
Published in Transactions on Machine Learning Research (01/2026)

A Survey of Self-Evolving Agents
What, When, How, and Where to Evolve on the Path to Artificial Super Intelligence

Huan-ang Gaoγ†, Jiayi Gengα†, Wenyue Huaϵ†, Mengkang Huω†, Xinzhe Juanσµ†, Hongzhang
Liuξ†, Shilong Liuα†, Jiahao Qiuαδ†, Xuan Qiγ†, Qihan Renσ†, Yiran Wuρ†, Hongru Wangk†✉,
Han Xiaoτ†, Yuhang Zhouλ†, Shaokun Zhangρ†, Jiayi Zhangπ, Jinyu Xiang, Yixiong Fangθ,
Qiwen Zhaoζ, Dongrui Liuσ, Cheng Qianβ, Zhenhailong Wangβ, Minda Huτ , Huazheng
Wangη, Qingyun Wuρ, Heng Jiβ, Mengdi Wangαδ✉

αPrinceton University, δPrinceton AI Lab, γTsinghua University, θCarnegie Mellon University, ξUniversity
of Sydney, σShanghai Jiao Tong University, ρPennsylvania State University, µUniversity of Michigan, ηOregon State
University, τ The Chinese University of Hong Kong, λFudan University, πThe Hong Kong University of Science and
Technology (Guangzhou), ωThe University of Hong Kong, ϵUniversity of California, Santa Barbara, ζUniversity of
California San Diego, kUniversity of Edinburgh, βUniversity of Illinois Urbana-Champaign

Github Repo: https://github.com/CharlesQ9/Self-Evolving-Agents
†Equal contribution and the order is determined alphabetically, ✉Corresponding Author

Reviewed on OpenReview: https://openreview.net/forum?id=CTr3bovS5F

Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse
tasks but remain fundamentally static, unable to adapt their internal parameters to novel
tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increas-
ingly deployed in open-ended, interactive environments, this static nature has become a
critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real
time. This paradigm shift —from scaling static models to developing self-evolving agents
— has sparked growing interest in architectures and methods enabling continual learning
and adaptation from data, interactions, and experiences. This survey provides the first sys-
tematic and comprehensive review of self-evolving agents, organizing the field around three
foundational dimensions — what to evolve, when to evolve, and how to evolve. We examine
evolutionary mechanisms across agent components (e.g., models, memory, tools, architec-
ture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time), and
analyze the algorithmic and architectural designs that guide evolutionary adaptation (e.g.,
scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally, we
analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight appli-
cations in domains such as coding, education, and healthcare, and identify critical challenges
and research directions in safety, scalability, and co-evolutionary dynamics. By providing
a structured framework for understanding and designing self-evolving agents, this survey
establishes a roadmap for advancing more adaptive, capable, robust, and versatile agentic
systems in both research and real-world deployments, and ultimately sheds light on the real-
ization of Artificial Super Intelligence (ASI) where agents evolve autonomously and perform
beyond human-level intelligence across a wide array of tasks.

1

https://github.com/CharlesQ9/Self-Evolving-Agents
https://openreview.net/forum?id=CTr3bovS5F

Published in Transactions on Machine Learning Research (01/2026)

Level of
Intelligence

LLMs

Foundation Agents

Self-evolving Agents

???

Planning
Tool Calling
Workflow Construction
…

Learning & Evolution
Mechanisms

To be Explored …

Language Understanding & Generation

Execution via Tools & Planning

Learning from Feedback & Experience

Next-generation Agentic Intelligence

GPT-4
Claude-4
DeepSeek-R1
…

smolagents
Manus
ChatGPT agent
…

Alita
Gödel agent
…

Our Survey

Figure 1: A conceptual trajectory illustrating the progression from large language models (LLMs) to
foundation agents, and then to self-evolving agents—our focus, and ultimately toward the hypothetical
Artificial Super Intelligence (ASI). Along this path, intelligence and adaptivity increase, marking a shift
toward more autonomous and agentic AI systems. The future directions beyond self-evolving agents remain
open and subject to ongoing exploration.

1 Introduction

"It is not the most intellectual of the species that survives; it is not the strongest that survives;
but the species that survives is the one that is able best to adapt and adjust to the changing
environment in which it finds itself." — Charles Darwin1

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks.
Yet, they remain fundamentally static (Luo et al., 2025a), unable to adapt their internal parameters when
encountering novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are
increasingly deployed in open-ended, interactive environments, this limitation becomes a critical bottleneck.
In such settings, conventional knowledge retrieval mechanisms prove inadequate, giving rise to agents capable
of dynamically adapting their perception, reasoning, and actions in real time. This emerging need for
dynamic, continual adaptation signals a conceptual shift in artificial intelligence: from scaling up static
models to developing self-evolving agents. While established techniques like Supervised Fine-Tuning (SFT)
and Reinforcement Learning (RL) provide the mechanisms for improvement, we define self-evolution not
merely by the algorithms used, but by the locus of autonomy. Unlike traditional pipelines where human
engineers curate data and schedule updates, a self-evolving agent is capable of continuously learning from
new data, interactions, and experiences in real-time, leading to systems that are more robust, versatile,
and capable of tackling complex, dynamic real-world problems (Wang et al., 2024a). This shift is currently
driving us toward a promising and transformative path to Artificial Super Intelligence (ASI), where the
agents not only can learn and evolve from experience with an unpredictable speed but also perform at or
above human-level intelligence across a wide array of tasks (Wang et al., 2025g).

Unlike static LLMs, which remain constrained by their inability to adapt to novel and evolving contexts, self-
evolving agents are designed to overcome these limitations by continuously learning from real-world feedback.
This progression reshapes our understanding of agents. Self-evolving agents, as a core concept, represent a
significant step forward in the evolution of intelligent systems, acting as intermediaries that pave the way for
more adaptive and autonomous AI, as shown in Figure 1. Recent research initiatives have increasingly focused
on developing adaptive agent architectures capable of continually learning and adapting from experience, such
as recent advancements in agent frameworks (Yin et al., 2025), prompting strategies (Fernando et al., 2023),
and different optimization ways to evolve. Notwithstanding these advances, existing surveys predominantly
address agent evolution as a subsidiary component within comprehensive agent taxonomies. Previous surveys
primarily provide systematic overviews of general agent development, while offering limited coverage of self-
evolving mechanisms across constrained scenarios in self-evolving agents (Luo et al., 2025a; Liu et al., 2025a).

1This quote is widely attributed to Charles Darwin, but it does not appear verbatim in his writings. The phrasing is
believed to originate from Professor Leon C. Megginson, who paraphrased Darwin’s ideas. Despite its frequent misattribution,
the quote effectively captures the essence of Darwinian evolution and has since been popularized in both scientific and managerial
literature.

2

Published in Transactions on Machine Learning Research (01/2026)

For example, Luo et al. (2025a) discuss several ways to evolve, such as self-learning and multi-agent co-
evolution, while Liu et al. (2025a) explicitly introduce the evolution in terms of different components of
agents, such as tools and prompts. Moreover, some studies focus specifically on the evolution of language
models themselves (Tao et al., 2024), rather than on the broader concept of agents. However, these works
address isolated components rather than the holistic agent system. Therefore, there is no systematic survey
devoted to a dedicated, comprehensive investigation of self-evolving agents as a first-class research paradigm.
This gap has left fundamental questions underexplored: What aspects of an agent should evolve?
When should adaptation occur? And how should that evolution be implemented in practice?

To the best of our knowledge, this is the first systematic and comprehensive survey focusing on self-evolving
agents, offering a clear roadmap for both theoretical inquiry and practical deployment. However, given that
this represents a rapidly forming research area where conceptual boundaries are still being actively negotiated
within the community, we frame this survey as a guiding synthesis rather than a review of a fully estab-
lished paradigm. Instead of enforcing rigid boundaries, we aim to structure the heterogeneous mechanisms
emerging in the community into a coherent framework. We organize our analysis around three foundational
questions — what, when, and how to evolve — and provide a structured framework for understanding each.
Specifically, we systematically examine individual agent components, including the model, memory, tools
and corresponding workflow, investigating their distinct evolutionary mechanisms (what to evolve of agent
in Section 3); then we divide existing evolving methods according to different temporal stages with different
learning paradigms such as supervised fine-tuning, reinforcement learning and inference-time evolving (when
to evolve in Section 4). We finally summarize different signals to guide the evolution of agents, such as
textual feedback or scalar rewards, and also different architectures of agents to evolve, such as single-agent
and multi-agent evolution (how to evolve in Section 5). Furthermore, we review certain evaluation metrics
and benchmarks to track existing advancements of self-evolving agents, emphasizing the importance of co-
evolution between evaluation and agents (Section 6). We also examine emerging applications in domains such
as coding, education, and healthcare, where continual adaptation and evolution are essential (Section 7).
Finally, we identify persistent challenges and outline promising research directions to guide the development
of self-evolving agents (Section 8). Through this systematic decomposition of self-evolutionary processes
across orthogonal dimensions, we provide a structured and practical framework enabling researchers to sys-
tematically analyze, compare, and design more robust and adaptive agentic systems. To sum up, our key
contributions are as follows:

• We establish a unified theoretical framework for characterizing self-evolutionary processes in agent
systems, anchored around three fundamental dimensions: what evolves, how it evolves, and when it
evolves, providing clear design guidance for future self-evolving agentic systems.

• We further investigate the evaluation benchmark or environment tailored for self-evolving agents,
highlighting emerging metrics and challenges related to adaptability, robustness, and real-world
complexity.

• We showcase several key real-world applications across various domains, including autonomous soft-
ware engineering, personalized education, healthcare, and intelligent virtual assistance, illustrating
the practical potential of self-evolving agents.

• We identify critical open challenges and promising future research directions, emphasizing aspects
like safety, personalization, multi-agent co-evolution, and scalability.

In doing so, our survey provides researchers and practitioners with a more structured taxonomy for under-
standing, comparing, and advancing research of self-evolving agents from different perspectives. As LLM-
based agents are increasingly integrated into mission-critical applications, understanding their evolutionary
dynamics becomes essential, extending beyond academic research to encompass industrial applications, reg-
ulatory considerations, and broader societal implications.

3

Published in Transactions on Machine Learning Research (01/2026)

S
el

f-
ev

o
lv

in
g

A
g

e
n

t

What to evolve

Model

Policy
SCA(Zhou et al., 2025e), Self-Rewarding Self-Improving(Simonds et al., 2025),
SELF(Lu et al., 2023), SCoRe(Kumar et al., 2024), PAG(Jiang et al., 2025b),
TextGrad(Yellamraju et al., 2024), AutoRule(Wang & Xiong, 2025), SRLM(Wang
et al., 2025f)

Lesson
SCA(Zhou et al., 2025e), AgentGen(Hu et al., 2024b), Reflexion(Shinn et al.,
2023), AdaPlanner(Sun et al., 2023), SICA(Robeyns et al., 2025b), Self-
Refine(Madaan et al., 2023b), Learn-by-interact(Su et al., 2025), RAGEN(Wang
et al., 2025q), DYSTIL(Wang et al., 2025c)

Context

Memory
SAGE(Liang et al., 2024), Mem0(Chhikara et al., 2025), MemInsight(Salama
et al., 2025), REMEMBER(Zhang et al., 2024a), Expel(Zhao et al., 2024a),
Agent Workflow Memory(Wang et al., 2024j), Richelieu diplomacy agent(Guan
et al., 2024), ICE(Qian et al., 2024a)

Prompt

APE(Zhou et al., 2022), ORPO(Yang et al., 2023), ProTeGi(Pryzant et al.,
2023), PromptAgent(Wang et al., 2023d), REVOLVE(Zhang et al., 2024e),
PromptBreeder(Fernando et al., 2023), DSPy(Khattab et al., 2023), Trace(Wang
et al., 2023c), TextGrad(Yellamraju et al., 2024), SPO(Xiang et al., 2025), LLM-
AutoDiff(Yin & Wang, 2025), EvoAgent(Yuan et al., 2024b)

Tool

Creation
Voyager(Wang et al., 2023a), Alita(Qiu et al., 2025b), ATLASS(Haque
et al., 2025), CREATOR(Qian et al., 2023b), SkillWeaver(Zheng et al.,
2025a), CRAFT(Yuan et al., 2024a)

Mastery LearnAct(Zhao et al., 2024b), DRAFT(Qu et al., 2025), ToolLLM(Qin et al.,
2023), Toolformer(Schick et al., 2023), Gorilla(Patil et al., 2024)

Selection
ToolGen(Wang et al., 2025k), AgentSquare(Shang et al., 2025), Darwin Godel
Machine(Zhang et al., 2025h), COLT(Qu et al., 2024a), TOOLRET(Shi
et al., 2025c), ToolRerank(Zheng et al., 2024b), PTR(Gao & Zhang, 2024),
SSO(Nottingham et al., 2024)

Architecture

Single-Agent
AgentSquare(Shang et al., 2025), Darwin Godel Machine(Zhang
et al., 2025h), Gödel Agent (Yin et al., 2025), AlphaE-
volve(Novikov et al., 2025), TextGrad(Yellamraju et al., 2024),
EvoFlow(Zhang et al., 2025c), MASS(Zhou et al., 2025a)

Multi-Agent
AFlow(Zhang et al., 2024c), ADAS(Hu et al., 2024c), AutoFlow(Li et al., 2024d),
GPTSwarm(Zhuge et al., 2024), ScoreFlow(Wang et al., 2025n), FlowRea-
soner(Gao et al., 2025), ReMA(Wan et al., 2025), GIGPO(Feng et al., 2025b)

When to evolve

Intra-test-time
self-evolution

ICL Reflexion(Shinn et al., 2023), SELF(Madaan et al., 2023a), AdaPlanner(Sun
et al., 2023), TrustAgent(Hua et al., 2024)

SFT Self-Adaptive LM(Zweiger et al., 2025), TTT-NN(Hardt & Sun, 2023),
SIFT(Hübotter et al., 2024)

RL LADDER(Simonds & Yoshiyama, 2025), Ttrl(Zuo et al., 2025)

Inter-test-time
self-evolution

SFT SELF(Lu et al., 2023), STaR(Zelikman et al., 2022), Quiet-STaR(Zelikman et al.,
2024), SiriuS(Zhao et al., 2025b), Chen et al.(Chen et al., 2025b)

RL RAGEN(Wang et al., 2025q), Learning-Like-Humans(Zhang et al., 2025a), We-
bRL(Qi et al., 2024), DigiRL(Bai et al., 2024)

How to evolve

Reward-based
Self-Evolution

Textual Feedback
Reflexion(Shinn et al., 2023), AdaPlanner(Sun et al., 2023), AgentS2(Agashe
et al., 2025), SELF(Lu et al., 2023), Self-Refine(Madaan et al., 2023a),
SCoRe(Kumar et al., 2024), PAG(Jiang et al., 2025b), TextGrad(Yellamraju
et al., 2024)

Internal Rewards
CISC(Taubenfeld et al., 2025), Self-Ensemble(Xu et al., 2025b), SRSI(Simonds
et al., 2025), Self-Certainty(Kang et al., 2025), Self-Rewarding Language Mod-
els(Yuan et al., 2025b)

External Rewards

Self-Train LM(Shafayat et al., 2025), MM-UPT(Wei et al., 2025c), CoVo(Zhang
et al., 2025j), SWE-Dev(Du et al., 2025), SICA(Robeyns et al., 2025a), Feed-
back Friction(Jiang et al., 2025a), USEagent(Applis et al., 2025), DYSTIL(Wang
et al., 2025c), OTCPO(Wang et al., 2025h), AutoRule(Wang & Xiong, 2025),
EGSR(Zhang et al., 2025a), LADDER(Simonds & Yoshiyama, 2025), RA-
GEN(Wang et al., 2025q), SPIRAL(Liu et al., 2025d)

Implicit Rewards Reward Is Enough(Song et al., 2025), Endogenous reward(Li et al., 2025e)

Imitation & Demon-
stration Learning

Self-Generated STaR(Zelikman et al., 2022), V-STaR(Hosseini et al., 2024), AdaSTaR(Koh
et al., 2025), STIC(Deng et al., 2024), GENIXER(Zhao et al., 2024c)

Others SiriuS(Zhao et al., 2025b), SOFT(Tang et al., 2025), RISE(Qu
et al., 2024b), IoE(Li et al., 2024b)

Population-based
& Evolutionary
Methods

Single Agent DGM(Zhang et al., 2025h), GENOME(Zhang et al., 2025r), SPIN(Chen et al.,
2024f), SPC(Chen et al., 2025c), STL(Mendes & Ritter, 2025)

Multi-Agent EvoMAC(Hu et al., 2024d), Puppeteer(Dang et al., 2025), MDTeamGPT(Chen
et al., 2025e), MedAgentSim(Almansoori et al., 2025b)

Where to Evolve

General Domain

Memory Mobile-Agent-E(Wang et al., 2025o), MobileSteward(Liu et al., 2025f)

Curriculum
Learning WebRL(Qi et al., 2024), Voyager(Wang et al., 2023a)

Model-Agent
Co-Evolution

WebEvolver(Fang et al., 2025b), UI-Genie(Xiao et al., 2025a), Absolute-
Zero(Zhao et al., 2025a)

Specialized Domain

Coding, GUI
Finalicial...

EvoMac(Hu et al., 2024d), SICA(Robeyns et al., 2025a), AgentCoder(Dang et al.,
2025), QuantAgent(Wang et al., 2024d)

Others Arxiv-copilot(Lin et al., 2024), Voyager(Wang et al., 2023a)

Figure 2: Taxonomy of self-evolving agents, in which agents are analyzed along the what, when, how, and
where dimensions, with selected representative methods and systems annotated at each leaf node.

4

Published in Transactions on Machine Learning Research (01/2026)

Intra-test-time
Self-evolution

 Agent

Memory Prompts

 Model

Context

Store / Retrieve Instruct

Call / ReturnPlan, Reason

What to Evolve? When to Evolve?

 Task Completion

Inter-test-time
Self-evolution

 Online/Offline On/Off-policy Granularity

Cross-cutting Evolutionary Dimensions

Reward-based Population-basedImitation &
Demonstration

 Textual

 Internal

 External

 Implicit

 Self-Generated

 Cross-Agent

 Hybrid

 Single Agent

 Multi-Agent

Agentic
Architecture

Models Tools

How to Evolve?

Evaluation

 Adaptivity Retention

Generalization Efficiency Safety

Goals & Metrics

Static Short-horizon Long-horizon

Paradigm

Where to Evolve?

 Coding GUI Financial

 Medical Education Others

Specific Domain

 General-purpose Applications

General Domain

 ICL SFT RLMethods

Single Agent Multi-Agent
Query

Answer

Query

Answer

Figure 3: A comprehensive overview of self-evolving agents across key dimensions. From left to
right and top to bottom, the figure mirrors the organization of Sections 3–7. What to evolve (Sec. 3) decom-
poses agent components: model, context, tools, and architecture, showing where evolution operates. When
to evolve (Sec. 4) distinguishes intra-test-time versus inter-test-time self-evolution, corresponding to ICL,
SFT, and RL paradigms. How to evolve (Sec. 5) summarizes methodological families—reward-based, imita-
tion & demonstration, and population-based—together with cross-cutting dimensions such as online/offline,
on/off-policy, and reward granularity. Where to evolve (Sec. 6) contrasts general-purpose and domain-
specific deployments (e.g., coding, GUI, finance, medical, education). Evaluation (Sec. 7) outlines goals
and metrics—adaptivity, generalization, efficiency, safety—and corresponding evaluation paradigms (static,
short-horizon, long-horizon). Overall, the taxonomy maps the survey’s reasoning flow: defining what, when,
and how to evolve establishes the foundation for evaluating and advancing self-evolving agents.

2 Definitions and Foundations

Before delving into a comprehensive survey, we first present a formal definition of self-evolving agents and
introduce a taxonomy of the key aspects in self-evolving agents. We also discuss the relationships between
self-evolving agents and other renowned learning paradigms, such as curriculum learning, lifelong learning,
model editing, and unlearning, highlighting the adaptive, dynamic, and autonomous nature of self-evolving
agents.

2.1 Definitions

Environment We first define the environment (including the user and the execution environment, e.g.,
Linux shell) of an agent system as a partially observable Markov Decision Process (POMDP), represented
as a tuple E = (G,S,A, T,R,Ω, O, γ), where:

• G is a set of potential goals. Each g ∈ G is a task objective that the agent needs to achieve, e.g., a
user query.

• S is a set of states. Each s ∈ S represents the internal state of the environment.

• A is a set of actions. Each action a ∈ A can be a combination of textual reasoning, retrieval of
external knowledge, and tool calls.

5

Published in Transactions on Machine Learning Research (01/2026)

Figure 4: An evolutionary landscape of several representative self-evolving agent frameworks from 2022 to
2025. The figure chronologically organizes major research milestones in the development of self-evolving
agents with capabilities such as autonomous planning, tool use, and continual self-improvement.

• T is the state transition probability function which takes a state-action pair (s, a) and outputs the
probability distribution T (s′|s, a) of the next state.

• R : S × A × G → R is the feedback/reward function, conditioned on the specific goal g ∈ G. The
feedback r = R(s, a, g) typically takes the form of a scalar score or textual feedback.

• Ω is a set of observations accessible to the agent.

• O is the observation probability function which takes a state-action pair (s, a) and outputs the
probability distribution O(o′|s, a) of the next observation for the agent.

• γ is the discount factor.

Agent system We define a (multi-)agent system as Π = (Γ, {ψi}, {Ci}, {Wi}). The architecture Γ deter-
mines the control flow of the agent system or collaborative structures between multiple agents. It is typically
represented as a sequence of nodes (N1, N2, ...) organized by graph or code structures. Each node Ni consists
of the following components:

• ψi: the underlying LLM/MLLM.

• Ci: the context information, e.g., prompt Pi and memory Mi.

• Wi: the set of available tools/APIs.

At each node, the agent policy is a function πθi
(·|o) that takes an observation and outputs the probability

distribution of the next action, where θi = (ψi, Ci). The actual action space here is the union of the natural
language space and the tool space Wi.

For a given task T = (E, g), represented by an environment E and a corresponding goal g ∈ G, the agent
system follows the topology Γ to generate a trajectory τ = (o0, a0, o1, a1, ...), and receives a feedback r either
from the external environment or from internal signals (e.g., self-confidence or feedback from an evaluator).

6

Published in Transactions on Machine Learning Research (01/2026)

Self-evolving strategy A self-evolving strategy is a transformation f that maps the current agent system
to a new state, conditioned on the generated trajectory τ and the external/internal feedback r:

f(Π, τ, r) = Π′ = (Γ′, {ψ′
i}, {C ′

i}, {W ′
i}) (1)

Objective of self-evolving agents Let U be a utility function that measures the performance of an
agent system Π on a given task T by assigning a scalar score U(Π, T) ∈ R. The utility may be derived
from the task-specific feedback r, such as a reward signal or textual evaluation, possibly combined with
other performance indicators (e.g., completion time, accuracy, or robustness). Given a sequence of tasks
(T0, T1, ..., Tn) and an initial agent system Π0, a self-evolving strategy f recurrently generates an evolving
sequence of agent systems (Π1,Π2, ...,Πn) via

Πj+1 = f(Πj , τj , rj), (2)

where τj and rj are the trajectory and feedback on task Tj .

The overarching objective in designing a self-evolving agent is to construct a strategy f such that the
cumulative utility over tasks is maximized:

max
f

n∑
j=0

U(Πj , Tj) (3)

Operational definition of self-evolving agents To provide a conceptual boundary, we introduce an
operational definition of self-evolving agents. A self-evolving agent is the agent that modifies its internal
parameters, contextual state, toolset, or architectural topology based on its own trajectories or feedback signals,
with the explicit objective of improving future performance.

This definition entails three inclusion criteria: (i) updates must be experience-dependent, driven by trajec-
tories, self-generated data, or environment feedback, specifically targeting the agent’s policy limitations or
capability boundaries rather than generic data synthesis; (ii) updates must produce a persistent, policy-
changing effect rather than a transient instruction-following behavior; (iii) the system must possess mecha-
nisms for autonomous exploration or self-initiated learning, even if it also leverages pre-collected data. For
clarity, we use "passive" to denote learning triggered exclusively by externally provided data or schedules, and
"active" to denote self-initiated exploration, reflection, or structural modification (i.e., using self-reflection
to collect data), explicitly excluding static pipelines (e.g., standard distillation) where data generation is
agnostic to the agent’s interaction history.

As this field is rapidly forming, fully autonomous self-evolution without human intervention represents
an aspirational goal rather than the current norm. In this survey, we do not impose a rigid exclusion
threshold that would disregard early-stage developments. Instead, we analyze the mechanisms contributing
to the self-evolving paradigm ranging from proto-evolution (e.g., iterative bootstrapping or feedback-
driven prompting) to strong self-evolution (fully autonomous diagnosis and reconfiguration), allowing us
to provide a comprehensive view of how diverse methods contribute to the "What, When, and How" of the
paradigm’s progression toward full autonomy.

2.2 Relationships with Other Works

Table 1 summarizes the key distinctions between self-evolving agents and other paradigms (including cur-
riculum learning, lifelong learning, model editing, and unlearning). We provide a brief introduction to
each paradigm below, highlighting the differences among these paradigms, as well as the differences with
self-evolving agents.

Curriculum Learning Curriculum learning is a training strategy in which data are presented in order of
increasing difficulty (Bengio et al., 2009; Wang et al., 2021). This strategy resembles human curricula where
concepts are introduced progressively from simple to complex. Curriculum learning has been widely adopted
across diverse domains, including computer vision (Guo et al., 2018; Jiang et al., 2014; Liu et al., 2023a),

7

Published in Transactions on Machine Learning Research (01/2026)

natural language processing (Platanios et al., 2019; Tay et al., 2019), speech recognition (Braun et al., 2017;
Lotfian & Busso, 2019), etc. Recently, several curriculum learning-based methods have been proposed to
fine-tune LLMs during the post-training phase (Wang et al., 2025p; Zhang et al., 2025o; Parashar et al.,
2025; Zhang et al., 2025a; Li et al., 2025b). The framework for curriculum learning generally comprises
two key components: a difficulty measurer that quantifies the difficulty level of each training data point,
and a training scheduler that reorganizes the order of data points received by the model according to the
difficulty level. Unlike curriculum learning, which operates on a static dataset, self-evolving agents aim to
handle sequential tasks in dynamic environments. Additionally, curriculum learning updates only model
parameters, whereas self-evolving agents are able to adjust non-parametric components like memory and
tools.

