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ABSTRACT

In the era of large foundation models, the quality of embeddings has become a
central determinant of downstream task performance and overall system capa-
bility. Yet widely used dense embeddings are often extremely high-dimensional
(e.g., 4096), incurring substantial costs in storage, memory, and inference latency.
To address these, Contrastive Sparse Representation (CSR) is recently proposed
as a promising direction, mapping dense embeddings into high-dimensional but
k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka
Representation Learning (MRL). Despite its promise, CSR suffers severe degra-
dation in the ultra-sparse regime (e.g., k ≤ 4), where over 80% of neurons re-
main inactive, leaving much of its efficiency potential unrealized. In this pa-
per, we introduce CSRv2, a principled training approach designed to make ultra-
sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive
k-annealing, enhances representational quality via supervised contrastive objec-
tives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2
reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at
k = 2, bringing ultra-sparse embeddings on par with CSR at k = 8 and MRL
at 32 dimensions, all with only two active features. While maintaining compa-
rable performance, CSRv2 delivers a 7× speedup over MRL, and yields up to
300× improvements in compute and memory efficiency relative to dense em-
beddings in e5-mistral-7b-instruct-based text representation. Extensive experi-
ments across text (MTEB, multiple state-of-the-art LLM embeddings (Qwen and
e5-Mistral-7B), SPLADEv3, GraphRAG) and vision (ImageNet-1k) demonstrate
that CSRv2 makes ultra-sparse embeddings practical without compromising per-
formance, where CSRv2 achieves 7%/4% improvement over CSR when k = 4
and further increases this gap to 14%/6% when k = 2 in text/vision representa-
tion. By making extreme sparsity viable, CSRv2 broadens the design space for
large-scale, real-time, and edge-deployable AI systems where both embedding
quality and efficiency are critical.

1 INTRODUCTION

In the era of large foundation models, the quality of embeddings has become a decisive factor shap-
ing downstream performance across tasks such as retrieval, classification and recommendation. Yet
the dominant practice still relies on dense representations with thousands of dimensions (e.g., 2048
– 8192). While highly expressive, such embeddings incur substantial costs in storage, memory,
and inference latency. These inefficiencies are magnified in large-scale and real-time deployments,
where embedding computation and serving often dominate system throughput. As models scale fur-
ther, embedding efficiency emerges as a central bottleneck — limiting both web-scale applications
and deployment on resource-constrained platforms such as mobile and edge devices.

Several methods have been proposed to improve embedding efficiency, but they face sharp trade-offs
under extreme compression. Existing approaches improve efficiency but falter under extreme com-
pression. Matryoshka Representation Learning (MRL) (Kusupati et al., 2022) trains embeddings to
function at multiple truncation lengths, yet expressivity collapses and accuracy drops sharply below
a hundred dimensions. Contrastive Sparse Representation (CSR) (Wen et al., 2025) instead maps
embeddings into high-dimensional sparse vectors, outperforming MRL and matching its quality
with only one-quarter of the active dimensions. Despite this potential, CSR suffers severe degra-
dation in the ultra-sparse regime (k = 2 or 4). We refer to this regime as ultra-sparse embeddings,
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(b) Average accuracy on text embedding tasks.

Figure 1: Overview of our proposed method. (Left): An illustrative comparison between full
embedding, truncated MRL embedding, medium-sparse CSR embedding and ultra-sparse CSRv2
embedding. (Right): Comparison of average text embedding performance on 6 types of tasks in
MTEB benchmark with E5-Mistral-7B backbone. All methods are trained on the same data for fair
comparison, and ”Backbone” indicates performance of E5-Mistral-7B with no task-type-specific
finetuning for consistent reference

which in principle can deliver over 100× efficiency gains in large-scale retrieval. However, existing
methods incur 20 – 40% accuracy losses in this regime, rendering such embeddings impractical in
real-world scenarios. This raises a central question:

Are ultra-sparse embeddings inherently constrained, or can proper training mitigate this?

Driven by this question, we take a closer look at ultra-sparse embeddings and identify three key
challenges. First, they suffer from a “massive dead neuron” problem: even with modern mitiga-
tion techniques, more than 85% of neurons remain permanently inactive when CSR activates only
two neurons (k = 2), severely limiting expressivity. Second, the mismatch between pretraining
objectives and downstream tasks becomes amplified under ultra-sparsity, so CSR relying on purely
self-supervised signals (e.g., image cropping) leads to pronounced degradation. Third, we observe
that CSR also shows greater degradation when jointly trained on multiple datasets and domains,
indicating that restricting it to a linear layer on top provides insufficient representational capacity.

To address the above challenges, we develop CSRv2, an improved training recipe for sparse em-
beddings that is as simple and generic as CSR(v1) yet delivers substantial and consistent gains in
ultra-sparse regimes. CSRv2 combines a curriculum annealing schedule, which prevents early col-
lapse when learning ultra-sparse embeddings, with natural supervision from labeled data, which
replaces the noisy self-supervision of CSR and utilizes the few active dimensions more effectively.
In addition, beyond training only a linear layer (CSRv2-linear), we explore finetuning the entire
backbone with our objectives, analogous to the MRL setting, and show that this further improves
generalization across domains, establishing new state-of-the-art results and outperforming MRL by
up to 25% under the same training conditions. Altogether, CSRv2 provides the first reliable recipe
for shrinking modern embeddings to just two or four active dimensions with only modest perfor-
mance drops. This opens a new understanding of representational capacity and paves the way for
extremely memory- and compute-efficient applications such as edge devices, robotics, and real-time
search engines. We discuss in detail the evolution of text embedding and adaptive embedding tech-
niques in Appendix A, highlighting the correlations and limitations of existing methods that motivate
CSRv2.

To summarize, our contributions are:

• We systematically explore the regime of ultra-sparse embeddings and diagnose three main
causes of failure in prior methods: dead neurons, lack of effective supervision, and limited
model capacity.

• We propose CSRv2, a simple and generic training recipe that addresses these issues through
k-annealing for ultra-sparsity, supervised sparse contrastive learning, and optional full-
model finetuning for multi-domain robustness.
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Table 1: Overview of the training paradigms, objectives, trainable parameters, and performance
(c.f. Figure 1b) of the four efficient embedding methods discussed in this paper.

Method Training Objectives Trainable Params
MRL Supervised Multi-length Cross Entropy Full Finetuning
CSR Self-supervised SAE + Contrastive Linear Head
CSRv2-linear Self-sup. + Sup. k-annealing SAE + Sup. Contrastive Linear Head
CSRv2 Self-sup. + Sup. k-annealing SAE + Sup. Contrastive Full Finetuning

• We validate CSRv2 extensively on text (six MTEB tasks and two domains in GraphRAG-
Benchmark) and image (ImageNet-1k), show up to 4× efficiency gains over CSR and 16×
over MRL at comparable performance, and attain 10%–30% accuracy improvements on
state-of-the-art Qwen3 Embedding models under short embedding lengths.

We will fully open-source our training data, code, and CSRv2-enhanced versions of Qwen3 and e5-
Mistral-7B, ensuring compatibility with existing model configurations and readiness for production
use. We are further committed to extending CSRv2 to a broader set of open-source models. By
releasing these resources, we aim to encourage new research directions and practical applications of
ultra-sparse embeddings that have not yet been explored.

2 BACKGROUND

The goal of representation learning is to map high-dimensional inputs (such as images or text)
into low-dimensional embeddings that capture semantic similarity. Consider text embeddings
as an example: given a batch of query–document pairs that share similar semantics, an LLM
backbone encodes them into embedding pairs {(q1, d1), . . . , (qN , dN )}, where (qi, di) denotes a
query–document pair. The embeddings are then trained with a contrastive loss such as InfoNCE
(Oord et al., 2018). However, standard embeddings typically remain high-dimensional (2k–8k),
creating a significant bottleneck for large-scale, real-time retrieval systems, including search, rec-
ommendation, and retrieval-augumented generation. Here, we review two representative approaches
to address this by producing embeddings with adaptive dimensionality for efficient applications.

Matryoshka Representation Learning (MRL). Instead of applying the loss solely on the full-
size embeddings, MRL (Kusupati et al., 2022) truncates the first m ∈ M dimensions of the text
embeddings d[1 : m] ∈ Rm and applies the same loss function on a set of truncated lengths M with
relative importance scale cm. Formally, the objective of MRL is as follows:

LMRL = − 1

N

∑
m∈M

cm
∑
i∈[N ]

log
exp (s(qi 1:m, di 1:m)/τ)

Zi
(1)

where s(·, ·) is the similarity function (cosine similarity in most cases), τ is the temperature param-
eter and Zi denotes the normalization factor that comes in different forms (Zhang et al., 2025a;b).
Generally, the number of selected truncating lengths |M| will not be larger than ⌊log(d)⌋ of the
original embedding size d and all the relative importance scale cm will be set to 1.

Contrastive Sparse Representation (CSR). Instead of training the whole model as in MRL,
CSR (Wen et al., 2025) takes a pretrained encoding model (with frozen weights), and trains a simple
sparse autoencoder (Cunningham et al., 2023) on top for mapping the pretrained dense embeddings
x ∈ Rd into a sparse embedding z ∈ Rdz with up to k ≪ d non-zero elements (i.e., k-sparse):

z = Topk(ReLU(Wenc(x− bpre) + benc)), (2)
x̂ = Wdecz + bpre, (3)

where the Topk operator keeps the top k largest values while setting the others to zero, ReLU(x) =
max(x, 0) keeps non-negative elements, and Wenc and Wdec are the encoder and decoder matrices.
The CSR model is jointly optimized via Topk sparse autoencoder (SAE) (Gao et al., 2024) and
sparse contrastive learning (NCL) (Wang et al., 2024b). The overall training objective is,

LCSR = L(k) + L(4k)/8 + βLaux + γLSpCL. (4)

3
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(c) Dead neuron during training

Figure 2: K-annealing analysis on ImageNet-1k with FF2048 as backbone. (Left): Comparison
of dead neuron ratio before and after applying k-annealing in different sparsity levels. (Middle):
Dead neuron trend during training before and after applying annealing when k = 2. (Right): Eval-
uation results on ImageNet-1k with 1-NN accuracy as the main metric.

The MSE loss L(k) = ∥x − x̂∥22 calculates the difference between original dense feature x ∈ Rd

and reconstructed dense feature x̂ ∈ Rd from k-sparse embedding z. Training with the multi-Topk
loss L(k) + L(4k)/8 ensures that CSR could generalize to different ks at test time. The sparse
contrastive loss LSpCL computes InfoNCE loss over sparse embeddings z as Wang et al. (2024b):

LSpCL = − 1

|B|

|B|∑
i=1

log
exp zT

i zi

exp zT
i zi +

∑B
j ̸=i exp z

T
i zj

. (5)

Lastly, the auxiliary loss Laux = ∥e− ê∥22 calculates the difference between the reconstruction error
e = x− x̂ and the reconstruction using the top-kaux dead latents ê = Wdecz, which is proposed by
Gao et al. (2024) for reducing dead neuron’s effect on performance degradation.

Computational Complexity. By exploiting short and sparse embeddings, both CSR and MRL sig-
nificantly improve the memory and computational efficiency of embedding models. In particular,
retrieval with a k-dimensional short embedding z requires only O(k) memory and compute to evalu-
ate query–document similarity (instead of O(d) with x). Likewise, storing a k-sparse embedding in
compressed formats (e.g., CSR or CSC) incurs O(k) memory and enables O(k) compute via sparse
matrix multiplication, which is natively supported in modern CPU/GPU libraries such as PyTorch.
Wen et al. (2025) further show that CSR and MRL achieve comparable retrieval time at the same k.
Hence, k serves as a convenient surrogate for both memory and computational cost.

