

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CSRv2: UNLOCKING ULTRA-SPARSE EMBEDDINGS

Anonymous authors

Paper under double-blind review

ABSTRACT

In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional (e.g., 4096), incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k -sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime (e.g., $k \leq 4$), where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce **CSRv2**, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k -annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at $k = 2$, bringing ultra-sparse embeddings on par with CSR at $k = 8$ and MRL at 32 dimensions, *all with only two active features*. While maintaining comparable performance, CSRv2 delivers a $7\times$ speedup over MRL, and yields up to **300 \times improvements in compute and memory efficiency** relative to dense embeddings [in e5-mistral-7b-instruct-based text representation](#). Extensive experiments across text (MTEB, multiple state-of-the-art LLM embeddings (Qwen and e5-Mistral-7B), [SPLADEv3](#), [GraphRAG](#)) and vision (ImageNet-1k) demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, [where CSRv2 achieves 7%/4% improvement over CSR when \$k = 4\$ and further increases this gap to 14%/6% when \$k = 2\$ in text/vision representation](#). By making extreme sparsity viable, CSRv2 broadens the design space for large-scale, real-time, and edge-deployable AI systems where both embedding quality and efficiency are critical.

1 INTRODUCTION

In the era of large foundation models, the quality of embeddings has become a decisive factor shaping downstream performance across tasks such as retrieval, classification and recommendation. Yet the dominant practice still relies on dense representations with thousands of dimensions (e.g., 2048 – 8192). While highly expressive, such embeddings incur substantial costs in storage, memory, and inference latency. These inefficiencies are magnified in large-scale and real-time deployments, where embedding computation and serving often dominate system throughput. As models scale further, embedding efficiency emerges as a central bottleneck — limiting both web-scale applications and deployment on resource-constrained platforms such as mobile and edge devices.

Several methods have been proposed to improve embedding efficiency, but they face sharp trade-offs under extreme compression. Existing approaches improve efficiency but falter under extreme compression. Matryoshka Representation Learning (MRL) ([Kusupati et al., 2022](#)) trains embeddings to function at multiple truncation lengths, yet expressivity collapses and accuracy drops sharply below a hundred dimensions. Contrastive Sparse Representation (CSR) ([Wen et al., 2025](#)) instead maps embeddings into high-dimensional sparse vectors, outperforming MRL and matching its quality with only one-quarter of the active dimensions. Despite this potential, CSR **suffers severe degradation in the ultra-sparse regime** ($k = 2$ or 4). We refer to this regime as *ultra-sparse embeddings*,

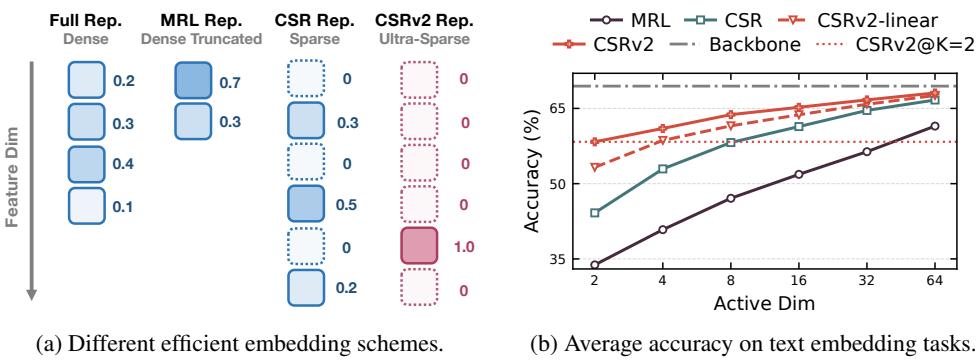


Figure 1: **Overview of our proposed method.** (Left): An illustrative comparison between full embedding, truncated MRL embedding, medium-sparse CSR embedding and ultra-sparse CSRv2 embedding. (Right): Comparison of average text embedding performance on 6 types of tasks in MTEB benchmark with E5-Mistral-7B backbone. [All methods are trained on the same data for fair comparison, and "Backbone" indicates performance of E5-Mistral-7B with no task-type-specific finetuning for consistent reference](#)

which in principle can deliver over $100\times$ efficiency gains in large-scale retrieval. However, existing methods incur 20 – 40% accuracy losses in this regime, rendering such embeddings impractical in real-world scenarios. This raises a central question:

Are ultra-sparse embeddings inherently constrained, or can proper training mitigate this?

Driven by this question, we take a closer look at ultra-sparse embeddings and identify three key challenges. First, they suffer from a “massive dead neuron” problem: even with modern mitigation techniques, more than 85% of neurons remain permanently inactive when CSR activates only two neurons ($k = 2$), severely limiting expressivity. Second, the mismatch between pretraining objectives and downstream tasks becomes amplified under ultra-sparsity, so CSR relying on purely self-supervised signals (e.g., image cropping) leads to pronounced degradation. Third, we observe that CSR also shows greater degradation when jointly trained on multiple datasets and domains, indicating that restricting it to a linear layer on top provides insufficient representational capacity.

To address the above challenges, we develop CSRv2, an improved training recipe for sparse embeddings that is as simple and generic as CSR(v1) yet delivers substantial and consistent gains in ultra-sparse regimes. CSRv2 combines a curriculum annealing schedule, which prevents early collapse when learning ultra-sparse embeddings, with natural supervision from labeled data, which replaces the noisy self-supervision of CSR and utilizes the few active dimensions more effectively. In addition, beyond training only a linear layer (CSRv2-linear), we explore finetuning the entire backbone with our objectives, analogous to the MRL setting, and show that this further improves generalization across domains, establishing new state-of-the-art results and outperforming MRL by up to 25% under the same training conditions. Altogether, CSRv2 provides the first reliable recipe for shrinking modern embeddings to just two or four active dimensions with only modest performance drops. This opens a new understanding of representational capacity and paves the way for extremely memory- and compute-efficient applications such as edge devices, robotics, and real-time search engines. We discuss in detail the evolution of text embedding and adaptive embedding techniques in Appendix A, highlighting the correlations and limitations of existing methods that motivate CSRv2.

To summarize, our contributions are:

- We systematically explore the regime of ultra-sparse embeddings and diagnose three main causes of failure in prior methods: dead neurons, lack of effective supervision, and limited model capacity.
- We propose CSRv2, a simple and generic training recipe that addresses these issues through k -annealing for ultra-sparsity, supervised sparse contrastive learning, and optional full-model finetuning for multi-domain robustness.

108
109 Table 1: Overview of the training paradigms, objectives, trainable parameters, and performance
110 (c.f. Figure 1b) of the four efficient embedding methods discussed in this paper.

Method	Training	Objectives	Trainable Params
MRL	Supervised	Multi-length Cross Entropy	Full Finetuning
CSR	Self-supervised	SAE + Contrastive	Linear Head
CSRV2-linear	Self-sup. + Sup.	k -annealing SAE + Sup. Contrastive	Linear Head
CSRV2	Self-sup. + Sup.	k -annealing SAE + Sup. Contrastive	Full Finetuning

111
112
113
114
115
116
117
118 • We validate CSRV2 extensively on text (six MTEB tasks [and two domains in GraphRAG-Benchmark](#)) and image (ImageNet-1k), show up to $4\times$ efficiency gains over CSR and $16\times$
119 over MRL at comparable performance, and attain 10%–30% accuracy improvements on
120 state-of-the-art Qwen3 Embedding models under short embedding lengths.
121

122 We will fully open-source our training data, code, and CSRV2-enhanced versions of Qwen3 and e5-
123 Mistral-7B, ensuring compatibility with existing model configurations and readiness for production
124 use. We are further committed to extending CSRV2 to a broader set of open-source models. By
125 releasing these resources, we aim to encourage new research directions and practical applications of
126 ultra-sparse embeddings that have not yet been explored.
127

128 2 BACKGROUND

130 The goal of representation learning is to map high-dimensional inputs (such as images or text)
131 into low-dimensional embeddings that capture semantic similarity. Consider text embeddings
132 as an example: given a batch of query–document pairs that share similar semantics, an LLM
133 backbone encodes them into embedding pairs $\{(q_1, d_1), \dots, (q_N, d_N)\}$, where (q_i, d_i) denotes a
134 query–document pair. The embeddings are then trained with a contrastive loss such as InfoNCE
135 ([Oord et al., 2018](#)). However, standard embeddings typically remain high-dimensional (2k–8k),
136 creating a significant bottleneck for large-scale, real-time retrieval systems, including search, rec-
137 ommendation, and retrieval-augmented generation. Here, we review two representative approaches
138 to address this by producing embeddings with adaptive dimensionality for efficient applications.
139

140 **Matryoshka Representation Learning (MRL).** Instead of applying the loss solely on the full-
141 size embeddings, MRL ([Kusupati et al., 2022](#)) truncates the first $m \in \mathcal{M}$ dimensions of the text
142 embeddings $d[1:m] \in \mathbb{R}^m$ and applies the same loss function on a set of truncated lengths \mathcal{M} with
143 relative importance scale c_m . Formally, the objective of MRL is as follows:

$$\mathcal{L}_{\text{MRL}} = -\frac{1}{N} \sum_{m \in \mathcal{M}} c_m \sum_{i \in [N]} \log \frac{\exp(s(q_i[1:m], d_i[1:m]) / \tau)}{Z_i} \quad (1)$$

144 where $s(\cdot, \cdot)$ is the similarity function (cosine similarity in most cases), τ is the temperature parameter
145 and Z_i denotes the normalization factor that comes in different forms ([Zhang et al., 2025a;b](#)).
146 Generally, the number of selected truncating lengths $|\mathcal{M}|$ will not be larger than $\lfloor \log(d) \rfloor$ of the
147 original embedding size d and all the relative importance scale c_m will be set to 1.
148

149 **Contrastive Sparse Representation (CSR).** Instead of training the whole model as in MRL,
150 CSR ([Wen et al., 2025](#)) takes a pretrained encoding model (with frozen weights), and trains a simple
151 sparse autoencoder ([Cunningham et al., 2023](#)) on top for mapping the pretrained dense embeddings
152 $x \in \mathbb{R}^d$ into a sparse embedding $z \in \mathbb{R}^{d_z}$ with up to $k \ll d$ non-zero elements (i.e., k -sparse):
153

$$z = \text{Topk}(\text{ReLU}(\mathbf{W}_{\text{enc}}(x - \mathbf{b}_{\text{pre}}) + \mathbf{b}_{\text{enc}})), \quad (2)$$

$$\hat{x} = \mathbf{W}_{\text{dec}}z + \mathbf{b}_{\text{pre}}, \quad (3)$$

154 where the Topk operator keeps the top k largest values while setting the others to zero, $\text{ReLU}(x) =$
155 $\max(x, 0)$ keeps non-negative elements, and \mathbf{W}_{enc} and \mathbf{W}_{dec} are the encoder and decoder matrices.
156 The CSR model is jointly optimized via Topk sparse autoencoder (SAE) ([Gao et al., 2024](#)) and
157 sparse contrastive learning (NCL) ([Wang et al., 2024b](#)). The overall training objective is,
158

$$\mathcal{L}_{\text{CSR}} = \mathcal{L}(k) + \mathcal{L}(4k)/8 + \beta \mathcal{L}_{\text{aux}} + \gamma \mathcal{L}_{\text{SpCL}}. \quad (4)$$

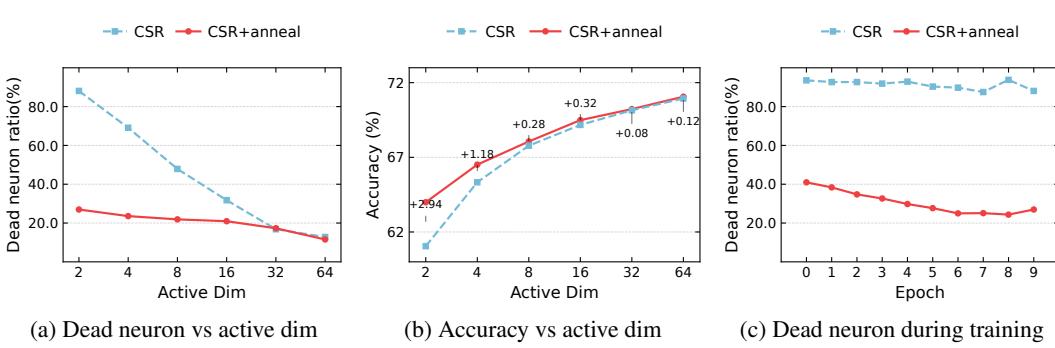


Figure 2: **K-annealing analysis on ImageNet-1k with FF2048 as backbone.** (Left): Comparison of dead neuron ratio before and after applying k-annealing in different sparsity levels. (Middle): Dead neuron trend during training before and after applying annealing when $k = 2$. (Right): Evaluation results on ImageNet-1k with 1-NN accuracy as the main metric.

The MSE loss $\mathcal{L}(k) = \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2$ calculates the difference between original dense feature $\mathbf{x} \in \mathbb{R}^d$ and reconstructed dense feature $\hat{\mathbf{x}} \in \mathbb{R}^d$ from k -sparse embedding \mathbf{z} . Training with the multi-Topk loss $\mathcal{L}(k) + \mathcal{L}(4k)/8$ ensures that CSR could generalize to different k s at test time. The sparse contrastive loss $\mathcal{L}_{\text{SpCL}}$ computes InfoNCE loss over sparse embeddings \mathbf{z} as Wang et al. (2024b):

$$\mathcal{L}_{\text{SpCL}} = -\frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \log \frac{\exp \mathbf{z}_i^T \mathbf{z}_i}{\exp \mathbf{z}_i^T \mathbf{z}_i + \sum_{j \neq i} \exp \mathbf{z}_i^T \mathbf{z}_j}. \quad (5)$$

Lastly, the auxiliary loss $\mathcal{L}_{\text{aux}} = \|\mathbf{e} - \hat{\mathbf{e}}\|_2^2$ calculates the difference between the reconstruction error $\mathbf{e} = \mathbf{x} - \hat{\mathbf{x}}$ and the reconstruction using the top- k_{aux} dead latents $\hat{\mathbf{e}} = \mathbf{W}_{\text{dec}} \mathbf{z}$, which is proposed by Gao et al. (2024) for reducing dead neuron's effect on performance degradation.

Computational Complexity. By exploiting short and sparse embeddings, both CSR and MRL significantly improve the memory and computational efficiency of embedding models. In particular, retrieval with a k -dimensional short embedding \mathbf{z} requires only $\mathcal{O}(k)$ memory and compute to evaluate query-document similarity (instead of $\mathcal{O}(d)$ with \mathbf{x}). Likewise, storing a k -sparse embedding in compressed formats (e.g., CSR or CSC) incurs $\mathcal{O}(k)$ memory and enables $\mathcal{O}(k)$ compute via sparse matrix multiplication, which is natively supported in modern CPU/GPU libraries such as PyTorch. Wen et al. (2025) further show that CSR and MRL achieve comparable retrieval time at the same k . Hence, k serves as a convenient surrogate for both memory and computational cost.

3 CSRV2: TACKLING NEW CHALLENGES UNDER ULTRA-SPARSITY

Although CSR achieves impressive performance by closely matching the accuracy of full-size embeddings at relatively high sparsity levels ($k = 8, 16, 32$), we observe that its performance deteriorates rapidly at extremely small values of k (e.g., $k = 2, 4$). We refer to this regime as **ultra-sparsity**. In this section, we uncover several key reasons underlying CSR's failure in the ultra-sparse regime and show that it is actually largely fixable with several improved training techniques introduced here.

3.1 TACKLING MASSIVE DEAD NEURONS WITH K-ANNEALING

The Massive Dead Neuron Phenomenon. As discussed in Wen et al. (2025), a critical advantage of CSR over MRL is that sparse embeddings $\mathbf{z} \in \mathbb{R}^{d_z}$ can exploit a large number of hidden neurons $d_z \gg k$ for better feature expressivity, while only activating a few (k) for retrieval efficiency. However, we observe that as $k \rightarrow 1$, dead neurons arise as a more severe problem. A dead neuron is a feature dimension that remains inactive on any data sample, indicating that it fails to represent anything useful. As shown in Figure 2a, the dead neuron ratio quickly increases as k decreases, rising to 70% at $k = 4$ and reaching 90% at $k = 2$. It means that these ultra-sparse embeddings can only utilize 10% to 30% hidden dimensions, which greatly limits their representation power.

