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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has shown signifi-
cant promise for enhancing the reasoning capabilities of large language models
(LLMs). However, prevailing algorithms like GRPO broadcast a uniform ad-
vantage signal across all tokens in a sequence. This coarse-grained approach
overlooks the pivotal role of uncertain, high-stakes decisions during reasoning,
leading to inefficient exploration and the well-documented problem of entropy
collapse. To address this, we introduce UnCertainty-aware Advantage Shaping
(UCAS), a model-free method that refines credit assignment by leveraging the
model’s internal uncertainty signals. UCAS operates in two stages: it first modu-
lates the response-level advantage using the model’s overall self-confidence, and
then applies a token-level penalty based on raw logit certainty. This dual mecha-
nism encourages exploration of high-uncertainty paths that yield correct answers
while penalizing overconfident yet erroneous reasoning, effectively balancing the
exploration-exploitation trade-off. Extensive experiments on five mathematical
reasoning benchmarks show that UCAS significantly outperforms strong RLVR
baselines across multiple model scales, including 1.5B and 7B. Our analysis con-
firms that UCAS not only achieves higher rewards but also promotes greater rea-
soning diversity and successfully mitigates entropy collapse.

1 INTRODUCTION

Reinforcement learning (RL) has recently become a cornerstone for enhancing the complex reason-
ing abilities of Large Language Models (LLMs), moving beyond simple pattern matching toward
more robust problem-solving. Among the various RL approaches, Reinforcement Learning with
Verifiable Rewards (RLVR) has proven particularly effective. In this paradigm, a policy model ex-
plores a vast solution space and receives feedback from verifiable signals, such as the correctness
of a final answer in mathematical reasoning. This direct feedback loop has enabled policy opti-
mization algorithms like Group Relative Policy Optimization (GRPO) (Shao et al., 2024) to achieve
substantial performance gains, powering state-of-the-art systems such as DeepSeek-R1 (Guo et al.,
2025).

However, the success of RLVR reveals a critical underlying tension: the trade-off between precision
and diversity. While methods like GRPO excel at increasing the probability of generating correct
answers, they often do so at the cost of exploration. Due to the absence of a critic model, the
learning signal in GRPO, which applies a single uniform advantage across all tokens, provides an
indiscriminate and overly coarse form of credit assignment. It rewards all steps of a correct path
equally and penalizes all steps of an incorrect one, failing to distinguish crucial reasoning leaps
from trivial ones. This coarse-grained feedback drives the policy to converge prematurely on a small
set of ”safe” high-reward trajectories. A common side effect is entropy collapse (Cui et al., 2025b),
where the output distribution contracts, reducing solution diversity and impairing performance on
complex problems that demand novel reasoning strategies.

Previous studies (Wang et al., 2023; Lightman et al., 2024; Chen et al., 2024; Zhang et al., 2024; Sun
et al., 2025a) have attempted to employ process-level reward models to deliver more fine-grained
signals. However, as DeepSeek (Guo et al., 2025) points out, training fine-grained reward models is
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Figure 1: Left: Benchmark results across five math reasoning datasets, where our UCAS consis-
tently outperforms RLVR baselines trained on models of the same parameter scale. Right: Training
trajectories of UCAS and GRPO on Qwen2.5-Math-7B, showing that UCAS experiences an ini-
tial decline but subsequently rises in response length and generation entropy as training progresses.
In contrast, GRPO exhibits a continual downward trend in entropy, reflecting the phenomenon of
entropy collapse.

costly, difficult to scale, limited in its ability to provide accurate signals, and vulnerable to reward
hacking. Some recent efforts (Chen et al., 2025; Cheng et al., 2025; Wang et al., 2025a) have tried
to incorporate entropy-based feedback to enhance advantages, such as integrating semantic entropy
or policy entropy related to the response into advantage calculations. Yet, most studies either pursue
low entropy to improve accuracy or encourage high entropy to maintain exploration, lacking fine-
grained modeling of the relationship between responses and their policy entropy.