Lifelong Learning Lifelong learning refers to the ability of AI models to continuously and adaptively learn
when exposed to new tasks and environments, while retaining previously acquired knowledge and abilities.
This learning paradigm, also known as continual learning or incremental learning, is crucial for AI models
to operate in dynamic and complex environments (Wang et al., 2024c; Zheng et al., 2025c; Parisi et al.,
2019; Shi et al., 2024; Yang et al., 2025d; Zhou et al., 2024a). The primary goal of lifelong learning for AI
models is to achieve a balance between preserving existing knowledge (stability) and acquiring new knowledge
(plasticity) when exposed to new data or tasks (McCloskey & Cohen, 1989; Zheng et al., 2025c; Ratcliff,
1990; Rolnick et al., 2019). Though it shares the sequential task setting with self-evolving agents, lifelong
learning differs in two fundamental ways: (1) Memory functionality and usage timing: While continual
learning methods extensively employ memory mechanisms (e.g., experience replay buffers (Rolnick et al.,
2019), episodic memory (Lopez-Paz & Ranzato, 2017)) to mitigate catastrophic forgetting, these mechanisms
primarily serve as training-time tools for parameter optimization through gradient computation. In contrast,
self-evolving agents leverage runtime context (prompts, working memory, conversation history) that directly
influences action generation at test-time without requiring parameter updates. The distinction lies not in
the presence of non-parametric components, but in their functional role: training-time replay vs. test-
time state adaptation. (2) Learning initiative: Lifelong learning primarily acquires knowledge passively
through externally provided task sequences, whereas self-evolving agents actively explore their environment
and incorporate internal reflection or self-evaluation mechanisms to guide their own learning trajectory.
Recent self-improving LLM methods (Huang et al., 2022; Yuan et al., 2024d), which iteratively refine models
through self-generated data and self-critique, can be viewed as instances of lifelong learning focused on
model-centric improvement. Self-evolving agents extend beyond this paradigm to encompass system-wide
evolution including tool acquisition, architectural reconfiguration, and environmental exploration.

Model Editing and Unlearning Model editing and unlearning aim to efficiently and precisely modify
specific knowledge in AI models while preserving irrelevant knowledge and avoiding full retraining (Wang
et al., 2024f; 2025i; Zhang et al., 2024d; Wang et al., 2025i; Nguyen et al., 2022; Geng et al., 2025a). A
canonical application of model editing is to perform efficient and precise localized factual updates (e.g.,
modifying the answer to "2021 Olympics host city" from "Tokyo" to "Paris"). Early methods focused on
triples of atomic knowledge and later expanded into various trustworthy-related tasks (Fang et al., 2025a;
Huang et al., 2025a). Recent studies also propose lifelong model editing(Chen et al., 2024c) that sequentially
performs model editing. For model unlearning, early efforts mainly focus on the removal of privacy-related
information (Chen et al., 2021). With the rapid development of LLMs, model unlearning is also used to
enhance LLMs’ safety (Zhang et al., 2024j; Li et al., 2024c; Zou et al., 2024; Lu et al., 2025). Compared to
lifelong learning, model editing shares an aligned objective: both aim to acquire new knowledge or capabilities
while mitigating catastrophic forgetting. However, lifelong learning typically relies on extensive gradient-
based fine-tuning across all model parameters, whereas model editing often modifies only a small subset of
parameters in a targeted manner. Compared to self-evolving agents, model editing (1) cannot modify non-
parametric components such as memory or tools, and (2) relies on a pre-defined pipeline from the algorithm
designer, whereas self-evolving agents can spontaneously employ more diverse and flexible strategies based
on the observation of the environment or internal feedback signals.

Positioning Self-Evolving Agents To clarify the relationships among these paradigms and to motivate
the role of self-evolving agents, we examine them through two complementary perspectives: a problem-setting

8

Published in Transactions on Machine Learning Research (01/2026)

Table 1: Comparison between self-evolving agents and other renowned paradigms

Paradigm Runtime Evolving Dynamic Test-time Active Structural Self-reflect
Context Toolset Tasks Adaptation Exploration Change & Eval

Curriculum Learning ✗ ✗ ✗ ✗ ✗ ✗ ✗

Lifelong Learning ✗ ✗ ✓ ✗ ✗ ✗ ✗

Model Editing ✗ ✗ ✓ ✓ ✗ ✗ ✗

Self-evolving Agents ✓ ✓ ✓ ✓ ✓ ✓ ✓

lens and a solution-paradigm lens. This distinction clarifies the basis of each paradigm - whether it emerges
from constraints and challenges inherent to the learning setting, or from methodological proposals for how
the model or agent itself can be updated.

• Problem-setting view. Curriculum learning and lifelong learning arise from concrete learning
problems. Curriculum learning addresses how to structure training examples of varying difficulty
so a model can handle complex samples more effectively; lifelong learning focuses on acquiring new
abilities over time while mitigating catastrophic forgetting. These paradigms are therefore driven
by the problems they aim to solve and primarily specify how experience is organized for the learner,
rather than how the agent itself may adapt beyond parameter updates.

• Solution-paradigm view. Model editing and self-evolving agents, in contrast, originate as so-
lutions: they propose mechanisms for updating or modifying a system. Model editing provides
targeted procedures—typically localized parameter adjustments—to correct or insert knowledge.
Self-evolving agents generalize this idea by treating adaptation as a first-class capability, allowing
not only parameter updates but also changes to runtime context, memory, tools, and workflow
structures, driven by the agent’s own trajectories and feedback signals.

Viewed through this two-lens framework, curriculum and lifelong learning are anchored in the nature of the
learning problems they address, whereas model editing and self-evolving agents are defined by the methods
they provide for effecting change. Self-evolving agents thus represent a system-level solution paradigm: they
include parameter-level editing as one update pathway while enabling broader, persistent, and interaction-
driven evolution across multiple components of an agent.

3 What to Evolve?

A self-evolving agent differs from a static agent not by what components it contains, but by which in-
ternal states can be autonomously modified based on its own trajectories, reflections, and feedback sig-
nals. Thus, the key question of this section is to identify the evolutionary loci within an agent system
Π = (Γ, {ψi}, {Ci}, {Wi})—the parts of the system whose states can be rewritten in an experience-driven
and persistent manner, enabling cumulative self-improvement.

Following the formulation in Section 2.1, these evolutionary loci align with four major pillars of an agent
system. Our investigation starts at the agent’s cognitive core, namely the Models {ψi}, whose parameters
can be continuously updated through self-generated supervision, execution traces, or environmental feedback
(Zhou et al., 2025e; Wang et al., 2025q). We then consider the Context {Ci} –including instructions (Xiang
et al., 2025; Khattab et al., 2023) and long-term memory (Chhikara et al., 2025; Wang et al., 2024j) –which
evolves as agents reflect, store, and retrieve experience in ways that shape future decision-making. From this
internal foundation, we examine the evolution of Tools {Wi}, where agents autonomously create (Qiu et al.,
2025b), refine (Qu et al., 2025), and managing (Wang et al., 2025k) executable skills based on verifiable
interaction signals Finally, we scale to the Agentic Architecture, where the system’s architecture (Hu
et al., 2024c; Zhang et al., 2024c) and collaborative structures (Wan et al., 2025) are optimized over time,
enabling structural adaptation beyond individual components. We present representative examples of these
evolutionary loci in Table 2.

9

Published in Transactions on Machine Learning Research (01/2026)

Table 2: Representative self-evolving agent methods positioned along four evolutionary pillars; a filled bullet
(•) marks dimensions where the approach actively evolves.

Method Model Context Tool Architecture

Policy Experience Prompt Memory Creation Mastery Selection Single Multi

SCA(Zhou et al., 2025e) • • ◦ ◦ • ◦ ◦ ◦ ◦
RAGEN(Wang et al., 2025q) • • • ◦ ◦ ◦ ◦ • ◦
AgentGen (Hu et al., 2024b) ◦ • • • • ◦ ◦ • ◦
Promptbreeder(Fernando et al., 2023) ◦ ◦ • ◦ ◦ ◦ ◦ • ◦
Expel(Zhao et al., 2024a) ◦ • ◦ • ◦ ◦ ◦ ◦ ◦
Agent Workflow Memory(Wang et al., 2024j) ◦ ◦ ◦ • ◦ ◦ • ◦ ◦
Mem0(Chhikara et al., 2025) ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
MAS-Zero(Ke et al., 2025) ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •
Multi-Agent Design(Zhou et al., 2025a) ◦ ◦ • ◦ ◦ ◦ • ◦ •
SPO(Xiang et al., 2025) ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦
Alita(Qiu et al., 2025b) ◦ ◦ ◦ ◦ • ◦ • ◦ ◦
TextGrad(Yellamraju et al., 2024) ◦ ◦ • ◦ ◦ • • • ◦
DGM(Zhang et al., 2025h) ◦ ◦ • ◦ ◦ ◦ ◦ • ◦
AlphaEvolve(Novikov et al., 2025) ◦ ◦ • ◦ • • ◦ • ◦
ADAS(Hu et al., 2024c) ◦ ◦ • ◦ • ◦ ◦ • •
AFlow(Zhang et al., 2024c) ◦ ◦ • ◦ • ◦ • • •
ReMA(Wan et al., 2025) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
SkillWeaver(Zheng et al., 2025a) ◦ ◦ ◦ • • • • ◦ ◦
LearnAct(Zhao et al., 2024b) ◦ ◦ ◦ • • ◦ • ◦ ◦
DRAFT(Qu et al., 2025) ◦ ◦ • ◦ • • ◦ ◦ ◦
ToolGen(Wang et al., 2025k) ◦ ◦ ◦ • • • ◦ ◦ ◦
CRAFT(Yuan et al., 2024a) ◦ ◦ ◦ ◦ • • • ◦ ◦
CREATOR(Qian et al., 2023b) ◦ ◦ ◦ ◦ • • ◦ ◦ ◦
Voyager(Wang et al., 2023a) ◦ ◦ • • • • • ◦ •

3.1 Models

Models constitute a primary locus of self-evolution, as their parameters can be autonomously rewritten based
on the agent’s own trajectories, reflections, and interaction outcomes. The ability of these models to evolve
by continually adapting their internal parameters and expanding their functional capabilities is essential for
the development of autonomous, general-purpose agents. Unlike static systems that rely heavily on human-
annotated datasets and fixed training regimes, self-evolving models can improve through interaction, self-
supervised data generation, and dynamic learning loops, thereby achieving greater efficiency, adaptability,
and scalability.

In detail, we outline the principal axes along which model evolution unfolds. These include learning from
self-generated supervision to refine model weights, evolving through interaction with constructed or external
environments, and integrating feedback signals that directly reshape future reasoning behaviors. Together,
these strategies represent a shift from passive learning paradigms toward active self-improvement.

Policy A self-evolving agent can refine its parameters to perform better on targeted tasks. Traditional
methods of data collection for training agents on tool-use benchmarks are costly and often yield limited
coverage, while purely synthetic data-generation pipelines typically suffer from inadequate quality. Con-
sequently, recent studies emphasize enabling agents to autonomously generate data to improve their own
model weights. One representative approach is the Self-Challenging Agent (SCA)(Zhou et al., 2025e), where
a language model alternates roles between a challenger generating executable Code-as-Task problems and
an executor solving them. The model then fine-tunes its parameters using trajectories derived from suc-
cessful solutions, resulting in significant performance gains on complex, multi-step tasks. Similarly, the
Self-Rewarding Self-Improving framework(Simonds et al., 2025) implements an internal self-judging mecha-
nism, allowing the model to autonomously generate problems, solve them, and assess its performance, thus
producing self-contained fine-tuning data without external annotations. This method demonstrated notable
improvements, particularly in complex reasoning tasks. Beyond task creation, another promising research
direction involves leveraging interaction feedback directly for parameter updates. For instance, SELF(Lu
et al., 2023), SCoRe(Kumar et al., 2024), and PAG(Jiang et al., 2025b) interpret execution traces or natural-
language critiques as reward signals within an online Supervised Fine-Tuning (SFT) combined with Rein-
forcement Learning (RL) framework, enabling continuous policy improvement. TextGrad(Yellamraju et al.,
2024) further extends this concept by treating unstructured textual feedback as a differentiable training sig-

10

Published in Transactions on Machine Learning Research (01/2026)

nal capable of directly influencing both prompt design and model parameters. Additionally, AutoRule(Wang
& Xiong, 2025) converts language-model reasoning traces and preference feedback into explicit rule-based
training rewards, enhancing the quality of model outputs through structured reward signals. Collectively,
these advancements chart a clear trajectory—from agents autonomously crafting their training tasks to di-
rectly refining their parameters based on execution feedback, highlighting the capacity of models to evolve
continuously by learning from the data they produce.

Experience Agents can evolve not only by adjusting their internal parameters but also by actively in-
teracting with or even constructing their environments, capturing experiences, and transforming them into
learning signals that drive iterative improvement. This environmental loop provides agents with the com-
plexity and diversity required for scalable self-adaptation. The Self-Challenging Agent (SCA)(Zhou et al.,
2025e) exemplifies this dynamic at the task level, where the agent autonomously generates novel Code-as-
Task problems, executes them, and then filters successful trajectories for retraining itself. AgentGen(Hu
et al., 2024b) extends this concept to full-environment generation, synthesizing diverse simulation worlds
(in PDDL or Gym-style formats) derived from an initial corpus. It implements a bidirectional evolution
loop that progressively adjusts task difficulty, enabling the agent to continuously grow within a dynamically
structured curriculum. Reflexion(Shinn et al., 2023) complements this by introducing self-reflective mech-
anisms, where agents iteratively record natural-language critiques of their previous actions, guiding future
behavior to avoid recurring mistakes. Additionally, AdaPlanner(Sun et al., 2023) introduces closed-loop
adaptive planning, allowing agents to refine their strategies on-the-fly based on environmental feedback,
effectively reshaping action sequences in response to immediate outcomes. Similarly, Self-Refine(Madaan
et al., 2023b) employs an iterative refinement loop in which the agent repeatedly critiques and revises its
initial outputs, significantly improving task accuracy without explicit retraining. SICA (Self-Improving
Coding Agent)(Robeyns et al., 2025b) further pushes the boundary by enabling agents to autonomously
edit their underlying code and tools, iteratively enhancing their core reasoning abilities through direct self-
modification. From a reinforcement learning perspective, frameworks such as RAGEN(Wang et al., 2025q)
and DYSTIL(Wang et al., 2025c) conceptualize multi-step tool-use tasks as Markov Decision Processes, op-
timizing agent policies through rich environmental rewards and strategy induction loops. RAGEN leverages
dense feedback from the environment to iteratively fine-tune action policies, while DYSTIL utilizes high-level
strategy advice generated by language models to progressively internalize complex decision-making skills into
reinforcement learning agents. Collectively, these approaches highlight a compelling paradigm where self-
evolving agents not only leverage self-generated data but actively reshape their environments and internal
mechanisms to fuel ongoing learning. Such dynamic interaction loops point toward autonomous, open-ended
improvement cycles deeply grounded in experiential adaptation.

3.2 Context

An essential component of an LLM agent to be evolved is the context, which shapes how an agent behaves.
To start with, we want to interpret two terms, "prompt optimization" and "memory evolution", which have
been used in different literature. In most cases, these two terms can be used interchangeably because they
both refer to what is included in the context window. Prompt optimization asks "how can we phrase or
structure the instructions so the LLM behaves better?", and attends to details such as the wording, ordering.
On the other hand, memory evolution asks "how should we store, forget, and retrieve context so that the
agent can stay informed and perform better?", which focuses on what past information to surface or archive.

3.2.1 Memory Evolution

LLM-based agents are increasingly designed with long-term memory mechanisms that grow and adapt as the
agent continues to solve tasks and interacts with its environment(Shan et al., 2025; Qian et al., 2023a). An
evolving memory enables the agent to accumulate knowledge, recall past events, and adjust its behavior based
on experience. Many works stress that effective memory management is crucial for agent performance(Zhong
et al., 2024; Zhang et al., 2025e; Yan et al., 2024). SAGE(Liang et al., 2024) uses the Ebbinghaus forgetting
curve to decide what to remember or forget. A-mem(Xu et al., 2025a) updates the agent memory struc-
ture to create interconnected knowledge networks through dynamic indexing and linking, following the basic

11

Published in Transactions on Machine Learning Research (01/2026)

principles of the Zettelkasten method. Mem0(Chhikara et al., 2025) introduces a two-phase pipeline where
the agent first extracts salient facts from recent dialogue and then decides how to update the long-term
memory: the agent can ADD new facts, MERGE/UPDATE redundant ones, or DELETE contradictions.
Furthermore, Memory-R1 (Yan et al., 2025) presents a reinforcement learning framework to train a dedicated
Memory Manager agent that learns to select structured operations like ADD, UPDATE, and DELETE. Such
a mechanism ensures the agent’s long-term memory is coherent and up-to-date. MemInsight(Salama et al.,
2025) augments raw memories with semantic structure, which summarizes and tags past interactions for
retrieval later. REMEMBER(Zhang et al., 2024a) combines an LLM with a memory of experiences and uses
reinforcement learning signals to decide how to update that memory after each episode. Memento (Zhou
et al., 2025b) enables continual adaptation without fine-tuning the LLM’s parameters by employing online
reinforcement learning to optimize a case-retrieval policy, which allows the agent to learn from past experi-
ences stored in an evolving memory bank. MemGen (Zhang et al., 2025f) introduces a dynamic generative
memory that operates in a latent space. It uses a learned memory trigger to decide when to invoke memory
and a weaver to construct latent token sequences, enabling a fluid interweaving of reasoning and memory.

A critical aspect of memory evolution is enabling agents to learn heuristics or skills from past experiences.
Rather than only retrieving exact past instances, advanced agents distill experiences into more general
guidance(Zhao et al., 2024a; Fu et al., 2024). Expel(Zhao et al., 2024a) processes past trajectories to
generate insights and rules to guide further interactions. This experiential knowledge accumulation leads
to measurable gains, as the agent steadily performs better with more experience. ReasoningBank (Ouyang
et al., 2025) further develops this idea by distilling generalizable reasoning strategies from both successful and
failed experiences into a structured memory. It also introduces memory-aware test-time scaling to generate
diverse experiences on each task. Other systems focus on storing higher-level building blocks of problem-
solving. For instance, Agent Workflow Memory(Wang et al., 2024j) records common sub-task sequences
(workflows) so that an agent solving a complex task can retrieve and reuse a proven sequence of actions
rather than plan from scratch. Similarly, MUSE (Yang et al., 2025a) introduces an experience-driven agent
for long-horizon tasks, centered on a hierarchical memory module that organizes experience into strategic,
procedural, and tool-use memories. The agent populates this memory through a Plan-Execute-Reflect-
Memorize loop, enabling it to learn on the job. In the Richelieu diplomacy agent, the system improves its
negotiation strategies by augmenting its memory through self-play games, storing the insights from simulated
interactions to refine future decisions(Guan et al., 2024). By generalizing from specific episodes to reusable
knowledge, these approaches illustrate how memory evolution turns an agent’s one-time experiences into
long-term competencies, which leads to agents evolving.

3.2.2 Prompt Optimization

While memory evolution focused on what knowledge an agent retains, Prompt Optimization (PO) enables
LLM agents to self-evolve by refining the instructions it feeds to the backbone model, which directly alters the
model’s behavior without modifying model weights(Ramnath et al., 2025). Early research treats instruction
design as a search problem. APE(Zhou et al., 2022) generates candidate prompts, scores them on validation
examples, and selects the best. ORPO(Yang et al., 2023) extends this idea by letting the model iteratively
rewrite its own prompt, guided by feedback on prior outputs. ADO(Lin et al., 2025a) introduces DSP that
imposes semantic constraints on iteratively proposed prompts to facilitate finding the optimal prompt. Pro-
TeGi(Pryzant et al., 2023) generates natural language "corrections" that are applied as edits to the prompt,
forming a textual analogue of gradient descent. PromptAgent(Wang et al., 2023d) casts prompt discovery
as Monte-Carlo Tree Search, exploring instruction space strategically, while evolutionary approaches like
PromptBreeder(Fernando et al., 2023) maintain a population to discover increasingly effective instructions.
REVOLVE(Zhang et al., 2024e) further stabilizes long optimization runs by tracking the trajectory of model
responses and applying smoothed updates. Pushing this autonomy to its limit, SPO(Xiang et al., 2025)
creates a fully self-contained loop where the model generates its training data and uses pairwise preference
comparison on its outputs to refine the prompt, eliminating the need for any external labeled data or human
feedback. Collectively, these techniques demonstrate that an agent can autonomously improve its prompting
policy, turning prompt text into a learnable component that co-evolves with the agent’s experience. To ad-
dress the brevity bias and context collapse of some optimizers, Agentic Context Engineering (ACE) (Zhang
et al., 2025m) treats contexts as comprehensive playbooks that accumulate strategies over time. It uses a

12

Published in Transactions on Machine Learning Research (01/2026)

modular agentic process with incremental updates to evolve contexts for both offline prompt optimization
and online memory adaptation.

In complex systems, an agent often orchestrates a sequence of LLM calls or collaborates with other agents,
making prompt design a multi-node problem. Frameworks such as DSPy represent an entire workflow as a
graph whose sub-prompts are jointly tuned for a global objective(Khattab et al., 2023). Trace(Wang et al.,
2023c), TextGrad(Yellamraju et al., 2024), and LLM-AutoDiff(Yin & Wang, 2025) generalize this idea by
treating each prompt as a parameter in a differentiable program and propagating natural-language “gra-
dients” to refine every step. In collaborative scenarios, Multi-Agent System Search (MASS)(Zhou et al.,
2025a) first optimizes individual role prompts and then refines inter-agent communication patterns, while
MAS-ZERO(Ke et al., 2025) dynamically proposes and revises role prompts to assemble an effective team
for each new problem. Evolutionary systems such as EvoAgent(Yuan et al., 2024b) and AgentSquare(Shang
et al., 2025) treat each agent along with prompts as the modules and use mutation and selection to dis-
cover specialized teams that outperform hand-crafted designs. These approaches extend PO from a single
instruction to the language that defines whole workflows or societies of agents.

3.3 Tools

An agent’s capabilities are fundamentally defined by the tools it can wield. The trajectory of agent devel-
opment is marked by a crucial evolution: from being mere tool users to becoming autonomous tool makers.
This transition from relying on predefined, static toolsets to enabling agents to autonomously expand and
refine their own skills is a critical leap towards cognitive self-sufficiency. This paradigm, where agents dy-
namically adapt their capabilities, allows them to solve a long tail of complex problems not envisioned by
their initial designers. This evolution unfolds across three interconnected fronts: tool discovery, mastery,
and management, as detailed in the subsections below.

Autonomous Discovery and Creation The primary impetus for autonomous tool creation is to over-
come the inherent limitations of a fixed toolset, granting agents the flexibility to innovate on demand.
Methodologies for this now span a spectrum from opportunistic discovery to formalized synthesis. At one
end, agents like Voyager build an ever-expanding library of skills through emergent trial-and-error, driven
by an intrinsic motivation to explore complex, open-ended environments like Minecraft(Wang et al., 2023a).
This exploratory approach is powerful for generating a wide array of skills but may lack precision. In con-
trast, systems like ATLASS, Alita, and Live-SWE-Agent take a more reactive approach, often creating new
tools from scratch or employing retrieval-augmented generation (RAG) to search open-source code reposi-
tories the moment a capability gap is identified(Haque et al., 2025; Qiu et al., 2025b;a; Xia et al., 2025a).
At the other end of the spectrum lie highly structured frameworks that treat tool creation as a deliberate
engineering process. CREATOR, for example, disentangles abstract tool creation (e.g., reasoning about the
general structure of a reusable function for averaging temperatures over N days) from concrete tool usage
(e.g., deciding how to apply that function to a specific city and time range), which enhances modularity and
reusability(Qian et al., 2023b). Even more formally, SkillWeaver analyzes successful human or agent task
trajectories to propose, synthesize, and hone new skills into robust, reusable APIs, ensuring a higher degree
of initial quality(Zheng et al., 2025a). Furthermore, frameworks like CRAFT demonstrate that creating
specialized toolsets for specific domains is essential to complement general-purpose models, enabling expert-
level performance without sacrificing adaptability(Yuan et al., 2024a). RL-GPT(Liu et al., 2024) integrates
generated code implementations into the RL pipeline, leveraging these as tools to tackle complex tasks while
addressing simpler ones directly using a Code-as-Policy approach. This integration dynamically adapts and
evolves in response to environmental feedback, enabling continuous improvement. However, this burgeoning
autonomy introduces significant challenges, particularly around safety and security. The unconstrained gen-
eration of code risks creating tools with exploitable vulnerabilities or unintended harmful behaviors, making
automated verification and sandboxing critical areas for future research.

Mastery Through Iterative Refinement The proliferation of self-created tools necessitates a robust
mechanism for their mastery; a newly generated tool is often a brittle script, not a reliable function. This is
where iterative refinement becomes essential. Frameworks like LearnAct and From Exploration to Mastery
establish a critical self-correction loop where the agent learns from its own experience(Zhao et al., 2024b;

13

Published in Transactions on Machine Learning Research (01/2026)

Qu et al., 2025). This involves tackling the difficult "credit assignment" problem: determining precisely
which line of code or which parameter was responsible for a failure. To do this, the agent analyzes a rich
variety of feedback signals—including compiler errors, unexpected API return values, environmental state
changes, or even implicit signals from a user’s subsequent actions. The goal is not only to debug the tool’s
underlying code but also to refine its documentation (e.g., its docstring and argument descriptions), which
is crucial for improving the agent’s ability to understand and correctly use the tool in the future. This
refinement process also opens the door for valuable human-agent collaboration. While full autonomy is the
ultimate goal, many systems can be designed with a "human in the loop," where a human expert can provide
corrections, offer high-level suggestions, or validate a newly created tool. This collaborative approach can
significantly accelerate the mastery process and ensure that the agent’s skills align with human intentions
and safety standards. Ultimately, this self-honing process is what elevates a nascent skill into a dependable
capability, ensuring the agent’s growing skill library increases not just in quantity, but more importantly, in
quality and robustness.

Scalable Management and Selection As an agent’s mastered skill library grows into the hundreds or
thousands, it faces a "curse of abundance." The challenge shifts from creating tools to efficiently managing
and selecting from them. A large library creates a massive search space, making traditional retrieval methods
slow and inaccurate. To overcome this, ToolGen (Wang et al., 2025k) represents a fundamental paradigm
shift by encoding tools as unique tokens within the language model’s vocabulary. This elegantly reframes
tool retrieval as a generation problem, leveraging the transformer’s immense pattern-recognition capabilities
to predict the most appropriate tool as a natural continuation of its thought process. TOOLMEM (Xiao
et al., 2025b) enables agents to learn and store the strengths and weaknesses of different tools in a dedicated
memory. At inference, the agent retrieves this knowledge to make more informed decisions, optimizing tool
selection for specific task requirements. Beyond selecting a single tool, advanced agents must also excel at
tool composition—learning to chain multiple tools in novel sequences to solve multi-step problems. This is a
higher-order management task. Architectural approaches like AgentSquare engage in a form of meta-learning,
automatically searching the modular design space of an agent—including its planning, memory, and tool-use
components—to find an optimal configuration for complex task execution(Shang et al., 2025). As a logical
endpoint to this evolutionary trend, visionary concepts like the Darwin Godel Machine propose a framework
for open-ended evolution, where the agent can fundamentally rewrite its own core code. In this vision,
the distinction between the agent and its tools blurs, leading to a recursive cascade of self-improvement
that transcends tool enhancement alone(Zhang et al., 2025h). In essence, this entire evolutionary path
aims to establish a closed and virtuous cycle: a truly autonomous agent that can perceive gaps in its
capabilities, create novel solutions, master them through practice, and seamlessly integrate them into a
coherently managed and ever-expanding repertoire.