216 **Why Dead Neurons are more Severe under Ultra-sparsity.** Although CSR already integrates
 217 common remedies for dead neurons, such as auxiliary losses and multi-Topk strategies (Jermyn
 218 & Templeton, 2024; Gao et al., 2024), our experiments reveal that these approaches, effective at
 219 moderate sparsity ($k = 32, 64$), become largely ineffective when k is extremely small. The difficulty
 220 is intrinsic: only the k selected dimensions in each sparse code receive non-zero gradients, leaving
 221 the majority of neurons untrained. Under ultra-sparsity with only a handful of active dimensions,
 222 this issue becomes particularly severe. Moreover, once a neuron falls inactive, it receives no gradient
 223 signal and thus cannot recover, creating a self-reinforcing loop that further increases dead neurons.

224 **Alleviating dead neurons with k -annealing.** To alleviate this problem, we instead adopt a *cur-
 225 riculum learning* approach: we warm up the training with a sufficiently large initial sparsity level
 226 k_{init} (by default $k_{\text{init}} = 64$), which avoids severe neuron inactivity and allows the model to learn a
 227 meaningful latent space in the early stage. As training proceeds, k is gradually annealed toward the
 228 target ultra-sparsity k_{final} (e.g., $k_{\text{final}} = 2$) using a linear schedule. Specifically, at epoch t we set

$$k_t = (1 - p_t) k_{\text{init}} + p_t k_{\text{final}}, \quad p_t = t/T, \quad (6)$$

230 where T is the total number of annealing steps. In practice, we perform annealing for 70% of
 231 training, after which k is fixed at k_{final} . Analogous to simulated annealing, starting with a larger
 232 k_{init} promotes exploration and diverse neuron activations, while the gradual annealing $k_{\text{init}} \rightarrow k_{\text{final}}$
 233 sharpens the representations and enables stable convergence in the ultra-sparse regime.

234 We find this approach effectively maintains a low dead-neuron rate during training. As shown in
 235 Figure 2c, although dead neurons rise slightly at target sparsity, their final proportion is far lower
 236 than training directly with k_{final} . This indicates that a curriculum schedule provides richer gradients
 237 and avoids collapse into the dead-neuron regime. Similar to simulated annealing, a larger k_{init} pro-
 238 motes exploration and diverse activations, while annealing gradually sharpens embeddings toward
 239 the ultra-sparse regime. Figure 2b confirms this, as k -annealing yields consistent performance gains
 240 across sparsity levels.

241 **Remark.** It is worth noting that LlamaScope (He et al., 2024) also employs a k -annealing strategy,
 242 but with a very different motivation and scope. Their annealing is applied only during the first 10%
 243 of training, reducing k from the full embedding dimension ($k_{\text{init}} = d$) to a moderate sparsity level
 244 ($k_{\text{final}} = 50$) to accelerate convergence. In contrast, our method anneals k over most of the train-
 245 ing process, specifically to mitigate the massive dead neuron problem that arises under ultra-sparsity.
 246 Moreover, LlamaScope restricts annealing to SAEs, while we apply it to efficient embeddings. Thus,
 247 our finding that progressive k -annealing is critical for overcoming dead neurons at ultra-sparse em-
 248 beddings still constitutes a novel and valuable contribution to the literature.

249 3.2 LEARNING DOWNSTREAM-ALIGNED FEATURES FROM NATURAL SUPERVISION

250 For ultra-sparse embeddings that activate only a few dimensions, the model must prioritize infor-
 251 mative features and suppress noise. CSR, relying on self-supervised objectives like autoencoding
 252 and contrastive learning (Section 2), may be suboptimal. Its augmentation-based positives (e.g.,
 253 cropping), though effective, transfer poorly when downstream tasks need properties ignored during
 254 training. (Ericsson et al., 2021). This weakness is exacerbated under ultra-sparsity, where noisy
 255 features are easily activated while informative ones are lost.

256 **Remedy: Sparse Supervised Contrastive Learning.** To bridge this gap, we follow the setting of
 257 MRL and adopt natural supervision, which is readily available in many retrieval tasks, to construct
 258 more accurate positive pairs. For example, in labeled datasets such as ImageNet, two random im-
 259 ages from the same class can be used as a positive pair. In text retrieval datasets, query–document
 260 pairs naturally serve as positives. This supervision enables ultra-sparse embeddings to dedicate their
 261 limited active dimensions to encoding informative features that align with downstream applications,
 262 rather than wasting capacity on noisy features. Concretely, we replace CSR’s self-supervised con-
 263 trastive loss with a supervised contrastive loss (Khosla et al., 2020) applied to the k -sparse embed-
 264 dings:

$$\mathcal{L}_{\text{SpSCL}}(k) = -\frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \log \frac{\sum_{p \in \mathcal{P}(i)} e^{\mathbf{z}_i^T \mathbf{z}_p}}{\sum_{p \in \mathcal{P}(i)} e^{\mathbf{z}_i^T \mathbf{z}_p} + \sum_{n \in \mathcal{N}(i)} e^{\mathbf{z}_i^T \mathbf{z}_n}}, \quad (7)$$

265 where $\mathcal{P}(i)$ and $\mathcal{N}(i)$ denote the sets of positive and negative samples derived from natural super-
 266 vision. Specifically, for classification and clustering tasks, samples with the same label are treated

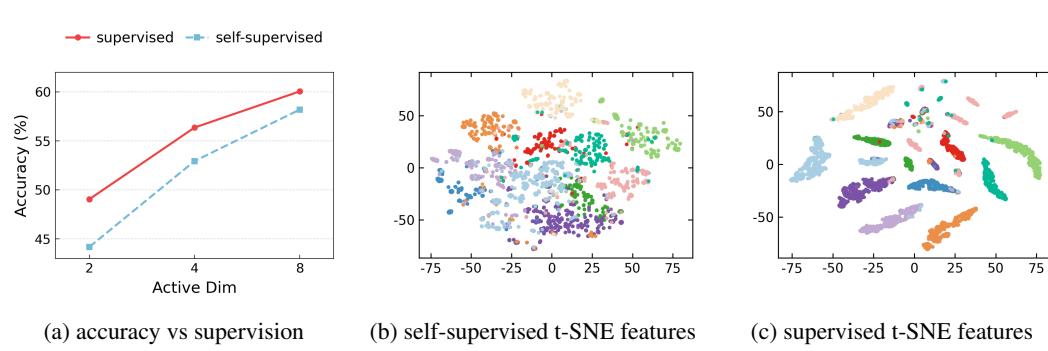


Figure 3: **(Left)**: Supervision leads to performance increase in ultra-sparse setting with e5-Mistral-7B as backbone. **(Middle & Right)**: t-SNE visualization comparison on MTOPDomain (Li et al., 2020) before/after adding supervision when $k = 2$.

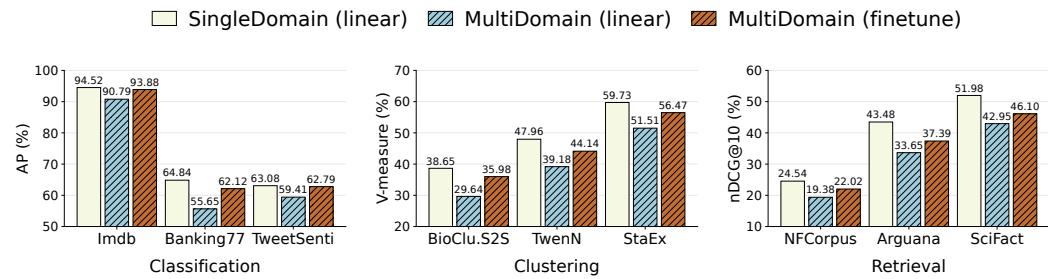


Figure 4: Comparison of CSrv2-linear trained on single-domain dataset, CSrv2-linear trained on multi-domain dataset and CSrv2 trained on multi-domain dataset in different tasks. e5-Mistral-7B is selected as backbone and training splits of all tasks in the same task type are combined for multi-domain.

as positives, while others are negatives. For retrieval and reranking tasks, each query and its corresponding documents are positives. For semantic textual similarity, sentence pairs with a similarity score above 3 are positives. For pair classification, sentence pairs with label 1, indicating strong correlation, are positives. A detailed description of these tasks is provided in Appendix B.

From Figure 3, we observe that supervised training yields clear performance gain in ultra-sparse settings. Moreover, supervision produces sparse features that are far more discriminative across classes. It demonstrates that these supervisions provide clearer signals for training ultra-sparse embeddings. More detailed ablation on applying natural supervision to CSR is available in Section 4.3. The community has so far curated abundant pretraining-scale paired text data for training retrieval models, such as 65M Q-A pairs (Lewis et al., 2021). Therefore, it would be quite useful to be able to leverage large-scale supervision.

3.3 MITIGATING MULTI-DOMAIN TRAINING GAPS VIA FINETUNING

A notable property of CSR is that it can outperform MRL (which requires full finetuning) by training only a simple encoder with a single linear layer. However, this design also limits CSR’s ability to fully exploit the potential of sparse embeddings, particularly when deploying a single model across multiple downstream tasks. As shown in Figure 4, CSR with only a linear layer experiences clear performance drop under joint training with multi-domain data in different task types, reflecting the limited capacity of such a shallow adaptation.

To fully unlock the potential of sparse embeddings and push CSR to its limit, we adopt the same setting as MRL: applying the Topk operator to the output embeddings of the backbone network and finetuning the entire model. Figure 4 shows that full finetuning effectively mitigates the performance

324 **Table 2: Performance and retrieval efficiency on six text embedding tasks with e5-Mistral-
325 7B.** Since e5 does not natively support MRL or CSR, we enable a fair comparison by training all
326 methods on the same backbone, data, and configurations. For retrieval efficiency, experiments are
327 conducted with a 1M database, and results are reported as retrieval time relative to CSRev2 at $k = 2$.
328

329 Active 330 Dim	331 Method	332 Retrieval 333 Time	334 Classifi. 335 AP \uparrow	336 Clust. 337 V-measure \uparrow	338 Retrieval 339 nDCG@10 \uparrow	340 STS 341 Spearman \uparrow	342 PairClassifi. 343 AP \uparrow	344 Rerank. 345 MAP \uparrow	346 Avg.
331 4096	332 e5-Mistral-7B	333 306.46 \times	334 80.67	335 51.55	336 49.35	337 84.11	338 91.77	339 69.52	340 69.99
332 4096	MRL	301.86 \times	80.46	50.94	48.75	83.78	90.44	68.86	69.49
	CSR	197.52 \times	<u>80.54</u>	51.13	<u>49.13</u>	<u>83.94</u>	90.99	68.96	69.70
	CSRev2-linear	196.04 \times	80.55	<u>51.19</u>	49.07	84.02	<u>91.48</u>	<u>69.02</u>	69.76
	CSRev2	201.42 \times	80.49	51.34	49.16	<u>83.94</u>	91.70	69.18	69.80
336 64	MRL	17.30 \times	66.58	47.76	44.11	77.46	78.46	62.72	61.86
	CSR	14.92 \times	79.50	<u>48.36</u>	<u>45.22</u>	<u>82.10</u>	87.29	64.86	66.68
	CSRev2-linear	14.53 \times	80.29	48.35	47.92	82.09	<u>88.55</u>	<u>66.54</u>	67.58
	CSRev2	14.17 \times	<u>79.98</u>	49.53	47.92	82.90	90.46	67.34	68.08
340 16	MRL	7.77 \times	54.64	42.03	34.33	68.18	59.22	56.16	51.93
	CSR	3.53 \times	75.61	45.12	34.79	77.30	84.28	59.86	62.83
	CSRev2-linear	3.51 \times	77.08	<u>46.58</u>	<u>39.60</u>	<u>79.37</u>	<u>85.38</u>	<u>62.31</u>	64.26
	CSRev2	3.51 \times	77.79	47.97	43.38	79.94	86.50	64.36	65.76
344 4	MRL	6.29 \times	43.84	33.14	24.55	56.51	37.36	44.72	40.83
	CSR	1.62 \times	67.22	39.25	23.54	70.13	<u>74.44</u>	48.57	52.94
	CSRev2-linear	1.65 \times	<u>73.55</u>	42.96	<u>34.31</u>	<u>73.31</u>	74.17	<u>56.08</u>	<u>58.62</u>
	CSRev2	1.63 \times	74.26	43.85	39.04	75.69	74.90	62.93	61.01
347 2	MRL	6.20 \times	34.84	26.13	16.63	52.14	26.67	40.30	33.81
	CSR	1.01 \times	52.50	35.20	16.14	62.93	52.95	46.77	44.33
	CSRev2-linear	1.01 \times	66.43	<u>39.07</u>	<u>31.58</u>	<u>67.91</u>	<u>57.39</u>	<u>53.32</u>	<u>53.35</u>
	CSRev2	1.00 \times	71.59	41.29	37.48	73.82	62.46	60.91	58.38

351 drop observed under the linear setting, recovering performance comparable to domain-specific CSR
352 training (additional details are provided in Appendix C).

354 Building on all these findings above, we propose the following improved sparse training objective:

$$\mathcal{L}_{\text{CSRev2}} = \mathcal{L}(k_t) + \frac{1}{8} \mathcal{L}(4k_t) + \beta \mathcal{L}_{\text{aux}} + \gamma \mathcal{L}_{\text{SpSCL}}(k_t), \quad (8)$$

355 where k_t is the annealed sparsity level at step t (Eq. 6) and $\mathcal{L}_{\text{SpSCL}}$ denotes the sparse supervised
356 contrastive loss (Eq. 7).

357 We designate the fully finetuned model as **CSRev2**, and the variant that finetunes only a linear layer
358 on top (as in CSR) as **CSRev2-linear**. TopK SAE (Gao et al., 2024) finds that using $\mathcal{L}(k) + \frac{L(4k)}{8}$
359 is enough to obtain progressive representation over all k . We find similar phenomena for CSR
360 and thus follow this common practice. The improved training recipe remains as simple and generic
361 as the original CSR without introducing more training objectives. In the experiments that follow,
362 we are able to show that both CSRev2 and CSRev2-linear deliver significant gains over CSR and
363 MRL, particularly in the ultra-sparse regime. Furthermore, the fully finetuned CSRev2 sets a new
364 performance-efficiency frontier for adaptive embeddings, surpassing MRL by up to 25% in absolute
365 accuracy under the same setting. During inference, the embedding produced by the backbone first
366 goes through an encoder which projects it onto a high dimensional vector (e.g. 16384). Afterwards,
367 the TopK values in the vector are kept while others are set 0, with no normalization applied.
368

371 4 EXPERIMENTS

372 In this section, we comprehensively evaluate the effectiveness of CSRev2. For language representation,
373 we evaluate on tasks in Appendix B. For visual representation, we conduct experiments on
374 ImageNet-1k (Deng et al., 2009) and evaluate using 1-NN accuracy (Kusupati et al., 2022). More-
375 over, we conduct efficiency analysis and empirical analysis on ablation of each component and dead
376 neurons. Case study of representation interpretability for a more detailed assessment of the advan-
377 tages and potential of CSRev2 is proposed in Appendix F.