3 CSRV2: TACKLING NEW CHALLENGES UNDER ULTRA-SPARSITY

Although CSR achieves impressive performance by closely matching the accuracy of full-size em-
beddings at relatively high sparsity levels (k = 8, 16, 32), we observe that its performance deterio-
rates rapidly at extremely small values of k (e.g., k = 2, 4). We refer to this regime as ultra-sparsity.
In this section, we uncover several key reasons underlying CSR’s failure in the ultra-sparse regime
and show that it is actually largely fixable with several improved training techniques introduced here.

3.1 TACKLING MASSIVE DEAD NEURONS WITH K-ANNEALING

The Massive Dead Neuron Phenomenon. As discussed in Wen et al. (2025), a critical advantage
of CSR over MRL is that sparse embeddings z ∈ Rdz can exploit a large number of hidden neu-
rons dz ≫ k for better feature expressivity, while only activating a few (k) for retrieval efficiency.
However, we observe that as k → 1, dead neurons arise as a more severe problem. A dead neuron
is a feature dimension that remains inactive on any data sample, indicating that it fails to represent
anything useful. As shown in Figure 2a, the dead neuron ratio quickly increases as k decreases,
rising to 70% at k = 4 and reaching 90% at k = 2. It means that these ultra-sparse embeddings can
only utilize 10% to 30% hidden dimensions, which greatly limits their representation power.
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Why Dead Neurons are more Severe under Ultra-sparsity. Although CSR already integrates
common remedies for dead neurons, such as auxiliary losses and multi-Topk strategies (Jermyn
& Templeton, 2024; Gao et al., 2024), our experiments reveal that these approaches, effective at
moderate sparsity (k = 32, 64), become largely ineffective when k is extremely small. The difficulty
is intrinsic: only the k selected dimensions in each sparse code receive non-zero gradients, leaving
the majority of neurons untrained. Under ultra-sparsity with only a handful of active dimensions,
this issue becomes particularly severe. Moreover, once a neuron falls inactive, it receives no gradient
signal and thus cannot recover, creating a self-reinforcing loop that further increases dead neurons.

Alleviating dead neurons with k-annealing. To alleviate this problem, we instead adopt a cur-
riculum learning approach: we warm up the training with a sufficiently large initial sparsity level
kinit (by default kinit = 64), which avoids severe neuron inactivity and allows the model to learn a
meaningful latent space in the early stage. As training proceeds, k is gradually annealed toward the
target ultra-sparsity kfinal (e.g., kfinal = 2) using a linear schedule. Specifically, at epoch t we set

kt = (1− pt) kinit + pt kfinal, pt = t/T, (6)
where T is the total number of annealing steps. In practice, we perform annealing for 70% of
training, after which k is fixed at kfinal. Analogous to simulated annealing, starting with a larger
kinit promotes exploration and diverse neuron activations, while the gradual annealing kinit → kfinal
sharpens the representations and enables stable convergence in the ultra-sparse regime.

We find this approach effectively maintains a low dead-neuron rate during training. As shown in
Figure 2c, although dead neurons rise slightly at target sparsity, their final proportion is far lower
than training directly with kfinal. This indicates that a curriculum schedule provides richer gradients
and avoids collapse into the dead-neuron regime. Similar to simulated annealing, a larger kinit pro-
motes exploration and diverse activations, while annealing gradually sharpens embeddings toward
the ultra-sparse regime. Figure 2b confirms this, as k-annealing yields consistent performance gains
across sparsity levels.

Remark. It is worth noting that LlamaScope (He et al., 2024) also employs a k-annealing strategy,
but with a very different motivation and scope. Their annealing is applied only during the first 10%
of training, reducing k from the full embedding dimension (kinit = d) to a moderate sparsity level
(kfinal = 50) to accelerate convergence. In contrast, our method anneals k over most of the train-
ing process, specifically to mitigate the massive dead neuron problem that arises under ultra-sparsity.
Moreover, LlamaScope restricts annealing to SAEs, while we apply it to efficient embeddings. Thus,
our finding that progressive k-annealing is critical for overcoming dead neurons at ultra-sparse em-
beddings still constitutes a novel and valuable contribution to the literature.

3.2 LEARNING DOWNSTREAM-ALIGNED FEATURES FROM NATURAL SUPERVISION

For ultra-sparse embeddings that activate only a few dimensions, the model must prioritize infor-
mative features and suppress noise. CSR, relying on self-supervised objectives like autoencoding
and contrastive learning (Section 2), may be suboptimal. Its augumentation-based positives (e.g.,
cropping), though effective, transfer poorly when downstream tasks need properties ignored during
training. (Ericsson et al., 2021). This weakness is exacerbated under ultra-sparsity, where noisy
features are easily activated while informative ones are lost.

Remedy: Sparse Supervised Contrastive Learning. To bridge this gap, we follow the setting of
MRL and adopt natural supervision, which is readily available in many retrieval tasks, to construct
more accurate positive pairs. For example, in labeled datasets such as ImageNet, two random im-
ages from the same class can be used as a positive pair. In text retrieval datasets, query–document
pairs naturally serve as positives. This supervision enables ultra-sparse embeddings to dedicate their
limited active dimensions to encoding informative features that align with downstream applications,
rather than wasting capacity on noisy features. Concretely, we replace CSR’s self-supervised con-
trastive loss with a supervised contrastive loss (Khosla et al., 2020) applied to the k-sparse embed-
dings:

LSpSCL(k) = − 1

|B|

|B|∑
i=1

log

∑
p∈P(i) e

zT
i zp∑

p∈P(i) e
zT
i zp +

∑
n∈N (i) e

zT
i zn

, (7)

where P(i) and N (i) denote the sets of positive and negative samples derived from natural super-
vision. Specifically, for classification and clustering tasks, samples with the same label are treated

5
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(a) accuracy vs supervision (b) self-supervised t-SNE features (c) supervised t-SNE features

Figure 3: (Left): Supervision leads to performance increase in ultra-sparse setting with e5-Mistral-
7B as backbone. (Middle & Right): t-SNE visualization comparison on MTOPDomain (Li et al.,
2020) before/after adding supervision when k = 2.
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Figure 4: Comparison of CSRv2-linear trained on single-domain dataset, CSRv2-linear trained on
multi-domain dataset and CSRv2 trained on multi-domain dataset in different tasks. e5-Mistral-7B
is selected as backbone and training splits of all tasks in the same task type are combined for multi-
domain.

as positives, while others are negatives. For retrieval and reranking tasks, each query and its corre-
sponding documents are positives. For semantic textual similarity, sentence pairs with a similarity
score above 3 are positives. For pair classification, sentence pairs with label 1, indicating strong
correlation, are positives. A detailed description of these tasks is provided in Appendix B.

From Figure 3, we observe that supervised training yields clear performance gain in ultra-sparse
settings. Moreover, supervision produces sparse features that are far more discriminative across
classes. It demonstrates that these supervisions provide clearer signals for training ultra-sparse em-
beddings. More detailed ablation on applying natural supervision to CSR is available in Section 4.3.
The community has so far curated abundant pretraining-scale paired text data for training retrieval
models, such as 65M Q-A pairs (Lewis et al., 2021). Therefore, it would be quite useful to be able
to leverage large-scale supervision.

3.3 MITIGATING MULTI-DOMAIN TRAINING GAPS VIA FINETUNING

A notable property of CSR is that it can outperform MRL (which requires full finetuning) by training
only a simple encoder with a single linear layer. However, this design also limits CSR’s ability to
fully exploit the potential of sparse embeddings, particularly when deploying a single model across
multiple downstream tasks. As shown in Figure 4, CSR with only a linear layer experiences clear
performance drop under joint training with multi-domain data in different task types, reflecting the
limited capacity of such a shallow adaptation.

To fully unlock the potential of sparse embeddings and push CSR to its limit, we adopt the same
setting as MRL: applying the Topk operator to the output embeddings of the backbone network and
finetuning the entire model. Figure 4 shows that full finetuning effectively mitigates the performance
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Table 2: Performance and retrieval efficiency on six text embedding tasks with e5-Mistral-
7B. Since e5 does not natively support MRL or CSR, we enable a fair comparison by training all
methods on the same backbone, data, and configurations. For retrieval efficiency, experiments are
conducted with a 1M database, and results are reported as retrieval time relative to CSRv2 at k = 2.

Active Method Retrieval Classifi. Clust. Retrieval STS PairClassifi. Rerank. Avg.
Dim Time AP ↑ V-measure ↑ nDCG@10 ↑ Spearman ↑ AP ↑ MAP ↑

4096 e5-Mistral-7B 306.46× 80.67 51.55 49.35 84.11 91.77 69.52 69.99

4096

MRL 301.86× 80.46 50.94 48.75 83.78 90.44 68.86 69.49
CSR 197.52× 80.54 51.13 49.13 83.94 90.99 68.96 69.70
CSRv2-linear 196.04× 80.55 51.19 49.07 84.02 91.48 69.02 69.76
CSRv2 201.42× 80.49 51.34 49.16 83.94 91.70 69.18 69.80

64

MRL 17.30× 66.58 47.76 44.11 77.46 78.46 62.72 61.86
CSR 14.92× 79.50 48.36 45.22 82.10 87.29 64.86 66.68
CSRv2-linear 14.53× 80.29 48.35 47.92 82.09 88.55 66.54 67.58
CSRv2 14.17× 79.98 49.53 47.92 82.90 90.46 67.34 68.08

16

MRL 7.77× 54.64 42.03 34.33 68.18 59.22 56.16 51.93
CSR 3.53× 75.61 45.12 34.79 77.30 84.28 59.86 62.83
CSRv2-linear 3.51× 77.08 46.58 39.60 79.37 85.38 62.31 64.26
CSRv2 3.51× 77.79 47.97 43.38 79.94 86.50 64.36 65.76

4

MRL 6.29× 43.84 33.14 24.55 56.51 37.36 44.72 40.83
CSR 1.62× 67.22 39.25 23.54 70.13 74.44 48.57 52.94
CSRv2-linear 1.65× 73.55 42.96 34.31 73.31 74.17 56.08 58.62
CSRv2 1.63× 74.26 43.85 39.04 75.69 74.90 62.93 61.01

2

MRL 6.20× 34.84 26.13 16.63 52.14 26.67 40.30 33.81
CSR 1.01× 52.50 35.20 16.14 62.93 52.95 46.77 44.33
CSRv2-linear 1.01× 66.43 39.07 31.58 67.91 57.39 53.32 53.35
CSRv2 1.00× 71.59 41.29 37.48 73.82 62.46 60.91 58.38

drop observed under the linear setting, recovering performance comparable to domain-specific CSR
training (additional details are provided in Appendix C).

Building on all these findings above, we propose the following improved sparse training objective:

LCSRv2 = L(kt) + 1
8 L(4kt) + βLaux + γLSpSCL(kt), (8)

where kt is the annealed sparsity level at step t (Eq. 6) and LSpSCL denotes the sparse supervised
contrastive loss (Eq. 7).

We designate the fully finetuned model as CSRv2, and the variant that finetunes only a linear layer
on top (as in CSR) as CSRv2-linear. TopK SAE (Gao et al., 2024) finds that using L(k) + L(4k)

8
is enough to obtain progressive representation over all k. We find similar phenomeona for CSR
and thus follow this common practice. The improved training recipe remains as simple and generic
as the original CSR without introducing more training objectives. In the experiments that follow,
we are able to show that both CSRv2 and CSRv2-linear deliver significant gains over CSR and
MRL, particularly in the ultra-sparse regime. Furthermore, the fully finetuned CSRv2 sets a new
performance–efficiency frontier for adaptive embeddings, surpassing MRL by up to 25% in absolute
accuracy under the same setting. During inference, the embedding produced by the backbone first
goes through an encoder which projects it onto a high dimensional vector (e.g. 16384). Afterwards,
the TopK values in the vector are kept while others are set 0, with no normalization applied.