To address the above challenges, we propose an UnCertainty-aware Advantage Shaping (UCAS), a
model-free method that refines credit assignment in RLVR by leveraging the model’s intrinsic un-
certainty. UCAS is designed to resolve the precision–diversity dilemma by reshaping the advantage
signal at two complementary levels. At the response level, UCAS modulates the sequence-level
advantage using the model’s overall self-confidence, amplifying rewards for correct-but-uncertain
responses and penalties for incorrect-but-confident ones. At the token level, it further introduces
a certainty-based penalty derived directly from raw logits, discouraging local overconfidence while
preserving diversity in reasoning. Collectively, these mechanisms promote exploration of uncertain
but potentially fruitful reasoning paths, while efficiently suppressing confidently wrong solutions.
Extensive experiments on five mathematical reasoning benchmarks demonstrate that UCAS consis-
tently outperforms strong RLVR baselines at both the 1.5B and 7B model scales. Beyond reward
improvements, UCAS fosters greater reasoning diversity and substantially mitigates entropy col-
lapse, confirming the effectiveness of uncertainty as a fine-grained learning signal.

Our contributions can be summarized as follows:

• We propose UCAS, an extra-model-free fine-grained advantage shaping mechanism based
on internal confidence signals, which performs uncertainty-aware advantage adjustment at
both response and token levels.

• We provide a novel mechanism to adaptively calibrate advantages based on uncertainty, en-
abling steady reward gains, longer reasoning chains, and entropy recovery, thus preventing
entropy collapse in RLVR and improving reasoning accuracy.

• Extensive experiments on multiple mathematical reasoning benchmarks demonstrate that
UCAS significantly improves model reasoning performance, validating its effectiveness in
enhancing exploration diversity and optimization outcomes.
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2 BACKGROUND: REINFORCEMENT LEARNING WITH VERIFIABLE
REWARDS

In the training of large language models, early mainstream reinforcement learning alignment meth-
ods primarily relied on PPO. By introducing a clipping ratio into the objective function, PPO sta-
bilizes training by constraining the magnitude of policy updates. This method has been widely
adopted in Reinforcement Learning from Human Feedback (RLHF), where reward models provide
preference-based scores to gradually shape model behavior. However, PPO exhibits key limitations:
it depends on critic-based value estimation and requires large-scale preference annotation, both of
which are costly and prone to noise accumulation.

To overcome these limitations, recent research has introduced RLVR. RLVR converts open-ended
outputs into programmatically checkable signals, such as numerical consistency in mathematics,
unit-test pass rates in code generation, or formal constraint satisfaction (Su et al., 2025; Wang et al.,
2025b), thereby avoiding the noise and cost of preference models. By forming a closed loop of
model–environment–verifier, RLVR enables policies to be updated directly from binary or graded
correctness signals, improving both sample efficiency and reproducibility in structured reasoning
tasks.

In the concrete implementation of RLVR, GRPO (Shao et al., 2024) emerges as a representative
algorithm. Unlike PPO, which relies on critic-based value estimation, GRPO computes advantages
by normalizing group-level verifiable rewards and updates the policy directly.

Formally, the objective is given by:

JGRPO(θ) = Eq∼D, o∼πθold[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min(ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t)− βDKL(πθ∥πref)

]
(1)

where

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, (2)

denotes the probability ratio between the new and old policies for token oi,t, and the advantage Âi,t

is estimated from group rewards as:

Âi,t =
Ri − µ(R)

σ(R) + ϵ
, (3)

with Ri the cumulative verifiable reward of trajectory oi, µ(R) and σ(R) the mean and standard
deviation across the sampled group, and ϵ a small constant for numerical stability.

By eliminating dependency on value models and instead exploiting group-normalized verifiable
rewards, GRPO achieves stable and cost-efficient training.