378 Table 3: **Performance comparison with Qwen3-Embedding-4B** (Zhang et al., 2025b), a state-of-
 379 the-art embedding model on MTEB that natively supports MRL. Backbone results are shown in the
 380 first line and first/second largest value on each active dimension is **bold** / underlined.
 381

382 Active 383 Dim	384 Method	385 Classifi. 386 AP \uparrow	387 Clust. 388 V-measure \uparrow	389 Retrieval 390 nDCG@10 \uparrow	391 STS 392 Spearman \uparrow	393 PairClassifi. 394 AP \uparrow	395 Rerank. 396 MAP \uparrow	397 Avg.
384 2560	385 Qwen3-Embed-4B	386 85.79	387 55.27	388 58.37	389 88.63	390 91.42	391 72.03	392 74.92
385 2560	MRL	386 85.38	387 55.04	388 <u>58.31</u>	389 88.02	390 <u>91.27</u>	391 71.64	392 74.58
	CSR	386 <u>85.49</u>	387 54.83	388 <u>58.21</u>	389 <u>88.64</u>	390 91.23	391 71.84	392 74.70
	CSRv2-linear	386 85.32	387 <u>55.43</u>	388 58.74	389 89.05	390 91.03	391 72.25	392 74.99
	CSRv2	386 85.58	387 55.91	388 58.23	389 88.47	390 91.39	391 71.98	392 74.91
389 64	MRL	390 83.42	391 <u>53.73</u>	392 44.13	393 86.60	394 88.08	395 69.61	396 70.54
	CSR	390 83.94	391 <u>52.36</u>	392 <u>51.51</u>	393 85.33	394 90.54	395 70.11	396 71.10
	CSRv2-linear	390 <u>84.03</u>	391 53.19	392 <u>53.22</u>	393 85.88	394 <u>90.72</u>	395 <u>71.13</u>	396 72.31
	CSRv2	390 84.28	391 54.57	392 55.64	393 <u>86.32</u>	394 90.90	395 71.64	396 72.79
393 16	MRL	394 75.22	395 47.24	396 20.40	397 79.21	398 73.29	399 60.82	400 58.89
	CSR	394 78.60	395 49.08	396 35.66	397 82.08	398 85.80	399 65.00	400 64.66
	CSRv2-linear	394 <u>80.71</u>	395 <u>51.48</u>	396 <u>39.09</u>	397 <u>82.15</u>	398 <u>88.94</u>	399 <u>67.64</u>	400 67.20
	CSRv2	394 82.03	395 53.86	396 45.09	397 82.63	398 90.42	399 69.89	400 68.98
397 4	MRL	398 48.27	399 32.08	400 6.59	401 53.11	402 30.73	403 40.59	404 36.74
	CSR	398 57.39	399 36.03	400 16.27	401 64.13	402 64.29	403 50.26	404 46.66
	CSRv2-linear	398 <u>71.59</u>	399 <u>43.24</u>	400 <u>24.82</u>	401 <u>72.11</u>	402 <u>77.74</u>	403 <u>56.94</u>	404 56.76
	CSRv2	398 80.20	399 48.27	400 29.71	401 77.94	402 82.28	403 62.98	404 62.41
400 2	MRL	401 26.47	402 24.20	403 5.23	404 30.22	405 18.46	406 32.43	407 22.84
	CSR	401 41.83	402 30.02	403 9.37	404 51.27	405 54.60	406 44.20	407 36.29
	CSRv2-linear	401 <u>66.95</u>	402 <u>39.22</u>	403 <u>18.47</u>	404 <u>71.56</u>	405 77.95	406 <u>54.67</u>	407 53.41
	CSRv2	401 76.22	402 46.02	403 23.93	404 74.88	405 <u>75.24</u>	406 59.52	407 58.53

405 4.1 BENCHMARK PERFORMANCE

406
 407 **Evaluation under controlled setup.** For fair comparison, we adopt e5-Mistral-7B (Wang et al.,
 408 2023) as backbone and finetune it on MTEB datasets to ensure MRL aligns with CSRV2 domains.
 409 Table 2 reports task-type-specific results on **six task types commonly adopted in past works** (Zhang
 410 et al., 2024) (Li et al., 2024a) (Lee et al., 2024a) in MTEB (Muennighoff et al., 2022), where CSRV2
 411 is trained on all train splits of the same task type. Under equal activation dimensions, CSRV2 consis-
 412 tently outperforms CSR, with up to 14% gains in the ultra-sparse case $k = 2$. Notably, CSRV2 also
 413 surpasses MRL: at $k = 2$, it exceeds MRL’s dense 16-dim embedding and even outperforms 64-dim
 414 dense embeddings in text classification. Efficiency tests on a 1M database further show CSRV2’s
 415 ultra-sparse embeddings achieve a $300\times$ retrieval speedup over the backbone and $7\times$ faster retrieval
 416 than MRL’s dense embeddings of similar accuracy. More detailed results and implementation details
 417 appear in Appendix C.

418 **Evaluation on State-of-the-art Qwen3 Models.** We further evaluate on Qwen3-Embedding-4B,
 419 whose series leads the MTEB leaderboard, with even the 0.6B model surpassing prior 7B re-
 420 sults. Unlike E5-Mistral-7B, Qwen3 integrates MRL into training, producing embeddings naturally
 421 aligned with it. As shown in Table 3, CSRV2 consistently outperforms both MRL and CSR at equal
 422 compression. In cross-level comparisons, CSRV2 at $k = 16$ rivals MRL at $k = 64$, and CSRV2 at
 423 $k = 2$ rivals MRL at $k = 16$, highlighting its adaptability across backbones and sparsity levels.

424 **Evaluation Comparsion with SPLADE Sparse Retrieval Model.** Learning-based sparse retrieval
 425 (LSR) aims to encode an input sequence into a high-dimensional sparse representation. Among
 426 such approaches, the SPLADE (Formal et al., 2021c) (Lassance et al., 2024) series has achieved,
 427 and in some cases surpassed, the performance of dense embedding models across various retrieval
 428 tasks. We evaluate SPLADEv3 on MTEB retrieval benchmarks under three experimental settings
 429 and compare its performance against CSRV2 with sparsity levels of $K = 16$ and $K = 2$. We find
 430 that SPLADEv3 (Lassance et al., 2024) attains retrieval performance comparable to that of dense
 431 embedding models while utilizing only about 3% of the activation values. However, its performance
 432 degrades notably under higher sparsity conditions (e.g., $K = 16$ or $K = 8$). Specifically, when
 433 $K = 16$, SPLADE-v3 exhibits a noticeable performance gap compared to CSRV2, and at $K = 8$,

432 its retrieval effectiveness falls below that of CSrv2 at $K = 2$. Detailed results are available in
 433 Appendix C.5.

434 **Zero-shot Evaluation in Graph-RAG System.** Recently, Graph-RAG retrieval systems have
 435 gained attention for enriching retrieval with graph-structured context, with various mature frame-
 436 works such as MS-GraphRAG (Edge et al., 2024) and light-GraphRAG (Guo et al., 2024). We fur-
 437 ther evaluate CSrv2’s embedding quality when applied to medical and novel domains in GraphRAG
 438 Benchmark (Xiang et al., 2025), where models are evaluated in two perspectives: retrieval quality
 439 and generation accuracy. To evaluate on CSrv2’s zero-shot capability, all models are trained on
 440 MTEB retrieval datasets while no data in GraphRAG Benchmark is used for training. We find that
 441 CSrv2’s performance drop is minimal compared to the degradation observed with MRL’s truncation
 442 strategy, which indicates that CSrv2 is not tied to any specific supervised data source. Detailed
 443 results and experiment setup details are in Appendix E.

444 **Visual Embedding Evaluation on ImageNet-1k.** Figure 5a demonstrates CSrv2’s performance
 445 on ImageNet-1k with pre-trained ResNet-50 noted as FF2048 in the MRL (Kusupati et al., 2022)
 446 as backbone. We find that CSrv2 achieves continuous improvement in classification performance
 447 compared to CSR and MRL. This phenomenon is particularly prominent in the extremely sparse
 448 case, where CSrv2 achieves a 6% 1-NN accuracy increase over CSR and 20% over MRL. More
 449 detailed results and experiment setup are in Appendix D.

451 4.2 EFFICIENCY ANALYSIS

452 In Figure 5c, we evaluate CSrv2 and MRL retrieval efficiency under hidden dimension \mathbb{R}^h and ac-
 453 tive dimension K on a 1M-scale database. Retrieval time grows roughly linearly with d as predicted
 454 by $O(dk)$, though GPU architecture also influences performance. In ultra-sparse cases ($k = 2$),
 455 CSrv2 leverages GPU sparse accelerators (e.g., Sparse Tensor Core, cuSPARSE) to run over 6×
 456 faster than MRL. As sparsity decreases ($k = 32$), dense-optimized libraries (e.g., cuBLAS) reduce
 457 dense operators’ overhead, shrinking CSrv2’s advantage to 2.2×. Thus, CSrv2 excels in extreme
 458 sparsity while maintaining stable gains in general sparse settings. [Experiment setups and more dis-
 459 cussions on encoding, indexing and retrieval are presented in Appendix G.1](#).

461 4.3 EMPIRICAL ANALYSIS

462 **Ablation.** Table 4 reports ablations of CSrv2 components. Supervision proves most effective for
 463 compression, while anneal alone yields little gain. Yet combining them (CSrv2-linear) outperforms
 464 adding supervision alone, showing synergy: anneal promotes feature orthogonality and subspace
 465 expansion, while supervision directs semantic learning, [where the two play different but comple-
 466 mentary roles](#). Finetuning further aligns backbone embeddings with sparse objectives, adding 5%
 467 improvement at $k = 2$.

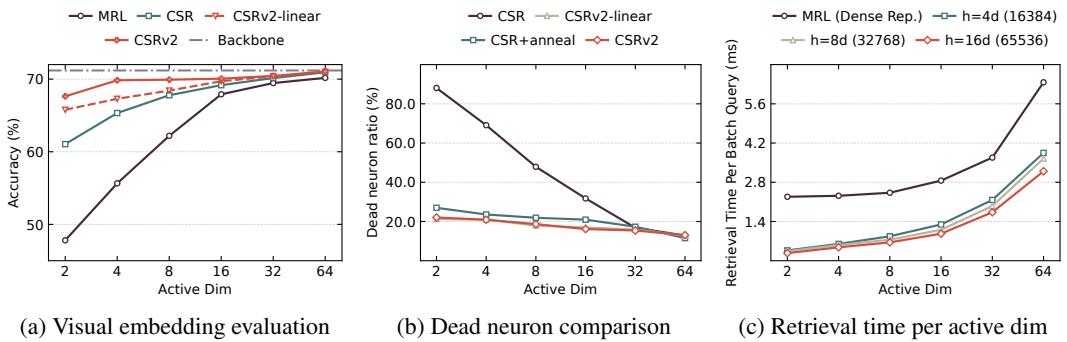
468 **Dead Neurons.** Figure 5b shows dead neuron fractions across components. While adding unsuper-
 469 vised contrastive loss in CSR yields more independent features and fewer dead neurons in sparse
 470 embedding (e.g. $k = 32$), CSR still suffers severe dead neuron issues in ultra-sparse cases (e.g.
 471 $k = 2$). Anneal distributes semantic features into a broader hidden subspace, reducing dead neu-
 472 rons by 70% at $k = 2$. Natural supervision further lowers them to about 20%. Finetuning brings
 473 little improvement, likely because the Topk strategy only aligns backbone embeddings with sparse
 474 objectives rather than fostering orthogonal representations.

475 **K-Schedule Sensitivity Analysis.** We test on k-annealing’s sensitivity on three perspectives: k-
 476 schedule shape, length (i.e. ratio of steps before k reaches target sparsity level) and k ’s initialization.
 477 Results show that different k-schedule results in relatively stable increase in performance improve-
 478 ment, while our selected setting: initialized to 64, annealing to target sparsity level at 70% step, and
 479 linear-annealing strategy achieves the best performance. More detailed results are in Appendix G.2.

480 **Further Discussions.** Moreover, we have conducted several experiments, which provide potential
 481 directions for future exploration. These discussions are analysis on unbalanced weightable settings
 482 for MRL and CSrv2 finetuning (Appendix G.3), emergence of superclass separability in sparsity
 483 representation (Appendix H.1), MRL-SAE exploration (Appendix H.5) and quantized comparsion
 484 at fixed memory cost (Appendix H.2). Furthermore, CSrv2 can be potentially applied in vector
 485 quantization due to its sparse structure, with a brief discussion in Appendix H.3.

486
 487
 488
 489
 490
Table 4: Performance Ablation Comparison: We perform ablation study with e5-Mistral-7B as
 backbone through task-type-specific evaluation and average performance of all task types is pre-
 sented. We mark improvement of different combinations relative to CSR with **green**, while per-
 formance gap between MRL and CSR with **red**.

	Components			Active Dimension					
	anneal	supervise	finetune	64	32	16	8	4	2
MRL	-	-	✓	61.47 (-5.21)	56.37 (-8.23)	51.85 (-9.53)	47.09 (-11.10)	40.83 (-12.11)	33.81 (-10.36)
CSR	✗	✗	✗	66.68	64.60	61.38	58.19	52.94	44.17
+ anneal	✓	✗	✗	67.35 (+0.67)	65.24 (+0.64)	61.91 (+0.53)	58.79 (+0.60)	54.55 (+1.61)	45.33 (+1.16)
+ supervise	✗	✓	✗	67.32 (+0.64)	65.54 (+0.94)	62.95 (+1.57)	60.05 (+1.86)	56.36 (+3.42)	49.05 (+4.88)
CSRV2-linear	✓	✓	✗	67.58 (+0.90)	65.83 (+1.23)	63.73 (+2.35)	61.53 (+3.34)	58.62 (+5.68)	53.25 (+9.08)
CSRV2	✓	✓	✓	68.08 (+1.40)	66.70 (+2.10)	65.22 (+3.84)	63.76 (+5.57)	61.01 (+8.07)	58.34 (+14.17)



516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

Figure 5: **(Left):** Visual representation results on ImageNet-1k with FF2048 as backbone. **”Backbone” serves as the evaluation results on FF2048 without finetuning for consistent reference.** **(Middle):** Dead neuron trend with different components under varying compression levels. **(Right):** Efficiency analysis in 1M database size with e5-Mistral-7B as backbone.

5 CONCLUDING REMARKS

523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

Unlike prior methods (CSR, MRL) that fail once $k \leq 4$, CSRV2 provides the first principled recipe that makes ultra-sparsity viable. The central insight is that **ultra-sparsity is not merely a parameter regime but a qualitatively different optimization problem**: (i) standard self-supervised losses misalign with downstream semantics when only two or four features remain, and (ii) dead neurons accumulate irreversibly without curriculum. CSRV2 introduces two non-trivial modifications motivated by this diagnosis: a progressive k -annealing schedule that preserves gradient flow across neurons until late training, and a supervised sparse contrastive objective that reallocates the few active features to carry semantic signal. These mechanisms are essential for surviving the ultra-sparse regime and go beyond “better tuning” of CSR’s original objective.

532
 533
 534
 535
 536
 537
 538
 539

A key open challenge is the $k = 1$ regime, where CSRV2 still suffers from severe dead neurons and sharp degradation (Appendix H.4). Since $k = 1$ effectively reduces to clustering (mapping each input to a one-shot label), future work could explore clustering-inspired approaches, such as prototype or vector quantization, balanced assignment, entropy regularization, or optimal transport. Extending CSRV2 into this extreme setting remains an important direction, while the practically useful ultra-sparse range $k \in \{2, 4, 8\}$ already offers substantial efficiency gains with competitive accuracy.

540
Ethics Statement. This work adheres to the ICLR Code of Ethics. Although our proposed methods
 541 are broadly applicable, their deployment in real-world scenarios may carry societal considerations,
 542 particularly regarding bias, fairness, and privacy. We advocate for responsible application of our
 543 techniques and disclose that we have no conflicts of interest.

544
Reproducibility. We provide comprehensive details of our methodology, datasets, model architec-
 545 tures, and evaluation protocols in both the main text and Appendix. Full mathematical derivations
 546 and additional experimental results are included in the Appendix. Should the paper be accepted, we
 547 will publicly release the source code and scripts to facilitate complete reproduction of our experi-
 548 ments.

550 **REFERENCES**

551
 552 Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. Semeval-2012 task 6: A pilot on
 553 semantic textual similarity. in* sem 2012: The first joint conference on lexical and computational
 554 semantics—volume 1: Proceedings of the main conference and the shared task, and volume 2:
 555 Proceedings of the sixth international workshop on semantic evaluation (semeval 2012). In *Pro-
 556 ceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), Montréal,
 557 QC, Canada*, pp. 7–8, 2012.

558 Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. * sem 2013 shared
 559 task: Semantic textual similarity. In *Second joint conference on lexical and computational se-
 560 mantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
 561 textual similarity*, pp. 32–43, 2013.

562 Parul Awasthy, Aashka Trivedi, Yulong Li, Mihaela Bornea, David Cox, Abraham Daniels, Martin
 563 Franz, Gabe Goodhart, Bhavani Iyer, Vishwajeet Kumar, et al. Granite embedding models. *arXiv
 564 preprint arXiv:2502.20204*, 2025.

565 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 566 Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
 567 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
 568 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
 569 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
 570 Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
 571 Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. *arXiv preprint
 572 arXiv:2309.16609*, 2023.

573 Anil Bandhakavi, Nirmalie Wiratunga, Stewart Massie, et al. Generating a word-emotion lexicon
 574 from# emotional tweets. In *Proceedings of the third joint conference on lexical and computational
 575 semantics (* SEM 2014)*, pp. 12–21, 2014.

576 Ergun Biçici. Rtm-dcu: Predicting semantic similarity with referential translation machines. In
 577 *Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015)*, pp. 56–
 578 63, 2015.

579 Vera Boteva, Demian Gholipour, Artem Sokolov, and Stefan Riezler. A full-text learning to rank
 580 dataset for medical information retrieval. In *European Conference on Information Retrieval*, pp.
 581 716–722. Springer, 2016.

582 Bart Bussmann, Noa Nabeshima, Adam Karvonen, and Neel Nanda. Learning multi-level features
 583 with matryoshka sparse autoencoders. *arXiv preprint arXiv:2503.17547*, 2025.

584 Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient
 585 intent detection with dual sentence encoders. *arXiv preprint arXiv:2003.04807*, 2020.