3.4 Architecture

The defining feature of next-generation agentic systems is their intrinsic capacity for self-improvement. This
marks a fundamental shift from systems with fixed capabilities to those that can autonomously enhance
their performance(Liu et al., 2025b). By treating their own internal logic and collaborative structures
as optimizable components, these systems can adapt their behavior and design in response to feedback,
achieving a level of efficiency and effectiveness that static designs cannot match. This section details how
this self-optimization is realized, first by examining improvements within single-agent systems and then by
exploring the co-evolution of complex multi-agent systems.

3.4.1 Single-Agent System Optimization

LLM-Invoking Node Optimization Optimizing a single LLM call is straightforward in isolation, but
within an agentic system, it becomes a difficult credit assignment problem, as the effect of any single change
is obscured by subsequent steps. Research addresses this by making node-level components optimizable,
following two main strategies. The first focuses on refining nodes within a fixed agentic topology. A prime
example is TextGrad (Yellamraju et al., 2024), which, inspired by backpropagation, uses "textual gradients"
to propagate feedback from the final output backward through the workflow, guiding systematic, local

14

Published in Transactions on Machine Learning Research (01/2026)

refinements at each node without altering the system’s overall structure. The second, parallel strategy
integrates this component-level optimization directly into the search for the system’s architecture itself.
Under this approach, node characteristics become tunable parameters in a larger search space. For instance,
frameworks can embed prompt engineering directly into the search loop, allowing the system to discover not
just the optimal workflow but also the most effective instruction for each agent simultaneously (Zhou et al.,
2025a). Similarly, EvoFlow (Zhang et al., 2025c) uses evolutionary algorithms to construct heterogeneous
workflows by selecting the most suitable LLM for each task from a diverse pool. This holistic strategy enables
the discovery of systems that are co-optimized for both their structure and individual agent capabilities,
effectively balancing metrics like overall performance and cost (Ye et al., 2025a).

Autonomous-Agent Optimization Building upon the optimization of individual LLM-invoking nodes,
a more profound level of self-improvement targets the autonomous agent as a holistic entity. This evolution
proceeds along two main fronts: optimizing the agent’s high-level architectural design and enabling the agent
to directly modify its own source code. The first approach focuses on discovering the optimal agent structure.
AgentSquare (Shang et al., 2025) exemplifies this by defining a modular design space of components like
planners and memory modules, then using an evolutionary algorithm to find the most effective combination
for a given task. The second front involves agents that dynamically rewrite their own operational code. This
is seen in radical systems like the Darwin Gödel Machine (Zhang et al., 2025h), which recursively modifies
its own Python codebase, and AlphaEvolve (Novikov et al., 2025), which uses evolutionary coding to im-
prove specific algorithms. Similarly, Gödel Agent (Yin et al., 2025) provides a self-referential framework for
agents to analyze and alter their logic. Together, these two directions (optimizing the agent’s architectural
“blueprint” and its functional code) demonstrate a key trend toward turning the agent’s fundamental struc-
ture and logic into learnable components. MemEvolve (Zhang et al., 2025g) introduces a meta-evolutionary
framework that evolves not just the agent’s experiential memory, but the memory system’s architecture it-
self. Through a bilevel optimization process, it adapts the mechanisms for encoding, storing, and retrieving
information to better suit specific task domains.

3.4.2 Multi-Agent System Optimization

How agents are organized and communicate within a system (its topology) fundamentally determines its ca-
pacity for solving complex problems. The field has evolved from using fixed, human-designed communication
structures to creating dynamic systems that automatically adapt their organization to a given task, allowing
them to discover and exploit the most effective collaboration patterns. This evolution is explored along two
major fronts: the optimization of static, explicit workflows and the co-evolution of dynamic, internal policies.

Agentic Workflow Optimization The optimization of agentic workflows focuses on finding the most
effective, often static, structure of communication and task delegation for a given problem. Early research
established important foundations, with studies like AutoFlow (Li et al., 2024d) demonstrating the automated
creation of linear workflows from natural language, and GPTSwarm (Zhuge et al., 2024) proposing a unifying
graph-based framework. Concurrently, other foundational work explored how agents could evolve by using
symbolic learning to distill their interaction experiences into an explicit, interpretable set of logical rules to
guide future decisions (Zhou et al., 2024b). This abstraction of systems into tunable components—whether
nodes, edges, or symbolic rules—was crucial. However, these early systems often lacked a formal method for
efficiently navigating the vast space of possible configurations and interactions.

The major breakthrough came when ADAS (Hu et al., 2024c) and AFlow (Zhang et al., 2024c) formally
defined this challenge as a search and optimization problem. ADAS set a theoretical vision by framing
system design as a search through a Turing-complete space of code-based configurations. Building on this,
AFlow made it practical by introducing reusable operators that represent common agentic patterns and by
employing Monte Carlo Tree Search (MCTS) to efficiently navigate the enormous design space. Together,
these works established a core methodology for treating agent system design as a tractable optimization
problem, proving that automatically discovered workflows could outperform human-designed ones.

Following this formalization, research rapidly diversified toward creating customized agent systems for each
specific query. Two primary strategies emerged: search-based and learning-based generation. Search-based

15

Published in Transactions on Machine Learning Research (01/2026)

methods, such as MaAS (Zhang et al., 2025d), create a "supernet" of potential architectures and then
sample a specialized system from it. In parallel, learning-based methods train models to generate effective
topologies directly. ScoreFlow (Wang et al., 2025n), for instance, trains a generator using a novel preference
optimization method, while FlowReasoner (Gao et al., 2025) uses reinforcement learning to train a meta-
agent that constructs a bespoke workflow on the fly. This line of query-specific generation continues to be
an active area of research (Ye et al., 2025b; Ke et al., 2025). Furthermore, it is important to note that this
process is not limited to the topology alone; many of these frameworks also perform node-level optimization
in tandem, such as co-optimizing prompts or selecting heterogeneous models as an integral part of the
architectural generation process (Zhang et al., 2024c; Zhou et al., 2025a; Zhang et al., 2025c).

A key challenge for all search and learning methods is the computational cost of evaluating each potential
workflow (Shang et al., 2025). To address this, researchers have developed lightweight prediction models.
Agentic Predictor (Trirat et al., 2025) is a prime example, training a model to accurately estimate a workflow’s
performance based on its structural and semantic features without a full execution. By providing a fast and
inexpensive evaluation proxy, these predictors significantly accelerate the optimization process, making the
exploration of vast design spaces feasible (Zhang et al., 2025s).

Multi-Autonomous-Agent Optimization Distinct from optimizing a system’s explicit workflow struc-
ture, this line of research focuses on how multiple autonomous agents can co-evolve their internal behavioral
policies through interaction. This approach enables emergent capabilities like coordination, task delegation,
and beneficial competition. For instance, ReMA (Wan et al., 2025) uses multi-agent reinforcement learning
(MARL) to collaboratively train a high-level meta-thinker and a low-level executor, significantly improv-
ing performance on reasoning benchmarks. Building on this, GiGPO (Feng et al., 2025b) enhances MARL
training by aggregating trajectories to provide more precise credit assignment, boosting success rates on
long-horizon tasks. To support this direction, platforms like MARTI (Liao et al., 2025) provide open-source
infrastructure for orchestrating and scaling the training of these language-model collectives. Collectively,
these studies underscore multi-agent reinforcement learning as a promising route for cultivating group-level
competencies unattainable by individual agents alone.

4 When to Evolve

The temporal dimension of self-evolution in LLM-based agents mainly concerns the relationship between
learning processes and task execution. Therefore, the second key aspect of a self-evolving agent is identifying
the evolving timing, i.e., at which stage the self-evolving strategy f is invoked and applied to the agent system.
To this end, we propose a taxonomy that distinguishes between two temporal modes of self-evolution: Intra-
test-time self-evolution and inter-test-time self-evolution.

Intra-test-time self-evolution refers to adaptive processes that occur during task execution, where agents
recognize their limitations on a specific problem and initiate targeted learning mechanisms to enhance their
capabilities in real-time (Xi et al., 2024; Bi et al., 2024). This mode of evolution is characterized by its
immediate coupling with the task at hand: the agent improves its problem-solving abilities for a specific
problem encountered, creating a dynamic interplay between performance and adaptation.

Inter-test-time self-evolution refers to learning processes that occur between task completions, leveraging
accumulated experiences to improve future performance. This category encompasses diverse methodological
approaches: offline learning paradigms that extract knowledge from pre-collected datasets through iterative
refinement (Zelikman et al., 2022; 2024), and online learning paradigms that continuously adapt based on
streaming interaction data (Qi et al., 2024; Qiu et al., 2025b; Qian et al., 2024b; Wang et al., 2025o).

The implementation of self-evolution across these temporal phases leverages three fundamental learning
paradigms in LLMs: in-context learning (ICL) (Dong et al., 2022; Min et al., 2021; Wies et al., 2023), which
adapts behavior through contextual examples without modifying parameters; supervised fine-tuning (SFT),
which updates model weights through gradient-based optimization on labeled data (Devlin et al., 2018; Shen,
2024; Dong et al., 2023); and reinforcement learning (RL), which shapes behavior through reward-driven
policy optimization (Kaelbling et al., 1996; Sun et al., 2024a; Zhang et al., 2025n). While these learning

16

Published in Transactions on Machine Learning Research (01/2026)

Task Agent

Intra-test-time
 Self-evolution

Variant Generation Verification Policy Update

Trajectory
Inter-test-time
 Self-evolutionPolicy Update Rollout

Figure 5: An overview of when to evolve. The top pathway illustrates intra-test-time self-evolution, where
adaptation (e.g., variant generation, verification, and policy update) occurs within task execution. The bot-
tom pathway depicts inter-test-time self-evolution, where learning happens retrospectively through rollout,
trajectory analysis, and policy updates.

paradigms remain conceptually consistent across temporal contexts, their instantiation differs in terms of
data availability and learning objectives:

Intra-test-time is characterized by its online nature: learning data emerges dynamically during task execution,
with optimization directly targeting performance enhancement on the immediate problem instance. This
real-time coupling necessitates rapid adaptation mechanisms that can process learning data and feedback
signals and modify behavior within the temporal constraints of active task-solving. On the other hand,
inter-test-time is characterized by its retrospective nature: learning algorithms operate on historical data,
whether from curated datasets or accumulated behavioral trajectories, with optimization objectives oriented
toward improving expected performance across the task distribution rather than maximizing success on any
specific problem instance. This temporal decoupling enables more sophisticated learning procedures that can
identify cross-task patterns, consolidate diverse experiences, and develop generalizable capabilities without
the immediacy constraints of active task execution.

4.1 Intra-Test-Time Self-Evolution

In intra-test-time self-evolution, agents engage in self-improvement processes that are intrinsically coupled
with solving the immediate task at hand. The distinguishing characteristic of this temporal phase is its
synchronous nature: feedback signals are generated and processed during task execution, with optimization
objectives specifically targeted at improving performance on the current problem instance rather than gen-
eralizing to future tasks. Here, we introduce how the three learning paradigms are realized in this temporal
phase.

In-Context Learning Intra-test-time ICL methods leverage the model’s context window as a dynamic
memory system for immediate adaptation without parameter modification. These approaches typically em-
ploy self-reflective mechanisms where agents analyze their own performance, generate verbal critiques or
insights, and maintain these reflections in episodic memory buffers to guide subsequent decisions within the
same task context (Shinn et al., 2023; Madaan et al., 2023a). Some methods extend beyond simple reflection
to include dynamic planning revision, where agents can modify their entire approach based on environmental
feedback, switching between action execution and plan modification as needed. For instance, AdaPlanner
(Sun et al., 2023) decomposes tasks into manageable sub-goals and predicts environmental feedback for each.
During execution, its refiner component distinguishes between in-plan feedback (observations aligning with
predictions) and out-of-plan feedback (deviating observations). For in-plan feedback, the refiner dynamically
queries the LLM through a specialized ask_LLM() action to parse observations and extract pertinent infor-
mation. For out-of-plan feedback, the refiner proactively revises the entire plan and resumes solving from an
intermediate point, rather than restarting from scratch. This adaptive closed-loop framework eliminates the
need for prior knowledge about feedback structures and enables more efficient decision-making. Similarly,
TrustAgent (Hua et al., 2024) employs rule-based plan revision during execution, modifying its approach

17

Published in Transactions on Machine Learning Research (01/2026)

based on language feedback to evolve toward safer planning strategies. These ICL methods demonstrate how
test-time adaptation can achieve sophisticated behavioral modification without permanent model changes,
maintaining flexibility while preserving the model’s general capabilities.

Supervised Fine-Tuning. Intra-test-time SFT represents a paradigm shift where models perform imme-
diate self-modification through learned meta-adaptation strategies. Self-adaptive language modeling (Zweiger
et al., 2025) exemplifies this approach by generating “self-edits”, which are meta-level instructions that can
restructure information representations, specify optimization hyperparameters, or invoke tools for data aug-
mentation and gradient computation. These self-edits trigger immediate supervised fine-tuning, resulting
in persistent weight updates that adapt the model to the current task. The key innovation lies in the
meta-learning phase, where reinforcement learning trains models to produce effective self-edits by using
the downstream performance of the updated model as the reward signal, essentially teaching models how to
teach themselves. Acikgoz et al. (2025) introduce a Test-Time Self-Improvement (TT-SI) framework that en-
ables agents to adapt on-the-fly by first identifying uncertain test samples through self-awareness. For these
challenging inputs, the agent then generates a single synthetic training example and performs a temporary,
lightweight parameter update to improve its immediate performance before resetting its weights.

Reinforcement Learning. Intra-test-time RL enables models to develop new capabilities on-demand
when encountering problems beyond their current competence. LADDER (Simonds & Yoshiyama, 2025)
demonstrates this through its test-time reinforcement learning (TTRL) mechanism: upon identifying a
particularly challenging problem, the system generates a focused set of related problem variants and conducts
intensive, targeted reinforcement learning specifically for that problem class. This approach transforms
insurmountable challenges into learning opportunities, allowing models to expand their problem-solving
repertoire during deployment rather than failing or providing suboptimal solutions. The method represents
a form of just-in-time skill acquisition, where computational resources are invested precisely when and where
they are needed most.

4.2 Inter-Test-Time Self-Evolution

Inter-test-time self-evolution represents the predominant learning process in autonomous agents, wherein
adaptation occurs following task execution rather than during it. In this temporal mode, agents complete a
given task, extract feedback signals, including explicit rewards (Gao et al., 2024), gradients (Amari, 1993;
Bottou, 2010), and performance metrics (Ge et al., 2023), and subsequently leverage this information to
enhance their capabilities for future problem-solving. This retrospective learning process decouples task
performance from capability improvement, allowing agents to consolidate experiences, identify patterns of
success and failure, and systematically refine their behavioral policies without the computational constraints
imposed by real-time task demands.

In-Context Learning. Inter-test-time in-context learning has emerged as a widely adopted approach for
agent self-improvement. This paradigm leverages execution results and feedback from previous tasks as con-
textual information for future problem-solving. Wang et al. (Wang et al., 2024j) demonstrate this principle
by inducing workflows from agent action histories and incorporating them into the context for subsequent
tasks. The field of in-context reinforcement learning (ICRL) (Moeini et al., 2025; Laskin et al., 2022; Lee
et al., 2023) extends this concept by maintaining histories of observations and actions within the agent’s
context window. These methods exploit the hypothesis that pre-trained neural networks can implement
implicit reinforcement learning algorithms within their forward pass, processing contextual information to
adapt behavior without parameter updates (Kirsch et al., 2023). A defining characteristic of ICRL is in-
context improvement: the phenomenon whereby agent performance progressively enhances as task-relevant
information accumulates in the context, enabling sophisticated adaptation through attention mechanisms
rather than gradient-based learning.

Supervised Fine-Tuning. Inter-test-time SFT (Chen et al., 2025b) methods establish a paradigm of
iterative self-improvement through synthetic data generation and self-evaluation. SELF (Lu et al., 2023)
pioneered meta-cognitive training, where models first acquire self-feedback and self-refinement capabilities,

18

Published in Transactions on Machine Learning Research (01/2026)

then iteratively generate responses to unlabeled instructions and enhance them through self-critique. STaR
(Zelikman et al., 2022) and Quiet-STaR (Zelikman et al., 2024) focus on reasoning improvement through
rationalization—models attempt problems, then generate explanations for correct answers they initially failed
to solve, creating augmented training data that combines successful attempts with post-hoc reasoning. SiriuS
(Zhao et al., 2025b) extends this to sequential problem-solving, maintaining repositories of correct solutions
while augmenting failures through multi-stage refinement involving feedback incorporation, regeneration, and
rephrasing. These methods share a core insight: models can bootstrap their own improvement by learning to
evaluate and enhance their outputs, creating high-quality training signals from initially imperfect attempts
without extensive human supervision. Recent frameworks such as ARIA (He et al., 2025a) further extend
this paradigm by incorporating human-in-the-loop guidance into test-time adaptation, allowing agents to
proactively identify knowledge gaps and request expert feedback.

Reinforcement Learning. Inter-test-time RL leverages unconstrained computational resources to op-
timize agents through extensive environmental interaction and sophisticated curriculum design. RAGEN
(Wang et al., 2025q) and DYSTIL (Wang et al., 2025c) employ online reinforcement learning for multi-turn
interactive tasks, continuously refining policies through on-policy learning in simulated dialogues. Learning
Like Humans (Zhang et al., 2025a) introduces cognitive-inspired training with adaptive difficulty progression,
combining on-policy exploration with off-policy efficiency and expert demonstrations to accelerate learning.
Domain-specific applications demonstrate the versatility of inter-test-time RL: WebRL (Qi et al., 2024) de-
velops web navigation agents through self-evolving curricula that automatically adjust task complexity based
on performance, while DigiRL (Bai et al., 2024) enables device-control agents to master in-the-wild inter-
actions through autonomous reinforcement learning. These approaches exploit the pre-deployment phase
to engage in extensive trial-and-error learning, developing robust policies through thousands of interactions
that would be impractical during real-time deployment.

5 How to Evolve

The pursuit of self-evolution lies at the heart of building advanced, autonomous, and increasingly general
artificial intelligence. For large language models (LLMs) and their agentic extensions, the question of how to
continually, autonomously, and efficiently evolve their capabilities has become a central challenge. Therefore,
the third key aspect of a self-evolving agent is to instantiate an effective evolving strategy f , i.e., how to
transform an agent system Π = (Γ, {ψi}, {Ci}, {Wi}) to its new state Π′ = (Γ′, {ψ′

i}, {C ′
i}, {W ′

i}). Unlike
traditional approaches that rely on static datasets or one-time supervised fine-tuning, self-evolution empha-
sizes an ongoing process where models learn from real-world interactions, actively seek feedback, self-reflect,
generate or curate new data, and adapt their strategies in response to dynamic environments. This contin-
uous evolution is not merely a matter of scaling up data or computation; it requires the agent to acquire
a spectrum of meta-capabilities, including self-correction, autonomous data generation, knowledge transfer,
and multi-agent collaboration. As a result, the landscape of self-evolution has become increasingly rich and
multi-faceted, with each methodological branch exploring different axes of feedback, learning paradigms,
data sources, and evolutionary scales.

Over time, research on self-evolving agents has progressed through three major paradigms—reward-based,
imitation-based, and population-based evolution—each emerging to address the limitations of the previous
one. Reward-based methods first closed the feedback loop through explicit signals but suffered from brittle-
ness and high cost. Imitation-based learning stabilized evolution by leveraging high-quality demonstrations,
though sometimes at the expense of exploration. Population-based evolution then extended adaptation to
collective scales, emphasizing diversity and emergent coordination. Together, these paradigms outline a
coherent trajectory from individual self-improvement toward collective intelligence.

This chapter aims to systematically map and analyze the major families of self-evolution methods, providing a
unified framework for understanding their principles, mechanisms, and interactions. We begin with reward-
based evolution, which centers on the design of reward signals—ranging from natural language feedback
and internal confidence metrics to external or implicit signals—to guide iterative self-improvement.

19

Published in Transactions on Machine Learning Research (01/2026)

Table 3: Overview of Reward-based, Imitation/Demonstration, and Population-based Learning Methods for
Self-Evolving Agents. This table categorizes key approaches based on the following criteria: (1) Feedback
Type: the type of feedback used, including language-based rationales and numerical rewards. (2) Feedback
Source: the origin of the feedback, either internal (model-generated) or external (provided externally). (3)
Learning Method: the learning paradigm applied, such as in-context learning (ICL), supervised fine-tuning
(SFT), reinforcement learning (RL), and evolutionary algorithms; (4) Updated Components: which parts
of the model are updated, either full parameters or a subset of the model. (5) Update Timing: the stage
during the agent’s evolution when updates are applied, such as pre-training, pre-test, or test-time.

Method Feedback Type Feedback Source Learning Method Updated Components Update Timing
Reward-based Evolution Methods

Reflexion(Shinn et al., 2023) language internal ICL context test-time
AdaPlanner(Sun et al., 2023) language external + internal ICL context test-time
AgentS2(Agashe et al., 2025) language external ICL context test-time

SELF(Lu et al., 2023) language external + internal SFT full params pre-test time + test-time
SELF-REFINE(Madaan et al., 2023a) language internal ICL context test-time

SCoRe(Kumar et al., 2024) numerical external RL full params pre-test time
PAG(Jiang et al., 2025b) numerical external RL full params pre-test time

TextGrad(Yellamraju et al., 2024) language external ICL context pre-test time / test-time
SRSI(Simonds et al., 2025) language internal RL full params pre-test time

Self-Train LM(Shafayat et al., 2025) numerical internal RL full params pre-test time
MM-UPT(Wei et al., 2025c) numerical internal RL full params pre-test time
CoVo(Zhang et al., 2025j) numerical internal RL full params pre-test time

SWE-agent(Du et al., 2025) language external ICL context test-time
SICA(Robeyns et al., 2025a) numerical external ICL codebase(tools, workflows, prompts) test-time

Feedback Friction(Jiang et al., 2025a) language external ICL context test-time
USEagent(Applis et al., 2025) language external ICL context test-time
DYSTIL(Wang et al., 2025c) language + numerical external + internal SFT+RL full params pre-test time + test-time
OTC-PO(Wang et al., 2025h) numerical external RL full params pre-test time

AUTORULE(Wang & Xiong, 2025) language + numerical external + internal RL full params pre-test time
EGSR(Zhang et al., 2025a) numerical external RL full params pre-test time

LADDER(Simonds & Yoshiyama, 2025) numerical external RL full params pre-test time
RAGEN(Wang et al., 2025q) numerical external RL full params test-time
SPIRAL(Liu et al., 2025d) numerical internal RL full params pre-test time

ICRL Prompting(Song et al., 2025) numerical external + internal RL full params test-time
MATH-SHEPHERD(Wang et al., 2023b) numerical external RL full params pre-test time

AgentPRM(Choudhury, 2025) numerical external SFT+RL full params pre-test time
Agent Q(Putta et al., 2024) numerical external RL full params pre-test time
GiGPO(Feng et al., 2025a) numerical external RL full params pre-test time

SPA-RL(Wang et al., 2025d) numerical external RL full params pre-test time
Self-Instruct(Wang et al., 2022) language internal SFT full params pre-test time

WizardLM(Xu et al., 2024a) language internal SFT full params pre-test time
OS-Genesis(Sun et al., 2024b) numerical external SFT full params pre-test time
UI-Genie(Xiao et al., 2025a) numerical external SFT partial params pre-test time
GUI-R1(Luo et al., 2025b) numerical external SFT+RL full params pre-test time

InfiGUI-R1(Liu et al., 2025e) numerical external SFT+RL full params pre-test time
Voyager(Wang et al., 2023a) language external ICL context test-time
SwiftSage(Lin et al., 2023) language external ICL context test-time

AutoWebGLM(Lai et al., 2024) language external SFT+RL full params pre-test time
DigiRL(Bai et al., 2024) language external RL partial params pre-test time
WebRL(Qi et al., 2024) language external SFT+RL full params pre-test time

Let’s Verify Step-by-Step(Lightman et al., 2023) language external SFT full params pre-test time
AlphaMath(Chen et al., 2024a) numerical external SFT full params pre-test time
rStar-Math(Guan et al., 2025) numerical external SFT full params pre-test time

DistRL(Wang et al., 2024g) language external RL full params pre-test time + test-time
MobileGUI-RL(Shi et al., 2025b) language external RL full params pre-test time

Imitation and Demonstration Learning Methods
STaR(Zelikman et al., 2022) language + numerical internal SFT full params pre-test time

V-STaR(Hosseini et al., 2024) numerical external + internal SFT + RL partial params pre-test time
AdaSTaR(Koh et al., 2025) numerical internal SFT full params pre-test time

STIC(Deng et al., 2024) language internal RL + SFT partial params pre-test time
GENIXER(Zhao et al., 2024c) language external SFT full params pre-training

SiriuS(Zhao et al., 2025b) language + numerical internal SFT full params pre-test time
SOFT(Tang et al., 2025) language internal SFT not specified pre-test time
RISE(Qu et al., 2024b) language + numerical internal + external SFT full params pre-test time

IoE(Li et al., 2024b) numerical internal / / test-time
Population-based and Evolutionary Methods

DGM(Zhang et al., 2025h) numerical external ICL codebase (tools, workflows, prompts) test-time
EvoMAC(Hu et al., 2024d) language external ICL team composition, workflow, prompts test-time
SPIN(Chen et al., 2024f) language internal RL full params pre-test time

GENOME(Zhang et al., 2025r) numerical external Evolution Alg. partial params pre-test time
SPC(Chen et al., 2025c) numerical internal SFT+RL critic params pre-test time + test-time

Puppeteer(Dang et al., 2025) numerical external RL planner policy pre-test time / between tasks
MedAgentSim(Almansoori et al., 2025b) language external ICL context (knowledge base) test-time

STL(Mendes & Ritter, 2025) language + numerical internal SFT value model pre-test time
MDTeamGPT(Chen et al., 2025e) language external ICL context (knowledge base) test-time

Next, we examine imitation and demonstration learning, where agents learn by mimicking complete,
high-quality behavioral exemplars (i.e., demonstrations). While traditionally sourced from human experts,
in the context of self-evolving agents, these exemplars are often generated by the agent itself or by other
agents. This paradigm is particularly powerful when demonstrations are abundant or can be autonomously
synthesized, and it has driven significant progress in both reasoning and multimodal domains.