4 EXPERIMENTS

In this section, we comprehensively evaluate the effectiveness of CSRv2. For language represen-
tation, we evaluate on tasks in Appendix B. For visual representation, we conduct experiments on
ImageNet-1k (Deng et al., 2009) and evaluate using 1-NN accuracy (Kusupati et al., 2022). More-
over, we conduct efficiency analysis and empirical analysis on ablation of each component and dead
neurons. Case study of representation interpretability for a more detailed assessment of the advan-
tages and potential of CSRv2 is proposed in Appendix F.
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Table 3: Performance comparison with Qwen3-Embedding-4B (Zhang et al., 2025b), a state-of-
the-art embedding model on MTEB that natively supports MRL. Backbone results are shown in the
first line and first/second largest value on each active dimension is bold / underlined.

Active Method Classifi. Clust. Retrieval STS PairClassifi. Rerank. Avg.
Dim AP ↑ V-measure ↑ nDCG@10 ↑ Spearman ↑ AP ↑ MAP ↑

2560 Qwen3-Embed-4B 85.79 55.27 58.37 88.63 91.42 72.03 74.92

2560

MRL 85.38 55.04 58.31 88.02 91.27 71.64 74.58
CSR 85.49 54.83 58.21 88.64 91.23 71.84 74.70
CSRv2-linear 85.32 55.43 58.74 89.05 91.03 72.25 74.99
CSRv2 85.58 55.91 58.23 88.47 91.39 71.98 74.91

64

MRL 83.42 53.73 44.13 86.60 88.08 69.61 70.54
CSR 83.94 52.36 51.51 85.33 90.54 70.11 71.10
CSRv2-linear 84.03 53.19 53.22 85.88 90.72 71.13 72.31
CSRv2 84.28 54.57 55.64 86.32 90.90 71.64 72.79

16

MRL 75.22 47.24 20.40 79.21 73.29 60.82 58.89
CSR 78.60 49.08 35.66 82.08 85.80 65.00 64.66
CSRv2-linear 80.71 51.48 39.09 82.15 88.94 67.64 67.20
CSRv2 82.03 53.86 45.09 82.63 90.42 69.89 68.98

4

MRL 48.27 32.08 6.59 53.11 30.73 40.59 36.74
CSR 57.39 36.03 16.27 64.13 64.29 50.26 46.66
CSRv2-linear 71.59 43.24 24.82 72.11 77.74 56.94 56.76
CSRv2 80.20 48.27 29.71 77.94 82.28 62.98 62.41

2

MRL 26.47 24.20 5.23 30.22 18.46 32.43 22.84
CSR 41.83 30.02 9.37 51.27 54.60 44.20 36.29
CSRv2-linear 66.95 39.22 18.47 71.56 77.95 54.67 53.41
CSRv2 76.22 46.02 23.93 74.88 75.24 59.52 58.53

4.1 BENCHMARK PERFORMANCE

Evaluation under controlled setup. For fair comparison, we adopt e5-Mistral-7B (Wang et al.,
2023) as backbone and finetune it on MTEB datasets to ensure MRL aligns with CSRv2 domains.
Table 2 reports task-type-specific results on six task types commonly adopted in past works (Zhang
et al., 2024) (Li et al., 2024a) (Lee et al., 2024a) in MTEB (Muennighoff et al., 2022), where CSRv2
is trained on all train splits of the same task type. Under equal activation dimensions, CSRv2 consis-
tently outperforms CSR, with up to 14% gains in the ultra-sparse case k = 2. Notably, CSRv2 also
surpasses MRL: at k = 2, it exceeds MRL’s dense 16-dim embedding and even outperforms 64-dim
dense embeddings in text classification. Efficiency tests on a 1M database further show CSRv2’s
ultra-sparse embeddings achieve a 300× retrieval speedup over the backbone and 7× faster retrieval
than MRL’s dense embeddings of similar accuracy. More detailed results and implementation details
appear in Appendix C.

Evaluation on State-of-the-art Qwen3 Models. We further evaluate on Qwen3-Embedding-4B,
whose series leads the MTEB leaderboard, with even the 0.6B model surpassing prior 7B re-
sults. Unlike E5-Mistral-7B, Qwen3 integrates MRL into training, producing embeddings naturally
aligned with it. As shown in Table 3, CSRv2 consistently outperforms both MRL and CSR at equal
compression. In cross-level comparisons, CSRv2 at k = 16 rivals MRL at k = 64, and CSRv2 at
k = 2 rivals MRL at k = 16, highlighting its adaptability across backbones and sparsity levels.

Evaluation Comparsion with SPLADE Sparse Retrieval Model. Learning-based sparse retrieval
(LSR) aims to encode an input sequence into a high-dimensional sparse representation. Among
such approaches, the SPLADE (Formal et al., 2021c) (Lassance et al., 2024) series has achieved,
and in some cases surpassed, the performance of dense embedding models across various retrieval
tasks. We evaluate SPLADEv3 on MTEB retrieval benchmarks under three experimental settings
and compare its performance against CSRv2 with sparsity levels of K = 16 and K = 2. We find
that SPLADEv3 (Lassance et al., 2024) attains retrieval performance comparable to that of dense
embedding models while utilizing only about 3% of the activation values. However, its performance
degrades notably under higher sparsity conditions (e.g., K = 16 or K = 8). Specifically, when
K = 16, SPLADE-v3 exhibits a noticeable performance gap compared to CSRv2, and at K = 8,
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its retrieval effectiveness falls below that of CSRv2 at K = 2. Detailed results are available in
Appendix C.5.

Zero-shot Evaluation in Graph-RAG System. Recently, Graph-RAG retrieval systems have
gained attention for enriching retrieval with graph-structured context, with various mature frame-
works such as MS-GraphRAG (Edge et al., 2024) and light-GraphRAG (Guo et al., 2024). We fur-
ther evaluate CSRv2’s embedding quality when applied to medical and novel domains in GraphRAG
Benchmark (Xiang et al., 2025), where models are evaluated in two perspectives: retrieval quality
and generation accuracy. To evaluate on CSRv2’s zero-shot capability, all models are trained on
MTEB retrieval datasets while no data in GraphRAG Benchmark is used for training. We find that
CSRv2’s performance drop is minimal compared to the degradation observed with MRL’s trunca-
tion strategy, which indicates that CSRv2 is not tied to any specific supervised data source. Detailed
results and experiment setup details are in Appendix E.

Visual Embedding Evaluation on ImageNet-1k. Figure 5a demonstrates CSRv2’s performance
on ImageNet-1k with pre-trained ResNet-50 noted as FF2048 in the MRL (Kusupati et al., 2022)
as backbone. We find that CSRv2 achieves continuous improvement in classification performance
compared to CSR and MRL. This phenomenon is particularly prominent in the extremely sparse
case, where CSRv2 achieves a 6% 1-NN accuracy increase over CSR and 20% over MRL. More
detailed results and experiment setup are in Appendix D.

4.2 EFFICIENCY ANALYSIS

In Figure 5c, we evaluate CSRv2 and MRL retrieval efficiency under hidden dimension Rh and ac-
tive dimension K on a 1M-scale database. Retrieval time grows roughly linearly with d as predicted
by O(dk), though GPU architecture also influences performance. In ultra-sparse cases (k = 2),
CSRv2 leverages GPU sparse accelerators (e.g., Sparse Tensor Core, cuSPARSE) to run over 6×
faster than MRL. As sparsity decreases (k = 32), dense-optimized libraries (e.g., cuBLAS) reduce
dense operators’ overhead, shrinking CSRv2’s advantage to 2.2×. Thus, CSRv2 excels in extreme
sparsity while maintaining stable gains in general sparse settings. Experiment setups and more dis-
cussions on encoding, indexing and retrieval are presented in Appendix G.1.

4.3 EMPIRICAL ANALYSIS

Ablation. Table 4 reports ablations of CSRv2 components. Supervision proves most effective for
compression, while anneal alone yields little gain. Yet combining them (CSRv2-linear) outperforms
adding supervision alone, showing synergy: anneal promotes feature orthogonality and subspace
expansion, while supervision directs semantic learning, where the two play different but comple-
mentary roles. Finetuning further aligns backbone embeddings with sparse objectives, adding 5%
improvement at k = 2.

Dead Neurons. Figure 5b shows dead neuron fractions across components. While adding unsuper-
vised contrastive loss in CSR yields more independent features and fewer dead neurons in sparse
embedding (e.g. k = 32), CSR still suffers severe dead neuron issues in ultra-sparse cases (e.g.
k = 2). Anneal distributes semantic features into a broader hidden subspace, reducing dead neu-
rons by 70% at k = 2. Natural supervision further lowers them to about 20%. Finetuning brings
little improvement, likely because the Topk strategy only aligns backbone embeddings with sparse
objectives rather than fostering orthogonal representations.

K-Schedule Sentivity Analysis. We test on k-annealing’s sensitivity on three perspectives: k-
schedule shape, length (i.e. ratio of steps before k reaches target sparsity level) and k’s initialization.
Results show that different k-schedule results in relatively stable increase in performance improve-
ment, while our selected setting: initialized to 64, annealing to target sparsity level at 70% step, and
linear-annealing strategy achieves the best performance. More detailed results are in Appendix G.2.

Further Discussions. Moreover, we have conducted several experiments, which provide potential
directions for future exploration. These discussions are analysis on unbalanced weightable settings
for MRL and CSRv2 finetuning (Appendix G.3), emergence of superclass separability in sparsity
representation (Appendix H.1), MRL-SAE exploration (Appendix H.5) and quantized comparsion
at fixed memory cost (Appendix H.2). Furthermore, CSRv2 can be potentially applied in vector
quantization due to its sparse structure, with a brief discussion in Appendix H.3.
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Table 4: Performance Ablation Comparison: We perform ablation study with e5-Mistral-7B as
backbone through task-type-specific evaluation and average performance of all task types is pre-
sented. We mark improvement of different combinations relative to CSR with green, while perfor-
mance gap between MRL and CSR with red.

Components Active Dimension
anneal supervise finetune 64 32 16 8 4 2

MRL - - ✓ 61.47
(-5.21)

56.37
(-8.23)

51.85
(-9.53)

47.09
(-11.10)

40.83
(-12.11)

33.81
(-10.36)

CSR ✗ ✗ ✗ 66.68 64.60 61.38 58.19 52.94 44.17

+ anneal ✓ ✗ ✗ 67.35
(+0.67)

65.24
(+0.64)

61.91
(+0.53)

58.79
(+0.60)

54.55
(+1.61)

45.33
(+1.16)

+ supervise ✗ ✓ ✗ 67.32
(+0.64)

65.54
(+0.94)

62.95
(+1.57)

60.05
(+1.86)

56.36
(+3.42)

49.05
(+4.88)

CSRv2-linear ✓ ✓ ✗ 67.58
(+0.90)

65.83
(+1.23)

63.73
(+2.35)

61.53
(+3.34)

58.62
(+5.68)

53.25
(+9.08)

CSRv2 ✓ ✓ ✓ 68.08
(+1.40)

66.70
(+2.10)

65.22
(+3.84)

63.76
(+5.57)

61.01
(+8.07)

58.34
(+14.17)
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Figure 5: (Left): Visual representation results on ImageNet-1k with FF2048 as backbone. ”Back-
bone” serves as the evaluation results on FF2048 without finetuning for consistent reference. (Mid-
dle): Dead neuron trend with different components under varying compression levels. (Right):
Efficiency analysis in 1M database size with e5-Mistral-7B as backbone.