586 Daniel Cer, Mona Diab, Eneko Agirre, I
 587 nigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1: Semantic textual similarity multi-
 588 lingual and crosslingual focused evaluation. In Steven Bethard, Marine Carpuat, Marianna Apid-
 589 ianaki, Saif M. Mohammad, Daniel Cer, and David Jurgens (eds.), *Proceedings of the 11th In-
 590 ternational Workshop on Semantic Evaluation (SemEval-2017)*, pp. 1–14, Vancouver, Canada,
 591 August 2017. Association for Computational Linguistics. doi: 10.18653/v1/S17-2001. URL
 592 <https://aclanthology.org/S17-2001>.

594 Xi Chen, Ali Zeynali, Chico Camargo, Fabian Flöck, Devin Gaffney, Przemyslaw Grabowicz, Scott
 595 Hale, David Jurgens, and Mattia Samory. SemEval-2022 task 8: Multilingual news article sim-
 596 ilarity. In Guy Emerson, Natalie Schluter, Gabriel Stanovsky, Ritesh Kumar, Alexis Palmer,
 597 Nathan Schneider, Siddharth Singh, and Shyam Ratan (eds.), *Proceedings of the 16th Interna-
 598 tional Workshop on Semantic Evaluation (SemEval-2022)*, pp. 1094–1106, Seattle, United States,
 599 July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.semeval-1.155.
 600 URL <https://aclanthology.org/2022.semeval-1.155>.

601 Qinyuan Cheng, Xiaogui Yang, Tianxiang Sun, Linyang Li, and Xipeng Qiu. Improving contrastive
 602 learning of sentence embeddings from ai feedback. *arXiv preprint arXiv:2305.01918*, 2023.

603

604 Chanyeol Choi, Junseong Kim, Seolhwa Lee, Jihoon Kwon, Sangmo Gu, Yejin Kim, Minkyung
 605 Cho, and Jy-yong Sohn. Linq-embed-mistral technical report. *arXiv preprint arXiv:2412.03223*,
 606 2024.

607 CircleMind-AI. Fast-graphrag: Retrieval-augmented generation for graphs. <https://github.com/circlemind-ai/fast-graphrag>, 2025. Software; commit jlatest-commit-hash (ac-
 608 cessed 2025-11-11).

609

610 cjadams, Daniel Borkan, inversion, Jeffrey Sorensen, Lucas Dixon, Lucy Vasserman, and nithum.
 611 Jigsaw unintended bias in toxicity classification. <https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification>, 2019. Kaggle.

612

613 Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel Weld. SPECTER:
 614 Document-level representation learning using citation-informed transformers. In Dan Jurafsky,
 615 Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meet-
 616 ing of the Association for Computational Linguistics*, pp. 2270–2282, Online, July 2020a. As-
 617 sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.207. URL <https://aclanthology.org/2020.acl-main.207>.

618

619 Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel S Weld. Specter:
 620 Document-level representation learning using citation-informed transformers. *arXiv preprint arXiv:2004.07180*, 2020b.

621

622 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
 623 coders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*,
 624 2023.

625

626 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 627 erarchical image database. In *2009 IEEE conference on computer vision and pattern recogni-
 628 tion*, pp. 248–255. Ieee, 2009.

629

630 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
 631 Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
 632 graph rag approach to query-focused summarization. *arXiv preprint arXiv:2404.16130*, 2024.

633

634 Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-supervised models
 635 transfer? In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
 636 tion*, pp. 5414–5423, 2021.

637

638 Kion Fallah, Adam Willats, Ninghao Liu, and Christopher Rozell. Learning sparse codes from com-
 639 pressed representations with biologically plausible local wiring constraints. *Advances in Neural
 640 Information Processing Systems*, 33:13951–13963, 2020.

641

642 Jack Fitzgerald, Christopher Hench, Charith Peris, Scott Mackie, Kay Rottmann, Ana Sanchez,
 643 Aaron Nash, Liam Urbach, Vishesh Kakarala, Richa Singh, et al. Massive: A 1m-example mul-
 644 tilingual natural language understanding dataset with 51 typologically-diverse languages. *arXiv
 645 preprint arXiv:2204.08582*, 2022.

646

647 Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant. Splade v2:
 648 Sparse lexical and expansion model for information retrieval. *arXiv preprint arXiv:2109.10086*,
 649 2021a.

648 Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. Splade: Sparse lexical and ex-
 649 pansion model for first stage ranking. In *Proceedings of the 44th International ACM SIGIR*
 650 *Conference on Research and Development in Information Retrieval*, pp. 2288–2292, 2021b.
 651

652 Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. Splade: Sparse lexical and ex-
 653 pansion model for first stage ranking. In *Proceedings of the 44th International ACM SIGIR*
 654 *Conference on Research and Development in Information Retrieval*, pp. 2288–2292, 2021c.
 655

656 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
 657 Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint*
 658 *arXiv:2406.04093*, 2024.
 659

660 Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
 661 embeddings. *arXiv preprint arXiv:2104.08821*, 2021.
 662

663 Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for approximate
 664 nearest neighbor search. In *Proceedings of the IEEE Conference on Computer Vision and Pattern*
 665 *Recognition (CVPR)*, pp. 2946–2953, 2013.
 666

667 Gregor Geigle, Nils Reimers, Andreas Rücklé, and Iryna Gurevych. Tweac: transformer with ex-
 668 tendable qa agent classifiers. *arXiv preprint arXiv:2104.07081*, 2021.
 669

670 Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iterative quantization:
 671 A procrustean approach to learning binary codes. In *IEEE Conference on Computer Vision and*
 672 *Pattern Recognition (CVPR)*, 2011.
 673

674 Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Ku-
 675 mar. Accelerating large-scale inference with anisotropic vector quantization. In *International*
 676 *Conference on Machine Learning*, pp. 3887–3896. PMLR, 2020.
 677

678 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
 679 augmented generation. *arXiv preprint arXiv:2410.05779*, 2024.
 680

681 Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances Liu,
 682 Qipeng Guo, Xuanjing Huang, Zuxuan Wu, et al. Llama scope: Extracting millions of features
 683 from llama-3.1-8b with sparse autoencoders. *arXiv preprint arXiv:2410.20526*, 2024.
 684

685 Doris Hoogeveen, Karin M Verspoor, and Timothy Baldwin. Cquadupstack: A benchmark data set
 686 for community question-answering research. In *Proceedings of the 20th Australasian document*
 687 *computing symposium*, pp. 1–8, 2015.
 688

689 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 690 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
 691

692 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
 693 Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
 694 efficient integer-arithmetic-only inference. In *Proceedings of the IEEE conference on computer*
 695 *vision and pattern recognition*, pp. 2704–2713, 2018.
 696

697 Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy,
 698 and Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single
 699 node. *Advances in neural information processing Systems*, 32, 2019.
 700

701 Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
 702 search. *IEEE transactions on pattern analysis and machine intelligence*, 33(1):117–128, 2010.
 703

704 Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
 705 search. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(1):117–128, 2011.
 706

707 Adam Jermyn and Adly Templeton. Ghost grads: An improvement on resampling. *Transformer*
 708 *Circuits Thread*, 2024. URL <https://transformer-circuits.pub/2024/jan-update/index.html#dict-learningresampling>.
 709

702 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
 703 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. *Advances in neural*
 704 *information processing systems*, 33:18661–18673, 2020.

705 Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
 706 manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
 707 representation learning. *Advances in Neural Information Processing Systems*, 35:30233–30249,
 708 2022.

709 Michael Lan, Philip Torr, Austin Meek, Ashkan Khakzar, David Krueger, and Fazl Barez. Sparse
 710 autoencoders reveal universal feature spaces across large language models. *arXiv preprint*
 711 *arXiv:2410.06981*, 2024.

712 Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. A continuously growing dataset of sentential
 713 paraphrases. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.), *Proceedings of*
 714 *the 2017 Conference on Empirical Methods in Natural Language Processing*, pp. 1224–1234,
 715 Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi:
 716 10.18653/v1/D17-1126. URL <https://aclanthology.org/D17-1126>.

717 Carlos Lassance, Hervé Déjean, Thibault Formal, and Stéphane Clinchant. Splade-v3: New base-
 718 lines for splade. *arXiv preprint arXiv:2403.06789*, 2024.

719 Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Alek-
 720 sander Madry. Ffcv: Accelerating training by removing data bottlenecks. In *Proceedings of the*
 721 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12011–12020, 2023.

722 Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
 723 zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
 724 models. *arXiv preprint arXiv:2405.17428*, 2024a.

725 Jinyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole, Kai Hui, Michael
 726 Boratko, Rajvi Kapadia, Wen Ding, et al. Gecko: Versatile text embeddings distilled from large
 727 language models. *arXiv preprint arXiv:2403.20327*, 2024b.

728 Jinyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim, Gus-
 729 tavo Hernández Ábrego, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, et al. Gemini embed-
 730 ding: Generalizable embeddings from gemini. *arXiv preprint arXiv:2503.07891*, 2025.

731 Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich Küttler, Aleksandra Piktus,
 732 Pontus Stenetorp, and Sebastian Riedel. Paq: 65 million probably-asked questions and what you
 733 can do with them. *Transactions of the Association for Computational Linguistics*, 9:1098–1115,
 734 2021.

735 Chaofan Li, MingHao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Yingxia Shao, Defu Lian, and
 736 Zheng Liu. Making text embedders few-shot learners. *arXiv preprint arXiv:2409.15700*, 2024a.

737 Haoran Li, Abhinav Arora, Shuhui Chen, Anchit Gupta, Sonal Gupta, and Yashar Mehdad.
 738 Mtop: A comprehensive multilingual task-oriented semantic parsing benchmark. *arXiv preprint*
 739 *arXiv:2008.09335*, 2020.

740 Mingxin Li, Zhijie Nie, Yanzhao Zhang, Dingkun Long, Richong Zhang, and Pengjun Xie. Im-
 741 proving general text embedding model: Tackling task conflict and data imbalance through model
 742 merging. *arXiv preprint arXiv:2410.15035*, 2024b.

743 Xianming Li, Zongxi Li, Jing Li, Haoran Xie, and Qing Li. 2d matryoshka sentence embeddings.
 744 *arXiv preprint arXiv:2402.14776*, 2024c.

745 Yuxiao Li, Eric J Michaud, David D Baek, Joshua Engels, Xiaoqing Sun, and Max Tegmark. The
 746 geometry of concepts: Sparse autoencoder feature structure. *Entropy*, 27(4):344, 2025.

747 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization*
 748 *branches out*, pp. 74–81, 2004.

756 Xueqing Liu, Chi Wang, Yue Leng, and ChengXiang Zhai. Linkso: a dataset for learning to retrieve
 757 similar question answer pairs on software development forums. *Proceedings of the 4th ACM*
 758 *SIGSOFT International Workshop on NLP for Software Engineering*, 2018. URL <https://api.semanticscholar.org/CorpusID:53111679>.

759

760 Xinyuan Lu, Liangming Pan, Yubo Ma, Preslav Nakov, and Min-Yen Kan. Tart: An open-
 761 source tool-augmented framework for explainable table-based reasoning. *arXiv preprint*
 762 *arXiv:2409.11724*, 2024.

763

764 Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
 765 Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the*
 766 *association for computational linguistics: Human language technologies*, pp. 142–150, 2011.

767

768 Maggie, Phil Culliton, and Wei Chen. Tweet sentiment extraction. <https://kaggle.com/competitions/tweet-sentiment-extraction>, 2020. Kaggle.

769

770 Macedo Maia, Siegfried Handschuh, André Freitas, Brian Davis, Ross McDermott, Manel Zarrouk,
 771 and Alexandra Balahur. Www’18 open challenge: financial opinion mining and question answer-
 772 ing. In *Companion proceedings of the the web conference 2018*, pp. 1941–1942, 2018.

773

774 Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini, and Roberto
 775 Zamparelli. Semeval-2014 task 1: Evaluation of compositional distributional semantic models
 776 on full sentences through semantic relatedness and textual entailment. In *Proceedings of the 8th*
 777 *international workshop on semantic evaluation (SemEval 2014)*, pp. 1–8, 2014.

778

779 Philip May. Machine translated multilingual sts benchmark dataset. 2021. URL <https://github.com/PhilipMay/stsb-multi-mt>.

780

781 Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, Carlo C Del Mundo, Oncel Tuzel, Golnoosh
 782 Samei, Mohammad Rastegari, and Mehrdad Farajtabar. Relu strikes back: Exploiting activation
 783 sparsity in large language models. *arXiv preprint arXiv:2310.04564*, 2023.

784

785 Gabriel de Souza P Moreira, Radek Osmulski, Mengyao Xu, Ronay Ak, Benedikt Schifferer, and
 786 Even Oldridge. Nv-retriever: Improving text embedding models with effective hard-negative
 787 mining. *arXiv preprint arXiv:2407.15831*, 2024.

788

789 Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embed-
 790 ding benchmark. *arXiv preprint arXiv:2210.07316*, 2022.

791

792 Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh,
 793 and Douwe Kiela. Generative representational instruction tuning. In *The Thirteenth International*
 794 *Conference on Learning Representations*, 2024.

795

796 Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, and Veselin Stoyanov. Semeval-
 797 2016 task 4: Sentiment analysis in twitter. *arXiv preprint arXiv:1912.01973*, 2019.

798

799 Thong Nguyen, Mariya Hendriksen, Andrew Yates, and Maarten de Rijke. Multimodal learned
 800 sparse retrieval with probabilistic expansion control. In *European Conference on Information*
 801 *Retrieval*, pp. 448–464. Springer, 2024.

802

803 James O’Neill, Polina Rozenshtein, Ryuichi Kiryo, Motoko Kubota, and Danushka Bollegala. I
 804 wish i would have loved this one, but i didn’t—a multilingual dataset for counterfactual detection
 805 in product reviews. *arXiv preprint arXiv:2104.06893*, 2021.

806

807 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 808 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

809

810 Letian Peng, Yuwei Zhang, Zilong Wang, Jayanth Srinivasa, Gaowen Liu, Zihan Wang, and Jingbo
 811 Shang. Answer is all you need: Instruction-following text embedding via answering the question.
 812 *arXiv preprint arXiv:2402.09642*, 2024.

813

814 Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
 815 Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
 816 coders. *arXiv preprint arXiv:2404.16014*, 2024.

810 Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. Carer: Context-
 811 *alized affect representations for emotion recognition*. In *Proceedings of the 2018 conference on*
 812 *empirical methods in natural language processing*, pp. 3687–3697, 2018.

813

814 Darsh Shah, Tao Lei, Alessandro Moschitti, Salvatore Romeo, and Preslav Nakov. Adversarial
 815 domain adaptation for duplicate question detection. In Ellen Riloff, David Chiang, Julia
 816 Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical
 817 Methods in Natural Language Processing*, pp. 1056–1063, Brussels, Belgium, October–
 818 November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1131. URL
 819 <https://aclanthology.org/D18-1131>.

820

821 Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W. Mahoney,
 822 and Kurt Keutzer. Q-BERT: Hessian based ultra low precision quantization of BERT. In *Advances
 823 in Neural Information Processing Systems (NeurIPS)*, 2019.

824

825 Gizem Soğancıoglu, Hakime Öztürk, and Arzucan Özgür. Biosses: a semantic sentence similarity
 826 estimation system for the biomedical domain. *Bioinformatics*, 33(14):i49–i58, 2017.

827

828 Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krim-
 829 mel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, et al. jina-embeddings-
 830 v3: Multilingual embeddings with task lora. *arXiv preprint arXiv:2409.10173*, 2024.

831

832 Nandan Thakur, Jianmo Ni, Gustavo Hernández Ábrego, John Wieting, Jimmy Lin, and Daniel
 833 Cer. Leveraging llms for synthesizing training data across many languages in multilingual dense
 834 retrieval. *arXiv preprint arXiv:2311.05800*, 2023.

835

836 Cornell University. arXiv dataset (metadata for 1.7m+ scholarly papers). Kaggle dataset,
 837 url`https://www.kaggle.com/datasets/Cornell-University/arxiv`, 2025. Accessed on September 3,
 838 2025.

839

840 Henning Wachsmuth, Shahbaz Syed, and Benno Stein. Retrieval of the best counterargument with-
 841 out prior topic knowledge. In *Proceedings of the 56th Annual Meeting of the Association for
 842 Computational Linguistics (Volume 1: Long Papers)*, pp. 241–251, 2018.

843

844 David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman Co-
 845 han, and Hannaneh Hajishirzi. Fact or fiction: Verifying scientific claims. *arXiv preprint
 846 arXiv:2004.14974*, 2020a.

847

848 David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman Co-
 849 han, and Hannaneh Hajishirzi. Fact or fiction: Verifying scientific claims. *arXiv preprint
 850 arXiv:2004.14974*, 2020b.