20

Published in Transactions on Machine Learning Research (01/2026)

Textual Feedback
Natural language: My plan was to ...
However, the task says to... I should
have …

Internal Reward
Model’s own probability estimates or
certainty

Implicit Reward
In-context RL using simple scalar
signals

External Reward
Environment, majority voting, or
explicit rules

Reward-Based
Evolution

Figure 6: Overview of reward-based self-evolution strategies, categorized into textual, implicit, internal, and
external rewards, each associated with distinct feedback sources and mechanisms.

Finally, we introduce population-based and evolutionary methods, which draw inspiration from bio-
logical evolution and collective intelligence. These approaches maintain populations of agent variants or col-
laborating agents, leveraging mechanisms such as selection, mutation, crossover, and competition to explore
the solution space in parallel, foster diversity, and enable the emergence of novel strategies or architectural
innovations.

5.1 Reward-based Self-Evolution

The capacity for self-improvement is a cornerstone of advanced intelligence. In the context of Large Language
Models (LLMs), this manifests as a dynamic process of reward-driven evolution, where models iteratively
learn from their own outputs and interactions to refine their capabilities. The design of the reward signal,
which serves as the guiding feedback, is crucial; it determines the nature, efficiency, and effectiveness of
the learning process. In this section, we systematically review the main methodologies for reward design,
categorized by the nature of the feedback: textual feedback, internal confidence, external rewards, and
implicit rewards.

Textual Feedback Textual Feedback leverages the native modality of LLMs—natural language—to pro-
vide detailed, interpretable instructions for refinement. Unlike scalar rewards, textual feedback encapsulates
nuanced critiques and actionable suggestions. Recent frameworks such as Reflexion (Shinn et al., 2023),
AdaPlanner (Sun et al., 2023), AgentS2 (Agashe et al., 2025), SELF (Lu et al., 2023), Self-Refine (Madaan
et al., 2023a), SCoRe (Kumar et al., 2024), PAG (Jiang et al., 2025b), and TextGrad (Yellamraju et al.,
2024) exemplify this direction. For instance, Reflexion proposes “verbal reinforcement learning,” where
agents reflect in natural language on their past trials, storing these reflections as episodic memory to guide
future decisions. AdaPlanner enables closed-loop adaptive planning by allowing LLM agents to revise their
plans based on both in-plan and out-of-plan feedback, while also mitigating hallucination via code-style
prompts and leveraging skill discovery. Self-Refine and SELF further explore iterative self-feedback and self-
correction, demonstrating that even state-of-the-art models can be improved via multi-turn, language-based
self-critique, without additional supervised data or external reinforcement. Such frameworks highlight the
power of language as a reward channel, enabling nuanced, flexible, and sample-efficient self-improvement.

Internal Rewards Internal Confidence-based rewards move away from external signals and instead exploit
internal metrics such as the model’s probability estimates or certainty. This paradigm leverages the model’s
intrinsic understanding to guide improvement without relying on external supervision. Methods such as
Confidence-Informed Self-Consistency (CISC) (Taubenfeld et al., 2025), Self-Ensemble (Xu et al., 2025b),
Self-Rewarding Self-Improving (Simonds et al., 2025), scalable best-of-N selection via self-certainty (Kang
et al., 2025), and Self-Rewarding Language Models (Yuan et al., 2025b) allow models to self-evaluate and
calibrate their responses based on internal confidence metrics. For example, CISC weights reasoning paths
by confidence scores to improve both accuracy and computational efficiency, effectively filtering high-quality
solutions from multiple candidates. Self-Ensemble mitigates confidence distortion by dividing choices into
smaller, more manageable groups and aggregating predictions to reduce overconfidence bias. Self-Rewarding

21

Published in Transactions on Machine Learning Research (01/2026)

Language Models demonstrate that models can act as their own reward function, generating training data
through self-instruction and self-evaluation cycles. These approaches can reduce reliance on human labels and
external evaluators, enabling scalable and autonomous self-improvement loops that can operate continuously
without human intervention. AgentEvolver (Zhai et al., 2025) proposes a comprehensive framework to
improve agent training efficiency through three synergistic mechanisms: self-questioning for autonomous
task generation, self-navigating for experience-guided exploration, and self-attributing for fine-grained credit
assignment. In particular, its self-attributing mechanism uses an LLM’s reasoning to retrospectively assign
step-wise rewards that are dense and semantically grounded for policy optimization.

External Rewards External Rewards are derived from sources outside the model, such as the environ-
ment, majority voting, or explicit rules. Majority voting (Shafayat et al., 2025; Wei et al., 2025c; Zhang et al.,
2025j) uses consensus among multiple model outputs as a proxy for correctness, providing a self-generated
but grounded reward signal. Environment feedback, including tool-based signals, is central to agentic LLM
research (e.g., SWE-Dev (Du et al., 2025), SICA (Robeyns et al., 2025a), Feedback Friction (Jiang et al.,
2025a), USEagent (Applis et al., 2025), DYSTIL (Wang et al., 2025c)), where agents learn through direct
interaction with real-world environments and tools. Rule-based rewards (Wang et al., 2025h; Wang & Xiong,
2025; Zhang et al., 2025a; Simonds & Yoshiyama, 2025; Wang et al., 2025q; Liu et al., 2025d) use explicit
constraints or logical rules as verifiable signals, particularly effective in the domains of mathematical rea-
soning, game play, and structured problem solving. These methods offer objective, reliable supervision but
may require significant engineering or be limited in expressiveness.

Implicit Rewards Implicit Reward frameworks hypothesize that LLMs can learn from feedback signals
even when not explicitly labeled as rewards. For instance, “Reward Is Enough” (Song et al., 2025) demon-
strates that LLMs can perform in-context reinforcement learning using simple scalar signals embedded in the
context window, improving their responses over rounds without explicit RL fine-tuning or supervision. This
reveals an inherent capacity for models to interpret and learn from implicit feedback cues present in their
input context. Recent work has expanded this concept by showing that LLMs inherently encode reward-
like signals through their standard training objectives. Endogenous reward (Li et al., 2025e) reveal that
standard next-token prediction implicitly learns a generalist reward function, which can be extracted from
model logits without additional training. Moreover, ImPlicit Self-ImprovemenT (PIT) framework (Wang
et al., 2024i) implicitly learns the improvement goal from human preference data without extra human ef-
forts by maximizing the quality gap of the response conditioned on a reference response. Unlike rule-based
or environment-derived external rewards, implicit reward methods offer unique advantages by discovering
and utilizing reward signals that are inherently present in language modeling.

In summary, reward-based evolution provides explicit optimization and strong autonomy but remains sensi-
tive to reward design, often trading stability and safety for adaptability and openness.

5.2 Imitation and Demonstration Learning

Imitation and demonstration learning traditionally involves an agent that learns to mimic the behavior of an
expert (typically a human) from a set of demonstrations. In the context of self-evolving agents, this paradigm
is adapted and generalized, which is the focus of our survey. Here, the role of the "expert" is not necessarily
a fixed, external entity (e.g., human) but rather any source of high-quality demonstration. In self-evolving
agents, these "expert exemplars" are typically generated by the agent itself (e.g., a past successful trajectory),
by other more capable agents, or synthesized from environmental interactions.

The key distinction between imitation learning and reward-based methods lies in the nature of the feedback.
Imitation learning is prescriptive and exemplar-based: the agent is provided with a complete, successful guide
(e.g., a full reasoning trace) and learns to reproduce this behavior. In contrast, reward-based methods are
evaluative and signal-based: the agent explores on its own and receives a scalar or textual critique, forcing
it to infer the path to improvement through trial-and-error and credit assignment.

Furthermore, the evolutionary mechanism differs fundamentally from population-based methods that will
be introduced later. While both imitation and reward-based learning typically focus on optimizing a single
agent’s improvement through iterative refinement, population-based methods evolve a collection of agents

22

Published in Transactions on Machine Learning Research (01/2026)

in parallel. Their progress typically comes from selection pressure across a diverse gene pool, rather than
the direct knowledge transfer from an exemplar to an individual. Therefore, imitation learning occupies
a unique niche: it relies on the availability of high-quality solutions to directly guide and accelerate the
evolution of an individual agent, making it exceptionally powerful when such demonstrations can be reliably
and autonomously generated.

5.2.1 Self-Generated Demonstration Learning

Self-generated demonstration learning involves agents creating their own training data through iterative
refinement processes, where the models learn to improve by generating and selecting high-quality examples
from their own outputs.

Bootstrapping Reasoning Capabilities. Zelikman et al. (2022) introduces the foundational framework
for self-generated demonstration learning, enabling language models to bootstrap their reasoning capabilities
through iterative self-training. This process involves generating reasoning chains for problems, fine-tuning on
correct solutions, and repeating this cycle to progressively improve performance without the need for ground-
truth reasoning paths. Building on this framework, recent advancements have refined the bootstrapping
process through more sophisticated training strategies. For instance, Hosseini et al. (2024) proposes a
verifier-guided self-training approach, where separate verifier models assess the quality of generated reasoning
chains before they are incorporated into the training data, enhancing the reliability of self-improvement.
Additionally, Koh et al. (2025) introduces adaptive data sampling strategies that dynamically adjust the
composition of training data based on model performance across various reasoning tasks, thereby mitigating
overfitting to specific problem types. The "Explore to Evolve" paradigm (Wang et al., 2025l) extends this
concept to deep research web agents by proposing an automated pipeline for generating complex, verifiable
training data. The framework directs an agent to first perform proactive online exploration to gather
grounded information from the live web, and then to evolve a sophisticated aggregation logic to synthesize
question-answer pairs that require both information-seeking and deep reasoning.

Multimodal Self-Training. Extending self-training to multimodal domains presents unique challenges in
generating high-quality demonstrations that span both visual and textual modalities. Deng et al. (2024)
demonstrates how vision-language models can improve iteratively by training on their own generated image
descriptions and visual reasoning chains. The approach leverages the model’s existing visual understanding to
generate detailed image descriptions, which are subsequently used to fine-tune the model’s visual perception
in a bootstrapping manner. Zhao et al. (2024c) builds on this concept by empowering multimodal large
language models to serve as powerful data generators, producing diverse training examples across different
modalities and tasks through advanced prompt engineering and quality filtering mechanisms.

5.2.2 Cross-Agent Demonstration Learning

Cross-agent demonstration learning involves agents learning from demonstrations provided by other agents,
either within the same system or from external sources, enabling knowledge transfer and collaborative im-
provement.

Multi-Agent Bootstrapped Reasoning. Zhao et al. (2025b) presents a framework for multi-agent sys-
tems to learn from each other’s successful demonstrations through bootstrapped reasoning. The system
maintains an experience library containing successful interaction trajectories generated by different agents,
facilitating efficient knowledge sharing and collaborative improvement. Each agent can leverage the collec-
tive experience of the entire system, thereby accelerating the learning process and enabling the discovery
of diverse solution strategies. This framework illustrates how agents can specialize in different aspects of
complex tasks while benefiting from the accumulated knowledge of the entire system.

Domain-Specific Demonstration Learning. Domain-specific applications of demonstration learning
have proven especially effective in specialized fields where expert knowledge can be effectively transferred
through demonstrations. In recommendation systems, techniques such as self-optimized fine-tuning (Tang
et al., 2025) enable LLM-based recommender systems to learn from their own successful recommendation
patterns, creating a feedback loop that enhances personalization over time. The system generates high-

23

Published in Transactions on Machine Learning Research (01/2026)

quality recommendation demonstrations from successful user interactions and uses these to fine-tune the
underlying language model, ultimately leading to more accurate and personalized recommendations.

5.2.3 Hybrid Demonstration Learning

Hybrid demonstration learning combines both self-generated and external demonstrations to create more
robust and diverse training regimens that leverage the strengths of each approach.

Recursive Self-Improvement. Qu et al. (2024b) demonstrates how agents can be trained to systematically
improve their behavior through structured self-reflection and demonstration generation. This approach
enables language model agents to introspect on their reasoning processes, identify areas for improvement,
and generate corrective demonstrations to address these weaknesses. This recursive process establishes a
continuous improvement loop, where agents become increasingly skilled at self-diagnosis and self-correction,
leading to more robust and adaptable behavior.

Confidence-Guided Demonstration Selection. Recent developments have focused on more sophisti-
cated mechanisms for selecting high-quality demonstrations from both self-generated and external sources.
Confidence-based approaches (Li et al., 2024b) utilize the model’s uncertainty estimates to determine which
demonstrations are most likely to contribute positively to learning, filtering out potentially detrimental or
low-quality examples. This method addresses a critical challenge in demonstration learning: poor-quality
demonstrations can degrade performance. By ensuring that only high-confidence, high-quality examples are
used for training, this approach helps to maintain the integrity of the learning process.

The effectiveness of imitation and demonstration learning approaches is highly dependent on the quality
and diversity of the available demonstrations. While these methods can yield impressive results when high-
quality exemplars are present, they face challenges in domains where good demonstrations are scarce or
where the optimal behavior is not well-represented in the available data. Future research directions include
developing more sophisticated demonstration selection and generation strategies, improving the robustness
of learning from imperfect demonstrations, and creating better mechanisms for combining demonstrations
from multiple sources.

Overall, imitation-based evolution stabilizes learning through high-quality exemplars but often trades explo-
ration and generalization for reliability and sample efficiency.

5.3 Population-based and Evolutionary Methods

Population-based and evolutionary methods are a paradigm with a long history in improving agent behavior
that complements modern learning-based techniques. This approach, drawing inspiration from biological
evolution, has deep roots in AI. The concept was formalized into a practical computational tool by John
Holland, whose seminal work on the Genetic Algorithm (GA) established the core operators of selection,
crossover, and mutation for refining a population of solutions (Holland, 1976). Building on this, John
Koza pioneered Genetic Programming (GP), a powerful extension that directly evolves executable programs
or symbolic expressions, which makes it appropriate for generating agent logic. This paradigm’s power
was demonstrated by automatically synthesizing novel, human-competitive results, such as patented analog
electrical circuits (Koza, 2010). This success extended into diverse domains, from evolving competitive
agents for strategic games like backgammon and chess (Hauptman & Sipper, 2007; Azaria & Sipper, 2005)
to discovering complex, interpretable policies in agent-based simulations, such as evolving dynamic taxation
rules that outperformed static, human-designed strategies (Garuccio, 2016).

This paradigm led to landmark achievements in evolving agent systems. For example, the classic "Evolved
Synthetic Creatures" co-evolved agent morphology and neural controllers in a simulated 3D world, leading to
the discovery of a wide variety of novel and effective locomotion strategies (Sims, 1994). Later, the influential
NEAT algorithm addressed a critical challenge by demonstrating how to evolve not just the weights but the
entire topology of a neural network (Stanley & Miikkulainen, 2002). This enabled the autonomous discovery
of complex agent "brains" from simple initial structures, a principle that has had an enduring impact on
neuroevolution. These seminal works illustrated that evolution could construct both an agent’s physical
form and its complex control systems, establishing a powerful alternative to manual design.

24

Published in Transactions on Machine Learning Research (01/2026)

Building on this foundation, these methods represent a different paradigm for agent evolution compared to
the reward-based and imitation-based approaches discussed in previous sections. While reward-based meth-
ods typically optimize individual agents through iterative reward signals and imitation learning relies on
learning from demonstrations, population-based methods maintain multiple agent variants simultaneously.
This allows for parallel exploration of the solution space and the emergence of diverse capabilities through
mechanisms such as selection, mutation, crossover, and competitive interaction (Zhang et al., 2025r). By
leveraging parallel search and genetic variation, these methods enable broader search coverage and the dis-
covery of novel solutions that might be missed by gradient-based optimization. This approach is particularly
valuable when the solution space is complex, multimodal, or when the optimal strategy requires fundamental
architectural changes rather than parameter fine-tuning.

5.3.1 Single Agent Evolution

Single-agent evolutionary approaches focus on evolving individual agents through population-based mecha-
nisms, where multiple variants of an agent compete and evolve over time. These methods can be broadly
categorized into two main paradigms: learning from evolution and self-play from multiple rollouts.

Learning from Evolution. This paradigm draws directly from biological evolution, maintaining popula-
tions of agent variants and applying evolutionary operators to discover improved capabilities. The Darwin
Gödel Machine (DGM) (Zhang et al., 2025h) exemplifies this approach through open-ended evolution of
self-improving agents that maintain an archive of all historical versions, enabling branching from any past
"species" rather than linear optimization. The system achieves self-referential improvement by allowing agents
to directly modify their own Python codebase, with evolution driven by empirical performance on coding
benchmarks and parent selection balancing performance scores with novelty rewards for diverse exploration.
Recent work has further explored using LLMs themselves to implement core evolutionary operators. For in-
stance, LLM_GP (Hemberg et al., 2024) uses the LLM to perform mutation, crossover, and selection directly
on programs represented as text, leveraging the model’s innate knowledge of code to inform the evolution-
ary search. Similarly, open-source frameworks like CodeEvolve (Assumpção et al., 2025) have demonstrated
that evolutionary coding agents can achieve state-of-the-art results on mathematical benchmarks, sometimes
outperforming proprietary systems like AlphaEvolve (Novikov et al., 2025) by using an island-based genetic
algorithm and inspiration-based crossover. This principle is also explored in Self-Referential Graph Hyper-
Networks (Pedersen et al., 2025), where networks learn to generate their own weight mutations, allowing the
rate of evolution itself to become selectable and adaptable.

Beyond evolving code and architecture, this paradigm extends to evolving the model’s parameters and in-
ternal logic. The Nature-Inspired Population-Based Evolution (GENOME) framework (Zhang et al., 2025r)
directly applies genetic algorithms to language model parameter evolution, maintaining populations and
using crossover, mutation, and selection operators on model weights. GENOME+ (Zhang et al., 2025r) ex-
tends this with particle swarm optimization concepts, adding inheritance mechanisms and ensemble methods
that demonstrate gradient-free evolutionary optimization can effectively improve model capabilities through
parameter space exploration. EvoLLM-JP (Akiba et al., 2025) takes this further by using evolutionary
algorithms to optimally merge multiple foundation models into a single, specialized model with superior
performance. Furthermore, some frameworks create a tightly integrated feedback loop where evolution helps
model fine-tuning. SOAR (Pourcel et al., 2025), for example, alternates between an evolutionary search
phase to generate candidate programs and a "hindsight learning" phase that uses all attempts (both suc-
cessful and failed) to generate a rich dataset for fine-tuning the agent model, creating a virtuous cycle of
self-improvement.

Self-Play. Self-play is a paradigm where agents improve through iterative interaction with versions of them-
selves, creating a dynamic and self-sustaining learning process. Its principles were famously demonstrated
by systems like AlphaZero (Silver et al., 2017), which achieved superior performance in complex games by
learning entirely without human data. The core mechanism is co-evolutionary learning: as an agent im-
proves, its opponents (past or concurrent versions of itself) also become stronger, generating a perpetual and
adaptive curriculum of increasing difficulty. This avoids the stagnation that can occur when training against
a fixed environment and enables the discovery of novel, emergent strategies.

25

Published in Transactions on Machine Learning Research (01/2026)

This powerful principle has been adapted for LLMs and LLM Agents, enabling them to bootstrap their
capabilities from zero or minimal external data. A prominent approach involves a single model or two
model instances adopting distinct, co-evolving roles. For instance, Absolute Zero (Zhao et al., 2025a) and
R-Zero (Huang et al., 2025b) employ a "challenger" or "proposer" agent that generates problems at the
frontier of a "solver" agent’s capabilities. A more complex multi-agent dynamic is seen in Socratic-Zero
(Wang et al., 2025m), where a Solver co-evolves with a powerful Teacher that creates challenges and a
Generator that distills the Teacher’s strategy for scalable curriculum creation. To address the instability of
purely autonomous systems, R-Few (Yu et al., 2025b) introduces a guided approach where the challenger
is grounded by a small set of human examples to prevent concept drift and diversity collapse. The system
improves through a closed loop where the solver is rewarded for correctness (often verified by execution) and
the challenger is rewarded for posing difficult yet solvable problems, thus driving continuous improvement
without external labels. Similarly, Self-Challenging Language Model Agents (Zhou et al., 2025e) establishes a
framework where an agent alternates between generating and solving complex, multi-step coding tasks, using
successful trajectories to fine-tune itself. The paradigm also extends to more specialized, collaborative roles,
as seen in the Sol-Ver framework (Lin et al., 2025b), where an LLM co-evolves its ability to both generate
code (solver) and create corresponding unit tests (verifier). Likewise, SPELL (Yang et al., 2025e) applies
this principle to long-context reasoning, with a single model cyclically adopting questioner, responder, and
verifier roles to provide reliable reward signals in a domain where programmatic verification is difficult.

Across these approaches, improvement is driven by self-generated learning signals derived from the agent’s
own trajectories. Self-Play Fine-Tuning (SPIN) (Chen et al., 2024f) establishes a foundational approach
where current models compete against previous versions, creating evolutionary pressure for improvement.
SPC (Chen et al., 2025c) advances this with a more sophisticated adversarial co-evolution, featuring a
"sneaky generator" that creates deceptive errors and a "step critic" that learns to detect them. STL (Mendes
& Ritter, 2025) demonstrates self-teaching through iterative lookahead search, where value models generate
training data from their own exploratory rollouts. Recent work, such as EvoTest (He et al., 2025b), extends
these ideas by introducing a gradient-free, evolutionary framework that revises an agent’s prompt, memory,
and tools between episodes.

Self-play is distinguished by a unique self-improvement mechanism: an agent learns through direct interaction
with variations of itself. This typically manifests in two ways: a model competes against its own past
versions to drive iterative refinement (as in SPIN), or a single model adopts distinct, interacting roles,
such as a "challenger" generating novel problems for a "solver" (as in Absolute Zero). This principle of
learning from dynamic interaction is different from imitation-based bootstrapping. While methods like
STaR (Zelikman et al., 2022) also learn from an agent’s own outputs, they do so by filtering and training
on static, successful trajectories. Self-play, in contrast, generates its learning signal from the process of the
game-like interaction itself, learning from relative success even when no perfect exemplar exists. This focus
on a single agent’s lineage also sets it apart from broader population-based methods: instead of evolving a
large, diverse population, self-play creates a highly focused evolutionary pressure between a minimal set of
policies derived from the same agent.

5.3.2 Multi-Agent Evolution

Multi-agent evolutionary methods extend population-based approaches to evolving entire teams or networks
of agents, focusing on optimizing collective behavior, coordination strategies, and collaborative architectures.
These approaches can be categorized into two main paradigms based on their evolution mechanisms: System
Architecture Evolution and Knowledge-Based Evolution.

System Architecture Evolution. This paradigm focuses on evolving the structural and coordination
aspects of multi-agent systems, including team composition, orchestration strategies, and workflow opti-
mization. EvoMAC (Hu et al., 2024d) introduces a framework that mimics neural network training for
multi-agent systems, implementing "textual backpropagation" where compilation errors and test failures
serve as loss signals to drive iterative modifications of agent team composition and individual prompts. A
specialized "updating team" analyzes textual feedback to identify problematic agents and generate modifica-
tion instructions, effectively implementing gradient-based optimization in the space of agent configurations
rather than model parameters. The FELA framework (Wang et al., 2025e) applies this concept to a practical

26

Published in Transactions on Machine Learning Research (01/2026)

industrial problem, using a multi-agent system with specialized "Idea," "Code," and "Critic" agents that col-
laboratively evolve to generate high-performing features from complex data, guided by principles from both
reinforcement learning and genetic algorithms. Puppeteer (Dang et al., 2025) takes a different approach by
focusing on coordination strategy evolution rather than team composition changes. The system employs a
centralized orchestrator that evolves its decision policy through reinforcement learning, dynamically select-
ing which agents to activate at each step while balancing task performance with computational cost. This
"puppeteer-puppet" paradigm demonstrates how architectural evolution can occur at the coordination level,
discovering efficient collaboration patterns and emergent behaviors such as tighter coordination among core
agents and sophisticated cyclic interaction patterns. Agent0 (Xia et al., 2025b) introduces a framework that
evolves agents from zero data via a co-evolutionary loop between a curriculum agent and an executor agent.
The curriculum agent is trained to generate frontier tasks that challenge the executor. Then, the improved
tool-use capabilities of the executor in turn drive the creation of a more complex, tool-aware curriculum,
establishing a virtuous cycle of self-improvement.

Knowledge-Based Evolution. This paradigm emphasizes evolving the collective knowledge and expe-
rience of multi-agent teams through memory accumulation and case-based learning, primarily operating
through in-context learning or in-context-like adaptation rather than parameter updates. MDTeamGPT
(Chen et al., 2025e) establishes the foundation for this approach through a dual knowledge base system, im-
plementing CorrectKB for storing successful cases and ChainKB for capturing failure reflections, enabling the
system to learn from both successes and mistakes through structured case retrieval and reasoning enhance-
ment. Extending this medical consultation framework, MedAgentSim (Almansoori et al., 2025b) demon-
strates how such knowledge-based evolution can be applied to real-world diagnostic scenarios, accumulating
experience from patient interactions and using retrieval-augmented generation to improve consultation qual-
ity over time. PiFlow (Pu et al., 2025) applies this paradigm to scientific discovery, maintaining a trajectory
of principle-outcome pairs and using them to steer hypothesis generation through information-theoretical
optimization.

In summary, population-based and self-play evolution enhance diversity and open-ended discovery, yet typ-
ically incur higher computational cost and lower interpretability compared with single-agent paradigms.

5.4 Cross-cutting Evolutionary Dimensions

After outlining the three core evolutionary paradigms, we now analyze their cross-cutting dimen-
sions—revealing how different design choices balance feedback type, data source, and learning stability.

Agent self-evolution is a multifaceted process characterized by a number of cross-cutting dimensions that
shape how agents learn, adapt, and improve over time. Beyond any single learning algorithm or supervision
signal, these dimensions define the core principles underlying the design and analysis of autonomous agents.
In this section, we systematically compare the major families of self-evolution methods—reward-based,
imitation/demonstration-based, and population-based—along several key axes, such as learning paradigm
(online vs. offline), policy consistency (on-policy vs. off-policy), and reward granularity (process-based,
outcome-based, or hybrid). We further highlight additional dimensions, including feedback types, data
sources, sample efficiency, stability, and scalability, as summarized in Table 4. This comprehensive compari-
son provides a unified perspective for understanding the strengths, limitations, and design trade-offs inherent
in different approaches to agent evolution.

5.4.1 Online and Offline Learning

Another fundamental dimension in the design of self-evolving agents is the learning paradigm, which can be
broadly categorized as either offline or online. This distinction depends on whether the agent’s evolutionary
updates are performed on a static, pre-collected dataset of experiences (offline) or through continuous, direct
interaction with a live environment (online).

Offline Learning In the offline learning paradigm, the learning phase is decoupled from live task execution.
The offline process typically involves cycles of offline data generation, filtering, and model fine-tuning, focus-
ing on building a powerful and generalist foundational model before deployment. A primary strategy in this

27

Published in Transactions on Machine Learning Research (01/2026)

Learning Paradigm

Policy Consistency

Reward Granularity

Agent Evolution
Offline Learning

On-policy Evolution Off-policy Evolution

Outcome-based Reward

Online Learning

Process-based Reward

Step 1

Hybrid Reward

Step 2 Step 3 … Outcome

Data
Generation Filtering Model

Fine-tuning
Agent Environment

Envπθ Traj

πθ
Human Demos

Other agents

Replay
Buffer

Figure 7: Illustration of the cross-cutting evolutionary dimensions underlying agent self-evolution. Learn-
ing Paradigm: in offline learning, data are pre-collected and used for filtering and fine-tuning, while
in online learning, agents continuously interact with their environments for real-time adaptation. Policy
Consistency: on-policy evolution updates policies based on the agent’s own trajectories, whereas off-policy
evolution relies on replay buffers, human demonstrations, or experiences from other agents. Reward Gran-
ularity: feedback can be process-based (step-level rewards), outcome-based (final-result rewards), or a hybrid
of both. Together, these three orthogonal axes define how agents generate data, adapt their policies, and
receive feedback across reward-based, imitation-based, and population-based evolution paradigms.

Table 4: Comparison of self-evolution method families along key dimensions.
Dimension Reward-based Imitation/DemonstrationPopulation-based
Feedback Type Scalar reward, natural

language, confidence, ex-
ternal signals

Demonstration trajecto-
ries, exemplars, ratio-
nales

Fitness scores, task suc-
cess, competitive signals

Data Source Self-generated, environ-
ment, external rules

Self-generated or other
agents, humans

Population generations,
multi-agent systems

Reward Granularity Outcome/process/hybrid
(flexible)

Usually out-
come/process (via
demo steps)

Often outcome-level,
sometimes process via
competition

Online/Offline Both (reward learning,
RL, DPO, SFT)

Typically offline, some-
times online demo min-
ing

Online evolution or
batch population up-
dates

On/Off-policy Both (DPO, Reflexion,
GRPO)

Primarily off-policy, but
online variants can be
on-policy

Off-policy (population);
self-play is on-policy

Sample Efficiency Moderate (depends on
reward sparsity)

High (if demo quality is
high)

Usually low (needs many
trials)

Stability Sensitive to reward de-
sign

Sensitive to demo qual-
ity/diversity

Sensitive to population
size/diversity

Scalability Good with automation Limited by demo collec-
tion

High but resource-
intensive

domain is LLM bootstrapping, where a model enhances its own capabilities using its self-generated content.
For example, Self-Instruct(Wang et al., 2022) shows how a language model can bootstrap its own instruction-
following ability by generating new instructions, paired with its own responses, creating a synthetic dataset

28

Published in Transactions on Machine Learning Research (01/2026)

for fine-tuning. Building on this, WizardLM(Xu et al., 2024a) demonstrates how to progressively evolve the
complexity of these self-generated instructions, pushing the model’s capabilities on more challenging tasks.
Although these methods primarily focus on broad capability expansion via synthetic heuristics, acting as
a bootstrapping phase, they lay the necessary groundwork for closed-loop, experience-driven evolution de-
fined in our framework. In the context of GUI and Web agents, offline learning often involves leveraging
pre-collected high-quality trajectories for supervised fine-tuning (SFT). OS-Genesis(Sun et al., 2024b) intro-
duced a reverse task synthesis method for automatic trajectory creation. Similarly, UI-Genie(Xiao et al.,
2025a) employs a unified reward model for trajectory evaluation and a self-improving loop to generate high-
quality trajectories iteratively. Both approaches focus on curating a rich SFT dataset to enhance the agent’s
capabilities to solve complex tasks. Beyond SFT, offline methods also incorporate reinforcement learning
performed on a static dataset of agent-environment interactions. For example, GUI-R1(Luo et al., 2025b)
and InfiGUI-R1(Liu et al., 2025e) utilize rule-based rewards and apply R1-style(Guo et al., 2025b) training
on offline GUI datasets.

Online Learning In contrast, online learning enables an agent to learn and adapt continuously while it
interacts with a live or simulated environment. Feedback from each action is used to update the agent’s policy,
plan, or knowledge base in real-time. This allows for greater adaptability to dynamic or unseen situations.
Some agents evolve online not by updating their model weights, but by refining their plans and skill libraries
on the fly. For example, Voyager(Wang et al., 2023a) presents an LLM-powered agent that learns to play
Minecraft by continuously exploring, generating its own curriculum of tasks, and building a persistent skill
library from direct experience. AdaPlanner(Sun et al., 2023) focuses on adapting its plan within a task;
it generates an initial plan, receives feedback from the environment, and refines the plan online. Similarly,
SwiftSage(Lin et al., 2023) operates with a fast-and-slow thinking process, where it can reflect on failures of
its fast, intuitive mode and switch to a more deliberate, tool-using slow mode, adapting its strategy online
based on task difficulty. Reinforcement Learning serves as a fundamental mechanism for online learning,
enabling agents to learn from environmental reward signals. DigiRL(Bai et al., 2024) demonstrates how to
train device-control agents in the wild using autonomous RL, while DistRL(Wang et al., 2024g) proposes
an asynchronous distributed framework to make such on-device training feasible. MobileGUI-RL(Shi et al.,
2025b) addresses the specific challenges of training GUI agents in online mobile environments by introducing
a synthetic task generation pipeline combined with group relative policy optimization (GRPO) through
trajectory-aware rewards.

5.4.2 On-policy and Off-policy Learning

While the previous section examined the timing of data collection and learning (online vs offline), this section
focuses on the policy consistency aspect of agent evolution - specifically, whether agents learn from experi-
ences generated by the same policy they are trying to improve (on-policy) or from experiences generated by
different policies (off-policy). This distinction is crucial for understanding how agents utilize their experien-
tial data and manage the trade-offs between learning stability and sample efficiency during the evolutionary
process.

On-policy Learning. On-policy approaches require agents to learn exclusively from experiences generated
by their current policy, ensuring policy consistency but often at the cost of sample efficiency. Reflexion
(Shinn et al., 2023) exemplifies this approach through its iterative self-reflection mechanism. The agent
generates responses using its current policy, receives feedback on failures, and immediately incorporates this
feedback to update its reasoning process for the next iteration. GRPO (Shao et al., 2024b) and DAPO
(Yu et al., 2025a) continue this path and show the effectiveness of multiple rollouts. The agent always
learns from its current behavior, maintaining strict policy consistency. In agent settings, on-policy methods
provide excellent learning stability and avoid distribution mismatch issues that plague off-policy methods.
However, they suffer from low sample efficiency, as each policy update requires fresh data collection, making
them computationally expensive for complex multi-step reasoning or tool use scenarios where generating
high-quality trajectories is costly.

Off-policy Learning. Off-policy approaches allow agents to learn from experiences generated by different
policies, including previous versions, other agents, or human demonstrations, significantly improving sample
efficiency at the cost of potential distribution mismatch. Yuan et al. (2024c) demonstrates a sophisticated

29

Published in Transactions on Machine Learning Research (01/2026)

off-policy approach where model Mt+1 learns from preference data generated by the previous version Mt.
The system handles distribution shift through DPO’s built-in KL divergence constraint with the reference
policy, preventing the new policy from deviating too far from the data-generating policy. Yuan et al.
(2023) showcases another powerful off-policy paradigm by learning from diverse response sources—including
other models, humans, and different sampling strategies—through ranking-based supervision. The method
elegantly sidesteps distribution shift by treating alignment as a ranking problem rather than requiring policy
consistency. Zhao et al. (2025b) illustrates off-policy learning in multi-agent settings, where agents learn from
an "experience library" containing successful interaction trajectories generated by previous policy versions,
enabling efficient reuse of expensive multi-agent coordination data. In agent settings, off-policy methods
excel in sample efficiency, allowing agents to leverage historical data, expert demonstrations, and cross-agent
learning. They are particularly valuable for multi-step reasoning where successful trajectories are rare and
expensive to generate, and for tool use scenarios where agents can learn from diverse execution examples
without repeated environmental interaction. However, they face challenges with distribution shift, reward
hacking (where agents exploit inconsistencies between training and deployment policies), and the need for
careful regularization to maintain training stability.

5.4.3 Reward Granularity

Another critical choice in the reward design is its granularity, which determines at what level of detail the
agent receives its learning signal. Reward granularity ranges from coarse-grained outcome-based rewards,
which evaluate the overall task completion, to fine-grained process-based rewards that assess each step of
the agent’s trajectory. Current self-evolution frameworks adopt these varying levels of granularity to tailor
feedback mechanisms according to task complexity and the desired learning outcomes.

Outcome-based Reward Outcome-based Reward is a feedback mechanism that evaluates an agent based
on the successful completion of predefined tasks. This reward is determined solely by the final state of
the agent’s trajectory, regardless of the intermediate steps. A central challenge, particularly in dynamic
environments like web or GUI navigation, is to effectively learn from both successful trajectories and the
much more frequent failure trajectories. To address this, Direct Preference Optimization (DPO)(Rafailov
et al., 2023) is designed to directly maximize the likelihood of preferred responses while minimizing the KL-
divergence with the reference policy. Similarly, RRHF(Yuan et al., 2023) employs a ranking loss approach
that aligns model probabilities of multiple responses with human preferences by ranking response probabilities
without requiring auxiliary value models. Moreover, several works have developed specialized frameworks
for agent self-evolution that are built upon outcome-based rewards. A straightforward approach is rejection
sampling finetuning, as used in AutoWebGLM(Lai et al., 2024). This method employs a pre-designed reward
model to evaluate trajectory outcomes, identify the successful trajectories, and update the model with this
high-quality data. DigiRL(Bai et al., 2024) models the GUI navigation task as a Markov Decision Process
(MDP) and obtains a final, sparse reward at the end of an episode using a VLM-based evaluator. WebRL(Qi
et al., 2024) develops a robust outcome-supervised reward model (ORM) to address the feedback sparsity
inherent in dynamic web environments. The ORM evaluates task success within a self-evolving curriculum
framework, enabling agents to learn from unsuccessful attempts and progressively improve.

Process-based Reward In contrast to outcome-based rewards, which provide a single, delayed signal, the
process-based reward paradigm offers more precise and granular feedback by evaluating each step in an
agent’s trajectory. Process-supervised reward models (PRMs) have been demonstrated to be significantly
more reliable than outcome-supervised reward models (ORMs), particularly in domains requiring complex
reasoning like solving math problems(Lightman et al., 2023). However, obtaining such fine-grained step-level
feedback traditionally requires extensive human annotations, which are both time-consuming and expensive
to scale. To address this annotation bottleneck, Math-Shepherd(Wang et al., 2023b) proposes an automatic
process annotation framework that utilizes Monte Carlo Tree Search (MCTS) to gather step-wise supervision
by assessing each step’s potential to derive the correct final answer. Similarly, AlphaMath(Chen et al.,
2024a) trains a value model to evaluate the step correctness in solution paths and updates both the policy
and value model through exploration and exploitation within an MCTS framework. By leveraging process-
based rewards, agents can improve their capabilities in a progressive, step-by-step manner. rStar-Math(Guan
et al., 2025) and AgentPRM(Choudhury, 2025) both propose methods to iteratively evolve the policy and

30

Published in Transactions on Machine Learning Research (01/2026)

the process reward model, generating progressively higher-quality reasoning paths without manual labels.
Agent Q(Putta et al., 2024) integrates a step-wise verification mechanism into its MCTS process to collect
high-quality trajectories, which are then used to iteratively refine the policy via DPO training.

Hybrid Reward The hybrid methods aim to provide more comprehensive learning signals by incorporat-
ing both the clarity of final task success (outcome-based) and the granular guidance of intermediate steps
(process-based). These methods overcome the sparsity of outcome-only signals while grounding the agent’s
step-by-step reasoning in the ultimate task goal. For example, GiGPO(Feng et al., 2025a) addresses the
instability of training long-horizon agents by introducing a dual-level reward mechanism. It provides an
episode-level reward based on the final success of entire trajectories, while simultaneously assigning a local-
ized, step-level reward for intermediate actions. This dual signal provides both a high-level directional goal
and low-level corrective guidance. Similarly, SPA-RL(Wang et al., 2025d) proposes a reward decomposition
method that bridges the gap between sparse outcome signals and dense process feedback. It attributes in-
cremental progress to each step within multi-step trajectories based on the final task completion, effectively
distributing the outcome-based reward across the process steps. This approach creates dense intermediate
progress rewards that enhance reinforcement learning effectiveness while maintaining alignment with the
ultimate task objectives.

5.5 Other Dimensions of Self-Evolution Methods

In addition to the core axes of learning paradigm, policy consistency, and reward granularity, Table 4
highlights several other important dimensions that differentiate self-evolution methods:

Feedback Type. The nature of feedback varies widely: reward-based methods leverage scalar rewards,
natural language signals, or model confidence; imitation methods focus on demonstration trajectories and
rationales; population-based methods use fitness scores or competitive signals. The feedback type funda-
mentally determines what information the agent uses to improve.

Data Source. Reward-based methods typically generate data through agent-environment interaction
or engineered rules, while imitation learning often relies on human or expert-generated demonstrations.
Population-based approaches draw from the collective experience of multiple agents or generations, enabling
diverse exploration but requiring significant coordination.

Sample Efficiency. Imitation learning is generally the most sample-efficient, provided high-quality demon-
strations are available, as agents can directly mimic expert behavior. Reward-based methods are moderately
efficient, with efficiency highly sensitive to reward sparsity. Population-based evolution tends to be sample-
inefficient, as it often requires evaluating a large number of agent variants through many trials.

Stability. Reward-based learning is sensitive to the quality and design of reward functions, risking re-
ward hacking or unintended behaviors. Imitation learning depends heavily on the quality and diversity
of demonstrations. Population-based methods are sensitive to population size and diversity, with small or
homogeneous populations at risk of premature convergence.

Scalability. Scalability is determined by the feasibility of data or feedback collection and the ability to
parallelize learning. Reward-based methods scale well when feedback is automated (e.g., via simulators).
Imitation learning is often bottlenecked by the cost of collecting demonstrations. Population-based ap-
proaches can scale to large compute but are highly resource-intensive.

Together, these dimensions offer a more nuanced, multidimensional view of self-evolution strategies, guiding
practitioners in selecting and designing agent learning pipelines that are best matched to the challenges of
their specific domains.

6 Where to Evolve?

Self-evolving agents have facilitated advancements across a diverse array of domains and applications.
Broadly, most of these applications can be systematically categorized into two groups: (1) general domain
evolution, where agent systems evolve to expand their capabilities across a wide variety of tasks, mostly

31

Published in Transactions on Machine Learning Research (01/2026)

General Domain

Specific Domain

Memory
Mechanism

Model-Agent
Co‑Evolution

Curriculum-Driven
Training

Coding

OthersEducationMedical

FinancialGUI

Figure 8: Categorization of where to evolve into two major types: General Domain Evolution, which focuses
on broad capability enhancement across diverse tasks (e.g., memory mechanisms, co-evolution, curriculum
training), and Specific Domain Evolution, which targets domain-specific expertise in areas such as coding,
GUI, finance, medical, education, and others.

within the digital realm, and (2) specialized domain evolution, which evolves specifically to enhance their
proficiency within particular task domains. In essence, evolution in general-purpose assistants focuses on
transferring learned experience to a broader set of tasks, while evolution in specialized agents emphasizes
deepening expertise within a specific domain.

6.1 General Domain Evolution

The first category, general domain evolution, refers to self-evolving agents designed for general-purpose ap-
plications, particularly as versatile digital assistants. These agents progressively enhance their capabilities to
address a broad spectrum of user queries, especially in dynamic and diverse digital environments. Technically
speaking, these general assistant agent enhance their abilities primarily via three mechanisms: memory op-
timization, curriculum-driven training, and model-agent co-evolution. These mechanisms collectively enable
the agents to continuously adapt and effectively respond to increasingly complex user demands.

Memory Mechanism. The most common mechanism facilitating agent evolution is the memory mech-
anism, wherein agents summarize historical success/failure experiences (Wang et al., 2023a; Zhang et al.,
2024f) into memory representations (Zhang et al., 2024g), anticipating that these distilled experiences will be
beneficial when addressing previously unseen tasks. For instance, Mobile-Agent-E (Wang et al., 2025o) em-
ploys a long-term memory structure consisting of "Tips," which provide general guidelines, and "Shortcuts,"
representing reusable action sequences derived from past experiences. This self-evolutionary module supports
the continuous enhancement of performance on complex smartphone tasks. Another typical example is Mo-
bileSteward (Liu et al., 2025f), which coordinates multiple app-specific Agents under a central Agent, with
specialized modules for task scheduling, execution, and evaluation. It also incorporates a memory-based self-
evolution mechanism that summarizes successful executions to improve future cross-app instruction handling.
Meanwhile, Generative Agents (Park et al., 2023) store episodic memories of their experiences, synthesize
higher-level reflections, and condition future planning on this self-reflection. In these examples, memory
serves as the foundation that enables agents to internalize past experiences, abstract high-level patterns, and
refine their future behavior.

Model-Agent Co-Evolution. Another line of work is to perform Model-Agent Co-evolution for LLM
agents. UI-Genie (Xiao et al., 2025a) constructs a specialized image-text reward model that scores trajec-
tories at both step and task levels. It jointly fine-tunes the agent and reward model using synthetic trajec-
tories—generated by controlled corruption and hard-negative mining—across multiple generations. WebE-

32

Published in Transactions on Machine Learning Research (01/2026)

volver (Fang et al., 2025b) introduces a co-evolving world model LLM that simulates web environments. It
generates synthetic training data by predicting next observations and enables look-ahead reasoning during
inference, which greatly improves real-web task success. Absolute Zero (Zhao et al., 2025a) co-evolves a
reasoning agent and its internal self-reward model through reinforced self-play. By adversarially generating
increasingly challenging reasoning problems and optimizing the agent using internal self-certainty as a reward
signal, the framework simultaneously updates both the agent’s policy and the self-rewarding mechanism. To-
gether, these methods demonstrate the effectiveness of co-evolving agents and auxiliary models (e.g., reward
or world models) to achieve more robust, generalizable, and scalable learning in LLM agentic systems.

Curriculum-Driven Training. Curriculum-driven training also serves as a critical mechanism for build-
ing a self-evolving general assistant. For example, WebRL (Qi et al., 2024) uses a self-evolving curriculum:
when an agent fails, similar but manageable tasks are automatically generated. Coupled with a learned
reward model and adaptive policy updates, this yields a success rate uplift on WebArena benchmarks.
Voyager (Wang et al., 2023a) similarly leverages an automatic, bottom-up curriculum in Minecraft, where
GPT-4 proposes appropriate next tasks based on agent progress, building a growing code-based skill li-
brary through iterative prompting and environmental feedback. These approaches highlight how curriculum
learning enables agents to autonomously expand their capabilities through iterative task adaptation.

6.2 Specialized Domain Evolution

In addition to general digital agents, self-evolving agents have also been effectively applied within specialized
domains, where their evolution is tailored to significantly enhance performance within narrower task sets.

Coding. The power of self-evolving agents extends directly to practical applications like coding, where
their ability to autonomously adapt and improve offers a transformative approach to software development.
SICA (Robeyns et al., 2025a) demonstrates that a self-improving coding agent can autonomously edit its
own codebase and improve its performance on benchmark tasks. EvoMAC (Hu et al., 2024d) introduces
a self-evolving paradigm on multi-agent collaboration networks, which automatically optimizes individual
agent prompts and multi-agent workflows, significantly improving code generation performance by over-
coming the limitations of manually designed systems. AgentCoder (Huang et al., 2024) also focuses on a
multi-agent code generation framework that self-evolves through iterative refinement. A programmer agent
continuously improves code based on feedback from a test executor agent, validated against independent
test cases from a test designer, significantly boosting effectiveness and efficiency. Zhang et al. (Zhang et al.,
2025b) enable LLM agents to continuously evolve by filtering high-quality answers, stratifying earned expe-
riences by difficulty, and adaptively selecting demonstrations from self-generated data, leading to significant
performance improvements and the construction of ML libraries. While these instances differ in their spe-
cific mechanisms—ranging from single-agent self-editing to complex multi-agent collaborative networks and
experience-based learning—they commonly share the core principle of iterative self-improvement and au-
tonomous adaptation to enhance coding capabilities. These advancements highlight how self-evolving agents
can dramatically enhance coding efficiency and code quality by continuously learning and optimizing.

Graphical User Interfaces (GUI). Self-evolving GUI agents extend LLM capabilities from pure text
reasoning to direct manipulation of desktop, web, and mobile interfaces, where they must cope with large
discrete action spaces, heterogeneous layouts, and partial visual observability. Yuan et al. couple pixel-level
vision with self-reinforcement, enabling the agent to iteratively refine click–type grounding accuracy with-
out additional human labels (Yuan et al., 2025c). On real desktop software, the Navi agent from Win-
dowsAgentArena replays and critiques its own failure trajectories, ultimately doubling its task-completion
rate across 150 Windows challenges (Bonatti et al., 2024). For open-web automation, WebVoyager fuses
screenshot features with chain-of-thought reflection; successive self-fine-tuning raises its end-to-end success
on unseen sites from 30 % to 59 % (He et al., 2024), while ReAP adds episodic memories of past outcomes,
recovering a further 29-percentage-point margin on previously failed queries (Azam et al., 2025). Beyond
RL and memory, AutoGUI continuously mines functionality annotations from live interfaces to expand a
reusable skill library each training cycle (Li et al., 2025a), and MobileUse deploys a hierarchical self-reflection
stack that monitors, verifies, and revises smartphone actions in situ (Li et al., 2025c). Collectively, these

33

Published in Transactions on Machine Learning Research (01/2026)

systems epitomize the full triad of self-evolution— what evolves (grounding modules, skill memories), when
it evolves (offline consolidation vs. online reflection), and how it evolves (reinforcement learning, synthetic
data, hierarchical monitoring)—charting a path toward universally competent interface agents.

Financial. The primary bottleneck in customizing agents for specialized domains like financial tasks lies in
efficiently constructing and integrating a domain-specific knowledge base into the agent’s learning process—a
challenge that can be effectively mitigated by incorporating self-evolving mechanisms. QuantAgent (Wang
et al., 2024d) proposed a two-layer framework that iteratively refines the agent’s responses and automatically
enhances its domain-specific knowledge base using feedback from simulated and real-world environments.
This iterative process helps the agent progressively approximate optimal behavior, reduces reliance on costly
human-curated datasets, and demonstrably improves its predictive accuracy and signal quality in trading
tasks. TradingAgents (Xiao et al., 2024) incorporates dynamic processes such as reflection, reinforcement
learning, and a feedback loop from real-world trading results, alongside collaborative debates, to continuously
refine its strategies and enhance trading performance. These developments underscore the potential of self-
evolving agents to revolutionize the financial domain by autonomously building domain expertise, adapting
to dynamic market conditions, and continuously improving decision-making and trading performance.

Medical. Self-evolving agents have become a powerful paradigm in medical AI, where adaptability and the
ability to evolve are essential for managing the complexity and ever-changing nature of real-world clinical
practice. One of the most prominent applications is hospital-scale simulation. For example, Agent Hospi-
tal (Li et al., 2024a) creates closed environments with LLM-driven doctors, patients, and nurses, allowing
the doctor agent to treat thousands of virtual cases. This process helps these agents autonomously refine
and evolve their diagnostic strategies without manual labeling, ultimately achieving strong performance on
USMLE-style exams. Similarly, MedAgentSim (Almansoori et al., 2025a) integrates an LLM doctor, patient,
and tool agent. It records successful consultations as reusable trajectories and employs chain-of-thought re-
flection and consensus to drive self-evolution, improving success rates over successive interactions. Another
example is EvoPatient (Du et al., 2024) places a doctor agent and a patient agent in continuous dialogue.
With each generation, they update their memory with high-quality exchanges: the patient develops more
realistic symptom narratives, while the doctor learns to ask sharper questions. Notably, this happens with-
out explicit gradient updates or hand-crafted rewards. Reinforcement learning is also central to building
adaptive medical agents. For instance, DoctorAgent-RL (Feng et al., 2025c) models consultations as a
Markov decision process, using a reward function that scores diagnostic accuracy, coverage, and efficiency.
This guides policy-gradient updates that help the agent ask more relevant questions and reach correct di-
agnoses faster than imitation-based approaches, thus achieving self-improvement. In addition, automated
architecture-search approaches like Learning to Be a Doctor treat the workflow itself as an evolvable object,
iteratively inserting specialist sub-agents or new reasoning hops to cover observed failure modes and improve
multimodal diagnostic accuracy (Zhuang et al., 2025). Finally, beyond clinical decision-making, self-evolving
agents have also been extended to biomedical discovery. OriGene (Zhang et al., 2025t) functions as a virtual
disease biologist that evolves by iteratively refining its analytical process. It leverages human and experimen-
tal feedback to update core reasoning templates, adjust tool usage strategies, and refine analytical protocols.
Similarly, STELLA (Jin et al., 2025) is a self-evolving biomedical research agent that improves over time by
distilling successful reasoning workflows into reusable templates through its Template Library and expanding
its Tool Ocean with external or newly assembled tools to meet emerging analytical needs.

Education. Self-evolving LLM agents have also found strong applications in the education domain. At the
learner level, self-evolving agents like the personalized tutor PACE (Liu et al., 2025c) adjust their prompts
based on detailed student profiles and continually refine their questioning during conversations. Meanwhile,
an LLM-to-LLM self-play framework generates diverse tutor–student dialogues that further fine-tune the
agent, allowing its teaching strategies to evolve both during and after interactions. Another example is
MathVC (Yue et al., 2025), which employs symbolic persona profiles for virtual students and a meta-planner
that orchestrates realistic problem-solving stages. This setup enables the agent’s conversational process to
evolve step by step toward correct solutions, closely mirroring how collaborative learning naturally unfolds.
On the instructor side, self-evolving agent systems like the professional-development platform i-vip (Yang
et al., 2025b) deploy a team of cooperating LLM agents—a coach, assessor, and feedback generator—that

34

Published in Transactions on Machine Learning Research (01/2026)

critique and enhance each other’s outputs in real time. These agents adapt their explanations based on
teacher-learners’ responses and continue to evolve by incorporating expert feedback after deployment, thereby
refining their prompt strategies over time Similarly, EduPlanner (Zhang et al., 2025p) frames lesson-plan
creation as an adversarial loop where a planner’s draft is repeatedly reviewed and refined by evaluator
and optimizer agents until it meets diverse educational goals. Similarly, SEFL (Zhang et al., 2025k) uses
teacher–student self-play to generate large sets of homework–feedback examples, which then fine-tune a
lightweight feedback model. This self-evolving process significantly improves the clarity and usefulness of
the comments. Collectively, these examples illustrate how self-evolving LLM agents can dynamically adapt
to both learners and instructors, driving more personalized, effective, and scalable educational experiences.

Others. Beyond the four major verticals discussed above, self-evolving agents demonstrate broader appli-
cability, delivering superior adaptability and performance in specialized domains where conventional agents
often fall short. For instance, Arxiv Copilot (Lin et al., 2024) learns and adapts by incorporating histor-
ical user interactions, including generated answers, research trends, and ideas, into its thought database,
enhancing its ability to provide personalized and augmented academic assistance. In a very different con-
text, Voyager (Wang et al., 2023a), an agent in the game Minecraft, excels at solving novel tasks from
scratch in new worlds through a process of self-evolution. It continually refines its task goals via an auto-
matic curriculum, expands its skill library, and enhances its actions using an iterative prompting mechanism
without human intervention. Transitioning to domains that require explicit strategic planning, Agents-of-
Change (Belle et al., 2025) autonomously refines prompts and rewrites code based on iterative performance
analysis and strategic research, thereby helping agents overcome inherent limitations in long-term strategic
planning and achieve consistently superior and more coherent gameplay in complex environments like Set-
tlers of Catan. Lastly, in the realm of diplomacy, Richelieu (Zhao et al., 2024d) introduces AI diplomacy
agents that can self-evolve through their self-play mechanism, which allows the agent to augment its memory
by acquiring diverse experiences without human data, thereby enhancing its strategic planning, reflection,
and overall performance in diplomacy activities. While these diverse examples operate in distinct environ-
ments—from academic research and virtual game worlds to strategic board games and complex diplomatic
negotiations—they all share the fundamental characteristic of leveraging continuous learning, self-refinement,
and autonomous adaptation to achieve increasingly sophisticated and effective performance within their re-
spective domains. These diverse examples reinforce the versatility of self-evolving agents, showcasing their
growing potential to excel in a wide range of complex, dynamic, and human-like tasks beyond traditional
domains.

7 Evaluation of Self-evolving Agents

Evaluating self-evolving agents presents a unique set of challenges that extend beyond the traditional assess-
ment of static AI systems. Unlike conventional agents typically evaluated on a fixed set of tasks at a single
point in time, self-evolving agents are designed to continuously learn, adapt, and improve through ongoing
interaction with dynamic environments. Consequently, their evaluation must capture not only immediate
task success but also crucial aspects such as adaptation over time, knowledge accumulation and retention,
long-term generalization, and the ability to transfer learned skills across sequential or novel tasks, all while
mitigating catastrophic forgetting. This requires a fundamental shift from conventional “single-shot” scoring
to a longitudinal, cost-aware trajectory view.

7.1 Evaluation Goals, Metrics, and Benchmark Coverage

To effectively evaluate self-evolving agents, we must move beyond traditional metrics and establish a com-
prehensive framework that captures their dynamic, adaptive, and long-term learning capabilities. A truly
capable and desirable self-evolving agent must not only learn and improve but also remember past
knowledge, transfer it to new situations, operate sustainably, and behave responsibly. Grounded in
these critical requirements for continuous and robust AI, we categorize the key evaluation goals into five core
dimensions: Adaptivity, Retention, Generalization, Efficiency, and Safety, as illustrated in Table 6.
Each dimension addresses a vital aspect of an agent’s self-evolutionary process and is assessed through its
corresponding metrics and benchmark coverage analysis. While Table 7 provides a comprehensive catalog of

35

Published in Transactions on Machine Learning Research (01/2026)

Goal

Evaluation Paradigm

Adaptivity

Retention

Generalization Efficiency

Safety

Static
Assessment

Short-horizon
 Adaptive Assessment

Long-horizon
Lifelong Learning Ability

Assessment

Evaluation Goals and Metrics

External Task-Solving
Evaluation

Internal Agent
Components Evaluation

Augmented Traditional
Benchmarks

Built-in Dynamic
Benchmarks

Lifelong Benchmarks

Dynamic / Evolving
Benchmarks

Figure 9: An overview of evaluation goals and paradigms for self-evolving agents. Left: Evaluation
Goals and Metrics. We summarize five core objectives guiding agent evaluation: adaptivity, retention,
generalization, efficiency, and safety, which reflect how agents should evolve and perform over time. Right:
Evaluation Paradigm. Evaluation methods are organized along an increasing temporal scale: from static
assessment of fixed capabilities (e.g., external task-solving and component-level evaluation), to short-horizon
adaptive assessment capturing within-task adaptation (e.g., augmented or dynamic benchmarks), and finally
to long-horizon lifelong learning assessment that examines continual improvement under evolving or lifelong
benchmarks. Together, these axes link the goals of self-evolution with the evaluation settings used to measure
them, forming a unified framework for assessing agent adaptivity and sustainability. See Table 6 for metric
definitions, Table 10 for protocol summary.

evaluation resources, we synthesize these limitations to map coverage gaps across these five-goal framework
and identify directions for trajectory-centric, cost-aware assessment at Table 8.

7.1.1 Adaptivity

Goals & Metrics Adaptivity serves as a foundational evaluation criterion for any self-evolving agent,
measuring its ability to improve performance on in-domain tasks through experience. This dimension focuses
on quantifying the learning curve and the extent of performance enhancement as an agent iterates and
evolves within a specific domain. Rather than a static success rate, adaptivity is gauged over time, steps, or
iterations. Typical metrics include the Success Rate by Iteration Steps (Hu et al., 2024c; Wang et al., 2024j;
Zheng et al., 2025b), which tracks performance in downstream tasks as a function of the agent’s interaction
history.

Coverage Gaps Although adaptivity has the richest benchmark ecosystem—spanning code generation
(SWE-bench (Jimenez et al., 2023), MLE-Bench (Chan et al., 2024)), web navigation (WebArena (Zhou
et al., 2023), WebShop (Yao et al., 2022)), and general reasoning (GAIA (Mialon et al., 2023), Agent-
Bench (Liu et al., 2023b) evaluations remain constrained by practical design choices. ScienceAgentBench
limits tasks to a single programming language and imposes execution-time bounds, excluding computation-
ally intensive scientific workflows (Chen et al., 2024e). MLE-Bench offers well-structured tasks but diverges
from authentic research scenarios where problem formulation is itself part of the challenge (Chan et al.,
2024). These simplifications permit controlled in-domain assessment but confine evaluation to narrow, static
task distributions. Moreover, most benchmarks measure improvement under pre-specified learning proto-
cols (e.g., fixed iteration budgets or predetermined replay schedules) rather than assessing whether agents
autonomously discover effective adaptation strategies. AgentBench further reports weaknesses in sustained
reasoning and strategic decision-making (Liu et al., 2023b), yet evaluation horizons remain limited to short-
term improvement curves.

36

Published in Transactions on Machine Learning Research (01/2026)

7.1.2 Retention

Goals & Metrics Retention is a crucial criterion for evaluating the stability of a self-evolving agent’s
knowledge base. This dimension specifically focuses on the challenge of catastrophic forgetting, a common
issue in lifelong learning where new knowledge acquisition erodes previously learned information, and knowl-
edge retention within extended interactions. Two key metrics can be used to quantify this stability from
different perspectives: Forgetting (FGT) and Backward Transfer (BWT) (Zheng et al., 2025c). Specifically,
let Ji,t denote the performance on task i after completing t tasks:

FGTt = 1
t− 1

t−1∑
i=1

[
max

j∈{i,...,t}
Ji,j − Ji,t

]
, BWTt = 1

t− 1

t−1∑
i=1

(
Ji,t − Ji,i

)
.

A positive BWT indicates that new learning positively benefits old tasks, signifying successful knowledge
transfer and a more robust, stable learning process.

Coverage Gaps Retention remains the most underserved dimension. Current memory mechanisms strug-
gle significantly with dynamic state updates and maintaining consistency across extended interactions (Hu
et al., 2025). Experience replay exhibits an inherent tension: while replay buffers can improve learning, scal-
ing them beyond optimal thresholds triggers performance degradation through context overflow and resource
exhaustion (Zheng et al., 2025b). Economic and computational constraints limit evaluation robustness, with
some benchmarks conducting minimal repetitions that may not capture stochastic variation (Castillo-Bolado
et al., 2024). Most critically, the overwhelming majority of existing benchmarks adopt episodic evaluation
where agent state resets between tasks, fundamentally precluding measurement of knowledge accumulation
or degradation—precisely the phenomena that distinguish self-evolving agents from static systems.

7.1.3 Generalization

Goals & Metrics While Adaptivity and Retention focus on in-domain performance, Generalization is
a pivotal measure of a self-evolving agent’s ability to apply its accumulated knowledge to new, unseen
domains or tasks. A truly intelligent agent should not only perform well within its familiar territory but also
demonstrate a capacity for cross-domain generalization. This capability can be evaluated by assessing an
agent’s performance on a diverse set of tasks that span multiple task distributions and domains. Common
approaches include computing aggregate performance metrics (e.g., mean success rates) across multi-domain
test suites (Liu et al., 2023b; Sun et al., 2023), and conducting out-of-domain evaluations using held-out task
distributions that simulate real-world novelty scenarios (Hu et al., 2024b; Peng et al., 2025).

Coverage Gaps Generalization is typically evaluated through multi-domain test suites (AgentBench (Liu
et al., 2023b), TheAgentCompany (Xu et al., 2024b) and held-out task distributions, measuring an agent’s
ability to transfer knowledge across domains. Current evaluations, however, rely on static snapshots: agents
are tested once on diverse tasks without tracking whether cross-domain transfer degrades as they evolve
over extended learning trajectories. Technological progress further reduces the discriminative power of older
tasks, as modern agents benefit from algorithmic advances unavailable to earlier systems (Chan et al., 2024),
while training data contamination complicates cross-domain assessment (Chan et al., 2024). No existing
benchmark examines whether agents preserve generalization breadth as they specialize within domains, or
whether knowledge acquired in one domain continues to transfer after hundreds of learning episodes.

7.1.4 Efficiency

Goals & Metrics Efficiency quantifies the resourcefulness of a self-evolving agent during its learning and
operation. As agents operate continuously and make decisions autonomously, it is essential to evaluate the
cost and speed of their evolutionary process.

These metrics in Table 5 are particularly important for practical, real-world applications where resources
like computation, memory, time, and human effort are finite:

37

Published in Transactions on Machine Learning Research (01/2026)

Table 5: Refined cost taxonomy and units for self-evolving agents, with Real-world example (Fan
et al., 2025): On SWE-bench (Jimenez et al., 2024), SWE-Agent (Yang et al., 2024) + Qwen3-32B (440K
tokens, 35 calls, 28% success) vs. GPT-4o-mini (8.1M tokens, 181 calls, 10% success)—model-scaffold synergy
critical for efficiency.

Dimension Symbol Typical
Unit Example Measurement Worked Example

Token usage Ctoken #tokens Prompt + completion tokens
per episode/step 440K vs. 8.1M tokens per task;

18× difference

Step count /
latency Cstep

#turns /
rounds Reasoning/interaction turns 35 vs. 181 API calls per task;

Quality vs. quantity trade-off

Wall-clock
time Ctime #seconds End-to-end elapsed runtime

incl. I/O 12 vs. 200+ turns per task;
Simple vs. complex bugs

Tool/API
calls Ctool #calls External function/environment

calls 15 vs. 38 calls (AutoCodeRover);
High-quality reasoning reduces iterations

Memory
growth Cmem

#tokens /
MB

Persistent memory;
context window expansion Linear growth per call; Token snowball effect

amplifies invalid context

Human over-
sight Chuman

#hours /
tokens

Review, labeling, red-team;
guidance tokens Failed attempts: 4× cost vs. successful ones;

Expensive failures pattern

• Token consumption (Hu et al., 2024a): Total tokens used in reasoning, generation, and memory
operations

• Time consumption (Lu et al., 2024b): Wall-clock time required to complete tasks or reach per-
formance thresholds

• Step count (Wang et al., 2023a): Number of interaction rounds needed for task completion

• Tool calls: Number of external API/environment invocations, can be combined with performance
gains to assess Tool Productivity (TP) (Wang et al., 2025h), formulated as:

TP$ = ∆score∑
i cost(tooli)

.

• Memory growth: Expansion of persistent memory and context window over the agent’s operational
duration

• Human oversight: Time and effort required for human intervention, including review, labeling,
and corrective guidance

To relate efficiency to performance gains, we report Cost-per-Gain (CPG) as:

CPGt = Total Costt

Performance Gaint + ϵ
,

where cost can be measured in tokens, time, memory, human effort, or a normalized composite (e.g., monetary
cost), and performance gain is the improvement over baseline at horizon t. Lower CPG indicates more efficient
learning.

38

Published in Transactions on Machine Learning Research (01/2026)

Coverage Gaps Efficiency suffers from sparse and inconsistent reporting of evolution costs. While bench-
mark papers occasionally document aggregate resource consumption during evaluation (Chan et al., 2024),
they rarely decompose costs into evolution-specific components: tokens consumed during self-reflection or
experience replay, wall-clock time spent on architecture search or memory updates, tool invocations trig-
gered by autonomous exploration. Cost constraints in human baseline collection (Xu et al., 2024b) reflect
broader accessibility challenges but do not illuminate the efficiency of the evolution process itself. More
fundamentally, standard evaluation protocols permit unconstrained optimization—agents maximize task
success without facing the hard token budgets, iteration limits, or latency constraints that govern real-world
deployment.

7.1.5 Safety

Goals & Metrics From the perspective of self-evolving, the Safety domain critically examines whether
these agents develop unsafe or undesirable behavioral patterns throughout their continuous evolution. This
dimension assesses an agent’s adherence to predefined rules and its propensity for harmful actions. Key
metrics in evaluating safety of self-evolving agents may include: (1) Safety Score (Zhang et al., 2024i),
which measures the proportion of test cases where the agent’s behavior is labeled “safe”; (2) Harm Score
(Andriushchenko et al., 2024), computed via a detailed manually written grading rubric where outputs earn
partial credit whenever some but not all harmful criteria are triggered; (3) Completion Under Policy (CuP)
(Levy et al., 2024), which assesses whether an agent successfully completes a task while strictly adhering
to a given set of rules or policies; (4) Risk Ratio (Levy et al., 2024), which calculates the frequency of an
agent’s rule violations along a specific dimension, providing a quantitative measure of non-compliance; (5)
Refusal Rate (Zhang et al., 2024b; Andriushchenko et al., 2024), which evaluates the proportion of tasks an
agent refuses to perform due to their aggressive, malicious, or otherwise unsafe nature; (6) Leakage Rate
(Shao et al., 2024a), which tracks how often an agent unintentionally leaks sensitive or private information.

Coverage Gaps Safety evaluation predominantly captures risks in isolated episodes. Agent-SafetyBench
identifies two core deficiencies: inadequate robustness when deploying tools across varied contexts, and
limited recognition of potential hazards in specific operational scenarios (Zhang et al., 2024i). In multi-agent
settings, SwarmBench reveals fundamental coordination challenges where local interactions fail to produce
coherent collective strategies, with agents unable to maintain shared situational understanding necessary for
safe collaborative operation (Ruan et al., 2025). Yet no benchmark tracks safety trajectories over extended
evolution—whether risks accumulate through repeated exposure to edge cases, or whether unsafe behaviors
emerge through autonomous exploration and self-directed learning.

7.1.6 Self-Directedness and Evaluation Trade-offs

A defining characteristic of self-evolving agents is their capacity for autonomous exploration and self-directed
evolution, distinguishing them from passive learning paradigms. The degree of self-directedness, specifically
whether the agent autonomously generates tasks and evolution strategies or follows externally provided
curricula, creates fundamental trade-offs across evaluation dimensions.

Highly self-directed systems demonstrate substantial performance gains through autonomous curriculum
generation. WebRL improved from 4.8% to 42.4% by self-generating tasks from exploration failures (Qi
et al., 2024), while SEAgent achieved 23.2 percentage point improvements, advancing from 11.3% to 34.5%
via autonomous software exploration and curriculum evolution (Sun et al., 2025c). However, autonomous
evolution incurs measurable risks. Alignment faking rates escalated from 12% to 78% when agents au-
tonomously evolved under conflicting objectives (Greenblatt et al., 2024), illustrating safety challenges when
evolution proceeds with minimal external oversight.

Despite these documented impacts, the field lacks standardized metrics for quantifying self-directedness in
evolution. To enable fair comparison, we recommend transparently reporting three aspects of the evolu-
tion process. (1) specify whether evolution strategies and task sequences are predetermined, procedurally
sampled, or autonomously generated by the agent; (2) Document the source of feedback signals, indicat-
ing whether they come from external human labels, rule-based evaluators, or self-generated reflection; (3)
Report the frequency of external interventions in the evolution process. Clearly documenting the degree of

39

Published in Transactions on Machine Learning Research (01/2026)

Table 6: Overview of Agent Evaluation Metrics Across Core Dimensions
Goal Metric Description

Adaptivity

Success Rate by Iteration Steps (Hu et al.,
2024c; Wang et al., 2024j; Zheng et al.,
2025b)

Performance in downstream tasks as a function of the agent’s
interaction history

Adaptation Speed (Wang et al., 2023a)
How quickly an agent reaches a certain performance threshold
or converges to an optimal strategy within a given adaptation
period

Retention
Forgetting (FGT) (Zheng et al., 2025c)

The average accuracy drop on old tasks after an agent learns
a new one, measuring whether useful experience is successfully
maintained

Backward Transfer (BWT) (Zheng et al.,
2025c)

The average accuracy improvement on old tasks due to the
experience gained from new tasks

Generalization
Aggregate Performance (Liu et al., 2023b;
Sun et al., 2023)

Mean success rates or other performance indicators across
multi-domain test suites to gauge overall proficiency

Out-of-Domain (OOD) Performance (Hu
et al., 2024b; Peng et al., 2025) The agent’s performance in held-out task distributions

Efficiency

Token Consumption (Hu et al., 2024a) Computational overhead in reasoning and generation steps
Time Expenditure (Lu et al., 2024b) Total duration required for task completion
Number of Steps (Wang et al., 2023a) Minimal actions needed to accomplish objectives

Tool Productivity (Wang et al., 2025h) The ratio between task benefit (e.g., answer accuracy) and tool
usage cost (e.g., number of tool calls)

Safety

Safety Score (Zhang et al., 2024i) Proportion of test cases where agent behavior meets predefined
safety criteria

Harm Score (Andriushchenko et al., 2024) Graded assessment of harmful outputs based on violation
severity

Completion Under Policy (CuP) (Levy
et al., 2024) Task success rate while complying with specified constraints

Risk Ratio (Levy et al., 2024) Frequency of policy violations per interaction opportunity
Refusal Rate (Zhang et al., 2024b; An-
driushchenko et al., 2024) Percentage of tasks declined due to safety concerns

Leakage Rate (Shao et al., 2024a) Incidence of unintended sensitive information disclosure

autonomous control is essential for interpreting performance claims, as gains may reflect true self-evolution
capability or extensive external guidance.

Such trajectory-centric evaluation aligns with the core objective of assessing self-evolving agents: measuring
not just what they achieve, but how autonomously they learn to evolve.

7.2 Evaluation Paradigm

The evaluation of self-evolving agents, given their continuous learning paradigm, necessitates a multi-faceted
approach that extends beyond traditional static assessments. Current evaluation paradigm can be broadly
categorized based on the temporal scope of the assessment: Static Assessment, Short-horizon Adaptive
Assessment, and Long-horizon Lifelong Learning Ability Assessment. Each category addresses
different aspects of an agent’s evolving capabilities, from its instantaneous performance to its long-term
learning trajectory. Terminology note. Here, “continuous” refers to system-level self-evolution (changes in
policies, memories, skills, tools, or procedures across episodes), not necessarily model-parameter continual
learning. Our evaluation therefore traces trajectories across interaction episodes and evolving environments,
independent of whether weights are updated.

40

Published in Transactions on Machine Learning Research (01/2026)

Table 7: Representative Benchmarks for Evaluating Self-Evolving Agents
Benchmark Name Task Domain Goal Core Metrics Task Quantity Temporal Scope

ScienceAgentBench(Chen et al.,
2024e) Scientific Data Analysis Adaptivity, Efficiency

Valid Execution Rate, Success
Rate, CodeBERTScore, API
Cost

102 Static

MLE-Bench(Chan et al., 2024) ML-Engineering Adaptivity – 75 Static

DS-Bench(Jing et al., 2025) Data Science Adaptivity
Task Success Rate, Cost, In-
ference Time, Competition-level
Accuracy

540 Static

SWE-bench(Jimenez et al., 2023) Software Engineering Adaptivity Pass Rate 2,294 Static
OSWorld(Xie et al., 2024) Computer-Use / GUI Adaptivity Success Rate 369 Static

Mobile-Eval-E(Wang et al., 2025o) Computer-Use / GUI Adaptivity, Efficiency Action Accuracy, Reflection Ac-
curacy, Termination Error 25 Static, Short-horizon

WebShop(Yao et al., 2022) Web Search / Browse Adaptivity Success Rate 12,087 Static
WebArena(Zhou et al., 2023) Web Search / Browse Adaptivity Success Rate 812 Static
WebWalkerQA(Wu et al., 2025) Web Search / Browse Adaptivity, Efficiency Accuracy, Action Count 680 Static
ST-WebAgentBench(Levy et al.,
2024) Web Search / Browse Safety Completion under Policy 235 Static

xbench(Chen et al., 2025f) Web Search / Browse Adaptivity LLM-Judge Score 100 Static
BrowseComp(Wei et al., 2025b) Web Search / Browse Adaptivity Accuracy 1,266 Static
Agent-SafetyBench(Zhang et al.,
2024i) General Safety Safety Score 20,000 Static

LifelongAgentBench(Zheng et al.,
2025b) General Adaptivity, Retention,

Generalization Success Rate 1396 Long-horizon

AgentBench(Liu et al., 2023b) General Adaptivity, Generaliza-
tion

Success Rate, F1, Reward, Game
Progress 1360 Static

GAIA(Mialon et al., 2023) General Adaptivity Accuracy 466 Static
TheAgentCompany(Xu et al.,
2024b) General Adaptivity, Efficiency Completion Score, Steps, Cost

per Instance 175 Static

EvaLearn(Dou et al., 2025) General Adaptivity, Efficiency
Accuracy, Slope, Position of 1st
solution, Num of consecutive so-
lutions

648 Long-horizon

PlanBench(Valmeekam et al., 2023) Planning Adaptivity Accuracy ∼26,250 Static, Short-horizon
Natural Plan(Zheng et al., 2024a) Planning Adaptivity Exact Match 3,600 Static

ACPBench(Kokel et al., 2025) Planning Adaptivity, Generaliza-
tion Accuracy 3,720 Static

AppBench (Wang et al., 2024b) Planning Adaptivity Success Rate, F1 800 Static
ToolBench(Qin et al., 2023) Tool Usage Adaptivity Pass Rate, Win Rate 126,486 Static
ToolSandbox(Lu et al., 2024a) Tool Usage Adaptivity Similarity Score 1,032 Static
Seal-Tools(Wu et al., 2024) Tool Usage Adaptivity Accuracy, P/R/F1 14,076 Static
API-Bank(Li et al., 2023) Tool Usage Adaptivity Accuracy, ROUGE 4,125 Static
T-Eval(Chen et al., 2023) Tool Usage Adaptivity Domain-Specific Score 23,305 Static
τ -Bench(Yao et al., 2024) Tool Usage Adaptivity Pass^k 165 Static
AceBench(Chen et al., 2025a) Tool Usage Adaptivity Accuracy 2,000 Static
LTMBenchmark(Castillo-Bolado
et al., 2024) Agent Memory Retention, Efficiency Score, Accuracy, GoodAI LTM

Score, Speed, Cost, Verbosity 30 Long-horizon

StoryBench(Wan & Ma, 2025) Agent Memory Retention, Efficiency

Accuracy, First-Try Accuracy,
Longest Corr, Retry Count,
Runtime Cost, Token Consump-
tion

311 scene nodes,
86 choice nodes

Short-horizon, Long-
horizon

MemoryAgentBench(Hu et al.,
2025) Agent Memory Adaptivity

SubEM, Recall, ROUGE F1, Ac-
curacy, Recall@5, Model-based
Acc/F1

2200 Static, Short-horizon

MultiAgentBench(Zhu et al., 2025) Multi-Agent Collaboration Adaptivity
KPI, Text-Based Score, Commu-
nication Score, Planning Score,
Coordination Score

100 Static

SwarmBench(Ruan et al., 2025) Multi-Agent Collaboration Adaptivity Perspective-specific Metrics 5 Short-horizon

7.2.1 Static Assessment

Static assessment evaluates the instantaneous performance of self-evolving agents at a specific point in
time. Although these agents are designed for continuous improvement, static methods remain crucial for
establishing baseline performance, comparing different agent architectures on fixed task sets, or evaluating
capabilities after discrete training phases. This approach aligns with conventional AI evaluation, focusing
on immediate performance in fixed environments. While useful for assessing generalization in an “in-domain
evolving, out-of-domain evaluation” paradigm, static assessment inherently does not capture the dynamic,
continuous learning, or long-term evolutionary aspects central to self-evolving agents.

For evaluating an agent’s general capabilities at a given moment, standard benchmarks designed for static
AI systems are often employed. These benchmarks offer diverse task domains and test various core agent
competencies, providing a snapshot of an agent’s proficiency before or at specific stages of its evolution.
These assessments can be systematically categorized into External Task-Solving Evaluation and In-
ternal Agent Components Evaluation, where External Task-Solving Evaluation measures end-to-end
performance in completing domain-specific or cross-domain tasks, and Internal Capability Evaluation fo-
cuses on fundamental components in the agent, including planning, tool utilization, memory management,
multi-agent coordination, etc.

41

Published in Transactions on Machine Learning Research (01/2026)

Table 8: Goal-to-benchmark mapping with limitations and coverage gaps.
Goal Benchmarks Limitations Coverage Gaps

Adaptivity

SWE-bench, We-
bArena, MLE-Bench,
ScienceAgentBench,
GAIA

Restricted programming languages and exe-
cution time limits (Chen et al., 2024e); Sim-
plified problem specifications vs. authentic
R&D ambiguity (Chan et al., 2024); Weak
sustained reasoning and decision-making (Liu
et al., 2023b)

Open-ended exploration
without predetermined ob-
jectives; Long-horizon adap-
tation under non-stationary
distributions

Retention
LifelongAgentBench,
LTMBenchmark, Memo-
ryAgentBench

Persistent challenges in dynamic memory and
long-range consistency (Hu et al., 2025); Re-
play buffer trade-offs with context overflow
(Zheng et al., 2025b); Limited robustness test-
ing due to costs (Castillo-Bolado et al., 2024)

Episodic designs reset state
between tasks; No retention
with safety constraints

Generalization
AgentBench, GAIA,
TheAgentCompany,
MLE-Bench

Progressive task obsolescence from algorith-
mic advances (Chan et al., 2024); Training
data contamination risks (Chan et al., 2024)

Temporal robustness under
distribution drift; Adversarial
co-evolutionary assessment

Efficiency MLE-Bench, TheAgent-
Company

High resource demands limit accessibility
(Chan et al., 2024); Cost constraints prevent
baseline collection (Xu et al., 2024b)

No enforced budgets dur-
ing evolution; Multi-objective
constraints absent

Safety Agent-SafetyBench,
SwarmBench

Inadequate tool robustness and risk awareness
(Zhang et al., 2024i); Local-global coordina-
tion disconnect (Ruan et al., 2025)

Static evaluation only; No
long-horizon safety drift
tracking; Co-evolutionary
safety unexplored

External Task-Solving Evaluation This category assesses an agent’s end-to-end proficiency in complet-
ing tasks across various real-world or simulated environments. In scientific data analysis and machine
learning engineering, benchmarks like ScienceAgentBench (Chen et al., 2024e) and MLE-Bench (Chan
et al., 2024) test agents’ ability to generate and execute code for data analysis and solve Kaggle-style prob-
lems. For web search/browsing, environments such as WebShop (Yao et al., 2022), WebArena (Zhou
et al., 2023), X-WebAgentBench (Wang et al., 2025j), Mind2Web (Deng et al., 2023), and BrowseComp
(Wei et al., 2025b) simulate realistic web interactions, complex browsing scenarios, and task completion
under security constraints. In software engineering, the SWE-bench series (Jimenez et al., 2023; Ope-
nai, 2024; Aleithan et al., 2024; Yang et al., 2024) uses real GitHub issues to assess agents’ code repair
capabilities. For computer-use interactions, OSWorld (Xie et al., 2024) offers a unified environment
for open-ended tasks involving various desktop and web applications. Specialized domains like marketing
also feature benchmarks such as xbench (Chen et al., 2025f). Beyond specific domains, generalist agent
benchmarks like AgentBench (Liu et al., 2023b), GAIA (Mialon et al., 2023), and TheAgentCompany (Xu
et al., 2024b) evaluate broad problem-solving abilities across multiple knowledge domains and professional
tasks, simulating real-world demands on general AI assistants.

Internal Agent Components Evaluation Beyond end-to-end task completion, assessing an agent’s
underlying core competencies is crucial. These benchmarks evaluate fundamental capabilities that contribute
to an agent’s overall intelligence and self-evolutionary potential. As for Planning, benchmarks such as
PlanBench (Valmeekam et al., 2023), Natural Plan (Zheng et al., 2024a), AutoPlanBench (Stein et al.,
2025), and ACPBench (Kokel et al., 2025) comprehensively evaluate an agent’s ability to understand dynamic
environments, devise strategies, decompose complex problems, and execute reasoning in various planning
domains. For Tool Usage, simple benchmarks like ToolAlpaca (Tang et al., 2023) and ToolBench (Qin
et al., 2023) test basic selection and parameter mapping, while more complex ones like ToolSandbox (Lu
et al., 2024a), Seal-Tools (Wu et al., 2024), API-Bank (Li et al., 2023), T-Eval (Chen et al., 2023), τ -
Bench (Yao et al., 2024), AceBench (Chen et al., 2025a) simulate real-world scenarios involving multi-turn
interactions, implicit state dependencies, and nested calls. Memory Management benchmarks such as
LTMBenchmark (Castillo-Bolado et al., 2024), MemoryAgentBench (Hu et al., 2025), and StoryBench (Wan
& Ma, 2025) evaluate the agent’s capacity to retain and utilize information across multi-turn interactions,

42

Published in Transactions on Machine Learning Research (01/2026)

Table 9: Differences between Short-horizon Adaptive Assessment and Long-horizon Lifelong Learning Ability
Assessment

Dimension Short-horizon Adaptation Assessment Long-horizon Lifelong Learning Ability As-
sessment

Primary Fo-
cus

Immediate learning and incremental improvement
within consistent or slightly varying tasks

Continuous knowledge accumulation and sustained
performance across diverse, evolving tasks and envi-
ronments.

Core Chal-
lenges

Rapid adaptation to minor changes; Improving on
similar, repeated tasks

Mitigating catastrophic forgetting; Robust knowl-
edge transfer; Maintaining efficiency/safety over
time; handling true novelty and significant distribu-
tion shifts

Temporal
Scope

Small number of sequential tasks or iterations over
a short period; Improvement on the same or similar
task types.

Large, potentially unbounded sequence of diverse,
cross-domain tasks; Very long interaction periods re-
quiring integration of new skills with old

dynamic scenarios, and long-range dependencies. For evaluating Multi-Agent Collaboration, benchmarks
such as MultiAgentBench (Zhu et al., 2025) and SwarmBench (Ruan et al., 2025) assess coordination,
communication, and emergent swarm intelligence in both collaborative and competitive settings.

Typical metrics for static assessment include accuracy, success rate, progress rate, completion rate, and
various domain-specific performance indicators (e.g., CodeBertScore, Valid Execution Rate, Pass Rate, F1
score). These metrics provide a singular performance score for an isolated invocation or a fixed set of tasks.

7.2.2 Short-Horizon Adaptive Assessment

Short-horizon adaptations extend beyond static evaluations by assessing an agent’s ability to adapt and
improve over a relatively short period or a limited number of interactions. The agent might improve per-
formance on the same task instance with more attempts, or adapt to new instances of the same task type.
This category focuses on capturing the capacity of the self-evolving agent for immediate adaptability and
incremental learning within a relatively consistent or slightly varying task distribution. These evaluation
schemes can be broadly categorized into two ways: (1) augment traditional benchmarks with a temporal
dimension, and (2) specially design benchmarks and metrics that can inherently support Short-Horizon
dynamic learning.

Augmented Traditional Benchmarks Many studies leverage existing benchmarks but introduce a new
dimension to track performance over time. This typically involves analyzing performance as a function of the
number of iterations, steps, or examples. For example, ADAS (Hu et al., 2024c) evaluated the held-out test
accuracy with the number of agent system iterations on the ARC benchmark (Chollet, 2019); AWM (Wang
et al., 2024j) studied the cumulative success rate over the process of online evaluation under WebArena map
test split (Zhou et al., 2023), using a number of examples to mark the evolution progress; WebEvolver (Fang
et al., 2025b) studied the success rate with self-improving iterations under Mind2web-Live (Pan et al., 2024).
This approach allows for tracking the Adaptivity of the agent within a confined scope.

Benchmarks with Built-in Dynamic Evaluation Some benchmarks are designed with short-horizon
dynamic learning in mind. MemoryAgentBench (Hu et al., 2025), for example, includes a “Test-Time Learn-
ing” (TTL) dimension that evaluates an agent’s ability to learn new tasks directly from conversation within
a single interaction session. In practice, TTL is evaluated through two types of tasks: Multi-Class Classifica-
tion and Recommendation. In these settings, the agent must utilize previously provided information—such
as labeled examples in context or a long movie-related dialogue history—to perform new tasks like map-
ping sentences to class labels or recommending relevant movies. This assesses immediate adaptation and
knowledge acquisition during ongoing interaction.

Metrics and Methods for Evaluating Short-Horizon Adaptations The primary metrics and meth-
ods for short-horizon adaptations are designed to quantify Adaptivity. These include: (1) Success Rate

43

Published in Transactions on Machine Learning Research (01/2026)

by Iteration Steps (Hu et al., 2024c; Wang et al., 2024j; Zheng et al., 2025b), which tracks performance
improvements as the agent interacts more with the environment or attempts a task multiple times; (2)
Learning Curve Analysis, which visualizes how performance (e.g., success rate, accuracy) changes over a lim-
ited number of training steps, episodes, or interactions (Hu et al., 2024c; Wang et al., 2024j); (3) Adaptation
Speed (Wang et al., 2023a), which measures how quickly an agent reaches a certain performance threshold
or converges to an optimal strategy within the short horizon.

Short-horizon adaptations are well-suited for evaluating the initial learning capabilities and immediate adapt-
ability of self-evolving agents. They can effectively demonstrate whether an agent can learn from recent
experiences and improve its performance on in-domain tasks. This category is widely used for current self-
evolving agents. However, the limited temporal window makes it challenging to assess long-term knowledge
retention (mitigating catastrophic forgetting) and true lifelong learning capabilities across vastly different or
sequentially presented tasks.

7.2.3 Long-Horizon Lifelong Learning Ability Assessment

Long-horizon lifelong learning ability assessment is crucial for truly assessing self-evolving agents, as they
focus on the agent’s ability to continuously acquire, retain, and reuse knowledge across diverse environments
and over extended periods. As shown in Table 9, it mainly focuses on continuous learning, knowledge
accumulation, and sustained performance across a diverse and potentially ever-changing stream of tasks or
environments over an extended period. This is a nascent but critical area, where unique challenges include
catastrophic forgetting, robust knowledge transfer across disparate tasks, efficient resource management over
extended durations, and mitigating data leakage when continuously evaluating on evolving data distributions.
Specialized benchmarks are emerging to tackle these complexities.

Currently, there are few benchmarks of this type. LTMBenchmark (Castillo-Bolado et al., 2024) is a special-
ized benchmark focusing on long-term memory (LTM) evaluation. It assesses LLM agents’ memory retention
and continual learning through dynamic conversational tests, using interleaved dialogues with controlled dis-
tractions to simulate real-world recall challenges. Key metrics include task accuracy, memory-span-weighted
LTM Score, and efficiency measures (tests/hour, cost) for cross-architecture comparison. LifelongAgent-
Bench (Zheng et al., 2025b) is another pioneering benchmark specifically designed to evaluate agent lifelong
learning. It constructs sequences of interdependent tasks across domains like Database (DB), Operating
System (OS), and Knowledge Graph (KG), requiring agents to progressively build upon previously acquired
skills. This allows for systematic tracking of performance improvement and knowledge retention across a
prolonged learning trajectory. To address the lack of diverse environments for testing generalization, Au-
toEnv (Zhang et al., 2025i) introduces a framework for automatically generating heterogeneous worlds from
factorizable rule distributions. This work also contributes the AUTOENV-36 dataset to systematically mea-
sure an agent’s cross-environment learning and adaptation capabilities. In addition, there is a solution
that constructs a dynamic benchmark through continuously updating benchmark datasets (White et al.,
2024; Yang et al., 2025c) or evolving the benchmark itself by reconstructing original benchmarks to evalu-
ate self-evolving agents, which can alleviate data leakage to some extent (Chen et al., 2025g). Benchmark
Self-Evolving (Wang et al., 2024e), for example, proposes a solution to continuously update the existing
benchmark through iteration. Similarly, the TRACE framework (Guo et al., 2025a) addresses benchmark
saturation by enabling agents to evolve tasks to higher difficulty through test-time exploration. The validity
of these new, more complex tasks is ensured by a "validate-by-reproducing" paradigm, which confirms the
agent’s recorded trajectory is reproducible. Preliminary findings from such dynamic benchmark scenarios
have shown that model performance can degrade as the benchmark evolves, highlighting the difficulty of
continuous adaptation.

Metrics for long-horizon lifelong learning go beyond simple success rates to quantify the agent’s evolving
ability, such as Forgetting (FGT), Backward Transfer (BWT) (Zheng et al., 2025c), and Cost-per-Gain.
Long-term Generalization metrics could involve assessing performance on a continuously evolving set of out-
of-distribution tasks or measuring the breadth of tasks an agent can still perform effectively after prolonged
learning across many domains.

44

Published in Transactions on Machine Learning Research (01/2026)

Table 10: Standardized evaluation protocols
Aspect Short-horizon Long-horizon Work Example for Long-horizon (EvoAgent

(Yuan et al., 2025a))

Goal aligned Adaptivity, efficiency Retention, generalization, efficiency,
long-term safety

Optimizes long-horizon Success Rate (SR) and Ex-
ploration Efficiency (EE) on 67 Minecraft tasks
(five tiers) plus Atari; e.g., Overall SR improves
from 21.80% to 30.29% (relative gain ≈ 105.9%).

State persistence No persistence across tasks; all updates
reset after each episode

Full persistence of model / prompt /
memory / tools across tasks

Maintains a persistent Multimodal Experience Pool
and continual World Model, updating parameters
and experience after each subtask and reusing them
across subsequent tasks without reset.

Dataset structure Fixed benchmark or episodic sampling;
IID or near-IID task variants

Streamed sequences with non-
stationary distributions; versioned
tasks; explicit OOD clusters for trans-
fer

Uses a fixed long-horizon Minecraft benchmark (67
tasks split into Wood/Stone/Iron/Gold/Diamond
tiers) plus Atari as a cross-environment test set;
tasks are pre-defined rather than streamed or ver-
sioned.

Evolution budget Per-task cap Kshort (iterations, tool
calls, tokens, wall-clock)

Stage cap Kstage + cumulative cap
Ktotal; explicit memory/tool growth
policy

Enforces a per-subtask step cap Lmax and matches
DreamerV3’s environment-step budget, reporting
wall-clock of ∼ 2.7 days vs. ∼ 7 days on one A100,
but without explicit formulas for Kstage/Ktotal or a
formal memory/tool growth policy.

Required logging
Per-iteration: seeds, prompts,
model/tool versions, full reason-
ing/action traces, cost breakdown

Above + persistent state checkpoints,
replayable trajectories, scheduled reten-
tion probes, evolution decision logs

Logs each terminated subtask as a trajectory
(states, rewards, completion ratios) into the experi-
ence pool for CL-based sampling and world-model
updates, but does not publish full replayable per-
iteration logs, checkpoints, or scheduled retention
probes.

Primary metrics
Adaptivity: success-by-iteration curves,
AULC; Generalization: within-
distribution transfer

Retention: BWT/FGT, forgetting
curves; Generalization: temporal &
cluster-OOD; Efficiency: Cost-per-
Gain (CPG)

Uses SR and EE per tier plus an Overall aggregate;
e.g., on Gold and Diamond tiers EvoAgent roughly
doubles SR over baselines, but no BWT/FGT or
explicit forgetting curves are reported.

Efficiency metrics Cost-per-Gain (CPG), tokens-per-
success, tool calls, latency per iteration

Cumulative CPG, stage-wise efficiency,
token-drift (tokens/task over time),
memory growth rate

Efficiency is captured by EE and wall-clock (e.g.,
> 6× fewer ineffective steps on average and 2.7
vs. 7 days training), while CPG, token-drift, and
memory-growth statistics are not explicitly re-
ported.

Safety auditing
Per-episode: Safety Score, Harm Score,
Refusal Rate; window-level Leakage
Rate

Long-horizon safety drift tracking; pe-
riodic probes (Safety/Harm/CuP/Risk
Ratio); persistent Leakage Rate across
stages

Relies on an internal self-verification module with
goal-similarity and Lmax to terminate unproductive
subtasks, but does not run external safety bench-
marks or track long-horizon safety drift.

Human-in-loop Human-time + guidance-tokens per
episode; intervention count

Cumulative human-time + guidance-
tokens; stage-wise intervention fre-
quency; intervention-to-success ratio

After initial task specification, training and evalua-
tion are fully autonomous with no human feedback
or labeling, and human-time/guidance-tokens are
effectively 0 (not numerically reported).

Required outputs Learning curve + AULC; per-task sum-
mary table; cost breakdown

Learning/forgetting matrix; stage ta-
bles + long-horizon curves; detailed
cost taxonomy breakdown

Provides SR/EE tables over all tiers and ablations
over planner/control/reflection/world-model mod-
ules, but no learning/forgetting matrices or detailed
cost-taxonomy (tokens/time/tool/memory) break-
downs.

Long-horizon lifelong learning ability assessment is essential for comprehensively evaluating the core promise
of self-evolving agents: their ability to learn continuously, retain knowledge, and generalize effectively over ex-
tended periods. They are critical for assessing Retention, Generalization to truly novel scenarios, and the Effi-
ciency of long-term operation. This area remains a key frontier for research in evaluating self-evolving agents.
Beyond fixed long-horizon streams, an open-ended variant continuously evolves tasks/tools/environments.

7.2.4 Standardized Evaluation Protocols

To address the heterogeneity of existing setups and to make trajectory-centric evaluation reproducible, we
further distill the above considerations into standardized protocols for short-horizon and long-horizon as-
sessment, summarized in Table 10. For short-horizon settings, we assume no cross-task state persistence
and impose a per-task evolution budget Kshort (in iterations, tool calls, tokens, or wall-clock time), require
per-iteration logging of prompts, model/tool versions, full reasoning and action traces, and cost breakdowns,
and report adaptivity via success-by-iteration curves and area-under-learning-curve together with basic effi-
ciency metrics (e.g., tokens-per-success, latency). In contrast, long-horizon protocols assume full persistence

45

Published in Transactions on Machine Learning Research (01/2026)

of model parameters, prompts, memories, and toolsets across tasks, specify both stage-wise and cumulative
evolution budgets (Kstage,Ktotal) alongside explicit memory/tool growth policies, and mandate richer log-
ging: replayable trajectories, persistent checkpoints, scheduled retention probes, evolution decision logs, and
human-in-the-loop statistics to expose the degree of self-directedness. Primary long-horizon metrics then
expand beyond instantaneous success to include retention (FGT/BWT and forgetting curves), temporal and
cluster out-of-distribution generalization, cost-per-gain and efficiency drift over time, as well as long-run
safety indicators such as safety incident rates and policy-compliance under evolving behavior. Our worked
example, EvoAgent (Yuan et al., 2025a), illustrates both the feasibility and current limitations of prac-
tice: it already satisfies key elements of the long-horizon protocol—persistent world-model and experience
updates, explicit per-subtask step caps, and reporting of SR/EE and wall-clock efficiency—but leaves many
recommended axes (e.g., standardized retention metrics, explicit CPG/token-drift, and long-term safety drift
tracking) unreported, highlighting concrete gaps for future self-evolving agent evaluations to close.

7.3 Limitations of Current Evaluation Practices

While previous sections outlines the core evaluation dimensions and their coverage, a broader view reveals
that current practices still leave substantial blind spots and hinder fair comparisons across methods. To
contextualize these limitations, we examine both the capability dimensions that remain under-evaluated and
the factors that complicate apples-to-apples comparison under shared settings.

7.3.1 Underserved Capability Intersections

Long-horizon retention with privacy constraints: No benchmark combines extended memory assess-
ment (as in LTMBenchmark (Castillo-Bolado et al., 2024)) with rigorous safety auditing (as in Agent-
SafetyBench (Zhang et al., 2024i)), leaving open whether agents can maintain personalization across thou-
sands of interactions while guaranteeing zero sensitive information leakage.

Architecture adaptation under operational constraints: Current architecture search methods (e.g.,
AFlow (Zhang et al., 2024c), ADAS (Hu et al., 2024c)) operate offline over extended periods to discover
optimal workflows. No evaluation examines whether agents can autonomously evolve their architecture
selection strategies, learning which topologies work best for different query types, while respecting real-time
operational constraints (millisecond response latencies, per-query token budgets). This requires assessing
not just final architecture quality, but whether the agent’s strategy for choosing or generating architectures
improves persistently through experience under hard resource limits.

Tool ecosystem evolution: Existing tool benchmarks provide fixed APIs; no evaluation captures the self-
directed lifecycle of tool discovery, integration testing, and productivity measurement—capabilities demon-
strated by systems like Alita but absent from standard assessment.

Multi-agent safety under collaborative evolution: SwarmBench (Ruan et al., 2025) identifies coordi-
nation failures at isolated time points; whether these failures amplify or attenuate over extended multi-agent
co-evolution, and whether unsafe behaviors exhibit social contagion when agents learn from each other,
remains unexplored.

7.3.2 Challenges for Fair Comparison

To supplement our discussion of evaluation benchmarks, we provide Table 11, which aligns a represen-
tative subset of self-evolving agents evaluated under partially matched conditions, i.e., similar domains,
benchmarks, and backbone models. This table aims to make explicit how different methods instantiate the
what/when/how dimensions when the surrounding experimental context is held as constant as the litera-
ture allows. However, as the table also makes clear, true apples-to-apples comparison remains infeasible at
present. Existing works differ substantially in (1) reporting practices: key metrics such as latency, cost,
and safety are often omitted or defined inconsistently; (2) evaluation pipelines: prompt formats, rollout
budgets, tool access, and environment configurations vary widely; (3) backbone model choices: even nomi-
nally similar models differ in size, training data, or inference settings; and (4) architectural design: agents
implement distinct control loops, credit-assignment mechanisms, and memory systems that are not directly

46

Published in Transactions on Machine Learning Research (01/2026)

comparable. Because these factors interact with one another, normalizing results across methods would
risk over-interpreting uncontrolled differences. As a result, Table 11 is presented as an illustrative snapshot
rather than a definitive comparison.

Despite these limitations, the table highlights several qualitative trends: methods using richer what struc-
tures (e.g., architecture-level search) and inter-test when mechanisms often achieve stronger performance
in domains where multi-step optimization is feasible, while lightweight intra-test reflection methods tend
to be more cost-efficient but yield smaller gains. The absence of consistent latency/cost/safety reporting
across nearly all methods underscores a key gap that limits broader synthesis. We hope this table serves
as a concrete reference for how current approaches operationalize the what/when/how dimensions under
comparable settings, while simultaneously motivating the need for standardized reporting to support future
apples-to-apples evaluations.

8 Future Direction

8.1 Personalize AI Agents

With the increasing interest in self-evolving agents, deploying personalized agents has become a crucial and
increasingly significant objective for the research community (Zhang et al., 2024h). For instance, in applica-
tions such as chatbots, digital twins, and emotional support dialogues, a key challenge is enabling AI agents
to accurately capture and adapt to users’ unique behavioral patterns or preferences over extended interac-
tions. Existing personalized agents typically depend heavily on labeled data and post-training methodologies
(Cheng et al., 2024). Recent work by Zhang et al. (2025q) proposes a self-generated preference data approach
aimed at rapidly personalizing LLMs. TWIN-GPT Wang et al. (2024h) leverages electronic health records
to create digital twins of patients, enhancing the accuracy of clinical trial outcome predictions. However,
these existing strategies hinge on the critical assumption that LLMs can consistently obtain high-quality,
large-scale user data.

In practical deployment scenarios, the primary challenge remains the cold-start problem: agents need to
progressively refine their personalized understanding, accurately interpret user intentions, and effectively
construct user profiles, even when initial data is limited. Additionally, significant challenges persist in per-
sonalized planning and execution, such as effective long-term memory management, external tool integration,
and personalized generation (ensuring outputs consistently align with individual user facts and preferences)
(Li et al., 2025d). Moreover, it is essential to ensure that self-evolving agents do not inadvertently reinforce or
exacerbate existing biases and stereotypes, highlighting another critical direction for future research. These
governance principles are particularly important as personalized agents continuously evolve and adapt their
memory or decision-making processes. Building upon these governance principles, evaluation frameworks
should also evolve to ensure fairness, accountability, and alignment in personalized settings.

Data governance. Responsible personalization should balance adaptivity with privacy protection. First,
agents ought to adopt data minimization: collect only task-relevant data and surface transparent, re-
vocable controls. Empirically, web-agent benchmarks show that state-of-the-art agents frequently process
sensitive data unnecessarily, motivating minimization-by-default designs (Zharmagambetov et al., 2025).
Complementarily, effective data governance for personalized agents entails deploying on-device person-
alization frameworks that enable local learning from user interactions, together with user-led privacy
mechanisms such as Rescriber that perform on-device redaction and approval prior to any remote data
exchange (Zhou et al., 2025c). To prevent indefinite retention, memory decay and forgetting poli-
cies should support selective deletion and “right-to-be-forgotten”-style unlearning for personalized traces
(Staufer, 2025). Finally, because self-evolution can drift safety or fairness over time, systems should include
bias monitoring and fairness auditing loops that adapt criteria and interventions as the user and context
evolve (Basu & Das, 2025), and guard against misevolution (safety/alignment degradation during evolution)
via continuous checks on memory/tool/workflow updates (Shao et al., 2025).

Evaluation. With the integration of personalized data, evaluation metrics for personalizing self-evolving
agents should extend beyond intrinsic evaluations (e.g., directly assessing personalized generated text quality

47

Published in Transactions on Machine Learning Research (01/2026)

Table 11: Comparative synthesis of some representative self-evolving agents under shared set-
tings. Methods are grouped by domain; repeated entries use “–”. We summarize each method using the
what/when/how taxonomy and report performance. Latency, cost, and safety metrics are not consistently
reported, limiting full apples-to-apples comparisons.
Area Benchmark Base model Method What When How Perf. (%)

code SWE Gemini-1.5-pro Reflexion (Shinn
et al., 2023)

Context / lesson /
reflection

Intra-test (ICL) Reward-based
(textual)

14.3

– – – Learn-by-Interact
(Su et al., 2025)

Context / experi-
ence / reflection

Intra-test (ICL) Reward-based
(textual)

18.7

– – Claude-3.5-
sonnet

Reflexion (Shinn
et al., 2023)

Context / lesson /
reflection

Intra-test (ICL) Reward-based 54.4

– – – Learn-by-Interact
(Su et al., 2025)

Context / experi-
ence

Intra-test (ICL) Reward-based 60.0

– WebArena Gemini-1.5-pro Reflexion (Shinn
et al., 2023)

Context / lesson /
reflection

Intra-test (ICL) Reward-based
(textual)

20.2

– – – Learn-by-Interact
(Su et al., 2025)

Context / experi-
ence

Intra-test (ICL) Reward-based 25.6

web WebArena Claude-3.5-
sonnet

Reflexion (Shinn
et al., 2023)

Context / lesson /
reflection

Intra-test (ICL) Reward-based 40.4

– – – Learn-by-Interact
(Su et al., 2025)

Context / experi-
ence

Intra-test (ICL) Reward-based 48.0

– WebArena-Lite GLM-4-9B DigiRL (Bai et al.,
2024)

Model policy Inter-test (RL) Reward-based
(external env.)

31.5

– – – WebRL (Qi et al.,
2024)

Model policy Inter-test (RL) Reward-based
(external env.)

43.0

– – Llama3.1-8B DigiRL (Bai et al.,
2024)

Model policy Inter-test (RL) Reward-based 30.3

– – – WebRL (Qi et al.,
2024)

Model policy Inter-test (RL) Reward-based 42.4

math GSM8K GPT-4o-mini ADAS (Hu et al.,
2024c)

Architecture /
multi-agent sys-
tem

Inter-test (RL /
SFT hybrid)

Population-based
workflow search

90.5

– – – AFlow (Zhang
et al., 2024c)

Architecture /
multi-agent topol-
ogy

Inter-test Population-based
(MCTS)

90.8

– – – ScoreFlow (Wang
et al., 2025n)

Architecture
/ multi-agent
(query-specific
workflow)

Inter-test Imitation +
preference opti-
mization

94.6

– MATH Gemini-1.5-
pro-002

ADAS (Hu et al.,
2024c)

Architecture /
multi-agent sys-
tem

Inter-test Population-based 80.0

– – – AFlow (Zhang
et al., 2024c)

Architecture /
multi-agent topol-
ogy

Inter-test Population-based 76.0

– – – Mass (Zhang
et al., 2025d)

Architecture / sin-
gle / multi-agent
design search

Inter-test Population-based
evolutionary

84.7

using metrics such as ROUGE (Lin, 2004) and BLEU (Papineni et al., 2002)) or extrinsic evaluations
(e.g., indirect assessments of personalization effects through recommendation systems, classification tasks,
and other specific applications). Traditional personalization evaluation metrics often fail to adequately
capture the evolving dynamics inherent in self-evolving agents. Consequently, future research calls for more
lightweight and adaptive evaluation metrics (Zhang et al., 2024h). Additionally, to better assess self-evolving
personalized agents, there is a clear need for flexible, dynamic benchmarks capable of accurately evaluating
agents’ performance, particularly in managing long-tailed personalization data throughout their self-evolving
processes. We advocate reporting:

48

Published in Transactions on Machine Learning Research (01/2026)

• Personal Adaptation Gain (PAG): improvement per user over k sessions vs. non-personalized
baseline.

• Retention & Forgetting Balance: metrics such as forward/backward transfer and selective-
forgetting efficacy (e.g., reduction in exposure to user facts following deletion requests).

• Privacy–Utility Trade-off: ratio of utility gain to bits of retained personal data; complemented
by a Data Minimization Score (proportion of shared sensitive information only when necessary) in
web-agent scenarios (Zharmagambetov et al., 2025).

• On-device Learning Ratio: proportion of personalization updates or memory writes executed
locally on the user device, potentially with user consent/redaction mechanisms (e.g., as studied in
Rescriber) (Zhou et al., 2025c).

• Bias/Drift Monitors: longitudinal measurement of disparity or safety degradation across user
groups; one might define indices such as Fairness-Drift or Safety-Drift, though standardized versions
remain to be developed (Basu & Das, 2025; Shao et al., 2025).

• Longitudinal User Outcomes: tracking session-level satisfaction, goal-completion trends or
multi-phase development trajectories (e.g., virtual “campus-life” agents in benchmarks like StuLife)
(Cai et al., 2025).

8.2 Generalization

Self-evolving agents also face considerable challenges in achieving robust generalization across diverse task
domains and environments. The fundamental tension between specialization and broad adaptability remains
one of the most pressing challenges in the field, with significant implications for scalability, knowledge
transfer, and collaborative intelligence.

Scalable Architecture Design: A central challenge in developing generalizable self-evolving agents lies in
designing scalable architectures capable of maintaining performance as complexity and scope increase. Cur-
rent agent systems frequently encounter a trade-off between specialization and generalization, where agents
optimized for specific tasks struggle to transfer their learned behaviors to novel environments (Chen et al.,
2024d). Additionally, the computational cost associated with dynamic reasoning in LLM-based agents grows
non-linearly with the complexity of adaptation mechanisms, imposing practical constraints on achievable
generalization within realistic resource limitations (Kim et al., 2025). Recent studies indicate that self-
evolving agents equipped with reflective and memory-augmented capabilities show substantial promise for
enhancing generalization, particularly in smaller, resource-constrained models (Liang et al., 2024). Nonethe-
less, these approaches continue to encounter limitations when addressing complex real-world scenarios that
require sustained adaptation over prolonged periods.

Cross-Domain Adaptation: Achieving generalization across domains represents a critical frontier for
self-evolving agents. Current methods frequently rely on domain-specific fine-tuning, restricting agents’
adaptability to new environments without retraining (Belle et al., 2025). Recent advancements in test-time
scaling and inference-time adaptation provide promising pathways for enhancing cross-domain generalization
(Snell et al., 2024; Zhang et al., 2025l). These techniques allow agents to dynamically allocate additional
reasoning capacity to unfamiliar scenarios by scaling computational resources during inference, avoiding the
need for increasing model parameters. Additionally, meta-learning strategies have demonstrated consider-
able potential in facilitating rapid few-shot adaptation to new domains (Bilal et al., 2025). However, their
effectiveness critically depends on an agent’s capability to accurately determine when supplementary com-
putational resources are necessary and efficiently distribute these resources across diverse reasoning tasks.

Continual Learning and Catastrophic Forgetting: Self-evolving agents must continuously adapt to
new tasks while retaining previously acquired knowledge, a challenge exacerbated by the catastrophic for-
getting phenomenon (Ghosal et al., 2024) of continual memorization (Chen et al., 2024b) inherent in LLMs
(Bell et al., 2025). The stability-plasticity dilemma becomes particularly acute in foundation model-based

49

Published in Transactions on Machine Learning Research (01/2026)

agents, where the computational costs of retraining for every new task are prohibitive (Zheng et al., 2025c).
Recent research has explored parameter-efficient fine-tuning methods, selective memory mechanisms, and in-
cremental learning strategies to mitigate catastrophic forgetting while preserving adaptability (Wang et al.,
2024c). Nonetheless, achieving an optimal balance between efficiency and preventing model drift remains a
significant open challenge, especially when agents operate under resource constraints or manage streaming
data with stringent privacy considerations.

Knowledge Transferability: Recent studies have identified critical limitations in knowledge transfer
among AI agents. Shi et al. (2025a) emphasized that knowledge integration and transfer capabilities in
current agents still require significant optimization. In particular, Geng et al. (2025b) found that LLM-
based agents often fail to effectively propagate newly acquired knowledge from interactions to other agents,
restricting their collaborative potential. Furthermore, Vafa et al. (2025) revealed that foundation models
might depend heavily on shallow pattern matching, rather than developing robust and transferable inter-
nal world models. These findings indicate several important future research directions: 1) it is essential to
better understand the conditions under which knowledge acquired by one agent can be reliably generalized
and communicated to others; 2) developing methods to quantify the limitations in agents’ knowledge trans-
ferability could lead to clearer insights into agent collaboration bottlenecks; 3) we need to have an explicit
mechanism that encourage the formation of robust, generalizable world models could significantly improve
the collaborative effectiveness of self-evolving agents.

8.3 Safe and Controllable Self-Evolving Agents

As autonomous AI agents become increasingly capable of learning, evolving, and performing complex tasks
independently, ensuring their safety and controllability has become a paramount concern. Unlike static
systems, the very nature of self-evolution introduces unique and amplified risks that emerge dynamically over
the agent’s lifecycle. These risks are not merely extensions of traditional AI safety issues, such as those arising
from vague user instructions or environmental threats like malicious phishing links (Zhou et al., 2025d), but
are fundamentally tied to the agent’s capacity for autonomous self-modification and adaptation (Shao et al.,
2025; Han et al., 2025). This section delineates the emergent risks unique to self-evolving agents and then
discusses a set of prescriptive guardrails and mitigation strategies for building safer systems.

8.3.1 Emergent Risks in Self-Evolving Systems

Recent research has identified new risks that arise from the autonomous self-improvement process itself.
These risks are not necessarily present in the initial agent but can manifest over time as it evolves. We
categorize these risks along the primary evolutionary pathways of an agent: the backbone model, memory,
and tools.

• Uncontrolled behavior drift in model evolution: A core risk is that an agent’s goals and
values may drift away from original human intent as it evolves. This is exacerbated by the learning
uncertainty inherent in self-evolution, especially when operating in ambiguous contexts (Anwar
et al., 2024; Bagdasarian et al., 2024). A phenomenon termed "misevolution" (Shao et al., 2025)
can occur during model evolution. For instance, self-training on agent-generated data can lead to
"catastrophic forgetting" of safety alignment, causing agents to execute harmful instructions they
previously refused, such as interacting with malicious content they were trained to avoid (Shao et al.,
2025; Hahm et al., 2025).

• Deployment-time reward hacking in memory evolution: Open-ended evolution is susceptible
to reward hacking. Agents may find and exploit loopholes in self-defined reward signals or internal
feedback. This is particularly evident in memory evolution, where the accumulation of experience
can inadvertently induce unsafe behaviors. For example, an agent might learn to issue unnecessary
refunds because its memory correlates them with high satisfaction ratings (Shao et al., 2025), and
such risks can be further exacerbated by poorly designed memory modules (Wang et al., 2025b). A
related concept is the "Alignment Tipping Process (ATP)," where an initially aligned agent discovers

50

Published in Transactions on Machine Learning Research (01/2026)

that misaligned behaviors are more rewarding, causing its policy to "tip" and abandon its initial
constraints (Han et al., 2025).

• Safety of self-created and ingested external tools: The ability of agents to autonomously
generate and use tools introduces significant safety issues. Agents may spontaneously create tools
with security vulnerabilities or fail to identify malicious code when ingesting external tools (Shao
et al., 2025). This turns the agent into a potential vector for security threats. A major challenge
here is that agents still struggle to differentiate between necessary and irrelevant sensitive informa-
tion (Zharmagambetov et al., 2025), potentially leading them to create tools that leak private data.
Furthermore, as agents improve, they may become more adept at creating and executing offensive
cyber-operations, a risk that requires dynamic assessment (Wei et al., 2025a).

8.3.2 Prescriptive Guardrails and Mitigation Strategies

Addressing the emergent risks of self-evolution requires moving beyond descriptive warnings to implement-
ing prescriptive, actionable guardrails. While early frameworks like TrustAgent have explored multi-stage
strategies (i.e., pre-, in-, and post-planning) to foster safer behavior (Hua et al., 2024), the unique dynamics
of self-evolution call for a more comprehensive "safety lifecycle" approach. Future research and development
are expected to focus on integrating safeguards at every stage of the agent’s operation.

• Sandboxing and verification for tool and code execution: To mitigate risks from tool use, all
agent-generated or externally-sourced tools must be executed in a strictly sandboxed environment.
Furthermore, automated safety verification, such as static analysis and vulnerability scanning, should
be a default step before a new tool is integrated (Labs, 2025). For securing tool interaction protocols,
runtime defense pipelines (Xing et al., 2025; Wang et al., 2025a) provide layered detection against
threats like tool poisoning and prompt injection.

• Audit trails and failsafes for self-modification: Any self-modification must be accompanied by
a comprehensive audit trail. This ensures that changes are traceable and reversible. Implementing
rollback and failsafe patterns is critical, allowing the system to revert to a previously known safe
state if undesirable behavior is detected. For memory, proactive defenses like A-MemGuard propose
dual-memory structures and consensus-based validation to identify and isolate "poisoned" memories
before they corrupt behavior (Wang et al., 2025b; Wei et al., 2025d).

• Continuous monitoring and red-teaming for long-horizon drift: Static, pre-deployment
safety evaluations are insufficient. Continuous monitoring of agent behavior is necessary to detect
long-horizon value drift. This can be achieved through red-teaming scenarios designed to test for
emergent misalignment. For GUI agents, hybrid validation frameworks like OS-Sentinel combine
formal verifiers with contextual judges to provide robust, in-workflow safety monitoring (Sun et al.,
2025b).

• Approval gates and privacy-protection measures: For high-stakes actions, approval gates
requiring human-in-the-loop confirmation should be implemented. Furthermore, given that agents
struggle with handling sensitive data (Zharmagambetov et al., 2025), robust privacy-protection
measures are necessary to prevent leakage and ensure a balanced and secure deployment.

To aid practitioners, we synthesize these strategies into a compliance checklist for deploying self-evolving
agents (See Table 12). In conclusion, deploying reliable, controllable, and safe self-evolving systems is a
critical and active area of research. Future work must move towards building a comprehensive safety-
aware evolutionary lifecycle, integrating robust verification, continuous monitoring, and adaptive guardrails
to ensure that the agents remain aligned with human values and safety constraints as they become more
autonomous.

8.4 Ecosystems of Multi-Agents

Multi-agent self-evolving systems face several unique challenges that require further exploration.

51

Published in Transactions on Machine Learning Research (01/2026)

Table 12: Compliance checklist for deploying self-evolving agents
Category Compliance Checklist for Deployment
Tool & Code
Safety

□ Strict Sandboxing: All tools and agent-generated code execute in an isolated envi-
ronment with no default access to host files, network, or sensitive processes.
□ Resource Limiting: The sandbox imposes strict limits on CPU, memory, and execu-
tion time to prevent denial-of-service or runaway processes.
□ Automated Security Verification: A mandatory pipeline performs static analysis
(e.g., SAST) and vulnerability scanning on all new or modified tools before use.
□ Dependency Scanning: The verification pipeline checks all third-party libraries and
dependencies for known vulnerabilities.
□ Risk-Based Access Control: Tools are classified by risk level, and high-risk capa-
bilities (e.g., file system writes, API calls) require explicit approval via an approval gate.

Self-Modification
Control

□ Immutable Audit Trail: All self-modifications (to model weights, memory, toolset,
or core logic) are logged with details on the trigger, changes made, and outcome.
□ Version Control for Safe States: The agent’s state (model, memory, tools) is ver-
sioned, with known "safe" versions clearly tagged.
□ Tested Rollback Mechanism: A reliable, one-click rollback mechanism exists to
revert the agent to a previously known safe version. This mechanism is regularly tested.
□ Pre-Update Safety Validation: Before a self-modified model is deployed, it is au-
tomatically evaluated against a "golden dataset" of safety-critical prompts to prevent
catastrophic forgetting of alignment.

Behavioral &
Alignment Safety

□ Continuous Runtime Monitoring: An active monitoring system tracks agent ac-
tions, flagging deviations from expected behavior, anomalous resource usage, or signs of
unsafe actions.
□ Reward Hacking Detection: Key metrics are monitored for signs of reward hacking
(e.g., exploiting loopholes in reward functions). Alerts are configured for sharp, unex-
plained metric changes.
□ Automated Red-Teaming: A continuous red-teaming framework is active, program-
matically generating and running test scenarios to probe for emergent misalignment, value
drift, and new failure modes.
□ Goal Guardrails: Strict constraints are placed on the agent’s ability to modify its
own fundamental goals or safety constraints. Any such change requires human review.

Data Privacy &
Memory Integrity

□ Proactive Memory Defense: Mechanisms like dual-memory structures or consensus
validation are in place to detect, isolate, and neutralize potentially "poisoned" or harmful
memories before they influence behavior.
□ PII Detection and Sanitization: Automated tools are used to detect and
redact/anonymize Personally Identifiable Information (PII) before it is stored in long-
term memory or used in training.
□ Data Minimization Principle: The agent is configured to only collect and retain
data that is strictly necessary for its tasks, and data retention policies are enforced.
□ Privacy Regulation Compliance: The system is designed to comply with relevant
data privacy regulations (e.g., GDPR, CCPA).

Operational
Controls &
Governance

□ Human-in-the-Loop for Critical Actions: High-stakes actions (e.g., large financial
transactions, data deletion, communication with external users) are gated by a mandatory
human approval step.
□ Clear Incident Response Plan: A documented plan is in place for responding to
safety failures, including steps for immediate shutdown, rollback, and analysis.
□ Centralized Dashboard for Oversight: A dashboard provides human operators
with real-time visibility into the agent’s behavior, state, and active safety alerts.
□ Explainability & Traceability: The system provides clear explanations for why a
particular action was taken, linking it back to specific memories, goals, or model inferences
in the audit trail.

Balancing Individual and Collective Reasoning: Recent studies highlight the difficulty of balancing
independent reasoning with effective group decision-making in multi-agent environments (Chen et al., 2025d;

52

Published in Transactions on Machine Learning Research (01/2026)

Sun et al., 2025a). While collective discussions can significantly enhance diagnostic reasoning, agents often
risk becoming overly reliant on group consensus, thereby diminishing their independent reasoning capabil-
ities. To mitigate this issue, future research should explore dynamic mechanisms that adjust the relative
weight of individual versus collective input. Such an approach would help prevent decision-making from being
dominated by a single or a small subset of agents, ultimately promoting robust, balanced consensus-building
and innovation. Additionally, developing explicit knowledge bases and standardized updating methodolo-
gies—leveraging agents’ successes and failures—could further improve the agents’ self-evolution abilities and
strengthen their individual reasoning contributions within collaborative contexts.

Efficient Frameworks and Dynamic Evaluation: Another crucial challenge lies in developing efficient
algorithms and adaptive frameworks that allow agents to collaborate effectively while preserving their in-
dividual decision-making strengths. (Hu et al., 2024d) introduced adaptive reward models and optimized
dynamic network structures, which can significantly enhance cooperative self-improvement among agents.
However, a major gap identified by (Sun et al., 2025a) is the absence of clear mechanisms for agents to dynam-
ically manage and update their knowledge. Addressing this issue will require new frameworks that explicitly
integrate continuous learning and adaptive collaboration mechanisms. Furthermore, existing benchmarks
for multi-agent evaluation are predominantly static (Zhu et al., 2025) and therefore fail to capture the long-
term adaptability and continuous evolution of agent roles. Future benchmarks should incorporate dynamic
assessment methods, reflecting ongoing adaptation, evolving interactions, and diverse contributions within
multi-agent systems, thus providing more comprehensive evaluation metrics for self-evolving agents.

9 Conclusion

The emergence of self-evolving agents marks a paradigm shift in artificial intelligence, moving beyond static,
monolithic models toward dynamic agentic systems capable of continual learning and adaptation. As lan-
guage agents are increasingly deployed in open-ended, interactive environments, the ability to evolve, adapt-
ing reasoning processes, tools, and behaviors in response to new tasks, knowledge, and feedback, has become
essential for building the next generation of agentic systems. In this survey, we provide the first compre-
hensive and systematic review of self-evolving agents, organized around three foundational questions: what
aspects of an agent should evolve, when evolution should occur, and how to implement evolutionary processes
effectively. Moreover, we discuss several methods for evaluating the progress of self-evolving agents in terms
of metrics and benchmarks, followed by corresponding applications and future directions. The evolution of
these agents will require significant advancements in models, data, algorithms, and evaluation practices, and
so on. Addressing issues such as catastrophic forgetting, human preference alignment during autonomous
evolution, and the co-evolution of agents and environments will be key to unlocking agents that are not only
adaptive but also trustworthy and aligned with human values. We hope this survey provides a foundational
framework for researchers and practitioners to design, analyze, and advance the development and progress
of self-evolving agents.

References
Emre Can Acikgoz, Cheng Qian, Heng Ji, Dilek Hakkani-Tür, and Gokhan Tur. Self-improving llm agents

at test-time. arXiv preprint arXiv:2510.07841, 2025.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent S2: A composi-
tional generalist-specialist framework for computer use agents. arXiv preprint arXiv:2504.00906, 2025.

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of model
merging recipes. Nature Machine Intelligence, 7(2):195–204, 2025.

Reem Aleithan, Haoran Xue, Mohammad Mahdi Mohajer, Elijah Nnorom, Gias Uddin, and Song Wang.
Swe-bench+: Enhanced coding benchmark for llms. arXiv preprint arXiv:2410.06992, 2024.

Mohammad Almansoori, Komal Kumar, and Hisham Cholakkal. Self-evolving multi-agent simulations for
realistic clinical interactions. arXiv preprint arXiv:2503.22678, 2025a.

53

Published in Transactions on Machine Learning Research (01/2026)

Mohammad Almansoori, Komal Kumar, and Hisham Cholakkal. Self-evolving multi-agent simulations for
realistic clinical interactions. arXiv preprint arXiv:2503.22678, 2025b.

Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4-5):185–196,
1993.

Maksym Andriushchenko, Alexandra Souly, Mateusz Dziemian, Derek Duenas, Maxwell Lin, Justin Wang,
Dan Hendrycks, Andy Zou, Zico Kolter, Matt Fredrikson, et al. Agentharm: A benchmark for measuring
harmfulness of llm agents. arXiv preprint arXiv:2410.09024, 2024.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase, Ekdeep Singh
Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational challenges in assuring alignment
and safety of large language models. arXiv preprint arXiv:2404.09932, 2024.

Leonhard Applis, Yuntong Zhang, Shanchao Liang, Nan Jiang, Lin Tan, and Abhik Roychoudhury. Unified
software engineering agent as ai software engineer. arXiv preprint arXiv:2506.14683, 2025.

Henrique Assumpção, Diego Ferreira, Leandro Campos, and Fabricio Murai. Codeevolve: An open source
evolutionary coding agent for algorithm discovery and optimization. arXiv preprint arXiv:2510.14150,
2025.

Ruhana Azam, Aditya Vempaty, and Ashish Jagmohan. Reflection-augmented planning (ReAP): Memory
for web navigation agents. arXiv preprint arXiv:2506.02158, 2025.

Yaniv Azaria and Moshe Sipper. Gp-gammon: Using genetic programming to evolve backgammon players.
In Maarten Keijzer, Andrea Tettamanzi, Pierre Collet, Jano van Hemert, and Marco Tomassini (eds.),
Genetic Programming, pp. 132–142, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-
540-31989-4.

Eugene Bagdasarian, Ren Yi, Sahra Ghalebikesabi, Peter Kairouz, Marco Gruteser, Sewoong Oh, Borja Balle,
and Daniel Ramage. Airgapagent: Protecting privacy-conscious conversational agents. In Proceedings of
the 2024 on ACM SIGSAC Conference on Computer and Communications Security, pp. 3868–3882, 2024.

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl: Training
in-the-wild device-control agents with autonomous reinforcement learning. Advances in Neural Information
Processing Systems, 37:12461–12495, 2024.

Debabrota Basu and Udvas Das. The fair game: Auditing & debiasing ai algorithms over time. In Cambridge
Forum on AI: Law and Governance, volume 1, pp. e27. Cambridge University Press, 2025.

James Bell, Luca Quarantiello, Ethan N Coleman, Ling Li, Meng Li, et al. The future of continual learning
in the era of foundation models: Three key directions. arXiv preprint arXiv:2506.03320, 2025.

Nikolas Belle, Dakota Barnes, Alfonso Amayuelas, Ivan Bercovich, Xin Eric Wang, and William Wang.
Agents of change: Self-evolving llm agents for strategic planning. arXiv preprint arXiv:2506.04651, 2025.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings
of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling test-time
compute for enhancing llm reasoning. arXiv preprint arXiv:2412.09078, 2024.

Areeb Bilal, Muhammad Abdul Mohsin, Muhammad Umer, Muhammad Arslan Khan Bangash, et al. Meta-
thinking in llms via multi-agent reinforcement learning: A survey. arXiv preprint arXiv:2504.14520, 2025.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu, Justin
Wagle, Kazuhito Koishida, et al. Windows Agent Arena: Evaluating multi-modal OS agents at scale.
arXiv preprint arXiv:2409.08264, 2024.

54

Published in Transactions on Machine Learning Research (01/2026)

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT’2010: 19th International Conference on Computational StatisticsParis France, August 22-27, 2010
Keynote, Invited and Contributed Papers, pp. 177–186. Springer, 2010.

Stefan Braun, Daniel Neil, and Shih-Chii Liu. A curriculum learning method for improved noise robustness
in automatic speech recognition. In 2017 25th European Signal Processing Conference (EUSIPCO), pp.
548–552. IEEE, 2017.

Yuxuan Cai, Yipeng Hao, Jie Zhou, Hang Yan, Zhikai Lei, Rui Zhen, Zhenhua Han, Yutao Yang, Junsong
Li, Qianjun Pan, et al. Building self-evolving agents via experience-driven lifelong learning: A framework
and benchmark. arXiv preprint arXiv:2508.19005, 2025.

David Castillo-Bolado, Joseph Davidson, Finlay Gray, and Marek Rosa. Beyond prompts: Dynamic conver-
sational benchmarking of large language models. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
twFlD3C9Rt.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio Starace,
Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning agents on
machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai Wang,
Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool usage? arXiv preprint
arXiv:2501.12851, 2025a.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision without
process. arXiv preprint arXiv:2405.03553, 2024a.

Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang Xie. Sft
or rl? an early investigation into training r1-like reasoning large vision-language models. arXiv preprint
arXiv:2504.11468, 2025b.

Howard Chen, Jiayi Geng, Adithya Bhaskar, Dan Friedman, and Danqi Chen. Continual memorization of
factoids in language models. arXiv preprint arXiv:2411.07175, 2024b.

Jiaqi Chen, Bang Zhang, Ruotian Ma, Peisong Wang, Xiaodan Liang, Zhaopeng Tu, Xiaolong Li, and
Kwan-Yee K Wong. Spc: Evolving self-play critic via adversarial games for llm reasoning. arXiv preprint
arXiv:2504.19162, 2025c.

Kai Chen, Xinfeng Li, Tianpei Yang, Hewei Wang, Wei Dong, and Yang Gao. Mdteamgpt: A self-
evolving llm-based multi-agent framework for multi-disciplinary team medical consultation. arXiv preprint
arXiv:2503.13856, 2025d.

Kai Chen, Ji Qi, Jing Huo, Pinzhuo Tian, Fanyu Meng, Xi Yang, and Yang Gao. A self-evolving frame-
work for multi-agent medical consultation based on large language models. In ICASSP 2025-2025 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2025e.

Kaiyuan Chen, Yixin Ren, Yang Liu, Xiaobo Hu, Haotong Tian, Tianbao Xie, Fangfu Liu, Haoye Zhang,
Hongzhang Liu, Yuan Gong, et al. xbench: Tracking agents productivity scaling with profession-aligned
real-world evaluations. arXiv preprint arXiv:2506.13651, 2025f.

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. When
machine unlearning jeopardizes privacy. In Proceedings of the 2021 ACM SIGSAC conference on computer
and communications security, pp. 896–911, 2021.

Qizhou Chen, Taolin Zhang, Xiaofeng He, Dongyang Li, Chengyu Wang, Longtao Huang, and Hui Xue.
Lifelong knowledge editing for llms with retrieval-augmented continuous prompt learning. arXiv preprint
arXiv:2405.03279, 2024c.

55

https://openreview.net/forum?id=twFlD3C9Rt
https://openreview.net/forum?id=twFlD3C9Rt

Published in Transactions on Machine Learning Research (01/2026)

Simin Chen, Yiming Chen, Zexin Li, Yifan Jiang, Zhongwei Wan, Yixin He, Dezhi Ran, Tianle Gu, Haizhou
Li, Tao Xie, et al. Recent advances in large langauge model benchmarks against data contamination:
From static to dynamic evaluation. arXiv preprint arXiv:2502.17521, 2025g.

Weize Chen, Jiarui Yuan, Chen Qian, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Optima: Optimizing
effectiveness and efficiency for llm-based multi-agent system. arXiv preprint arXiv:2410.08115, 2024d.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo, Songyang
Zhang, Dahua Lin, Kai Chen, et al. T-eval: Evaluating the tool utilization capability of large language
models step by step. arXiv preprint arXiv:2312.14033, 2023.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao, Chen
Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language agents for data-driven
scientific discovery. arXiv preprint arXiv:2410.05080, 2024e.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning converts
weak language models to strong language models. arXiv preprint arXiv:2401.01335, 2024f.

Yi Cheng, Wenge Liu, Kaishuai Xu, