p∗

5 =
(

1
4 ,

2
4

, 0,
1
4 , 0

)
, p∗

6 =
(

0,
2
4

,
1
4 , 0,

1
4

)

where pi = (pA, pY , pG, pD, pR) respectively. Since pθ∗(s|c) =
∏6

i=1 Cat(si|p∗
i ), the sequence with highest

likelihood is YYYYYY.
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B Derivation of objective Lcomp(θ)

We here derive a differentiable objective function of Lcomp(θ) = Eŝ∼pθ(ŝ|c) [d(s, ŝ)] using the REINFORCE
estimator (Fu et al., 2015). Consider a sample (s, c) from the dataset.

∇θLcomp(θ) = ∇θEŝ∼pθ(ŝ|c) [d(s, ŝ)]

= ∇θ

∑
ŝ

pθ(ŝ|c)d(s, ŝ)

=
∑

ŝ

[∇θpθ(ŝ|c)] d(s, ŝ)

=
∑

ŝ

pθ(ŝ|c)∇θ log pθ(ŝ|c)d(s, ŝ)

= Epθ(ŝ|c) [d(s, ŝ)∇θ log pθ(ŝ|c)]
= Epθ(ŝ|c) [(d(s, ŝ)− b)∇θ log pθ(ŝ|c) + b∇θ log pθ(ŝ|c)]
= Epθ(ŝ|c) [(d(s, ŝ)− b)∇θ log pθ(ŝ|c)]

where the last line follows from Epθ(ŝ|c) [∇θ log pθ(ŝ|c)] = 0. With a single-sample Monte Carlo approxima-
tion, we have

∇θLcomp(θ) ≈ [d(s, ŝ)− b]∇θ log pθ(ŝ|c)
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C Training details

Hyperparameters. Table 11 and Table 12 shows the hyperparameters of baselines and ESM2-650M,
respectively. For baselines, we follow the training settings in their original papers (Jin et al., 2021; Kong
et al., 2022), and for ESM2-650M, we limit the batch size with a maximum token length of 6000 and train for
30 epochs. We set hyperparameter α = 0.2 in our sequence objective and use rank 2 for weights Wq, Wk, Wv,
and Wo in the multi-head attention module for LoRA fine-tuning.

Implementation for LM-Design. In our paper, we adopt LM-Design (Zheng et al., 2023) for antibody
design. LM-Design is originally a pLM-based protein design model pθ(s|x) where x is the protein structure
and s is the corresponding sequence that folds into this structure. For antibody design tasks, we maintain
the original architecture, yet use antigen structure as x and initialize s with framework/antigen sequence
information.

Code. Our implementation is built upon https://github.com/facebookresearch/esm, https://github.
com/BytedProtein/ByProt/tree/main, https://github.com/wengong-jin/RefineGNN, and https://
github.com/THUNLP-MT/MEAN/tree/main. We deeply appreciate the authors (Lin et al., 2023; Zheng et al.,
2023; Jin et al., 2021; Kong et al., 2022) for their contributions to our project.

Machine specs. All models were trained on a machine with 48 CPU cores and 8 NVIDIA Geforce RTX
3090. We have used 1-3 GPUs for all experiments.

Table 11: Hyperparameters for baselines.
LSTM AR-GNN RefineGNN MEAN

Vocab size 25
Dropout 0.1
Hidden dim 256 128
Number of layers 4 4 4 3
K neighbors - 9 9 -
Block size - - 4 -
Number of RBF kernels - 16 16 -
Embed dim - - - 64
Alpha - - - 0.8
Number of iterations - - - 3
Optimizer Adam
Learning rate 0.001

Table 12: Hyperparameters for ESM2-650M used as the sequence design model.
esm2_t33_650M_UR50D

Vocab size 33
Embed dim 1280
Number of layers 33
Optimizer AdamW
Learning rate 0.001
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D Mitigating exposure bias

As stated in Section 4.3, we address exposure bias by using the generated sequence as the input to the
structure prediction model during training. We here demonstrate the benefit of this approach by comparing
the performance of the structure prediction model trained with generated sequence (denoted ŝ) and ground-
truth sequence (denoted s). Specifically, we train the structure prediction model on SAbDab (fold 0) and
RAbD benchmark, then compare their RMSD and TM-score.

Table 13: RMSD and TM-score of structure prediction model trained with generated sequence as input
(ŝ) versus ground-truth sequence as input (s). Training the structure prediction model with the generated
sequence outperforms its counterpart.