851

852 Hongyu Wang, Shuming Ma, Ruijing Wang, and Furu Wei. Q-sparse: All large language models
 853 can be fully sparsely-activated. *arXiv preprint arXiv:2407.10969*, 2024a.

854

855 Kexin Wang, Nils Reimers, and Iryna Gurevych. Tsdae: Using transformer-based sequen-
 856 tial denoising auto-encoderfor unsupervised sentence embedding learning. *arXiv preprint
 857 arXiv:2104.06979*, 4 2021. URL <https://arxiv.org/abs/2104.06979>.

858

859 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improv-
 860 ing text embeddings with large language models. *arXiv preprint arXiv:2401.00368*, 2023.

861

862 Yifei Wang, Qi Zhang, Yaoyu Guo, and Yisen Wang. Non-negative contrastive learning. *arXiv
 863 preprint arXiv:2403.12459*, 2024b.

864

865 Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In *Advances in Neural Information
 866 Processing Systems (NeurIPS)*, 2008.

867

868 Tiansheng Wen, Yifei Wang, Zequn Zeng, Zhong Peng, Yudi Su, Xinyang Liu, Bo Chen, Hong-
 869 wei Liu, Stefanie Jegelka, and Chenyu You. Beyond matryoshka: Revisiting sparse coding for
 870 adaptive representation. In *International Conference on Machine Learning*, 2025.

864 Zhishang Xiang, Chuanjie Wu, Qinggang Zhang, Shengyuan Chen, Zijin Hong, Xiao Huang, and
 865 Jinsong Su. When to use graphs in rag: A comprehensive analysis for graph retrieval-augmented
 866 generation. *arXiv preprint arXiv:2506.05690*, 2025.

867 Hanqi Yan, Yulan He, and Yifei Wang. The multi-faceted monosemanticity in multimodal represen-
 868 tations. In *Workshop on Responsibly Building the Next Generation of Multimodal Foundational
 869 Models*, 2025.

870 Jinsung Yoon, Raj Sinha, Sercan O Arik, and Tomas Pfister. Matryoshka-adaptor: Unsupervised and
 871 supervised tuning for smaller embedding dimensions. *arXiv preprint arXiv:2407.20243*, 2024.

872 Chenyu You, Haocheng Dai, Yifei Min, Jasjeet S Sekhon, Sarang Joshi, and James S Duncan. Un-
 873 covering memorization effect in the presence of spurious correlations. *Nature Communications*,
 874 2025.

875 Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
 876 for transformer-based masked language-models. *arXiv preprint arXiv:2106.10199*, 2021.

877 Dun Zhang, Jiacheng Li, Ziyang Zeng, and Fulong Wang. Jasper and stella: distillation of sota
 878 embedding models. *arXiv preprint arXiv:2412.19048*, 2024.

879 Xin Zhang, Yanzhao Zhang, Wen Xie, Dingkun Long, Mingxin Li, Pengjun Xie, Meishan Zhang,
 880 Wenjie Li, and Min Zhang. Phased training for llm-powered text retrieval models beyond data
 881 scaling. In *Second Conference on Language Modeling*, 2025a. URL <https://openreview.net/forum?id=NC6G1KCxlt>.

882 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 883 An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
 884 ing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*,
 885 2025b.

886 Shengyao Zhuang, Xueguang Ma, Bevan Koopman, Jimmy Lin, and Guido Zuccon. Promptreps:
 887 Prompting large language models to generate dense and sparse representations for zero-shot doc-
 888 ument retrieval. *arXiv preprint arXiv:2404.18424*, 2024a.

889 Shengyao Zhuang, Shuai Wang, Fabio Zheng, Bevan Koopman, and Guido Zuccon. Starbucks-v2:
 890 Improved training for 2d matryoshka embeddings. *arXiv preprint arXiv:2410.13230*, 2024b.

891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 A ADDITIONAL RELATED WORK
919
920

921 **LLM-based Text Embeddings.** The integration of Large Language Model into text embedding
922 generation has been a hot topic due to LLM’s extraordinary capability of comprehensive semantic
923 understanding. This integration has led to many embedding models that have demonstrated excellent
924 performance in multiple domains, multiple tasks, and multiple languages, such as GritLM (Muen-
925 nighoff et al., 2024), e5-Mistral-7B-instruct (Wang et al., 2023), Gemini Embedding (Lee et al.,
926 2025), Qwen3 Embedding (Zhang et al., 2025b) and Linq-Embed-Mistral (Choi et al., 2024).

927 Generally, the techniques utilized in training these models can mainly be classified into two cate-
928 gories. One approach is utilizing LLMs for text augmentation or synthetic data generation, therefore
929 expanding the domain covered by model training. Jina-v3 (Sturua et al., 2024), Gecko (Lee et al.,
930 2024b) and Tart (Lu et al., 2024) utilize LLM to generate synthetic examples to enhance task-wise
931 generation and expand targeted failure cases. NV-Embed-v2 (Moreira et al., 2024), E5-Mistral
932 (Cheng et al., 2023) and SWIM-X (Thakur et al., 2023) employ LLM to provide higher-quality
933 supervision signals for existing embedding training.

934 Another approach is directly adapting LLMs themselves to serve as text embedding models, there-
935 fore transfer knowledge from large LLMs to more efficient embedding models. Generally, this
936 approach takes one pretrained LLM as backbone such as Mistral 7B (Wang et al., 2023) and fine-
937 tune with parameter-efficient finetuning strategies including BitFit (Zaken et al., 2021) and LoRA
938 (Hu et al., 2022). Current innovation for LLM adaptation to embedding generation focus on three
939 aspects: design of positive/negative pairs, multi-stage learning and instruction tuning. For design of
940 positive/negative pairs, (Gao et al., 2021) proposes an unsupervised contrastive learning framework
941 for advancing sentence embeddings, where augmented unlabeled sentences are seen as positive
942 pairs. NV-Retrieval (Moreira et al., 2024) filters out potential false negatives by comparing can-
943 didate negatives against the positive relevance score. Granite Embedding models (Awasthy et al.,
944 2025) use additional bidirectional signal to expand negatives in retrieval set. For multi-stage train-
945 ing, NV-Embed (Lee et al., 2024a) takes a two-stage contrastive instruction-tuning approach that first
946 trains on retrieval datasets with in-batch and hard negatives, then blends in non-retrieval tasks with-
947 out in-batch negatives, yielding strong improvements in both retrieval and general embedding tasks.
948 Qwen3 Embedding model series (Zhang et al., 2025b) take a three-step pipeline that first performs
949 large-scale weakly supervised pre-training on synthetic data, then finetunes with high-quality super-
950 vised and selected synthetic datasets, and finally applies model merging (Li et al., 2024b) to boost
951 robustness and generalization. For instruction tuning, Inbedder (Peng et al., 2024) treats instructions
952 as questions and derives embeddings from the expected answers rather than concatenating instruc-
953 tions with inputs. E5-Mistral (Cheng et al., 2023) employed an asymmetric instruction strategy that
954 initially applies instructions only to the query side which has been proven efficient in retrieval tasks
955 by numerous subsequent works.

956 **Adaptive Representations Learning for Text Embedding Compression.** Early work for text
957 embedding sparsity focuses on directly mapping text to sparse vectors or use token-wise late interac-
958 tion, with some recent work carried out following this approach. The SPLADE series (Formal et al.,
959 2021b) (Formal et al., 2021a) introduced a BERT-based model for learning sparse, interpretable text
960 representations via explicit sparsity regularization and log-saturation, enabling efficient inverted in-
961 dex retrieval. PromptReps (Zhuang et al., 2024a) prompts LLM to generate a single-word represen-
962 tation of each text and sparsify the logits of that prediction by filtering to document tokens while
963 applying ReLU and log-saturation. Mirzadeh et al. (2023) proposes a “relufication” sparsity strategy
964 where non-ReLU activations in pretrained LLMs are replaced (and sometimes supplemented) with
965 ReLU layers to induce high activation sparsity. Nguyen et al. (2024) uses probabilistic term ex-
966 pansion control to transform dense text embeddings in multimodal retrieval into sparse, vocabulary-
967 aligned vectors while preserving effectiveness. Wang et al. (2024a) introduces Q-Sparse, a method
968 that achieves full activation sparsity in large language models by applying Topk sparsification to
969 linear projections and using the straight-through estimator for training. Moreover, You et al. (2025)
970 reveal that spurious memorization — where a small set of neurons overfit to non-causal patterns —
971 can lead to biased representations and degraded generalization. Understanding and mitigating such
972 effects provides complementary insight to sparsity-based embedding learning.

973 Matryoshka Representation Learning (Kusupati et al., 2022) (MRL) pioneers text embedding com-
974 pression in recent years via training with truncated dimensions. Proposed in 2022, MRL demon-

972 strates adaptive-length embeddings for large-scale retrieval and classification including NLP settings,
 973 leading to various works that focus on adapting MRL to embedding model settings. [Li et al. \(2024c\)](#) extends MRL by introducing a second scalability dimension, enabling embeddings to be
 974 truncated along both model layers and embedding sizes. [Zhuang et al. \(2024b\)](#) combines fixed-size
 975 sub-model finetuning with masked autoencoder pre-training, introduces a new structured training
 976 strategy for 2D Matryoshka embeddings. [Yoon et al. \(2024\)](#) transforms arbitrary embeddings generated by
 977 embedding models or APIs into embeddings with Matryoshka properties in both unsupervised and supervised
 978 setups. Various open-sourced embedding models, such as Jina-v3 ([Sturua et al., 2024](#)) and Qwen3-Embedding series ([Zhang et al., 2025b](#)); and commercial APIs, such as
 979 Gemini ([Lee et al., 2025](#)), have supported MRL dimension truncation.
 980

981 Another promising direction for text embedding sparsification is Sparse Autoencoder, which grows
 982 from sparse coding/dictionary learning to tackle polysemy by disentangling features, are now
 983 scaled to frontier LLMs and widely used for mechanistic interpretability ([Cunningham et al., 2023](#))
 984 ([Yan et al., 2025](#)). [Rajamanoharan et al. \(2024\)](#) introduces Gated SAE that solves the systematic
 985 underestimation of feature activations caused by L1 penalty and requires half as many firing features
 986 to achieve comparable reconstruction fidelity. [Gao et al. \(2024\)](#) utilizes k-sparse autoencoders as a
 987 replacement of traditional L1-based sparsity, preventing activation shrinkage, reducing dead latents,
 988 and yielding cleaner scaling laws with more interpretable and effective features. [Lan et al. \(2024\)](#)
 989 employs SAE to discover monosemantic features within language models, revealing a high degree
 990 of similarity and potential universality in these learned sparse feature spaces across diverse LLM
 991 architectures. [Wen et al. \(2025\)](#) leverages contrastive objectives for preserving semantic quality,
 992 achieving results close to those of backbone embeddings in the downstream tasks when only 32
 993 neurons are activated.
 994

995 **Orthogonal Efficiency Techniques.** Quantization and hashing compress embedding *values* rather
 996 than reducing active dimensions. Product quantization and its optimized variants approximate dis-
 997 tances with compact codes ([Jégou et al., 2011](#); [Ge et al., 2013](#)), while binary hashing methods such as
 998 Spectral Hashing and ITQ yield extremely small codes with Hamming-distance search ([Weiss et al.,
 999 2008](#); [Gong et al., 2011](#)). Model-side low-bit quantization of Transformer encoders further reduces
 1000 memory and latency ([Shen et al., 2019](#)). These techniques are orthogonal and can be combined with
 1001 sparse embeddings (e.g., PQ over nonzero coordinates or low-bit storage of sparse values), jointly
 1002 improving storage and retrieval throughput.
 1003

B TASKS

1004 We cover 6 types of tasks in this paper: classification, clustering, retrieval, pair classification,
 1005 semantic textual similarity and reranking. They are taken from MTEB ([Muennighoff et al., 2022](#)) and
 1006 include the vast majority of the tasks in the MTEB English Leaderboard, as well as some multilingual
 1007 tasks.
 1008

- 1009 • **Classification:** Classification involves 10 tasks, which are divided into general tasks and
 1010 specialized tasks. General tasks include AmazonMassiveDomain ([FitzGerald et al., 2022](#)),
 1011 AmazonMassiveScenario ([FitzGerald et al., 2022](#)), MTOPIntent ([Li et al., 2020](#)), and
 1012 MTOPDomain ([Li et al., 2020](#)) for multilingual natural language understanding, IMDb
 1013 ([Maas et al., 2011](#)), TweetSentimentExtraction ([Maggie et al., 2020](#)) and Emotion ([Sar-
 1014 avia et al., 2018](#)) for sentiment analysis. Specialized tasks include AmazonCounterfactual
 1015 ([O’Neill et al., 2021](#)) for counterfactual detection in product reviews, ToxicConver-
 1016 sation50k ([cjadams et al., 2019](#)) for detection of toxic speech and prejudice, Banking77
 1017 ([Casanueva et al. \(2020\)](#) for financial intent recognition.
- 1018 • **Clustering:** Clustering involves 8 tasks. These tasks are BiorxivClusteringP2P, Biorxiv-
 1019 ClusteringS2S¹, MedrxivClusteringP2P, MedrxivClusteringS2S² and ArxivClusteringS2S
 1020 ([University, 2025](#)) for research field clustering, TwentyNewsGroups³ for news topics iden-
 1021 tification, StackExchangeP2P and StackExchange ([Geigle et al., 2021](#)) for clustering of
 1022 titles from 121 stackexchanges.

¹<https://api.biorxiv.org/>

²<https://api.medrxiv.org/>

³https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

- **Retrieval:** Retrieval involves 8 tasks. These tasks are Arguana (Wachsmuth et al., 2018) and NFCorpus (Boteva et al., 2016) for medical information retrieval, CQADupstackGam-ing (Hoogeveen et al., 2015) and CQADupstackUnix (Hoogeveen et al., 2015) for web community retrieval, ClimateFEVERHardNegatives (Wadden et al., 2020a) for climate-change retrieval, FiQA2018 (Maia et al., 2018) for financial retrieval, SCIDOCs (Cohan et al., 2020b) and SciFact (Wadden et al., 2020b) for academic retrieval.
- **Semantic Textual Similarity (STS):** STS includes 10 tasks. These tasks include general-domain semantic comprehension tasks STS12 (Agirre et al., 2012), STS13 (Agirre et al., 2013), STS14 (Bandhakavi et al., 2014), STS15 (Biçici, 2015), STS16 (Nakov et al., 2019), STSBenchmark (May, 2021), SICK-R (Marelli et al., 2014), STS17 (Cer et al., 2017) and STS22 (Chen et al., 2022) and medical domain semantic comprehension task BIOSSES (Sogancioğlu et al., 2017).
- **Pair Classification:** Pair Classification includes two tasks, with SprintDuplicateQuestions (Shah et al., 2018) for programming domain and TwitterURLCorpus (Lan et al., 2017) for social media (Tweet) domain.
- **Reranking:** Reranking includes 3 tasks, which are AskUbuntuDupQuestions (Wang et al., 2021) and StackOverflowDupQuestions (Liu et al., 2018) for reranking of related program-ming blogs and SciDocsRR (Cohan et al., 2020a) for reranking of scientific papers.

C EXPERIMENT DETAILS ON TEXT REPRESENTATIONS

C.1 EVALUATION METRICS

We adopt the standardized evaluation protocols established by the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2022). Specifically:

- For classification tasks, we train a logistic regression classifier on the embedded training split and report its accuracy on the test split.
- For clustering tasks, we apply mini-batch k-means to the embedded training data and evaluate performance on the test split using the V-measure.
- For retrieval tasks, we compute normalized Discounted Cumulative Gain at rank 10 (nDCG@10), where document-query relevance scores are derived from cosine similarity between embeddings.
- For semantic textual similarity (STS) tasks, we measure the Spearman rank correlation coefficient between the ground-truth similarity scores and the cosine similarities of the corresponding sentence embeddings.
- For pair classification tasks, we evaluate using cosine-similarity-based average precision, with decision thresholds determined by optimizing over similarity scores on the validation set.
- For reranking tasks, we report Mean Average Precision (MAP), again using cosine similar-ity as the scoring function.

To assess retrieval efficiency, we construct a unified query set by aggregating all queries from the aforementioned retrieval and reranking datasets, and a corresponding document database by merging their respective corpora. All efficiency metrics are computed over this consolidated benchmark setup.

C.2 EXPERIMENT SETUP

We select e5-Mistral-7B (Wang et al., 2023) and Qwen3-Embedding-4B (Wang et al., 2023) as our backbone embedding models and evaluate their performance across six task categories defined in the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2022). For each task category, we restrict our evaluation to English-language datasets and the English subsets of multilingual datasets included in the MTEB leaderboard⁴. This yields a total of 10 classification (**Classif.**), 8

⁴<https://huggingface.co/spaces/mteb/leaderboard>

1080 clustering (**Clust.**), 8 retrieval (**Retrieval**), 10 semantic textual similarity (**STS**), 2 pair classification
 1081 (**PairClassifi.**), and 3 reranking (**Rerank.**) datasets in our experimental suite.

1082 We adopt a *task-type-specific* evaluation pipeline: for each task type, we aggregate the training
 1083 splits of all constituent datasets to form a unified training set, while preserving the original test split
 1084 of each individual dataset for performance evaluation. This pipeline is applied consistently across
 1085 all six task types using the aforementioned datasets.

1086 All experiments are conducted on a server equipped with 8 NVIDIA A100-SXM4-40GB GPUs,
 1087 except for backbone finetuning, which is performed on a separate server with 8 H20-NVLink GPUs
 1088 (96 GB memory each).

1090

1091 C.3 IMPLEMENTATION DETAILS

1092

1093 To ensure a fair comparison between MRL and CSRV2 on the MTEB benchmark—particularly with
 1094 respect to domain alignment—we select a backbone model that is not natively supported by MRL:
 1095 e5-Mistral-7B (Wang et al., 2023). We then finetune this model on a carefully curated collection of
 1096 multi-domain datasets. Specifically, the training data is drawn from three complementary sources:
 1097 (i) datasets included in the MTEB benchmark (Muennighoff et al., 2022), (ii) the embedding training
 1098 data collection curated by the Sentence Transformers team⁵, and (iii) a suite of public retrieval
 1099 datasets introduced in Zhang et al. (2025a). During preprocessing, we first deduplicate datasets that
 1100 appear across multiple collections. Subsequently, following the natural supervision strategy outlined
 1101 in Section 3.2, we sample up to 20,000 sentence pairs per dataset, resulting in a consolidated training
 1102 corpus of approximately one million examples.

1103

1104 We finetune e5-Mistral-7B on this corpus using a batch size of 2,048—a scale commonly adopted
 1105 by existing MRL-compatible models. Full details of the hyperparameter configuration are provided
 1106 in Table 5. In contrast, the Qwen3-Embedding-4B model (Zhang et al., 2025b) already incorporates
 1107 native MRL support; thus, no additional finetuning is required for this backbone.

1108

1109 Table 5: Implementation details on MRL finetuning.

Backbone	Batch Size	LoRA r	LoRA α	lr	epoch	warmup	weight decay	MRL dim	MRL c_m
e5-Mistral-7B	2048	8	16	2e-5	10	1000	0.1	1,2,4...,4096	{1, 1, ..., 1}

1112

1113 For backbone finetuning, we adopt a methodology closely aligned with that of MRL (Kusupati et al.,
 1114 2022), as detailed in Section 3.3. Specifically, we apply a Top_k operator with varying values of k to
 1115 the backbone’s output embedding and finetune the model using LoRA (Hu et al., 2022). We restrict
 1116 k to powers of two (i.e., $k \in \{2^i\}$), and assign a uniform weight of 1 to each k -dimensional sub-
 1117 embedding during training. The finetuning objective is the InfoNCE loss (Ord et al., 2018), and
 1118 the selection of hyperparameters is provided in Table 6.

1119

1120 Table 6: Implementation details on backbone finetuning in text representation.

Backbone	Batch Size	LoRA r	LoRA α	lr	epoch	warmup	weight decay	Top_k
e5-Mistral-7B	256	8	16	2e-5	10	1000	0.1	{1, 2, ..., 2048, 4096}
Qwen3-Embedding-4B	256	8	16	2e-5	10	1000	0.1	{1, 2, ..., 2048, 2560}

1126

1127 In the training of CSRV2, we adopt the tied encoder–decoder architecture as proposed in CSR (Wen
 1128 et al., 2025). For the k -annealing schedule, the initial sparsity level k_{init} is set to 64 if the current
 1129 number of activated dimensions k is less than 64; otherwise set $k_{\text{init}} = 4k$. Positive and negative
 1130 samples for supervision are constructed in accordance with the rule detailed in Section 3.2. We
 1131 employ Adam as the optimizer and selection of other hyperparameters is in Table 7.

1132

1133 ⁵<https://huggingface.co/datasets/sentence-transformers/embedding-training-data>

Table 7: Implementation details on CSrv2 training in text representation.

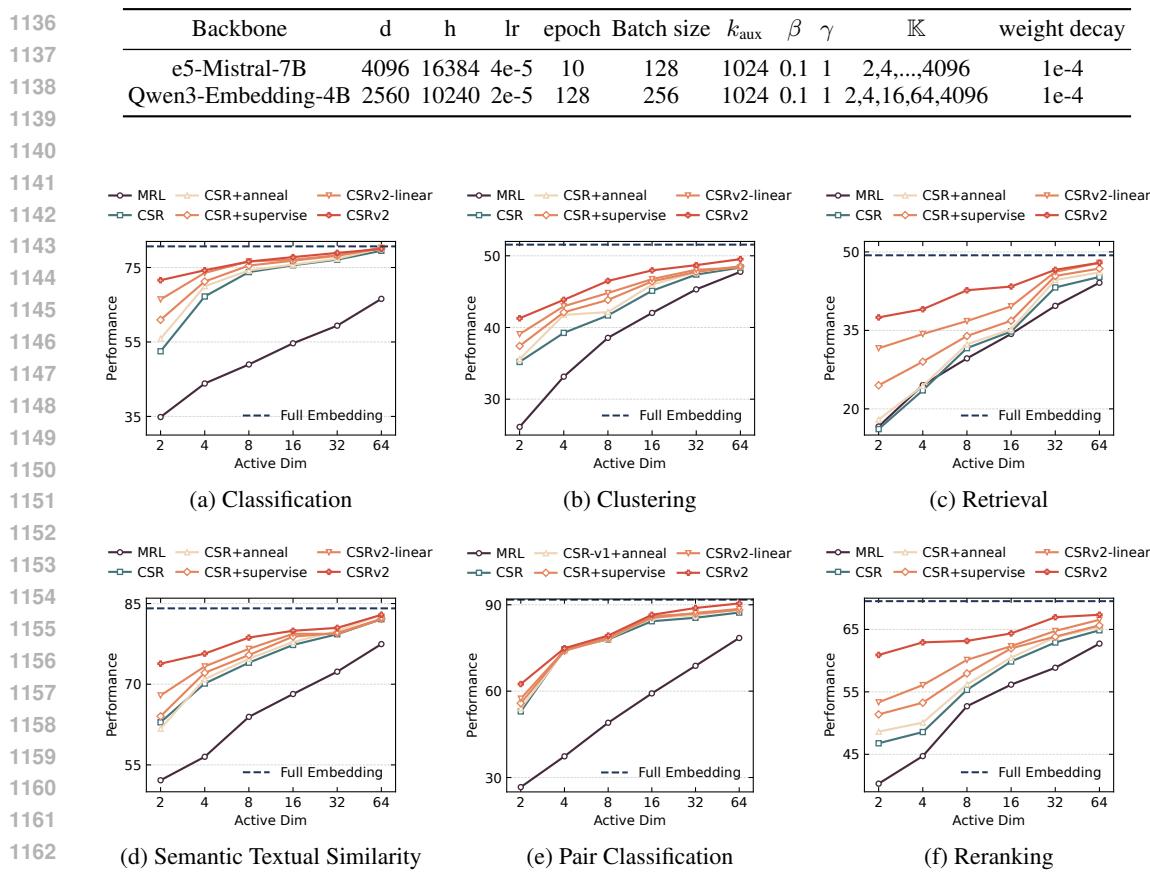


Figure 6: Task-type-specific ablation on varying components with e5-Mistral-7B as backbone.

C.4 MORE DETAILED EXPERIMENT RESULTS ON TEXT REPRESENTATIONS

Building upon the e5-Mistral-7B backbone, we further validate the efficacy of CSrv2 through an extensive performance comparison across a broad spectrum of active dimensions (ranging from 2 to 4096—the full embedding dimensionality of the backbone) and through comprehensive ablation studies.

As shown in Table 8, we report task-type-specific results for MRL, CSR, and CSrv2 across six distinct task categories.

Moreover, we systematically evaluate the impact of different component combinations on each task type and observe that the performance gains contributed by each individual component remain consistent across diverse domains. Detailed results are provided in Figure 6.

C.5 RETRIEVAL EVALUATION COMPARISON WITH SPALDE-BASED MODELS

Table 9 demonstrates CSrv2’s performance comparison with SPLADEv3 model. We select e5-Mistral-7B (Wang et al., 2023) as backbone, whose performance on MTEB retrieval tasks is on par with SPLADEv3. Note that the Active Dim $X - Y$ for SPLADEv3 means that queries have X active dimensions and documents have Y active dimensions, which is a common setting in LSR series model’s evaluation. Results show CSrv2 is more suitable for ultra-sparse text representation generation in extreme application cases.

Table 8: Performance in task-type-specific experiments across all dimensions.

Active Dim	Method	Classifi. AP ↑	Clust. V-measure ↑	Retrieval nDCG@10 ↑	STS Spearman ↑	PairClassifi. AP ↑	Rerank. MAP ↑	Avg.
4096	e5-Mistral-7B	80.67	51.55	49.35	84.11	91.77	69.52	69.99
2	MRL	34.84	26.13	16.63	52.14	26.67	40.30	33.81
	CSR	52.50	35.20	16.14	62.93	52.95	46.77	44.17
	CSRV2	71.59	41.29	37.48	73.82	62.46	60.91	58.34
4	MRL	43.84	33.14	24.55	56.51	37.36	44.72	40.83
	CSR	67.22	39.25	23.54	70.13	74.55	48.57	52.94
	CSRV2	74.26	43.85	39.04	75.69	74.90	62.93	61.01
8	MRL	48.95	38.55	29.65	63.93	49.02	52.70	47.09
	CSR	73.77	41.68	31.61	74.00	77.95	55.32	58.19
	CSRV2	76.60	46.49	42.67	78.67	79.29	63.15	63.76
16	MRL	54.64	42.03	34.33	68.18	59.22	56.16	51.85
	CSR	75.61	45.12	34.79	77.30	84.28	59.86	61.38
	CSRV2	77.79	47.97	43.38	79.94	86.50	64.36	65.22
32	MRL	59.37	45.31	39.68	72.33	68.80	58.86	56.37
	CSR	77.11	47.38	43.21	79.30	85.48	62.90	64.59
	CSRV2	78.92	48.69	46.58	80.48	88.88	66.95	66.70
64	MRL	66.58	47.76	44.11	77.46	78.46	62.72	61.47
	CSR	79.50	48.36	45.22	82.10	87.29	64.86	66.68
	CSRV2	79.98	49.53	47.92	82.90	90.46	67.34	68.08
128	MRL	74.78	49.12	46.08	81.95	84.66	65.48	65.72
	CSR	79.70	49.32	46.68	82.39	87.83	65.48	67.34
	CSRV2	80.14	49.83	48.27	83.12	90.75	67.44	68.32
256	MRL	76.52	49.21	46.64	82.07	85.25	66.04	66.37
	CSR	80.00	49.64	47.47	82.66	88.48	65.98	67.76
	CSRV2	80.24	50.24	48.42	83.35	90.89	67.85	68.55
512	MRL	78.42	49.68	47.19	82.53	87.87	66.45	67.30
	CSR	80.12	49.86	47.92	82.97	88.93	66.51	68.04
	CSRV2	80.31	50.65	48.64	83.50	91.14	68.30	68.77
1024	MRL	78.92	49.96	47.58	82.85	88.65	67.36	67.74
	CSR	80.26	50.36	48.16	83.28	89.67	67.28	68.41
	CSRV2	80.50	50.88	48.82	83.65	91.41	68.64	68.97
2048	MRL	79.54	50.49	48.35	83.65	89.40	68.25	68.44
	CSR	80.38	50.79	48.62	83.63	90.42	68.36	68.81
	CSRV2	80.51	51.27	48.93	83.88	91.63	68.87	69.16
4096	MRL	80.46	50.94	48.75	83.78	90.44	68.86	69.25
	CSR	80.54	51.13	49.13	83.94	90.99	68.96	69.16
	CSRV2	80.49	51.34	49.16	83.94	91.70	69.18	69.25

D EXPERIMENT DETAILS ON VISUAL REPRESENTATIONS

D.1 EVALUATION METRICS

Following the methodology established by [Kusupati et al. \(2022\)](#), we adopt 1-nearest neighbor (1-NN) accuracy as the primary metric for evaluating visual representations. This metric is computed using FAISS [\(Jacob et al., 2018\)](#) with exact L2 distance search. In contrast to classification accuracy—which depends on the specific architecture and training procedure of a downstream classifier—1-NN accuracy provides a direct assessment of whether semantically similar instances are embedded in close proximity within the representation space. Consequently, it serves as a more model-agnostic and training-free probe of intrinsic representation quality.

1242 Table 9: **CSRV2’s Performance and Relative Retrieval Efficiency Comparison with SPLADEv3.**
1243

Active Dim	Method	Retrieval Time	Arguana	CQAGaming	CQAUnix	CF-HN	Fiqa	Nfcopus	Scidocs	Scifact	Avg.
4096	e5-Mistral-7B	306.46 ×	62.73	64.13	47.99	30.71	56.93	39.67	18.09	74.53	49.35
40-400	SPLADEv3	27.25 ×	35.95	54.31	34.51	39.01	49.28	59.61	32.52	72.80	47.37
16-16	SPLADEv3	3.63 ×	29.09	48.76	29.14	32.54	35.00	52.78	30.77	57.22	39.41
16	CSRV2	3.51 ×	54.98	59.78	39.17	26.92	52.07	33.18	15.56	65.39	43.38
8-8	SPLADEv3	2.84 ×	21.92	39.74	21.27	31.86	28.88	47.59	26.14	45.09	32.81
4-4		1.78 ×	14.71	28.59	9.62	22.37	19.25	28.71	17.43	28.18	21.11
2-2		1.15 ×	6.05	13.84	3.97	14.53	9.76	16.28	7.59	18.73	11.34
2	CSRV2	1.00 ×	44.86	53.81	35.74	18.22	45.27	29.16	11.97	60.83	37.48

1254
1255 D.2 IMPLEMENTATION DETAILS
1256

1257 For fair comparison, we select the pretrained ResNet-50 weights, as noted in FF2048 in the MRL
1258 ([Kusupati et al., 2022](#)). Image preprocessing follows the identical pipeline employed in ([Leclerc](#)
1259 et al., 2023), ([Kusupati et al., 2022](#)) and ([Wen et al., 2025](#)). We utilize a tied encoder-decoder
1260 structure to build the CSRV2 framework and the implementation is based on [Wen et al. \(2025\)](#). All
1261 experiments are conducted on a server with 8 NVIDIA A100-SXM4-40GB. For backbone (FF2048)
1262 finetuning, the selection of hyperparameters is in Table 10.
1263

1264 Table 10: Implementation details on FF2048 finetuning in visual representation.
1265

Backbone	Batch Size	lr	epoch	warmup	Optimizer	weight decay	Topk
FF2048	256	5e-6	10	1000	Adam	0.1	{1, 2, ..., 2048}

1269 For CSRV2 training, we adopt the same settings as CSR ([Wen et al., 2025](#)). In the k -annealing
1270 schedule, we initialize $k_{\text{init}} = 64$ if the target activated dimension k is less than 64, otherwise we
1271 set $k_{\text{init}} = 4k$. For supervision, images belonging to the same semantic class are treated as positive
1272 pairs, while all others are considered negative samples. Adam is employed as the training optimizer
1273 and selection of other hyperparameters is in Table 11.
1274

1275 Table 11: Implementation details on CSRV2 training in visual representation.
1276

Backbone	d	h	lr	epoch	Batch size	k_{aux}	β	γ	\mathbb{K}	weight decay
FF2048	2048	8192	4e-5	10	4096	512	1/32	0.1	2,4,...,2048	1e-4

1280
1281 D.3 1-NN CLASSIFICATION RESULTS
1282

1283 1-NN classification accuracy results on ImageNet-1k are shown in Table 12.
1284

1285 E EXPERIMENT DETAILS ON GRAPHRAG EVALUATION
12861287 E.1 EVALUATION METRICS
1288

1289 We follow the evaluation design proposed in [Xiang et al. \(2025\)](#). For retrieval, Context Relevance
1290 and Evidence Recall are adopted. For generation, Answer Accuracy, Faithfulness, Evidence Cover-
1291 age and ROUGE-L are adopted. Detailed explanation on each metric is as follows:
1292

1293 • **Context Relevance(Relevance)** assesses how well the aggregate retrieved context satisfies
1294 query’s semantic requirements. Higher values indicate greater fidelity between the re-
1295 trieval material and the underlying informational intent of the user. Specifically, **Context**

1296

Table 12: 1-NN accuracy of different methods on ImageNet-1k classification.

1297

Active Dim.	2	4	8	16	32	64	128	256	512	1024	2048
Full Rep.	71.19										
MRL	47.81	55.65	62.19	67.91	69.46	70.17	70.52	70.62	70.82	70.89	70.97
CSR	61.05	65.33	67.78	69.17	70.15	70.94	70.99	71.31	71.29	71.30	71.18
CSRV2-linear	65.78	67.29	68.42	69.71	70.39	71.01	71.11	71.24	71.23	71.19	71.19
CSRV2	67.63	69.84	69.29	70.06	70.44	71.05	71.13	71.25	71.27	71.33	71.25

1305

1306

Relevance can be calculated as:

1307

$$\text{Relevance} = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} R(c, Q, \varepsilon) \quad (9)$$

1310

1311

where \mathcal{C} is the set of retrieved contents, Q is the query, ε is the set of evidence, and operator R determines whether each context c is relevant to the query Q and the evidence ε .

1312

1313

1314

1315

- **Evidence Recall(Recall)** quantifies the completeness of evidence retrieval by measuring the proportion of critical reference claims that are successfully covered by the system’s output. It is defined as:

1316

1317

$$\text{Recall} = \frac{1}{|\mathcal{R}|} \sum_{c \in \mathcal{R}} \mathbf{1}(S(c, \mathcal{C})) \quad (10)$$

1318

1319

, where \mathcal{R} is the set of reference claims, S is the operator to decide whether claim c is supported by the retrieved content \mathcal{C} and $\mathbf{1}$ is the indicator function.

1320

1321

1322

- **Answer Accuracy(ACC)** comprehensively assesses answer quality through a combination of semantic alignment and factual precision. To be specific,

1323

1324

$$\text{ACC} = \frac{1}{2}(\text{FC} + \text{SS})$$

1325

1326

where **FC** qualifies generation correctness and **SS** = $\cos(\mathbf{f}_i, \mathbf{c}_j)$ calculates semantic similarity.

1327

1328

- **ROUGE-L** calculates text similarity with n-gram overlap between generated and reference answers, capturing both syntactic and semantic alignment (Lin, 2004).

1329

1330

1331

1332

- **Faithfulness(FS)** explicitly targets hallucination risks by quantifying the proportion of generated claims that are grounded in the retrieved evidence, thereby serving as a direct measure of factual consistency between the system’s output and its supporting context. It is measured as follows:

1333

1334

$$\text{FS} = \frac{|\{c \in A | S(c, C)\}|}{|A|}$$

1335

1336

1337

where A denotes the set of atomic claims in the proposed response, C is the retrieved context and $S(c, C)$ denotes a boolean function indicating whether claim c is supported by C .

1338

1339

1340

- **Evidence Coverage(Cov)** quantifies the extent to which the generated response *incorporates* all critical evidentiary elements required to construct a comprehensive and factually complete answer. The formal computation is as follows:

1341

1342

1343

$$\text{Cov} = \frac{|\{e \in E | M(e, G)\}|}{|E|}$$

1344

1345

1346

1347

1348

1349

E.2 IMPLEMENTATION DETAILS

Our evaluation covers two domains proposed in Xiang et al. (2025): Medical and Novel. For fair comparison, we select Qwen3-Embedding-4B Zhang et al. (2025b) as the baseline embedding

1350 Table 13: **CSRV2’s Performance in GraphRAG-based Retrieval.** In GraphRAG-based retrieval
 1351 evaluation, Qwen3-Embedding-4B is selected as backbone and two sparsity levels: 32 and 8 are
 1352 selected for comparison. No data in benchmark is used in training for zero-shot evaluation.

1354 Embedding Model	1355 Active Dim	1355 Fact Retrieval		1355 Complex Reasoning		1355 Contextual Summarize		1355 Creative Generation		1355 Avg.
1356 <i>Medical</i>										
1357 Qwen3-4B	1358 2560	1358 75.43	1358 45.83	1358 82.98	1358 40.18	1358 81.2	1358 48.79	1358 87.14	1358 28.77	1358 61.29
1359 MRL	32	48.30	15.05	63.52	16.06	53.64	19.38	84.13	12.20	39.04
		67.24	38.73	76.55	36.49	72.8	43.53	82.87	24.62	55.35
		71.75	40.81	78.74	38.48	79.63	46.03	84.55	26.02	58.25
1360 MRL	8	47.01	8.42	57.86	9.38	46.49	8.56	82.64	4.22	33.07
		62.47	31.56	67.3	18.33	72.7	39.53	81.92	12.03	48.23
		68.17	36.98	69.35	23.08	71.97	35.64	85.52	14.16	50.61
1364 <i>Novel</i>										
1365 Qwen3-4B	1366 2560	1366 81.29	1366 45.26	1366 82.15	1366 51.39	1366 83.41	1366 49.03	1366 80.29	1366 36.94	1366 63.72
1367 MRL	32	68.47	27.91	72.80	33.48	76.42	33.22	78.02	28.36	52.34
		75.23	36.62	76.47	39.31	81.75	39.07	69.17	30.18	55.98
		79.08	41.40	78.88	43.85	83.37	44.82	74.10	29.10	59.33
1369 MRL	8	63.20	19.39	69.71	22.58	72.08	22.44	80.82	20.52	46.34
		66.72	29.92	71.81	32.83	68.48	30.16	78.30	19.09	49.79
		75.05	36.46	77.16	44.63	77.65	40.33	80.92	25.87	57.26

1374 model and GPT-4o-mini for graph construction, answer generation and evaluation. Fast-graphrag
 1375 (CircleMind-AI, 2025) is chosen as the Graph-RAG framework, with minor change following Xi-
 1376 ang et al. (2025) for Hugging Face Embedding support. All hyperparameters are set according to
 1377 the settings in Xiang et al. (2025).

1379 E.3 EVALUATION RESULTS

1381 Table 13 and 14 demonstrate CSRV2’s zero-shot capability: In retrieval performance evaluation, at
 1382 the same level of dimension, CSRV2 achieves performance improvements of over 15% and 7% in
 1383 medical and novel domains respectively compared to MRL, while in generation accuracy evaluation,
 1384 CSRV2-based systems achieve average improvements of over 10% and 3% in medical and novel
 1385 domains.

1387 F ADDITIONAL QUALITATIVE ANALYSIS

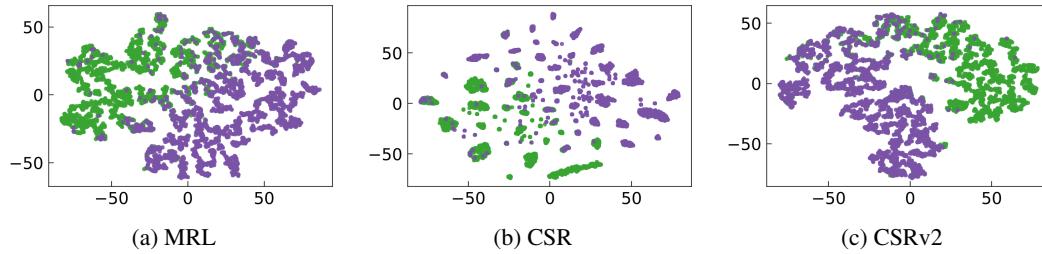
1389 F.1 CASE STUDY OF FEATURE COMPARISON BETWEEN DIFFERENT METHODS

1391 To facilitate a more intuitive comparison of the feature distributions induced by different represen-
 1392 tation learning methods and to elucidate the factors underlying CSRV2’s substantial performance
 1393 gains over both CSR and MRL, we extract two-dimensional embeddings from the IMDb dataset
 1394 (Maas et al., 2011). Specifically, we obtain dense representations from MRL and ultra-sparse rep-
 1395 resentations from CSR and CSRV2 under a sparsity budget of $k = 2$. The resulting embeddings are
 1396 visualized via t-SNE in Figure 7, with positive and negative movie reviews rendered in green and
 1397 purple respectively.

1398 We observe that the MRL embedding demonstrates a clear separation between the majority of pos-
 1399 itive and negative reviews, reflecting its ability to capture dominant sentiment polarities. However,
 1400 it exhibits notable limitations in handling compositional or contrastive sentiment expressions. For
 1401 instance, in sentences such as “Although the plot of this movie is slow, the actors performed well and
 1402 I really appreciated this movie”, conflicting affective signals lead to ambiguous representations that
 1403 cluster near the decision boundary. This suggests that dense, holistic representations may struggle
 1404 to disentangle nuanced or mixed sentiment structures.

1404
 1405 Table 14: **CSRV2’s Performance in GraphRAG-based Generation.** In GraphRAG-based gener-
 1406 ation evaluation, Qwen3-Embedding-4B is selected as backbone and two sparsity levels: 32 and 8
 1407 are selected for comparison. No data in benchmark is used in training for zero-shot evaluation.

1408 Embedding Model	1409 Active Dim	1410 Fact Retrieval		1411 Complex Reasoning		1412 Contextual Summarize		1413 Creative Generation			1414 Avg.
1415 <i>Medical</i>											
1416 Qwen3-4B	1417 2560	1418 61.33	1419 29.65	1420 69.63	1421 21.67	1422 72.39	1423 46.19	1424 69.23	1425 32.04	1426 37.7	1427 48.87
1428 MRL	1429 32	1430 45.30	1431 19.88	1432 55.65	1433 16.69	1434 55.17	1435 30.65	1436 64.08	1437 25.11	1438 34.04	1439 38.51
		1440 52.82	1441 25.03	1442 61.36	1443 19.02	1444 64.14	1445 39.73	1446 66.97	1447 28.45	1448 35.33	1449 43.65
		1450 60.69	1451 29.27	1452 68.60	1453 20.76	1454 71.18	1455 45.74	1456 68.44	1457 31.58	1458 36.68	1459 48.10
1460 CSRV2-linear	1461 8	1462 35.16	1463 12.64	1464 47.90	1465 12.99	1466 41.84	1467 20.04	1468 57.23	1469 18.89	1470 29.13	1471 30.65
		1472 49.65	1473 24.48	1474 57.07	1475 16.49	1476 59.45	1477 33.82	1478 69.80	1479 28.17	1480 34.24	1481 41.46
		1482 58.09	1483 27.43	1484 65.21	1485 19.44	1486 68.83	1487 41.69	1488 66.47	1489 29.91	1490 36.07	1491 45.90
1492 <i>Novel</i>											
1493 Qwen3-4B	1494 2560	1495 57.02	1496 31.76	1497 54.63	1498 19.67	1499 70.62	1500 47.85	1501 59.70	1502 44.51	1503 38.53	1504 47.14
1505 MRL	1506 32	1507 45.72	1508 25.65	1509 45.06	1510 18.23	1511 65.85	1512 43.78	1513 57.38	1514 31.28	1515 36.82	1516 41.09
		1517 51.26	1518 28.49	1519 49.02	1520 18.68	1521 67.03	1522 44.42	1523 57.71	1524 35.18	1525 35.79	1526 43.06
		1527 54.69	1528 31.63	1529 51.47	1530 19.49	1531 68.19	1532 45.67	1533 57.87	1534 37.41	1535 35.89	1536 44.70
1537 CSRV2-linear	1538 8	1539 39.51	1540 22.47	1541 42.23	1542 16.25	1543 59.64	1544 37.71	1545 54.56	1546 29.39	1547 34.45	1548 37.36
		1549 48.78	1550 25.13	1551 46.75	1552 17.03	1553 63.84	1554 41.12	1555 57.23	1556 34.08	1557 35.96	1558 41.10
		1559 52.94	1560 29.25	1561 50.93	1562 18.92	1563 67.54	1564 44.80	1565 56.45	1566 36.86	1567 34.49	1568 43.58



1569 Figure 7: t-SNE visualization of 2-dimensional features in IMDb generated by MRL, CSR and
 1570 CSRV2 with e5-Mistral-7B as backbone. The AP scores of MRL, CSR and CSRV2 are respectively
 1571 89.34%, 92.75% and 94.62%.

1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 24

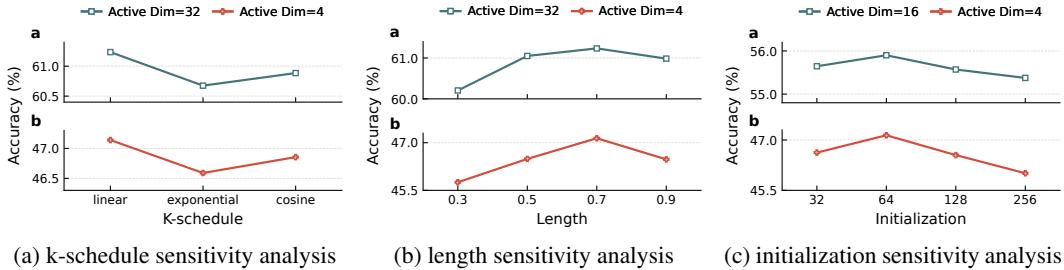
1458
1459 F.2 AUTO-INTERPRETABILITY STUDY ON CSRV2 NEURONS UNDER DIFFERENT
1460 COMPRESSION SETTINGS1461 We analyze the semantic roles of individual neurons in the CSRV2 latent space under two sparsity
1462 regimes $k = 64$ (moderately sparse) and $k = 2$ (extremely sparse) using the IMDb dataset (Maas
1463 et al., 2011). For each neuron, we compute its activation values across all input sentences and iden-
1464 tify the top-10 paragraphs that elicit the strongest responses. To interpret the semantic and affective
1465 patterns encoded by each neuron, we leverage Qwen-7B-Chat (Bai et al., 2023) to generate concise
1466 summaries of the linguistic and emotional characteristics common to these maximally activating
1467 sentences.1468 Our analysis reveals that under the $k = 64$ regime, while many neurons encode semantically coher-
1469 ent and sentiment-relevant concepts, a non-negligible subset predominantly activates in response to
1470 high-frequency yet functionally neutral lexical items, such as “I” or “today”, which carry little to no
1471 emotional polarity. In contrast, under extreme sparsity ($k = 2$), neuron activations exhibit markedly
1472 increased specialization: each active dimension consistently aligns with a distinct sentiment pole,
1473 either positive or negative. This indicates that ultra sparsity constraints exert strong pressure on the
1474 model to prioritize emotionally salient, task-relevant signals, thereby yielding representations that
1475 are not only more polarized but also more interpretable in terms of their affective semantics.1476
1477 G EMPIRICAL ANALYSIS
14781479 G.1 EFFICIENCY ANALYSIS DETAILS
14801481 Our efficiency analysis focuses on **retrieval and storage**, where computational cost meaningfully
1482 differs across methods. Even though end-to-end latency, encoder latency, and index construction
1483 cost could be relevant in a fully online setting, in most practical scenarios where embeddings are
1484 applied to downstream tasks, **pre-caching** is inevitable. That is, the corpus is encoded once, and
1485 embeddings are stored for repeated use. Typical examples include (1) **RAG systems**, where docu-
1486 ments change infrequently and their embeddings serve millions of queries, and (2) **online services**
1487 such as recommendation, where real-time encoding of large-scale text is infeasible. Therefore, en-
1488 coder and index construction costs are amortized and do not dominate real-world latency. To ensure
1489 fair comparison, we keep the encoder and indexing pipeline identical for all baselines (MRL, CSR,
1490 and CSRV2), so that any efficiency or performance variation arises strictly from the embedding
1491 representations.1492 With Qwen3-Embedding-4B (Zhang et al., 2025b) as the backbone, we record encoding time on
1493 a 1M corpus sampled from MTEB retrieval and reranking datasets. Table 15 shows that CSRV2
1494 introduces only negligible overhead compared to MRL (0.001% extra time, ~ 19.172 s in total),
1495 which is insignificant relative to the hours required for large-scale corpus encoding.1496
1497 Table 15: Encoding time comparison on a 1M corpus.
14981499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Method	Encoding Time (s)
MRL	159854.091
CSR	159876.478
CSRV2	159873.263

1512 In contrast, retrieval and storage costs differ dramatically. Under a fixed encoder and index type, the
1513 dominant factor in retrieval time is effective embedding dimensionality (d for dense baselines vs. k
1514 for CSRV2). As shown in Table 16, ultra-sparse vectors yield up to $7\times$ faster retrieval than dense
1515 MRL and up to $300\times$ speedup over the uncompressed backbone on a 1M-scale corpus. Retrieval
1516 times are averaged over 2000 rounds (batch size 512), excluding 100 warm-up iterations.1517 These results reinforce our main practical claim: CSRV2 offers substantial gains in the components
1518 that dominate real-world latency (retrieval throughput and embedding storage), while incurring neg-
1519 ligible overhead on the encoder side.

Table 16: Relative retrieval time under different active dimensions (ms).

Method	2	4	8	16	64	4096
MRL	1.402	1.428	1.571	1.748	3.972	68.522
CSRv2	0.227	0.370	0.633	0.797	3.217	45.722

Figure 8: **K-annealing sensitivity analysis.** (Left): Sensitivity on three k-schedule strategies: linear, exponential and cosine. (Middle): Sensitivity on four annealing lengths. (Right): Sensitivity on four different initializations.

G.2 K-ANNEALING SENSITIVITY ANALYSIS

We evaluate k-annealing strategy’s sensitivity from three perspectives: k-schedule, length and initialization. For k-schedule, we adopt three settings: linear, exponential and cosine. For length, we take four settings: 0.3, 0.5, 0.7 (in the main paper) and 0.9. For initialization, we take four settings: 32, 64, 128 and 256. Evaluation are done in two MTEB task types (classification and retrieval) and two active dimensions are selected for each experiment for generalization. Results in Figure 8 demonstrate that different k-schedule results in relatively stable increase in performance improvement, while our selected settings: k initialized to 64, annealing to target sparsity level at 70% step, and linear-annealing strategy achieves the best performance.

G.3 ANALYSIS ON UNBALANCED WEIGHTABLE SETTINGS

MRL (Kusupati et al., 2022) has explored the impact of different weightage settings for smaller representation sizes. They find that on Imagenet (Deng et al., 2009), setting larger weight on dimensions 8 and 16 result in 3% improvement on $d = 8$, with minor performance degradation on larger dimensions. Therefore, we further conduct additional studies into the impact of imbalanced weighting.

We propose **MRL-reweight**, where we follow MRL’s settings and set the following weights $\{5, 4, 3, 2, 1, \dots, 1\}$ for dimensions 2, 4, 8, 16, 32, and so on, up to 4096. As shown in Table 17, applying larger weights at earlier stages does, to some extent, improve the performance of MRL on low-dimensional scales. However, while MRL-reweight offers some improvements, the performance does not quite reach the level of CSRv2. We hypothesize that this discrepancy arises because sparse vectors—being more comprehensive in capturing feature combinations—are more difficult to achieve with a truncated representation (e.g., retaining only the first 8 values).

G.4 DISCUSSION ON MULTI-SCALE LOSS TERMS

The core idea behind k-annealing curriculum is that setting larger k_{init} promotes exploration and diverse neuron activations. This raises a question: can annealing in the curriculum be replaced by multiple terms that cover the range from k_{init} to k_{final} , rather than simply setting reconstruction loss as $L(k) + \frac{1}{8}L(4k)$? We conduct quantitative discussion on two cases to look deeper into this problem:

- **Multi-TopK loss over diverse ks :** Since covering all ks (e.g., 64 loss terms) along the annealing would be too computationally prohibitive, we now consider a diverse representative subset that we use for evaluation: $k \in [2, 4, 8, 16, 32, 64]$.

1566 Table 17: Performance comparison between standard MRL and MRL-reweight.
1567

Method	2	4	8	16	32	64	128	256	512	1024	2048	4096
<i>Classification</i>												
MRL	34.84	43.84	48.95	54.64	59.37	66.58	74.78	76.52	78.42	78.92	79.54	80.46
MRL-reweight	45.08	52.42	55.18	61.97	65.73	70.82	76.61	77.93	77.18	77.56	79.28	80.42
CSRV2	37.48	39.04	42.67	43.38	46.58	47.92	48.27	48.42	48.64	48.82	48.93	49.16
<i>Retrieval</i>												
MRL	16.63	24.55	29.65	34.33	39.68	44.11	46.08	46.64	47.19	47.58	48.35	48.75
MRL-reweight	24.48	29.75	33.25	37.56	42.12	46.17	47.20	46.96	46.82	47.24	48.17	48.37
CSRV2	37.48	39.04	42.67	43.38	46.58	47.92	48.27	48.42	48.64	48.82	48.93	49.16

- **CSRV2 with start/end multi-topK.** In this variants, we keep only the boundary losses (i.e. $k_{\text{init}} = 64$ and $k_{\text{final}} = 2$).

We compare the performance of different methods on the MTEB classification and retrieval subsets and also report their corresponding training costs. Results in Table 18 and Table 19 demonstrate that focusing on start and end Ks help a bit on addressing ultra-sparsity but there is still a large gap to our k -annealing. Moreover, better k coverage with diverse multi-topK delivers larger gains, but it still underperforms k -annealing, while introducing significant training overhead. Therefore, we believe that k -annealing is more preferable than these static multi-topK loss variants. It would be interesting to look deeper into their interplay in future work.

1588
1589 Table 18: Performance comparison with static multi-scale loss terms on MTEB Classification and
1590 Retrieval using e5-Mistral-7B.

Method	Active Dim	Classification	Retrieval
CSR		52.50	16.14
CSRV2-linear-StartEndTopk	2	57.46	23.65
CSRV2-linear-DiverseMultiTopk		61.75	24.18
CSRV2-linar-anneal		66.43	31.58

1599 Table 19: Training time comparison with static multi-scale loss terms on MTEB Classification and
1600 Retrieval using e5-Mistral-7B

Time (s)	Classification	Retrieval
CSRV1	271.32	638.77
CSRV2-linear-StartEndTopk	285.94	653.13
CSRV2-DiverseMultiTopk	501.18	1183.36
CSRV2(anneal)	274.15	642.65

H FURTHER DISCUSSIONS

H.1 EMERGENCE OF SUPERCLASS SEPARABILITY UNDER ULTRAHIGH SPARSITY

Past works (Fallah et al., 2020) have shown that sparse codes are argued to induce disentangled, semantically meaningful features. However, a key open question remains: when the sparsity is extremely high (i.e., very few active dimensions), do such representations still preserve higher-level semantic structure (such as superclasses or domains), or do they collapse into trivial, instance-specific separations?

We conduct a superclass-level analysis on two multi-intent classification datasets, Banking77 (Casanueva et al., 2020) and MTOPIntent (Li et al., 2020). For Banking77, following the semantic

structure commonly adopted in prior work, we group its 77 types of bank-related queries into 8 semantically coherent superclasses (e.g. account&identity, card management. For MTOPIntent, We adopted the original intent taxonomy in the paper and grouped these intents into 11 domains (e.g. alarm, music). These groupings allow us to evaluate whether ultrahigh sparsity induces representations that align with higher-level semantic partitions.

We evaluated MRL, CSR, and CSR-v2 under the ultra-sparse regimes of $k = 2$ and $k = 4$, which correspond to ultrahigh-sparse setting. Evaluation is done in accordance to MTEB benchmark, where a logistic regression is trained on the training set and evaluated on the test set. Results in Table 20 demonstrate a consistent and notable trend: CSRV2 produces significantly more structured sparse representations than CSR and MRL, even under extremely low k . Superclass clusters become more linearly separable under CSR-v2, indicating that ultrahigh sparsity does not degrade semantic abstraction.

Table 20: Performance comparison for superclass classification with Qwen3-Embedding-4B as backbone.

Method	Active Dim	Banking77 (original-class)	MTOP (original-class)	Banking77 (super-class)	MTOP (super-class)
MRL	2	3.57	5.16	28.96	37.08
CSR	2	11.75	18.08	77.43	83.26
CSRV2	2	17.03	23.52	88.44	93.16
MRL	4	6.93	11.51	31.04	45.24
CSR	4	19.02	24.39	82.91	86.79
CSRV2	4	23.16	28.51	94.43	97.56

H.2 QUANTIZED COMPARISON AT FIXED MEMORY COST

To provide a more holistic view of the efficiency-accuracy trade-off landscape, we further evaluate CSRV2 of different levels of precision under fixed bit size in three MTEB task types: classification, clustering and retrieval. We take two fixed bit sizes (64 and 128), and adopt three quantization (FP32, BF16, binary) settings under each bit size.

Table 21: Performance comparison on CSRV2 and dense MRL in fixed memory cost.

Method	Bit Size	Quantization	Active Dim	Classification	Clustering	Retrieval
CSRV2	64	FP32	2	71.59	41.29	37.48
		BF16	4	73.05	42.46	38.19
		binary	64	74.12	44.53	40.28
		PQ	64	62.39	33.16	21.76
MRL	64	binary	64	64.48	40.04	27.61
		PQ	64	58.37	37.18	22.04
CSRV2	128	FP32	4	74.26	43.85	39.04
		BF16	8	75.02	44.76	40.98
		binary	128	76.30	45.01	42.26
		PQ	128	70.15	38.97	30.17
MRL	128	binary	128	72.54	44.37	29.15
		PQ	128	68.42	41.58	25.61

Results in Table 21 demonstrate that CSRV2 remains highly competitive across a wide range of quantization strategies. The findings further indicate that (1) increasing the number of active di-

1674
 1675 dimensions is often more advantageous than raising numerical precision, and (2) extremely compact
 1676 binary variants of CSRV2 yield the strongest accuracy–memory trade-offs. Notably, CSRV2–binary
 1677 also substantially outperforms binary-quantized dense embeddings, implying that structured spar-
 1678 sity provides greater representational expressiveness than uniform quantization when bit budgets
 1679 are extremely constrained. Together, these observations underscore that CSRV2 constitutes a flex-
 1680 ible and efficient embedding mechanism capable of adapting to both moderate- and ultra-low-bit
 1681 compression regimes.

1682 In addition, the consistently strong performance of binary and higher-dimensional BF16 variants
 1683 suggests that richer or more varied activation patterns can effectively compensate for the seman-
 1684 tic degradation introduced by low numerical precision. This highlights a promising direction for
 1685 CSR-style representations: exploiting larger or more structured sparse activation patterns to further
 1686 enhance expressiveness under increasingly aggressive quantization settings.

1687 We also evaluate PQ on both baseline and CSRV2 embeddings with code budget 64. We use standard
 1688 PQ settings with 256 codewords per subspace and 8 subvectors, and for 128-bit codes into 16 sub-
 1689 vectors. For CSRV2, we apply PQ quantization on $\text{topk}=256$ ’s embedding. However, PQ does not
 1690 outperform Binary Quantization (BQ) in this context. We attribute this performance gap to a funda-
 1691 mental structural mismatch. Standard PQ partitions vectors into independent subspaces with equal
 1692 bit-budgets, implicitly assuming a uniform distribution of semantic information. However, MRL
 1693 and CSRV2 embeddings are strictly hierarchical, concentrating “core” semantics in the early/sparse
 1694 dimensions. Consequently, PQ’s uniform allocation strategy disrupts this hierarchy by inefficiently
 1695 assigning equal capacity to both the highly informative prefix dimensions and the fine-grained tail
 1696 dimensions, resulting in suboptimal quantization. Conversely, Binary Quantization preserves the
 1697 sign information of high-value dimensions directly, offering superior compatibility with hierarchi-
 1698 cal representations.

1699

1700 H.3 POTENTIAL APPLICATIONS OF CSRV2 IN VECTOR QUANTIZATION

1701 Vector quantization (VQ) methods—including Product Quantization (PQ) (Jegou et al., 2010), Op-
 1702 timized Product Quantization (Ge et al., 2013), and more recent anisotropic schemes such as AVQ
 1703 (Guo et al., 2020), are central to real-world large-scale vector search systems where memory foot-
 1704 print, latency, and hardware efficiency are critical. While our main work focuses on the role of
 1705 ultra-sparse representations in improving retrieval quality and compute efficiency, it is worth noting
 1706 that CSRV2 is highly compatible with these widely-used quantization techniques.

1707 CSRV2’s ultra-sparse structure—activating only $k \in \{2, 4, 8\}$ dimensions out of a large latent
 1708 space—naturally complements vector quantization methods such as PQ and AVQ. As only a few
 1709 coordinates are non-zero, quantization can be applied exclusively to these active values (or their
 1710 indices), enabling a two-stage compression pipeline of **sparsity + quantization** that substantially
 1711 reduces both memory and lookup cost. Unlike dense embeddings (e.g., MRL), where quantization
 1712 error spreads across all dimensions, CSRV2 concentrates signal in a handful of features, making
 1713 the quantization process more signal-preserving and aligned with anisotropic quantization prin-
 1714 ciples. This compatibility also facilitates integration into practical ANN systems (e.g., DiskANN
 1715 (Jayaram Subramanya et al., 2019)) that already combine graph-based search with PQ, suggest-
 1716 ing that CSRV2 can further lower system-level memory while maintaining high recall. However,
 1717 as discussed in Appendix H.2, while PQ presents an interesting avenue, it necessitates adaptation
 1718 to function effectively with MRL/CSRV2’s hierarchical representations, which we leave for future
 1719 work.

1720

1721 H.4 LIMITATIONS OF CSRV2 ON THE MOST EXTREME SETTING

1722 Although CSRV2 achieves strong performance under ultra-sparse regimes, it suffers notable degra-
 1723 dation in the most extreme sparsity setting ($k = 1$), which reduces the representation to a hard
 1724 clustering assignment. As shown in Table 22, activating only a single neuron still yields a signifi-
 1725 cant improvement over baseline methods; however, CSRV2’s performance drops by 27.56% relative
 1726 to the dense backbone model. This decline is more than twice as severe as the degradation observed
 1727 when $k = 2$ (11.65%).

Apart from those discussed in Section 5, another hypothesis for this sharp performance drop stems from the complete absence of *feature combination* when only one latent dimension is active. With a single activation, the model loses the capacity to compose multiple semantic cues—a capability that has been shown to be critical for robust representation learning under sparsity constraints (Gao et al., 2024). Potential remedies for this limitation may involve architectural innovations that enable richer single-feature representations, such as nonlinearly compositional encoders (Li et al., 2025) or hierarchical autoencoders that preserve multi-level semantic structure even under extreme sparsity levels. Exploring such directions remains a promising avenue for future work, leaving room for future improvement.

Table 22: Performance comparison at the most extreme setting $k = 1$.

Active Dim	Method	Classifi. AP \uparrow	Clust. V-measure \uparrow	Retrieval nDCG@10 \uparrow	STS Spearman \uparrow	PairClassifi. AP \uparrow	Rerank. MAP \uparrow	Avg.
4096	e5-Mistral-7B	80.67	51.55	49.35	84.11	91.77	69.52	69.99
1	MRL	17.52	14.70	3.81	37.93	12.95	23.98	19.52
	CSR	28.54	24.14	6.54	48.93	37.96	28.16	28.79
	CSrv2-linear	39.61	28.78	19.82	51.80	43.85	37.08	36.63
	CSrv2	52.43	31.48	24.73	54.46	47.09	42.34	42.43

H.5 ANALYSIS ON ONE PROMISING SAE-VARIANT

Recently there have been a variant SAE called MRL-SAE (Bussmann et al., 2025) that combines MRL’s core idea into SAE training. Specifically, a standard SAE whose single encoder–decoder is trained to act as many nested autoencoders at once. The encoder produces one sparse feature vector, but the decoder is forced to reconstruct the input from multiple truncations of that vector (e.g., first 256, 512, ..., 4096 latents), and the loss is the sum of these reconstruction errors plus sparsity. This simple change to the training objective induces a hierarchy where early latents encode broad, reusable features and later latents add increasingly fine-grained detail, all within one overcomplete dictionary.

We compare MRL-SAE’s performance in classification, clustering and retrieval tasks in MTEB with vanilla SAE and CSR. Results in Table 23 shows that MRL-SAE underperforms vanilla SAE and CSR for embedding tasks and also suffer from severe degradation in sparse representation generation.

Table 23: Performance comparison on MRL-SAE, vanilla SAE and CSR.

Method	Active Dim	Classification	Clustering	Retrieval
vanilla SAE	32	76.74	46.85	42.09
		76.49	46.45	41.57
		77.11	47.38	43.21
MRL-SAE	8	72.95	40.27	30.43
		72.33	39.19	29.74
		73.77	41.68	31.61

I LLM USAGE STATEMENT

In accordance with the ICLR policy, we disclose the utilization of Large Language Models (LLMs) in the preparation of this manuscript. The application of these tools was strictly confined to linguistic and formatting support. Specifically, an LLM was employed to proofread the text, correct grammatical errors, and enhance the clarity and readability of the prose. The LLM played no role in any substantive scientific components of this work, including the conception of research ideas, the design of methodologies, the execution or analysis of experiments, or the generation of results

1782 and conclusions. All intellectual contributions and the essential content of this paper are exclusively
1783 attributable to the authors.

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835