Building on GRPO, Decouple Clip and Dynamic Sampling Policy Optimization (DAPO) (Yu et al.,
2025) is proposed to further improve stability and exploration. DAPO integrates four key techniques:
Clip-Higher, Dynamic Sampling, Token-Level Policy Gradient Loss, and Overlong Reward Shap-
ing. Similar to GRPO, DAPO samples multiple responses per prompt and optimizes the following
objective:

JDAPO(θ) = E(q,a)∼D, {oi}G
i=1∼πθold (·|q)[

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
rit(θ)Â

i
t, clip

(
rit(θ), 1− ϵlow, 1 + ϵhigh

)
Âi

t

)]
,

s.t. 0 <
∣∣{i ∈ {1, . . . , G} | is equivalent(oi, a)}

∣∣ < G

(4)

where ϵlow and ϵhigh denote the lower and upper bounds of the clipping range. Compared to GRPO,
DAPO explicitly decouples the clipping bounds, incorporates adaptive sampling strategies, thereby
alleviating entropy collapse and improving the generalizability of RLVR-trained models.

3
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3 METHOD

To address the coarse credit assignment problem in RLVR, we introduce Uncertainty-aware Ad-
vantage Shaping (UCAS), a method designed to replace the blunt instrument of uniform advantage
with a more nuanced, two-stage mechanism. The central idea is to reshape the learning signal by
considering uncertainty at two distinct granularities: the entire reasoning path (response-level) and
the individual generative steps within it (token-level). This hierarchical approach first sets a strategic
learning objective by evaluating the value of the overall trajectory, and then locally refines the policy
update to encourage robust exploration and prevent the premature convergence that leads to entropy
collapse.

𝑜!

𝑜"
Question

Policy
Model …

𝑜#

𝑜$

Model Outputs

…

Confident Uncertain

…

𝐶!

𝐶"

𝐶#

𝐶$

…

Uncertainty-Aware Advantage Shaping

Update Policy

−𝛽×

Response-Level
Confidence

…

GRPO
Advantage

𝐴!

𝐴"

𝐴#

𝐴$

…

…

ℓ!

ℓ"

ℓ#

ℓ$

…

Token-Level 
Certainty

…

Figure 2: Overview of the UCAS Advantage Shaping Mechanism. UCAS refines the uniform
GRPO advantage through a two-stage process. Stage 1 (Macro-level): It applies Response-Level
Modulation using the trajectory’s overall self-confidence to determine its strategic value for explo-
ration vs. exploitation. Stage 2 (Micro-level): It introduces a Token-Level Certainty Penalty using
raw logits to discourage local overconfidence. The final shaped advantage ÂUCAS

i,t guides a more
nuanced policy update.

3.1 UNCERTAINTY SIGNALS: FROM CONFIDENCE TO LOGITS

To perform this hierarchical shaping, UCAS requires signals that capture the model’s epistemic
state at both macro and micro levels. We extract these directly from the model’s intrinsic generative
process, avoiding the need for auxiliary networks.

Response-Level Confidence. For a high-level assessment of a full reasoning trajectory, we use
the model’s self-confidence. As defined in Kang et al. (2025), this is the average KL-divergence
between the model’s predictive distribution and a uniform distribution over the vocabulary V . We
denote this as C(oi|q):

C(oi|q) :=
1

|oi|

|oi|∑
t=1

KL
(
U(V) ∥ pπθ

(· | q, oi,<t)
)

(5)

A higher value of C(oi|q) signifies higher overall confidence (low uncertainty) in the generated
sequence, suggesting the model is following a well-trodden path.

Token-Level Certainty. While self-confidence is effective at the sequence level, it is derived from
post-softmax probabilities, which can suffer from poor calibration (Liu et al., 2025a; Ma et al.,
2025). This can cause the model to appear equally confident in different choices, masking subtle but
important variations in uncertainty. To capture a more direct and sensitive signal at the token level,
we use the model’s raw logit value for the chosen token oi,t as a proxy for certainty. Let ℓi,t be the
logit corresponding to token oi,t at step t. A higher logit value indicates greater model certainty in
its choice, prior to softmax normalization.

4
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3.2 UCAS: TWO-STAGE ADVANTAGE SHAPING

Given a group of G responses {o1, . . . , oG} to a prompt q, UCAS reshapes the original GRPO
advantage Âi into a fine-grained, token-specific advantage ÂUCAS

i,t . This process unfolds in two
complementary stages.

Stage 1: Response-Level Advantage Modulation. This stage adjusts the advantage for an entire
response to encourage exploration of novel correct paths and suppress confident, well-trodden in-
correct paths. First, we compute the self-confidence C(oi|q) for each response oi in the group. To
assess confidence relative to other responses in the same group, we apply z-score normalization:

Ĉi =
C(oi|q)− µC

σC + ϵ
, (6)

where µC and σC are the mean and standard deviation of confidence scores across the group.

We then compute a modulation weight W (Ĉi) based on the sign of the original advantage Âi, which
directly encodes the correctness of the answer.

W (Ĉi) =

{
exp(−α · Ĉi) if Âi > 0 (Correct response)
exp(α · Ĉi) if Âi < 0 (Incorrect response)

(7)

where α > 0 is a hyperparameter controlling the shaping intensity. This formulation ensures that for
correct responses, lower confidence (negative Ĉi) results in a larger weight, amplifying the reward.
For incorrect responses, higher confidence (positive Ĉi) results in a larger weight, amplifying the
penalty. The resulting modulated advantage is Âmod

i = W (Ĉi) · Âi.

Stage 2: Token-Level Certainty Penalty. Response-level modulation sets a global learning ob-
jective for each trajectory, but this modulated advantage, Âmod

i , is still a uniform signal broadcast
to all tokens within that sequence. This alone is insufficient to prevent the model from developing
localized overconfidence—a key driver of entropy collapse. The second stage therefore introduces a
token-specific penalty to directly address this. By penalizing high-certainty choices at each step, we
encourage the model to maintain a degree of epistemic humility, which preserves local exploration.

We use the raw logit ℓi,t as our certainty measure and apply Min-Max normalization within each
sequence to create a standardized penalty score ℓ̂i,t ∈ [0, 1]:

ℓ̂i,t =
ℓi,t −mink(ℓi,k)

maxk(ℓi,k)−mink(ℓi,k)
(8)

A value of ℓ̂i,t close to 1 indicates high relative certainty for that token choice. This penalty acts as
a regularizer, complementing the directional guidance from Stage 1.

Final Advantage Shaping Formula. By combining these two stages, UCAS creates a composite
advantage signal that is both globally informed and locally sensitive. The final shaped advantage for
each token is:

ÂUCAS
i,t = Âmod

i︸︷︷︸
Global Direction

− β · ℓ̂i,t︸ ︷︷ ︸
Local Penalty

(9)

where β > 0 is a hyperparameter controlling the penalty strength. This composite structure steers
the model toward novel correct solutions (via Âmod

i ) while ensuring it traverses reasoning paths with
a healthy degree of caution (via the penalty term), thereby mitigating entropy collapse and fostering
more robust problem-solving abilities. This final advantage term then replaces the original advantage
in the RL objective:
JUCAS(θ) = E(q,a)∼D, {oi}G

i=1∼πθold (·|q)[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
rit(θ)Â

UCAS
i,t , clip

(
rit(θ), 1− ϵlow, 1 + ϵhigh

)
ÂUCAS

i,t

)]
,

s.t. 0 <
∣∣{i ∈ {1, . . . , G} | is equivalent(oi, a)}

∣∣ < G
(10)

The complete implementation process of UCAS is shown in Algorithm 1.

5
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Algorithm 1 Uncertainty-aware Advantage Shaping (UCAS)

Input: A group of G responses {oi}Gi=1 sampled from policy πθ, their rule-based rewards {Ri}Gi=1.
Hyperparameters α and β.

1: Compute standard group-normalized advantages {Âi}Gi=1 from {Ri}Gi=1.
2: Compute response-level self-confidence {C(oi|q)}Gi=1 for all responses.
3: Normalize confidences across the group to get {Ĉi}Gi=1.
4: for i = 1 to G do ▷ Stage 1: Response-Level Advantage Modulation
5: Compute modulation weight W (Ĉi) based on Âi using Eq. 7.
6: Modulate the advantage: Âmod

i ←W (Ĉi) · Âi.
▷ Stage 2: Token-Level Certainty Penalty

7: Get the sequence of logits {ℓi,t}|oi|t=1 for the generated tokens in oi.
8: Normalize logits within the sequence to get {ℓ̂i,t}|oi|t=1.
9: for t = 1 to |oi| do

10: Compute the final UCAS advantage:
11: ÂUCAS

i,t ← Âmod
i − β · ℓ̂i,t.

12: end for
13: end for
Output: The set of token-level UCAS advantages {ÂUCAS

i,t }.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Data and Benchmarks. During the training phase, we utilize the widely-used MATH
dataset as our training set. To maintain consistency with prior research, we only use the more
challenging subset of this dataset for training, specifically problems from levels 3 to 5. To com-
prehensively evaluate the reasoning capabilities of the model trained with our method, we select
five widely recognized benchmarks in the mathematical reasoning domain for testing: AIME24 (LI
et al., 2024), MATH-500 (Hendrycks et al., 2021), AMC (LI et al., 2024), Minerva (Lewkowycz
et al., 2022), and OlympiadBench (Huang et al., 2024), which collectively contain 1,560 problems.

Models and Baselines. We employ two variants of the Qwen2.5-Math (Yang et al., 2024) series as
our foundation models: Qwen2.5-Math-1.5B and Qwen2.5-Math-7B. First, to quantify the perfor-
mance improvement introduced by our method, we select the widely used GRPO and DAPO algo-
rithms as comparison baselines. Furthermore, to benchmark against existing reinforcement learning
techniques, we also select the following representative methods for comparison:

• Simple-RL-Zoo (Zeng et al., 2025): Based on Qwen2.5-Math-7B, trained on the math-
level3-5 dataset using the standard GRPO algorithm with rule-based rewards.

• PRIME-Zero (Cui et al., 2025a): An online PRM update approach that leverages implicit
process rewards from rollouts and outcome labels without requiring explicit annotations.

• OpenReasonerZero (Hu et al., 2025): A zero-RL baseline on Qwen2.5-7B employing the
standard PPO algorithm for policy optimization.

• Oat-Zero (Liu et al., 2025b): Built on Qwen2.5-Math-7B, trained with rule-based rewards
using a modified Dr.GRPO algorithm that removes variance terms and applies token-level
normalization in the policy loss.

• GRPO with Entropy Adv. (Cheng et al., 2025): Extends RLVR training by incorpo-
rating a clipped, gradient-detached entropy term into the advantage function to encourage
exploration.

• KTAE (Sun et al., 2025b): A token-level advantage estimation method trained with
DAPO, quantifying key-token contributions via statistical association tests and combining
them with rollout-level advantages.

6
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These baselines cover applications of fundamental RL algorithms, process-reward-based methods,
and algorithms improved for specific tasks like mathematical reasoning, aiming to evaluate the ef-
fectiveness and novelty of our method from multiple perspectives.

Implementation Details. We adopt the VERL framework (Sheng et al., 2024) and train our model
using the optimization objective defined in Eq. 10. During training, the model’s maximum context
length is set to 4096, with a maximum prompt length of 1024 and a maximum response length of
3072. The learning rate is fixed at 1 × 10−6, and the training batch size is set to 512. For each
prompt, we sample 16 rollouts with a sampling temperature of 1.0. For the DAPO baseline, we use
clipping thresholds of ϵlow = 0.2 and ϵhigh = 0.28. The KL penalty loss and entropy regularization
loss are omitted from the objective function. The hyperparameters for our UCAS method, α and
β, are set to 0.25 and 0.01, respectively. All experiments are conducted on 2 compute nodes, each
equipped with 8 NVIDIA A800 80GB GPUs.

4.2 MAIN RESULTS

The greedy pass@1 performance comparison between 1.5B and 7B models across five mathematical
reasoning benchmarks is presented in Table 1. We can clearly find that the UCAS model achieved
the highest performance across all five math reasoning benchmarks on both the 1.5B and 7B
parameter scales. Compared with the DAPO baseline, UCAS improves the average accuracy from
41.2 to 47.3 (+6.1) on Qwen2.5-Math-1.5B and from 50.5 to 56.7 (+6.2) on Qwen2.5-Math-7B. Be-
yond DAPO, UCAS also surpasses strong baselines such as KTAE and Oat-Zero, with pronounced
gains on challenging benchmarks including AIME24, AMC, and OlympiadBench. These results
highlight the robustness and scalability of uncertainty-aware advantage shaping, demonstrating con-
sistent benefits across model sizes and diverse reasoning tasks.

Models AIME24 MATH-500 AMC Minerva Olympiad Avg
Qwen2.5-Math-1.5B

Base Model 7.3 61.8 43.4 15.1 28.4 31.2
GRPO 15.6 76.0 51.8 22.1 36.3 40.4
DAPO 16.7 77.6 47.0 25.7 39.0 41.2
Oat-Zero(Liu et al., 2025b) 20.0 74.4 50.6 23.9 37.0 41.2
KTAE(Sun et al., 2025b) 20.0 77.6 50.6 29.0 40.0 43.4
UCAS 23.3 80.6 59.0 31.6 42.1 47.3

Qwen2.5-Math-7B

Base Model 11.0 69.0 45.8 21.3 28.4 35.1
GRPO 30.0 81.0 57.8 32.7 43.2 48.9
DAPO 30.5 81.8 60.2 34.5 45.3 50.5
PRIME-Zero (Cui et al., 2025a) 23.3 82.2 57.8 36.0 39.9 47.8
OpenReasonerZero (Hu et al., 2025) 17.9 78.4 45.8 27.9 45.0 43.0
Oat-Zero(Liu et al., 2025b) 32.1 79.8 61.4 30.5 41.8 49.1
Simple RL-Zero(Zeng et al., 2025) 26.7 78.6 59.0 33.8 43.4 48.3
GRPO with Entropy Adv. (Cheng et al., 2025)† 33.7 83.1 69.8 - - -
KTAE(Sun et al., 2025b) 36.7 83.2 63.9 35.3 43.7 52.6
UCAS 43.3 85.6 68.7 37.6 48.0 56.7

Table 1: The greedy pass@1 performance of 1.5B and 7B models across five math reasoning bench-
marks. †: results from Cheng et al. (2025). Our method UCAS consistently surpasses all baselines
in both parameter scales.

4.3 ANALYSIS

4.3.1 ABLATION STUDY

The ablation comparison between response-level and token-level uncertainty modeling is presented
in Table 2. We can clearly observe that both response-level and token-level uncertainty bring
consistent gains over the DAPO baseline. Compared with the model trained with DAPO, incor-
porating response-level confidence increases the average score on Qwen2.5-Math-1.5B from 41.2
to 44.7 (+3.5%), while token-level uncertainty further raises it to 45.1 (+3.9%). A similar trend
holds on the 7B model, where both variants surpass the DAPO baseline. Their integration in UCAS

7
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Models AIME24 MATH-500 AMC Minerva Olympiad Avg
Qwen2.5-Math-1.5B

Base Model 7.3 61.8 43.4 15.1 28.4 31.2
w/ DAPO 16.7 77.6 47.0 25.7 39.0 41.2
w/ DAPO + Response-Level Confidence 23.3 79.6 51.8 27.6 41.0 44.7
w/ DAPO + Token-Level Certainty 20.0 80.2 55.4 29.7 40.1 45.1
w/ DAPO + UCAS (Ours) 23.3 80.6 59.0 31.6 42.1 47.3

Qwen2.5-Math-7B

Base Model 11.0 69.0 45.8 21.3 28.4 35.2
w/ DAPO 30.5 81.8 60.2 34.5 45.3 50.5
w/ DAPO + Response-Level Confidence 40.0 85.0 63.9 36.7 47.4 54.6
w/ DAPO + Token-Level Certainty 36.7 84.6 65.0 29.7 47.7 52.7
w/ DAPO + UCAS (Ours) 43.3 85.6 68.7 37.6 48.0 56.7

Table 2: Ablation study of uncertainty modeling. Both sentence-level and token-level uncertainty
bring consistent gains over the DAPO baseline.

achieves the best performance, confirming that both signals are individually useful and jointly nec-
essary.

4.3.2 TRAINING DYNAMICS
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Figure 3: Training dynamics of UCAS compared with GRPO across both 7B and 1.5B models.
Left: Reward; Middle: Response Length; Right: Generation Entropy.

The training process highlights several key performance trends, as shown in Figure 3. Compared to
vanilla GRPO, UCAS demonstrates a consistent increase in the inference reward on the MATH500
benchmark. Regarding the average response length, the inclusion of UCAS enables the model to
generate longer reasoning chains, reflecting more comprehensive problem-solving (Guo et al., 2025;
Cheng et al., 2025), while simultaneously improving accuracy. For generation entropy, UCAS shows
an early decline but later recovers and stabilizes at a higher level, effectively avoiding the entropy
collapse reported in prior work (Cui et al., 2025b). Notably, the model’s reward continues to rise
even as the entropy increases, which indicates a stable and effective training dynamic where explo-
ration and optimization are well-balanced.

4.3.3 PASS@K EVALUATION
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Figure 4: Comparison of pass@k results on
the AIME24 Benchmark.

Prior studies (Wang et al., 2022; Wu et al., 2024)
have shown that with a limited number of rollouts,
models often struggle to solve certain tasks. In con-
trast, when the rollout budget is sufficiently large,
the probability of sampling effective solutions in-
creases considerably. This observation suggests that
pass@k accuracy with a large k provides a more re-
liable estimate of a model’s potential performance
(Yue et al., 2025). Under this evaluation protocol, a
problem is considered solved if any of the k sampled
reasoning trajectories yield the correct answer.
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Figure 4 reports pass@k results on the AIME24 benchmark. The results indicate that UCAS
achieves more consistent improvements as k grows. In contrast, Vanilla-GRPO and its enhanced
variants show slower growth, consistent with findings from Yue et al. (2025). The stronger per-
formance of UCAS under the pass@k metric highlights its effectiveness, which can be attributed
to differences in exploration strategies. Unlike Vanilla-GRPO, which often suffers from exploration
stagnation, where the model repeatedly samples low-diversity rollouts, UCAS leverages uncertainty-
aware advantage shaping to sustain diverse exploration and escape local optima.

5 RELATED WORK

5.1 RL FOR LLM REASONING

Recent advances in reinforcement learning have transformed the training of large language models
for reasoning tasks. Process reward models (PRMs) (Lightman et al., 2023) have emerged as a key
innovation, providing step-level supervision that improves both efficiency and accuracy compared to
outcome-only rewards. Approaches such as PRIME (Cui et al., 2025a) eliminate costly human anno-
tation by deriving implicit process feedback, while OmegaPRM (Luo et al., 2024) leverages Monte
Carlo Tree Search (MCTS) to automatically identify reasoning errors. Alongside this, DeepSeek-R1
(Guo et al., 2025) demonstrates that sophisticated reasoning can emerge purely from RL without su-
pervised fine-tuning, enabled by GRPO, which replaces value functions with group-based baselines.
These advances redefine alignment and reasoning in LLMs, positioning reinforcement learning with
verifiable or process-level rewards as a scalable and principled alternative to preference-model-based
RLHF.

5.2 REINFORCEMENT LEARNING FROM VERIFIABLE REWARDS

RLVR has emerged as a scalable alternative to preference-based alignment by converting open-
ended outputs into checkable signals such as mathematical correctness or unit-test pass rates (Guo
et al., 2025; Yue et al., 2025). While early implementations demonstrated strong gains in pass@1
accuracy, subsequent studies revealed a consistent policy entropy collapse: models rapidly concen-
trate probability mass on a narrow set of high-reward trajectories, diminishing output diversity and
limiting exploration (Cui et al., 2025b). Empirical analyses show that RLVR-trained models often
underperform base models on pass@k (Shao et al., 2024; Yue et al., 2025), highlighting a precision–
diversity trade-off (Wu et al., 2025; Dong et al., 2025).

Algorithmic responses to entropy collapse vary. Entropy or KL penalties provide partial remedies,
though their effectiveness depends on the divergence form (Li et al., 2025). More principled adap-
tations include token-level covariance control, which selectively limits updates on high-confidence
tokens to sustain exploration (Cui et al., 2025b). In parallel, hybrid optimization strategies, exempli-
fied by RL-PLUS (Dong et al., 2025), exploit off-policy data to reintroduce diversity, underscoring
entropy preservation as a fundamental bottleneck in scaling RLVR.

6 CONCLUSION

In this work, we introduced UnCertainty-aware Advantage Shaping (UCAS), a fine-grained advan-
tage estimation framework that leverages internal confidence signals without requiring additional re-
ward models. By jointly modeling uncertainty at both the response and token levels, UCAS reshapes
advantages to highlight critical uncertain reasoning steps and suppress overconfident yet erroneous
segments. Experimental results on major mathematical reasoning benchmarks show that UCAS
achieves substantial performance improvements over GRPO and its enhanced variants. Analysis of
the training dynamics further reveals that, as training progresses, UCAS demonstrates steadily in-
creasing rewards, longer reasoning chains, and an entropy trajectory that first declines and then rises,
reflecting stronger exploratory capability. These findings indicate that uncertainty-aware advantage
shaping offers an effective pathway toward more robust reinforcement learning for large language
models.
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A LIMITATION AND FUTURE WORK

While our work demonstrates the effectiveness of UCAS in the domain of mathematical reasoning,
we acknowledge several limitations that present valuable opportunities for future research.

First, our experiments are exclusively focused on mathematical tasks, which benefit from clear,
binary verifiable rewards (i.e., the answer is either correct or incorrect). The direct applicability of
UCAS to domains with more nuanced, subjective, or dense reward signals—such as creative writing,
summarization, or open-domain dialogue—remains an open question. Adapting the uncertainty-
aware shaping mechanism to these softer reward landscapes would be a crucial next step.

Second, our method relies on self-confidence and raw logits as proxies for model uncertainty. While
these internal signals are computationally efficient and effective, future work could explore alter-
native or complementary uncertainty metrics. Techniques such as Monte Carlo dropout, model
ensembles, or semantic entropy could potentially capture different facets of model uncertainty and
lead to even more refined and robust advantage shaping. Investigating these areas will be essential
for understanding the broader generalizability of our approach.

B FURTHER ANALYSIS

To further analyze the effect of UCAS training, we compute the response-level confidence scores
of model outputs according to Eq. 5, measured before and after training on Qwen2.5-Math-1.5B
across MATH and Olympiad datasets. We focus on the MATH and Olympiad datasets because they
contain more samples and a larger number of responses whose correctness changes after training,
which makes them well suited for detailed analysis. For comparability, the confidence values are
normalized by subtracting the mean and dividing by the standard deviation.

Based on the correctness of the responses before and after training, the samples are categorized into
three groups: (i) consistently correct (1→1), (ii) correct before but incorrect after (1→0), (iii) incor-
rect before but correct after (0→1), and (iiii) incorrect before and incorrect after (0→0). Figure 5
illustrates the distribution of these categories, where each point represents model’s response to a
given problem.

Figure 5: Confidence dynamics before and after UCAS training on the MATH and Olympiad
datasets.

From Figure 5, we observe that for many problems correctly solved only after UCAS training (0→1),
the model’s confidence notably increases. In contrast, for problems that remain unsolved before
and after training (0→0), the model tends to reduce its confidence, suggesting a more calibrated
estimation of its own uncertainty.
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C LLMS USAGE STATEMENT

We employed a Large Language Model (LLM) to assist exclusively in the editorial stage of
manuscript preparation. Its role was limited to refining phrasing, correcting grammar, and enhanc-
ing clarity and readability across different sections. The LLM had no involvement in formulating
research ideas, designing experiments, or conducting analyses. All scientific contributions and find-
ings are entirely the work of the authors. The authors have ensured that the use of the LLM complies
with ethical standards, avoiding plagiarism and scientific misconduct.
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