5 CONCLUDING REMARKS

Unlike prior methods (CSR, MRL) that fail once k ≤ 4, CSRv2 provides the first principled recipe
that makes ultra-sparsity viable. The central insight is that ultra-sparsity is not merely a parame-
ter regime but a qualitatively different optimization problem: (i) standard self-supervised losses
misalign with downstream semantics when only two or four features remain, and (ii) dead neurons
accumulate irreversibly without curriculum. CSRv2 introduces two non-trivial modifications mo-
tivated by this diagnosis: a progressive k-annealing schedule that preserves gradient flow across
neurons until late training, and a supervised sparse contrastive objective that reallocates the few ac-
tive features to carry semantic signal. These mechanisms are essential for surviving the ultra-sparse
regime and go beyond “better tuning” of CSR’s original objective.

A key open challenge is the k = 1 regime, where CSRv2 still suffers from severe dead neurons
and sharp degradation (Appendix H.4). Since k = 1 effectively reduces to clustering (mapping
each input to a one-shot label), future work could explore clustering-inspired approaches, such as
prototype or vector quantization, balanced assignment, entropy regularization, or optimal transport.
Extending CSRv2 into this extreme setting remains an important direction, while the practically
useful ultra-sparse range k ∈ {2, 4, 8} already offers substantial efficiency gains with competitive
accuracy.
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Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. Splade: Sparse lexical and ex-
pansion model for first stage ranking. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2288–2292, 2021b.
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Pontus Stenetorp, and Sebastian Riedel. Paq: 65 million probably-asked questions and what you
can do with them. Transactions of the Association for Computational Linguistics, 9:1098–1115,
2021.

Chaofan Li, MingHao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Yingxia Shao, Defu Lian, and
Zheng Liu. Making text embedders few-shot learners. arXiv preprint arXiv:2409.15700, 2024a.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit Gupta, Sonal Gupta, and Yashar Mehdad.
Mtop: A comprehensive multilingual task-oriented semantic parsing benchmark. arXiv preprint
arXiv:2008.09335, 2020.

Mingxin Li, Zhijie Nie, Yanzhao Zhang, Dingkun Long, Richong Zhang, and Pengjun Xie. Im-
proving general text embedding model: Tackling task conflict and data imbalance through model
merging. arXiv preprint arXiv:2410.15035, 2024b.

Xianming Li, Zongxi Li, Jing Li, Haoran Xie, and Qing Li. 2d matryoshka sentence embeddings.
arXiv preprint arXiv:2402.14776, 2024c.

Yuxiao Li, Eric J Michaud, David D Baek, Joshua Engels, Xiaoqing Sun, and Max Tegmark. The
geometry of concepts: Sparse autoencoder feature structure. Entropy, 27(4):344, 2025.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

14

https://aclanthology.org/D17-1126


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xueqing Liu, Chi Wang, Yue Leng, and ChengXiang Zhai. Linkso: a dataset for learning to retrieve
similar question answer pairs on software development forums. Proceedings of the 4th ACM
SIGSOFT International Workshop on NLP for Software Engineering, 2018. URL https://
api.semanticscholar.org/CorpusID:53111679.

Xinyuan Lu, Liangming Pan, Yubo Ma, Preslav Nakov, and Min-Yen Kan. Tart: An open-
source tool-augmented framework for explainable table-based reasoning. arXiv preprint
arXiv:2409.11724, 2024.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

Maggie, Phil Culliton, and Wei Chen. Tweet sentiment extraction. https://kaggle.com/
competitions/tweet-sentiment-extraction, 2020. Kaggle.
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A ADDITIONAL RELATED WORK

LLM-based Text Embeddings. The integration of Large Language Model into text embedding
generation has been a hot topic due to LLM’s extraordinary capability of comprehensive semantic
understanding. This integration has led to many embedding models that have demonstrated excellent
performance in multiple domains, multiple tasks, and multiple languages, such as GritLM (Muen-
nighoff et al., 2024), e5-Mistral-7B-instruct (Wang et al., 2023), Gemini Embedding (Lee et al.,
2025), Qwen3 Embedding (Zhang et al., 2025b) and Linq-Embed-Mistral (Choi et al., 2024).

Generally, the techniques utilized in training these models can mainly be classified into two cate-
gories. One approach is utilizing LLMs for text augmentation or synthetic data generation, therefore
expanding the domain covered by model training. Jina-v3 (Sturua et al., 2024), Gecko (Lee et al.,
2024b) and Tart (Lu et al., 2024) utilize LLM to generate synthetic examples to enhance task-wise
generation and expand targeted failure cases. NV-Embed-v2 (Moreira et al., 2024), E5-Mistral
(Cheng et al., 2023) and SWIM-X (Thakur et al., 2023) employ LLM to provide higher-quality
supervision signals for existing embedding training.

Another approach is directly adapting LLMs themselves to serve as text embedding models, there-
fore transfer knowledge from large LLMs to more efficient embedding models. Generally, this
approach takes one pretrained LLM as backbone such as Mistral 7B (Wang et al., 2023) and fine-
tune with parameter-efficient finetuning strategies including BitFit (Zaken et al., 2021) and LoRA
(Hu et al., 2022). Current innovation for LLM adaptation to embedding generation focus on three
aspects: design of positive/negative pairs, multi-stage learning and instruction tuning. For design of
positive/negative pairs, (Gao et al., 2021) proposes an unsupervised contrastive learning framework
for advancing sentence embeddings, where augumented unlabeled sentences are seen as positive
pairs. NV-Retrieval (Moreira et al., 2024) filters out potential false negatives by comparing can-
didate negatives against the positive relevance score. Granite Embedding models (Awasthy et al.,
2025) use additional bidirectional signal to expand negatives in retrieval set. For multi-stage train-
ing, NV-Embed (Lee et al., 2024a) takes a two-stage contrastive instruction-tuning approach that first
trains on retrieval datasets with in-batch and hard negatives, then blends in non-retrieval tasks with-
out in-batch negatives, yielding strong improvements in both retrieval and general embedding tasks.
Qwen3 Embedding model series (Zhang et al., 2025b) take a three-step pipeline that first performs
large-scale weakly supervised pre-training on synthetic data, then finetunes with high-quality super-
vised and selected synthetic datasets, and finally applies model merging (Li et al., 2024b) to boost
robustness and generalization. For instruction tuning, Inbedder (Peng et al., 2024) treats instructions
as questions and derives embeddings from the expected answers rather than concatenating instruc-
tions with inputs. E5-Mistral (Cheng et al., 2023) employed an asymmetric instruction strategy that
initially applies instructions only to the query side which has been proven efficient in retrieval tasks
by numerous subsequent works.

Adaptive Representations Learning for Text Embedding Compression. Early work for text
embedding sparsity focuses on directly mapping text to sparse vectors or use token-wise late interac-
tion, with some recent work carried out following this approach. The SPLADE series (Formal et al.,
2021b) (Formal et al., 2021a) introduced a BERT-based model for learning sparse, interpretable text
representations via explicit sparsity regularization and log-saturation, enabling efficient inverted in-
dex retrieval. PromptReps (Zhuang et al., 2024a) prompts LLM to generate a single-word represen-
tation of each text and sparsify the logits of that prediction by filtering to document tokens while
applying ReLU and log-saturation. Mirzadeh et al. (2023) proposes a “relufication” sparsity strategy
where non-ReLU activations in pretrained LLMs are replaced (and sometimes supplemented) with
ReLU layers to induce high activation sparsity. Nguyen et al. (2024) uses probabilistic term ex-
pansion control to transform dense text embeddings in multimodal retrieval into sparse, vocabulary-
aligned vectors while preserving effectiveness. Wang et al. (2024a) introduces Q-Sparse, a method
that achieves full activation sparsity in large language models by applying Topk sparsification to
linear projections and using the straight-through estimator for training Moreover, You et al. (2025)
reveal that spurious memorization — where a small set of neurons overfit to non-causal patterns —
can lead to biased representations and degraded generalization. Understanding and mitigating such
effects provides complementary insight to sparsity-based embedding learning.

Matryoshka Representation Learning (Kusupati et al., 2022) (MRL) pioneers text embedding com-
pression in recent years via training with truncated dimensions. Proposed in 2022, MRL demon-
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strates adaptive-length embeddings for large-scale retrieval and classification including NLP set-
tings, leading to various works that focus on adapting MRL to embedding model settings. Li et al.
(2024c) extends MRL by introducing a second scalability dimension, enabling embeddings to be
truncated along both model layers and embedding sizes. Zhuang et al. (2024b) combines fixed-size
sub-model finetuning with masked autoencoder pre-training, introduces a new structured training
strategy for 2D Matryoshka embeddings. Yoon et al. (2024) transforms arbitrary embeddings gen-
erated by embedding models or APIs into embeddings with Matryoshka properties in both unsu-
pervised and supervised setups. Various open-sourced embedding models, such as Jina-v3 (Sturua
et al., 2024) and Qwen3-Embedding series (Zhang et al., 2025b); and commercial APIs, such as
Gemini (Lee et al., 2025), have supported MRL dimension truncation.

Another promising direction for text embedding sparsification is Sparse Autoencoder, which grows
from sparse coding/dictionary learning to tackle polysemanticity by disentangling features, are now
scaled to frontier LLMs and widely used for mechanistic interpretability (Cunningham et al., 2023)
(Yan et al., 2025). Rajamanoharan et al. (2024) introduces Gated SAE that solves the systematic
underestimation of feature activations caused by L1 penalty and requires half as many firing features
to achieve comparable reconstruction fidelity. Gao et al. (2024) utilizes k-sparse autoencoders as a
replacement of traditional L1-based sparsity, preventing activation shrinkage, reducing dead latents,
and yielding cleaner scaling laws with more interpretable and effective features. Lan et al. (2024)
employs SAE to discover monosemantic features within language models, revealing a high degree
of similarity and potential universality in these learned sparse feature spaces across diverse LLM
architectures. Wen et al. (2025) leverages contrastive objectives for preserving semantic quality,
achieving results close to those of backbone embeddings in the downstream tasks when only 32
neurons are activated.

Orthogonal Efficiency Techniques. Quantization and hashing compress embedding values rather
than reducing active dimensions. Product quantization and its optimized variants approximate dis-
tances with compact codes (Jégou et al., 2011; Ge et al., 2013), while binary hashing methods such as
Spectral Hashing and ITQ yield extremely small codes with Hamming-distance search (Weiss et al.,
2008; Gong et al., 2011). Model-side low-bit quantization of Transformer encoders further reduces
memory and latency (Shen et al., 2019). These techniques are orthogonal and can be combined with
sparse embeddings (e.g., PQ over nonzero coordinates or low-bit storage of sparse values), jointly
improving storage and retrieval throughput.

B TASKS

We cover 6 types of tasks in this paper: classification, clustering, retrieval, pair classification, se-
mantic textual similarity and reranking. They are taken from MTEB (Muennighoff et al., 2022) and
include the vast majority of the tasks in the MTEB English Leaderboard, as well as some multilin-
gual tasks.

• Classification: Classification involves 10 tasks, which are divided into general tasks and
specialized tasks. General tasks include AmazonMassiveDomain (FitzGerald et al., 2022),
AmazonMassiveScenario (FitzGerald et al., 2022) , MTOPIntent (Li et al., 2020), and
MTOPDomain (Li et al., 2020) for multilingual natural language understanding, IMDb
(Maas et al., 2011), TweetSentimentExtraction (Maggie et al., 2020) and Emotion (Sar-
avia et al., 2018) for sentiment analysis. Specialized tasks include AmazonCounterfac-
tual (O’Neill et al., 2021) for counterfactual detection in product reviews, ToxicConver-
sation50k (cjadams et al., 2019) for detection of toxic speech and prejudice, Banking77
Casanueva et al. (2020) for financial intent recognition.