CDR-H1 (SAbDab) CDR-H2 (SAbDab) CDR-H3 (SAbDab) CDR-H3 (RAbD)
RMSD(↓) TM-score(↑) RMSD(↓) TM-score(↑) RMSD(↓) TM-score(↑) RMSD(↓) TM-score(↑)

ŝ 0.7511 0.9901 0.7993 0.9910 2.2094 0.9748 1.78 0.9825
s 0.7077 0.9892 0.8825 0.9895 2.4743 0.9695 1.86 0.9789

E Data statistics for SAbDab

In Table 14, we detail the number of antibodies in each fold for 10-fold cross-validation in Section 5.1.
Following Kong et al. (2022), ∀i = 0, . . . , 9, we let fold i be the test set, fold i− 1 be the validation set, and
the remaining folds to be the train set.

Table 14: Number of antibodies in each fold for Sequence and Structure Modeling (Section 5.1)
CDR-H1 CDR-H2 CDR-H3

fold 0 539 425 390
fold 1 529 366 444
fold 2 269 363 369
fold 3 391 380 389
fold 4 305 392 420
fold 5 523 381 413
fold 6 294 409 403
fold 7 310 369 327
fold 8 472 489 355
fold 9 345 403 467
Total 3977 3977 3977
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F ITA algorithm for affinity optimization

Criterion for validity. Following (Jin et al., 2021), we force all generated sequences to satisfy the following
constraints: (1) net charge must be in the range [−2.0, 2.0], (2) sequence must not contain N-X-S/T motif,
(3) a token should not repeat more than five times, (4) perplexity of the sequence must be below 10.

Algorithm 3 details the ITA algorithm in Section 5.3, where we have followed Kong et al. (2022) for the
implementation.

Algorithm 3 ITA algorithm for antibody affinity optimization
Input: SKEMPI V2.0 antibody-antigen complex dataset D, pre-trained pθ(s, x|c), top-k candidates to
maintain

1: Initialize Q ← D
2: for t = 1, . . . , T do
3: for (s, x, c) ∈ D do
4: Initialize C ← ∅
5: for i = 1, . . . , M do
6: (ŝi, x̂i) ∼ pθ(s, x|c)
7: if valid(ŝi, x̂i) and f((s, x, c), (ŝi, x̂i, c)) < 0 then
8: C ← C ∪ {((ŝi, x̂i, c), f((s, x, c), (ŝi, x̂i, c)))}
9: end if

10: end for
11: Q [(s, x, c)]← Q [(s, x, c)] ∪ C
12: Select top-k elements in Q [(s, x, c)] by f(·, ·)
13: end for
14: for n = 1, . . . , N do
15: Select batch B from Q
16: Update θ ← θ − η∇θL(B, θ)
17: end for
18: end for
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G Effect of sample recycling on sequence quality

A common NLP approach for reducing token repetition of non-autoregressive models is recycling tokens for
T iterations (Ghazvininejad et al., 2019; Zhou et al., 2019). We here demonstrate that this approach is not
effective for antibody design.

Results. As shown in Figure 6(a), sample recycling does not reduce token repetition of non-autoregressive
models on antibody modeling tasks. It even increases prep for CDR-H3 from about 15% to 20%. Also,
Figure 6(b) shows that sample recycling decreases AARs for all CDR regions. Contrary to this approach,
our composition-based objective effectively reduces prep while maintaining high AAR, as demonstrated in
Section 5.
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Figure 6: Effect of sample recycling on prep and AAR. (a) Sample recycling does not reduce token
repetition for antibody design tasks. (b) Sample recycling even reduces AAR across all CDRs.

H Non-autoregressive (NAR) vs. Autoregressive (AR) models

We discuss why non-autoregressive (NAR) models often outperform autoregressive (AR) models in biological
tasks like protein design (Gao et al., 2022; Zheng et al., 2023), peptide sequencing (Zhang et al., 2024), and
antibody design (Kong et al., 2022; Verma et al., 2023). Although the reasons for this performance gap are
not fully understood, one possible explanation is that the left-to-right inductive bias of AR models conflicts
with the structure of biological sequences. In particular, interactions within biological sequences rely on
three-dimensional spatial relationships rather than the linear sequence order imposed by AR models. This
intrinsic mismatch likely contributes to the weaker performance of AR models in these tasks, aligning with
insights discussed in Zhang et al. (2024).
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