• Clustering: Clustering involves 8 tasks. These tasks are BiorxivClusteringP2P, Biorxiv-
ClusteringS2S 1, MedrxivClusteringP2P, MedrxivClusteringS2S 2 and ArxivClusteringS2S
(University, 2025) for research field clustering, TwentyNewsGroups 3 for news topics iden-
tification, StackExchangeP2P and StackExchange (Geigle et al., 2021) for clustering of
titles from 121 stackexchanges.

1https://api.biorxiv.org/
2https://api.medrxiv.org/
3https://scikit-learn.org/0.19/datasets/twenty newsgroups.html
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• Retrieval: Retrieval involves 8 tasks. These tasks are Arguana (Wachsmuth et al., 2018)
and NFCorpus (Boteva et al., 2016) for medical information retrieval, CQADupstackGam-
ing (Hoogeveen et al., 2015) and CQADupstackUnix (Hoogeveen et al., 2015) for web
community retrieval, ClimateFEVERHardNegatives (Wadden et al., 2020a) for climate-
change retrieval, FiQA2018 (Maia et al., 2018) for financial retrieval, SCIDOCS (Cohan
et al., 2020b) and SciFact (Wadden et al., 2020b) for academic retrieval.

• Semantic Textual Similarity (STS): STS includes 10 tasks. These tasks include general-
domain semantic comprehension tasks STS12 (Agirre et al., 2012), STS13 (Agirre et al.,
2013), STS14 (Bandhakavi et al., 2014), STS15 (Biçici, 2015), STS16 (Nakov et al., 2019),
STSBenchmark (May, 2021), SICK-R (Marelli et al., 2014), STS17 (Cer et al., 2017) and
STS22 (Chen et al., 2022) and medical domain semantic comprehension task BIOSSES
(Soğancıoğlu et al., 2017).

• Pair Classification: Pair Classification includes two tasks, with SprintDuplicateQuestions
(Shah et al., 2018) for programming domain and TwitterURLCorpus (Lan et al., 2017) for
social media (Tweet) domain.

• Reranking: Reranking includes 3 tasks, which are AskUbuntuDupQuestions (Wang et al.,
2021) and StackOverflowDupQuestions (Liu et al., 2018) for reranking of related program-
ming blogs and SciDocsRR (Cohan et al., 2020a) for reranking of scientific papers.

C EXPERIMENT DETAILS ON TEXT REPRESENTATIONS

C.1 EVALUATION METRICS

We adopt the standardized evaluation protocols established by the Massive Text Embedding Bench-
mark (MTEB) (Muennighoff et al., 2022). Specifically:

• For classification tasks, we train a logistic regression classifier on the embedded training
split and report its accuracy on the test split.

• For clustering tasks, we apply mini-batch k-means to the embedded training data and eval-
uate performance on the test split using the V-measure.

• For retrieval tasks, we compute normalized Discounted Cumulative Gain at rank 10
(nDCG@10), where document-query relevance scores are derived from cosine similarity
between embeddings.

• For semantic textual similarity (STS) tasks, we measure the Spearman rank correlation
coefficient between the ground-truth similarity scores and the cosine similarities of the
corresponding sentence embeddings.

• For pair classification tasks, we evaluate using cosine-similarity–based average precision,
with decision thresholds determined by optimizing over similarity scores on the validation
set.

• For reranking tasks, we report Mean Average Precision (MAP), again using cosine similar-
ity as the scoring function.

To assess retrieval efficiency, we construct a unified query set by aggregating all queries from the
aforementioned retrieval and reranking datasets, and a corresponding document database by merging
their respective corpora. All efficiency metrics are computed over this consolidated benchmark
setup.

C.2 EXPERIMENT SETUP

We select e5-Mistral-7B (Wang et al., 2023) and Qwen3-Embedding-4B (Wang et al., 2023) as our
backbone embedding models and evaluate their performance across six task categories defined in
the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2022). For each task cate-
gory, we restrict our evaluation to English-language datasets and the English subsets of multilingual
datasets included in the MTEB leaderboard4 . This yields a total of 10 classification (Classif.), 8

4https://huggingface.co/spaces/mteb/leaderboard
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clustering (Clust.), 8 retrieval (Retrieval), 10 semantic textual similarity (STS), 2 pair classification
(PairClassifi.), and 3 reranking (Rerank.) datasets in our experimental suite.

We adopt a task-type-specific evaluation pipeline: for each task type, we aggregate the training
splits of all constituent datasets to form a unified training set, while preserving the original test split
of each individual dataset for performance evaluation. This pipeline is applied consistently across
all six task types using the aforementioned datasets.

All experiments are conducted on a server equipped with 8 NVIDIA A100-SXM4-40GB GPUs,
except for backbone finetuning, which is performed on a separate server with 8 H20-NVLink GPUs
(96 GB memory each).

C.3 IMPLEMENTATION DETAILS

To ensure a fair comparison between MRL and CSRv2 on the MTEB benchmark—particularly with
respect to domain alignment—we select a backbone model that is not natively supported by MRL:
e5-Mistral-7B (Wang et al., 2023). We then finetune this model on a carefully curated collection of
multi-domain datasets. Specifically, the training data is drawn from three complementary sources:
(i) datasets included in the MTEB benchmark (Muennighoff et al., 2022), (ii) the embedding training
data collection curated by the Sentence Transformers team5 , and (iii) a suite of public retrieval
datasets introduced in Zhang et al. (2025a). During preprocessing, we first deduplicate datasets that
appear across multiple collections. Subsequently, following the natural supervision strategy outlined
in Section 3.2, we sample up to 20,000 sentence pairs per dataset, resulting in a consolidated training
corpus of approximately one million examples.

We finetune e5-Mistral-7B on this corpus using a batch size of 2,048—a scale commonly adopted
by existing MRL-compatible models. Full details of the hyperparameter configuration are provided
in Table 5. In contrast, the Qwen3-Embedding-4B model (Zhang et al., 2025b) already incorporates
native MRL support; thus, no additional finetuning is required for this backbone.

Table 5: Implementation details on MRL finetuning.

Backbone Batch Size LoRA r LoRA α lr epoch warmup weight decay MRL dim MRL cm

e5-Mistral-7B 2048 8 16 2e-5 10 1000 0.1 1,2,4...,4096 {1, 1, . . . , 1}

For backbone finetuning, we adopt a methodology closely aligned with that of MRL (Kusupati et al.,
2022), as detailed in Section 3.3. Specifically, we apply a Topk operator with varying values of k to
the backbone’s output embedding and finetune the model using LoRA (Hu et al., 2022). We restrict
k to powers of two (i.e., k ∈ {2i}), and assign a uniform weight of 1 to each k-dimensional sub-
embedding during training. The finetuning objective is the InfoNCE loss (Oord et al., 2018), and
the selection of hyperparameters is provided in Table 6.

Table 6: Implementation details on backbone finetuning in text representation.

Backbone Batch Size LoRA r LoRA α lr epoch warmup weight decay Topk

e5-Mistral-7B 256 8 16 2e-5 10 1000 0.1 {1, 2, ..., 2048, 4096}
Qwen3-Embedding-4B 256 8 16 2e-5 10 1000 0.1 {1, 2, ..., 2048, 2560}

In the training of CSRv2, we adopt the tied encoder–decoder architecture as proposed in CSR (Wen
et al., 2025). For the k-annealing schedule, the initial sparsity level kinit is set to 64 if the current
number of activated dimensions k is less than 64; otherwise set kinit = 4k. Positive and negative
samples for supervision are constructed in accordance with the rule detailed in Section 3.2. We
employ Adam as the optimizer and selection of other hyperparameters is in Table 7.

5https://huggingface.co/datasets/sentence-transformers/
embedding-training-data
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Table 7: Implementation details on CSRv2 training in text representation.

Backbone d h lr epoch Batch size kaux β γ K weight decay

e5-Mistral-7B 4096 16384 4e-5 10 128 1024 0.1 1 2,4,...,4096 1e-4
Qwen3-Embedding-4B 2560 10240 2e-5 128 256 1024 0.1 1 2,4,16,64,4096 1e-4
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Figure 6: Task-type-specific ablation on varying components with e5-Mistral-7B as backbone.

C.4 MORE DETAILED EXPERIMENT RESULTS ON TEXT REPRESENTATIONS

Building upon the e5-Mistral-7B backbone, we further validate the efficacy of CSRv2 through an
extensive performance comparison across a broad spectrum of active dimensions (ranging from 2
to 4096—the full embedding dimensionality of the backbone) and through comprehensive ablation
studies.

As shown in Table 8, we report task-type-specific results for MRL, CSR, and CSRv2 across six
distinct task categories.

Moreover, we systematically evaluate the impact of different component combinations on each task
type and observe that the performance gains contributed by each individual component remain con-
sistent across diverse domains. Detailed results are provided in Figure 6.

C.5 RETRIEVAL EVALUATION COMPARISON WITH SPALDE-BASED MODELS

Table 9 demonstrates CSRv2’s performance comparison with SPLADEv3 model. We select e5-
Mistral-7B (Wang et al., 2023) as backbone, whose performance on MTEB retrieval tasks is on par
with SPLADEv3. Note that the Active Dim X − Y for SPLADEv3 means that queries have X
active dimensions and documents have Y active dimensions, which is a common setting in LSR
series model’s evaluation. Results show CSRv2 is more suitable for ultra-sparse text representation
generation in extreme application cases.
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Table 8: Performance in task-type-specific experiments across all dimensions.

Active Method Classifi. Clust. Retrieval STS PairClassifi. Rerank. Avg.
Dim AP ↑ V-measure ↑ nDCG@10 ↑ Spearman ↑ AP ↑ MAP ↑

4096 e5-Mistral-7B 80.67 51.55 49.35 84.11 91.77 69.52 69.99

2
MRL 34.84 26.13 16.63 52.14 26.67 40.30 33.81
CSR 52.50 35.20 16.14 62.93 52.95 46.77 44.17
CSRv2 71.59 41.29 37.48 73.82 62.46 60.91 58.34

4
MRL 43.84 33.14 24.55 56.51 37.36 44.72 40.83
CSR 67.22 39.25 23.54 70.13 74.55 48.57 52.94
CSRv2 74.26 43.85 39.04 75.69 74.90 62.93 61.01

8
MRL 48.95 38.55 29.65 63.93 49.02 52.70 47.09
CSR 73.77 41.68 31.61 74.00 77.95 55.32 58.19
CSRv2 76.60 46.49 42.67 78.67 79.29 63.15 63.76

16
MRL 54.64 42.03 34.33 68.18 59.22 56.16 51.85
CSR 75.61 45.12 34.79 77.30 84.28 59.86 61.38
CSRv2 77.79 47.97 43.38 79.94 86.50 64.36 65.22

32
MRL 59.37 45.31 39.68 72.33 68.80 58.86 56.37
CSR 77.11 47.38 43.21 79.30 85.48 62.90 64.59
CSRv2 78.92 48.69 46.58 80.48 88.88 66.95 66.70

64
MRL 66.58 47.76 44.11 77.46 78.46 62.72 61.47
CSR 79.50 48.36 45.22 82.10 87.29 64.86 66.68
CSRv2 79.98 49.53 47.92 82.90 90.46 67.34 68.08

128
MRL 74.78 49.12 46.08 81.95 84.66 65.48 65.72
CSR 79.70 49.32 46.68 82.39 87.83 65.48 67.34
CSRv2 80.14 49.83 48.27 83.12 90.75 67.44 68.32

256
MRL 76.52 49.21 46.64 82.07 85.25 66.04 66.37
CSR 80.00 49.64 47.47 82.66 88.48 65.98 67.76
CSRv2 80.24 50.24 48.42 83.35 90.89 67.85 68.55

512
MRL 78.42 49.68 47.19 82.53 87.87 66.45 67.30
CSR 80.12 49.86 47.92 82.97 88.93 66.51 68.04
CSRv2 80.31 50.65 48.64 83.50 91.14 68.30 68.77

1024
MRL 78.92 49.96 47.58 82.85 88.65 67.36 67.74
CSR 80.26 50.36 48.16 83.28 89.67 67.28 68.41
CSRv2 80.50 50.88 48.82 83.65 91.41 68.64 68.97

2048
MRL 79.54 50.49 48.35 83.65 89.40 68.25 68.44
CSR 80.38 50.79 48.62 83.63 90.42 68.36 68.81
CSRv2 80.51 51.27 48.93 83.88 91.63 68.87 69.16

4096
MRL 80.46 50.94 48.75 83.78 90.44 68.86 69.25
CSR 80.54 51.13 49.13 83.94 90.99 68.96 69.16
CSRv2 80.49 51.34 49.16 83.94 91.70 69.18 69.25

D EXPERIMENT DETAILS ON VISUAL REPRESENTATIONS

D.1 EVALUATION METRICS

Following the methodology established by Kusupati et al. (2022), we adopt 1-nearest neighbor
(1-NN) accuracy as the primary metric for evaluating visual representations. This metric is com-
puted using FAISS (Jacob et al., 2018) with exact L2 distance search. In contrast to classifica-
tion accuracy—which depends on the specific architecture and training procedure of a downstream
classifier—1-NN accuracy provides a direct assessment of whether semantically similar instances
are embedded in close proximity within the representation space. Consequently, it serves as a more
model-agnostic and training-free probe of intrinsic representation quality.
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Table 9: CSRv2’s Performance and Relative Retrieval Efficiency Comparison with SPLADEv3.

Active
Method

Retrieval
Arguana CQAGaming CQAUnix CF-HN Fiqa Nfcorpus Scidocs Scifact Avg.

Dim Time

4096 e5-Mistral-7B 306.46× 62.73 64.13 47.99 30.71 56.93 39.67 18.09 74.53 49.35

40-400 SPLADEv3 27.25 × 35.95 54.31 34.51 39.01 49.28 59.61 32.52 72.80 47.37

16-16 SPLADEv3 3.63× 29.09 48.76 29.14 32.54 35.00 52.78 30.77 57.22 39.41
16 CSRv2 3.51 × 54.98 59.78 39.17 26.92 52.07 33.18 15.56 65.39 43.38

8-8
SPLADEv3

2.84 × 21.92 39.74 21.27 31.86 28.88 47.59 26.14 45.09 32.81
4-4 1.78 × 14.71 28.59 9.62 22.37 19.25 28.71 17.43 28.18 21.11
2-2 1.15 × 6.05 13.84 3.97 14.53 9.76 16.28 7.59 18.73 11.34
2 CSRv2 1.00 × 44.86 53.81 35.74 18.22 45.27 29.16 11.97 60.83 37.48

D.2 IMPLEMENTATION DETAILS

For fair comparison, we select the pretrained ResNet-50 weights, as noted in FF2048 in the MRL
(Kusupati et al., 2022). Image preprocessing follows the identical pipeline employed in (Leclerc
et al., 2023), (Kusupati et al., 2022) and (Wen et al., 2025). We utilize a tied encoder-decoder
structure to build the CSRv2 framework and the implementation is based on Wen et al. (2025). All
experiments are conducted on a server with 8 NVIDIA A100-SXM4-40GB. For backbone (FF2048)
finetuning, the selection of hyperparameters is in Table 10.

Table 10: Implementation details on FF2048 finetuning in visual representation.

Backbone Batch Size lr epoch warmup Optimizer weight decay Topk

FF2048 256 5e-6 10 1000 Adam 0.1 {1, 2, ..., 2048}

For CSRv2 training, we adopt the same settings as CSR (Wen et al., 2025). In the k-annealing
schedule, we initialize kinit = 64 if the target activated dimension k is less than 64, otherwise we
set kinit = 4k. For supervision, images belonging to the same semantic class are treated as positive
pairs, while all others are considered negative samples. Adam is employed as the training optimizer
and selection of other hyperparameters is in Table 11.

Table 11: Implementation details on CSRv2 training in visual representation.

Backbone d h lr epoch Batch size kaux β γ K weight decay

FF2048 2048 8192 4e-5 10 4096 512 1/32 0.1 2,4,...,2048 1e-4

D.3 1-NN CLASSIFICATION RESULTS

1-NN classification accuracy results on ImageNet-1k are shown in Table 12.

E EXPERIMENT DETAILS ON GRAPHRAG EVALUATION

E.1 EVALUATION METRICS

We follow the evaluation design proposed in Xiang et al. (2025). For retrieval, Context Relevance
and Evidence Recall are adopted. For generation, Answer Accuracy, Faithfulness, Evidence Cover-
age and ROUGE-L are adopted. Detailed explanation on each metric is as follows:

• Context Relevance(Relevance) assesses how well the aggregate retrieved context satis-
fies query’s semantic requirements. Higher values indicate greater fidelity between the re-
trieved material and the underlying informational intent of the user. Specifically, Context
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Table 12: 1-NN accuracy of different methods on ImageNet-1k classification.

Active Dim. 2 4 8 16 32 64 128 256 512 1024 2048

Full Rep. 71.19

MRL 47.81 55.65 62.19 67.91 69.46 70.17 70.52 70.62 70.82 70.89 70.97
CSR 61.05 65.33 67.78 69.17 70.15 70.94 70.99 71.31 71.29 71.30 71.18

CSRv2-linear 65.78 67.29 68.42 69.71 70.39 71.01 71.11 71.24 71.23 71.19 71.19
CSRv2 67.63 69.84 69.29 70.06 70.44 71.05 71.13 71.25 71.27 71.33 71.25

Relevance can be calculated as:

Relevance =
1

C
∑
c∈C

R(c,Q, ε) (9)

where C is the set of retrieved contents, Q is the query, ε is the set of evidence, and operator
R determines whether each context c is relevant to the query Q and the evidence ε.

• Evidence Recall(Recall) quantifies the completeness of evidence retrieval by measuring
the proportion of critical reference claims that are successfully covered by the system’s
output. It is defined as:

Recall =
1

|R|
∑
c∈R

1(S(c, C)) (10)

, where R is the set of reference claims, S is the operator to decide whether claim c is
supported by the retrieved content C and 1 is the indicator function.

• Answer Accuracy(ACC) comprehensively assesses answer quality through a combination
of semantic alignment and factual precision. To be specific,

ACC =
1

2
(FC + SS)

where FC qualifies generation correctness and SS = cos(fi, cj) calculates semantic simi-
larity.

• ROUGE-L calculates text similarity with n-gram overlap between generated and reference
answers, capturing both syntactic and semantic alignment (Lin, 2004).

• Faithfulness(FS) explicitly targets hallucination risks by quantifying the proportion of gen-
erated claims that are grounded in the retrieved evidence, thereby serving as a direct mea-
sure of factual consistency between the system’s output and its supporting context. It is
measured as follows:

FS =
|{c ∈ A|S(c, C)|}

|A|
where A denotes the set of atomic claims in the proposed response, C is the retrieved
context and S(c, C) denotes a boolean function indicating whether claim c is supported by
C.

• Evidence Converage(Cov) quantifies the extent to which the generated response incorpo-
rates all critical evidentiary elements required to construct a comprehensive and factually
complete answer. The formal computation is as follows:

Cov =
|{e ∈ E|M(e,G)}|

|E|

where E is the set of evidence, G is the generated answer and M(e,G) is a boolean function
indicating whether evidence e appears in the generation G.

E.2 IMPLEMENTATION DETAILS

Our evaluation covers two domains proposed in Xiang et al. (2025): Medical and Novel. For
fair comparison, we select Qwen3-Embedding-4B Zhang et al. (2025b) as the baseline embedding
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Table 13: CSRv2’s Performance in GraphRAG-based Retrieval. In GraphRAG-based retrieval
evaluation, Qwen3-Embedding-4B is selected as backbone and two sparsity levels: 32 and 8 are
selected for comparison. No data in benchmark is used in training for zero-shot evaluation.

Embedding Active Fact Retrieval Complex Reasoning Contextual Summarize Creative Generation Avg.
Model Dim Recall↑ Relevance↑ Recall↑ Relevance↑ Recall↑ Relevance↑ Recall↑ Relevance↑

Medical

Qwen3-4B 2560 75.43 45.83 82.98 40.18 81.2 48.79 87.14 28.77 61.29

MRL
32

48.30 15.05 63.52 16.06 53.64 19.38 84.13 12.20 39.04
CSRv2-linear 67.24 38.73 76.55 36.49 72.8 43.53 82.87 24.62 55.35

CSRv2 71.75 40.81 78.74 38.48 79.63 46.03 84.55 26.02 58.25

MRL
8

47.01 8.42 57.86 9.38 46.49 8.56 82.64 4.22 33.07
CSRv2-linear 62.47 31.56 67.3 18.33 72.7 39.53 81.92 12.03 48.23

CSRv2 68.17 36.98 69.35 23.08 71.97 35.64 85.52 14.16 50.61

Novel

Qwen3-4B 2560 81.29 45.26 82.15 51.39 83.41 49.03 80.29 36.94 63.72

MRL
32

68.47 27.91 72.80 33.48 76.42 33.22 78.02 28.36 52.34
CSRv2-linear 75.23 36.62 76.47 39.31 81.75 39.07 69.17 30.18 55.98

CSRv2 79.08 41.40 78.88 43.85 83.37 44.82 74.10 29.10 59.33

MRL
8

63.20 19.39 69.71 22.58 72.08 22.44 80.82 20.52 46.34
CSRv2-linear 66.72 29.92 71.81 32.83 68.48 30.16 78.30 19.09 49.79

CSRv2 75.05 36.46 77.16 44.63 77.65 40.33 80.92 25.87 57.26

model and GPT-4o-mini for graph construction, answer generation and evaluation. Fast-graphrag
(CircleMind-AI, 2025) is chosen as the Graph-RAG framework, with minor change following Xi-
ang et al. (2025) for Hugging Face Embedding support. All hyperparameters are set according to
the settings in Xiang et al. (2025).

E.3 EVALUATION RESULTS

Table 13 and 14 demonstrate CSRv2’s zero-shot capability: In retrieval performance evaluation, at
the same level of dimension, CSRv2 achieves performance improvements of over 15% and 7% in
medical and novel domains respectively compared to MRL, while in generation accuracy evaluation,
CSRv2-based systems achieve average improvements of over 10% and 3% in medical and novel
domains.

F ADDITIONAL QUALITATIVE ANALYSIS

F.1 CASE STUDY OF FEATURE COMPARISON BETWEEN DIFFERENT METHODS

To facilitate a more intuitive comparison of the feature distributions induced by different represen-
tation learning methods and to elucidate the factors underlying CSRv2’s substantial performance
gains over both CSR and MRL, we extract two-dimensional embeddings from the IMDb dataset
(Maas et al., 2011). Specifically, we obtain dense representations from MRL and ultra-sparse repre-
sentations from CSR and CSRv2 under a sparsity budget of k = 2. The resulting embeddings are
visualized via t-SNE in Figure 7, with positive and negative movie reviews rendered in green and
purple respectively.

We observe that the MRL embedding demonstrates a clear separation between the majority of pos-
itive and negative reviews, reflecting its ability to capture dominant sentiment polarities. However,
it exhibits notable limitations in handling compositional or contrastive sentiment expressions. For
instance, in sentences such as “Although the plot of this movie is slow, the actors performed well and
I really appreciated this movie”, conflicting affective signals lead to ambiguous representations that
cluster near the decision boundary. This suggests that dense, holistic representations may struggle
to disentangle nuanced or mixed sentiment structures.
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Table 14: CSRv2’s Performance in GraphRAG-based Generation. In GraphRAG-based gener-
ation evaluation, Qwen3-Embedding-4B is selected as backbone and two sparsity levels: 32 and 8
are selected for comparison. No data in benchmark is used in training for zero-shot evaluation.

Embedding Active Fact Retrieval Complex Reasoning Contextual Summarize Creative Generation Avg.
Model Dim ACC↑ ROUGE-L↑ ACC↑ ROUGE-L↑ ACC↑ Cov↑ ACC↑ FS↑ Cov↑

Medical

Qwen3-4B 2560 61.33 29.65 69.63 21.67 72.39 46.19 69.23 32.04 37.7 48.87

MRL
32

45.30 19.88 55.65 16.69 55.17 30.65 64.08 25.11 34.04 38.51
CSRv2-linear 52.82 25.03 61.36 19.02 64.14 39.73 66.97 28.45 35.33 43.65

CSRv2 60.69 29.27 68.60 20.76 71.18 45.74 68.44 31.58 36.68 48.10

MRL
8

35.16 12.64 47.90 12.99 41.84 20.04 57.23 18.89 29.13 30.65
CSRv2-linear 49.65 24.48 57.07 16.49 59.45 33.82 69.80 28.17 34.24 41.46

CSRv2 58.09 27.43 65.21 19.44 68.83 41.69 66.47 29.91 36.07 45.90

Novel

Qwen3-4B 2560 57.02 31.76 54.63 19.67 70.62 47.85 59.70 44.51 38.53 47.14

MRL
32

45.72 25.65 45.06 18.23 65.85 43.78 57.38 31.28 36.82 41.09
CSRv2-linear 51.26 28.49 49.02 18.68 67.03 44.42 57.71 35.18 35.79 43.06

CSRv2 54.69 31.63 51.47 19.49 68.19 45.67 57.87 37.41 35.89 44.70

MRL
8

39.51 22.47 42.23 16.25 59.64 37.71 54.56 29.39 34.45 37.36
CSRv2-linear 48.78 25.13 46.75 17.03 63.84 41.12 57.23 34.08 35.96 41.10

CSRv2 52.94 29.25 50.93 18.92 67.54 44.80 56.45 36.86 34.49 43.58

(a) MRL (b) CSR (c) CSRv2

Figure 7: t-SNE visualization of 2-dimensional features in IMDb generated by MRL, CSR and
CSRv2 with e5-Mistral-7B as backbone. The AP scores of MRL, CSR and CSRv2 are respectively
89.34%, 92.75% and 94.62%.

In contrast, CSR adopts a compositional strategy by decomposing sentiment into fine-grained se-
mantic primitives. This yields a highly fragmented latent space in the reduced two-dimensional
projection, characterized by numerous small, localized clusters. While many of these clusters cor-
respond to lexically precise phrases (e.g., “I really like” or “fail to”), the model faces ambiguity
when encountering polysemous terms, such as “strong” which appears in both positive and negative
contexts. Consequently, representations involving such terms are scattered across disparate clusters,
undermining feature consistency and increasing the risk of misclassification due to unstable feature
binding.

CSRv2 mitigates this issue by jointly optimizing sparse feature learning with supervised signals that
promote the emergence of both high-level sentiment abstractions (e.g., overall positivity or nega-
tivity) and the fine-grained semantic patterns preserved in CSR. Crucially, we observe that individ-
ual neurons in CSRv2 consistently activate in response to emotionally salient yet lexically general
terms—such as “awful” and “fantastic”—which exhibit strong sentiment polarity while retaining
broad contextual applicability. This hybrid inductive bias enables CSRv2 to achieve a more robust
and interpretable separation of sentiment classes, effectively balancing semantic specificity with
generalization capacity.
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F.2 AUTO-INTERPRETABILITY STUDY ON CSRV2 NEURONS UNDER DIFFERENT
COMPRESSION SETTINGS

We analyze the semantic roles of individual neurons in the CSRv2 latent space under two sparsity
regimes k = 64 (moderately sparse) and k = 2 (extremely sparse) using the IMDb dataset (Maas
et al., 2011). For each neuron, we compute its activation values across all input sentences and iden-
tify the top-10 paragraphs that elicit the strongest responses. To interpret the semantic and affective
patterns encoded by each neuron, we leverage Qwen-7B-Chat (Bai et al., 2023) to generate concise
summaries of the linguistic and emotional characteristics common to these maximally activating
sentences.

Our analysis reveals that under the k = 64 regime, while many neurons encode semantically coher-
ent and sentiment-relevant concepts, a non-negligible subset predominantly activates in response to
high-frequency yet functionally neutral lexical items, such as “I” or “today”, which carry little to no
emotional polarity. In contrast, under extreme sparsity (k = 2), neuron activations exhibit markedly
increased specialization: each active dimension consistently aligns with a distinct sentiment pole,
either positive or negative. This indicates that ultra sparsity constraints exert strong pressure on the
model to prioritize emotionally salient, task-relevant signals, thereby yielding representations that
are not only more polarized but also more interpretable in terms of their affective semantics.

G EMPIRICAL ANALYSIS

G.1 EFFICIENCY ANALYSIS DETAILS

Our efficiency analysis focuses on retrieval and storage, where computational cost meaningfully
differs across methods. Even though end-to-end latency, encoder latency, and index construction
cost could be relevant in a fully online setting, in most practical scenarios where embeddings are
applied to downstream tasks, pre-caching is inevitable. That is, the corpus is encoded once, and
embeddings are stored for repeated use. Typical examples include (1) RAG systems, where docu-
ments change infrequently and their embeddings serve millions of queries, and (2) online services
such as recommendation, where real-time encoding of large-scale text is infeasible. Therefore, en-
coder and index construction costs are amortized and do not dominate real-world latency. To ensure
fair comparison, we keep the encoder and indexing pipeline identical for all baselines (MRL, CSR,
and CSRv2), so that any efficiency or performance variation arises strictly from the embedding
representations.

With Qwen3-Embedding-4B (Zhang et al., 2025b) as the backbone, we record encoding time on
a 1M corpus sampled from MTEB retrieval and reranking datasets. Table 15 shows that CSRv2
introduces only negligible overhead compared to MRL (0.001% extra time, ∼19.172s in total),
which is insignificant relative to the hours required for large-scale corpus encoding.

Table 15: Encoding time comparison on a 1M corpus.

Method Encoding Time (s)
MRL 159854.091
CSR 159876.478

CSRv2 159873.263

In contrast, retrieval and storage costs differ dramatically. Under a fixed encoder and index type, the
dominant factor in retrieval time is effective embedding dimensionality (d for dense baselines vs. k
for CSRv2). As shown in Table 16, ultra-sparse vectors yield up to 7× faster retrieval than dense
MRL and up to 300× speedup over the uncompressed backbone on a 1M-scale corpus. Retrieval
times are averaged over 2000 rounds (batch size 512), excluding 100 warm-up iterations.

These results reinforce our main practical claim: CSRv2 offers substantial gains in the components
that dominate real-world latency (retrieval throughput and embedding storage), while incurring neg-
ligible overhead on the encoder side.
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Table 16: Relative retrieval time under different active dimensions (ms).

Method 2 4 8 16 64 4096

MRL 1.402 1.428 1.571 1.748 3.972 68.522
CSRv2 0.227 0.370 0.633 0.797 3.217 45.722
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(c) initialization sensitivity analysis

Figure 8: K-annealing sensitivity analysis. (Left): Sensitivity on three k-schedule strategies: lin-
ear, exponential and cosine. (Middle): Sensitivity on four annealing lengths. (Right): Sensitivity
on four different initializations.

G.2 K-ANNEALING SENSITIVITY ANALYSIS

We evaluate k-annealing strategy’s sensitivity from three perspectives: k-schedule, length and ini-
tialization. For k-schedule, we adopt three settings: linear, exponential and cosine. For length, we
take four settings: 0.3, 0.5, 0.7 (in the main paper) and 0.9. For initialization, we take four settings:
32, 64, 128 and 256. Evaluation are done in two MTEB task types (classification and retrieval)
and two active dimensions are selected for each experiment for generalization. Results in Figure 8
demonstrate that different k-schedule results in relatively stable increase in performance improve-
ment, while our selected settings: k initialized to 64, annealing to target sparsity level at 70% step,
and linear-annealing strategy achieves the best performance.

G.3 ANALYSIS ON UNBALANCED WEIGHTABLE SETTINGS

MRL (Kusupati et al., 2022) has explored the impact of different weightage settings for smaller
representation sizes. They find that on Imagenet (Deng et al., 2009), setting larger weight on di-
mensions 8 and 16 result in 3% improvement on d = 8, with minor performance degradation on
larger dimensions. Therefore, we further conduct additional studies into the impact of imbalanced
weighting.

We propose MRL-reweight, where we follow MRL’s settings and set the following weights
{5, 4, 3, 2, 1, . . . , 1} for dimensions 2, 4, 8, 16, 32, and so on, up to 4096. As shown in Table
17, applying larger weights at earlier stages does, to some extent, improve the performance of MRL
on low-dimensional scales. However, while MRL-reweight offers some improvements, the perfor-
mance does not quite reach the level of CSRv2. We hypothesize that this discrepancy arises because
sparse vectors—being more comprehensive in capturing feature combinations—are more difficult
to achieve with a truncated representation (e.g., retaining only the first 8 values).

G.4 DISCUSSION ON MULTI-SCALE LOSS TERMS

The core idea behind k-annealing curriculum is that setting larger kinit promotes exploration and
diverse neuron activations. This raises a question: can annealing in the curriculum be replaced by
multiple terms that cover the range from kinit to kfinal, rather than simply setting reconstruction loss as
L(k) + 1

8L(4k)? We conduct quantitative discussion on two cases to look deeper into this problem:

• Multi-TopK loss over diverse ks: Since covering all ks (e.g., 64 loss terms) along the
annealing would be too computiationally prohibitive, we now consider a diverse represen-
tative subset that we use for evaluation: k ∈ [2, 4, 8, 16, 32, 64].
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Table 17: Performance comparison between standard MRL and MRL-reweight.

Method 2 4 8 16 32 64 128 256 512 1024 2048 4096

Classfication

MRL 34.84 43.84 48.95 54.64 59.37 66.58 74.78 76.52 78.42 78.92 79.54 80.46
MRL-reweight 45.08 52.42 55.18 61.97 65.73 70.82 76.61 77.93 77.18 77.56 79.28 80.42

CSRv2 37.48 39.04 42.67 43.38 46.58 47.92 48.27 48.42 48.64 48.82 48.93 49.16

Retrieval

MRL 16.63 24.55 29.65 34.33 39.68 44.11 46.08 46.64 47.19 47.58 48.35 48.75
MRL-reweight 24.48 29.75 33.25 37.56 42.12 46.17 47.20 46.96 46.82 47.24 48.17 48.37

CSRv2 37.48 39.04 42.67 43.38 46.58 47.92 48.27 48.42 48.64 48.82 48.93 49.16

• CSRv2 with start/end multi-topK. In this variants, we keep only the boundary losses (i.e.
kinit = 64 and kfinal = 2).

We compare the performance of different methods on the MTEB classification and retrieval subsets
and also report their corresponding training costs. Results in Table 18 and Table 19 demonstrate
that focusing on start and end Ks help a bit on addressing ultra-sparsity but there is still a large gap
to our k-annealing. Moreover, better k coverage with diverse multi-topk delivers larger gains, but
it still underperforms k-annealing, while introducing significant training overhead. Therefore, we
belive that k-annealing is more preferrable than these static multi-topK loss variants. It would be
interesting to look deeper into their interplay in future work.

Table 18: Performance comparison with static multi-scale loss terms on MTEB Classification and
Retrieval using e5-Mistral-7B.

Method Active Dim Classification Retrieval

CSR

2

52.50 16.14
CSRv2-linear-StartEndTopk 57.46 23.65

CSRv2-linear-DiverseMultiTopk 61.75 24.18
CSRv2-linar-anneal 66.43 31.58

Table 19: Training time comparison with static multi-scale loss terms on MTEB Classification and
Retrieval using e5-Mistral-7B

Time (s) Classification Retrieval

CSRv1 271.32 638.77
CSRv2-linear-StartEndTopk 285.94 653.13
CSRv2-DiverseMultiTopk 501.18 1183.36

CSRv2(anneal) 274.15 642.65

H FURTHER DISCUSSIONS

H.1 EMERGENCE OF SUPERCLASS SEPARABILITY UNDER ULTRAHIGH SPARSITY

Past works (Fallah et al., 2020) have shown that sparse codes are argued to induce disentangled,
semantically meaningful features. However, a key open question remains: when the sparsity is
extremely high (i.e., very few active dimensions), do such representations still preserve higher-
level semantic structure (such as superclasses or domains), or do they collapse into trivial, instance-
specific separations?

We conduct a superclass-level analysis on two multi-intent classification datasets, Banking77
(Casanueva et al., 2020) and MTOPIntent (Li et al., 2020). For Banking77, following the semantic
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structure commonly adopted in prior work, we group its 77 types of bank-related queries into 8
semantically coherent superclasses (e.g. account&identity, card management. For MTOPIntent, We
adopted the original intent taxonomy in the paper and grouped these intents into 11 domains (e.g.
alarm, music). These groupings allow us to evaluate whether ultrahigh sparsity induces representa-
tions that align with higher-level semantic partitions.

We evaluated MRL, CSR, and CSR-v2 under the ultra-sparse regimes of k = 2 and k = 4, which
correspond to ultrahigh-sparse setting. Evaluation is done in accordance to MTEB benchmark,
where a logistic regression is trained on the training set and evaluated on the test set. Results in
Table 20 demonstrate a consistent and notable trend: CSRv2 produces significantly more structured
sparse representations than CSR and MRL, even under extremely low k. Superclass clusters become
more linearly separable under CSR-v2, indicating that ultrahigh sparsity does not degrade semantic
abstraction.

Table 20: Performance comparison for superclass classification with Qwen3-Embedding-4B as
backbone.

Method Active Dim Banking77 MTOP Banking77 MTOP
(original-class) (original-class) (super-class) (super-class)

MRL 2 3.57 5.16 28.96 37.08
CSR 2 11.75 18.08 77.43 83.26
CSRv2 2 17.03 23.52 88.44 93.16

MRL 4 6.93 11.51 31.04 45.24
CSR 4 19.02 24.39 82.91 86.79
CSRv2 4 23.16 28.51 94.43 97.56

H.2 QUANTIZED COMPARISON AT FIXED MEMORY COST

To provide a more holistic view of the efficiency-accuracy trade-off landscape, we further evaluate
CSRv2 of different levels of precision under fixed bit size in three MTEB task types: classification,
clustering and retrieval. We take two fixed bit sizes (64 and 128), and adopt three quantization
(FP32, BF16, binary) settings under each bit size.

Table 21: Performance comparison on CSRv2 and dense MRL in fixed memory cost.

Method Bit Size Quantization Active Dim Classification Clustering Retrieval

CSRv2 64

FP32 2 71.59 41.29 37.48
BF16 4 73.05 42.46 38.19
binary 64 74.12 44.53 40.28

PQ 64 62.39 33.16 21.76

MRL 64
binary 64 64.48 40.04 27.61

PQ 64 58.37 37.18 22.04

CSRv2 128

FP32 4 74.26 43.85 39.04
BF16 8 75.02 44.76 40.98
binary 128 76.30 45.01 42.26

PQ 128 70.15 38.97 30.17

MRL 128
binary 128 72.54 44.37 29.15

PQ 128 68.42 41.58 25.61

Results in Table 21 demonstrate that CSRv2 remains highly competitive across a wide range of
quantization strategies. The findings further indicate that (1) increasing the number of active di-
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mensions is often more advantageous than raising numerical precision, and (2) extremely compact
binary variants of CSRv2 yield the strongest accuracy–memory trade-offs. Notably, CSRv2–binary
also substantially outperforms binary-quantized dense embeddings, implying that structured spar-
sity provides greater representational expressiveness than uniform quantization when bit budgets
are extremely constrained. Together, these observations underscore that CSRv2 constitutes a flex-
ible and efficient embedding mechanism capable of adapting to both moderate- and ultra-low-bit
compression regimes.

In addition, the consistently strong performance of binary and higher-dimensional BF16 variants
suggests that richer or more varied activation patterns can effectively compensate for the seman-
tic degradation introduced by low numerical precision. This highlights a promising direction for
CSR-style representations: exploiting larger or more structured sparse activation patterns to further
enhance expressiveness under increasingly aggressive quantization settings.

We also evaluate PQ on both baseline and CSRv2 embeddings with code budget 64. We use standard
PQ settings with 256 codewords per subspace and 8 subvectors, and for 128-bit codes into 16 sub-
vectors. For CSRv2, we apply PQ quantization on topk=256’s embedding. However, PQ does not
outperform Binary Quantization (BQ) in this context. We attribute this performance gap to a funda-
mental structural mismatch. Standard PQ partitions vectors into independent subspaces with equal
bit-budgets, implicitly assuming a uniform distribution of semantic information. However, MRL
and CSRv2 embeddings are strictly hierarchical, concentrating ”core” semantics in the early/sparse
dimensions. Consequently, PQ’s uniform allocation strategy disrupts this hierarchy by inefficiently
assigning equal capacity to both the highly informative prefix dimensions and the fine-grained tail
dimensions, resulting in suboptimal quantization. Conversely, Binary Quantization preserves the
sign information of high-value dimensions directly, offering superior compatibility with hierarchi-
cal representations.

H.3 POTENTIAL APPLICATIONS OF CSRV2 IN VECTOR QUANTIZATION

Vector quantization (VQ) methods—including Product Quantization (PQ) (Jegou et al., 2010), Op-
timized Product Quantization (Ge et al., 2013), and more recent anisotropic schemes such as AVQ
(Guo et al., 2020), are central to real-world large-scale vector search systems where memory foot-
print, latency, and hardware efficiency are critical. While our main work focuses on the role of
ultra-sparse representations in improving retrieval quality and compute efficiency, it is worth noting
that CSRv2 is highly compatible with these widely-used quantization techniques.

CSRv2’s ultra-sparse structure—activating only k ∈ {2, 4, 8} dimensions out of a large latent
space—naturally complements vector quantization methods such as PQ and AVQ. As only a few
coordinates are non-zero, quantization can be applied exclusively to these active values (or their
indices), enabling a two-stage compression pipeline of sparsity + quantization that substantially
reduces both memory and lookup cost. Unlike dense embeddings (e.g., MRL), where quantization
error spreads across all dimensions, CSRv2 concentrates signal in a handful of features, making
the quantization process more signal-preserving and aligned with anisotropic quantization princi-
ples. This compatibility also facilitates integration into practical ANN systems (e.g., DiskANN
(Jayaram Subramanya et al., 2019)) that already combine graph-based search with PQ, suggest-
ing that CSRv2 can further lower system-level memory while maintaining high recall. However,
as discussed in Appendix H.2, while PQ presents an interesting avenue, it necessitates adaptation
to function effectively with MRL/CSRv2’s hierarchical representations, which we leave for future
work.

H.4 LIMITATIONS OF CSRV2 ON THE MOST EXTREME SETTING

Although CSRv2 achieves strong performance under ultra-sparse regimes, it suffers notable degra-
dation in the most extreme sparsity setting (k = 1), which reduces the representation to a hard
clustering assignment. As shown in Table 22, activating only a single neuron still yields a signifi-
cant improvement over baseline methods; however, CSRv2’s performance drops by 27.56% relative
to the dense backbone model. This decline is more than twice as severe as the degradation observed
when k = 2 (11.65%).
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Apart from those discussed in Section 5, another hypothesis for this sharp performance drop stems
from the complete absence of feature combination when only one latent dimension is active. With
a single activation, the model loses the capacity to compose multiple semantic cues—a capability
that has been shown to be critical for robust representation learning under sparsity constraints (Gao
et al., 2024). Potential remedies for this limitation may involve architectural innovations that enable
richer single-feature representations, such as nonlinearly compositional encoders (Li et al., 2025) or
hierarchical autoencoders that preserve multi-level semantic structure even under extreme sparsity
levels. Exploring such directions remains a promising avenue for future work, leaving room for
future improvement.

Table 22: Performance comparison at the most extreme setting k = 1.

Active Method Classifi. Clust. Retrieval STS PairClassifi. Rerank. Avg.
Dim AP ↑ V-measure ↑ nDCG@10 ↑ Spearman ↑ AP ↑ MAP ↑

4096 e5-Mistral-7B 80.67 51.55 49.35 84.11 91.77 69.52 69.99

1

MRL 17.52 14.70 3.81 37.93 12.95 23.98 19.52
CSR 28.54 24.14 6.54 48.93 37.96 28.16 28.79
CSRv2-linear 39.61 28.78 19.82 51.80 43.85 37.08 36.63
CSRv2 52.43 31.48 24.73 54.46 47.09 42.34 42.43

H.5 ANALYSIS ON ONE PROMISING SAE-VARIANT

Recently there have been a variant SAE called MRL-SAE (Bussmann et al., 2025) that combines
MRL’s core idea into SAE training. Specifically, a standard SAE whose single encoder–decoder is
trained to act as many nested autoencoders at once. The encoder produces one sparse feature vector,
but the decoder is forced to reconstruct the input from multiple truncations of that vector (e.g., first
256, 512, . . . , 4096 latents), and the loss is the sum of these reconstruction errors plus sparsity.
This simple change to the training objective induces a hierarchy where early latents encode broad,
reusable features and later latents add increasingly fine-grained detail, all within one overcomplete
dictionary.

We compare MRL-SAE’s performance in classification, clustering and retrieval tasks in MTEB with
vanilla SAE and CSR. Results in Table 23 shows that MRL-SAE underperforms vanilla SAE and
CSR for embedding tasks and also suffer from severe degradation in sparse representation genera-
tion.

Table 23: Performance comparison on MRL-SAE, vanilla SAE and CSR.

Method Active Dim Classification Clustering Retrieval
vanilla SAE

32
76.74 46.85 42.09

MRL-SAE 76.49 46.45 41.57
CSR 77.11 47.38 43.21

vanilla SAE
8

72.95 40.27 30.43
MRL-SAE 72.33 39.19 29.74

CSR 73.77 41.68 31.61

I LLM USAGE STATEMENT

In accordance with the ICLR policy, we disclose the utilization of Large Language Models (LLMs)
in the preparation of this manuscript. The application of these tools was strictly confined to lin-
guistic and formatting support. Specifically, an LLM was employed to proofread the text, correct
grammatical errors, and enhance the clarity and readability of the prose. The LLM played no role
in any substantive scientific components of this work, including the conception of research ideas,
the design of methodologies, the execution or analysis of experiments, or the generation of results
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and conclusions. All intellectual contributions and the essential content of this paper are exclusively
attributable to the authors.
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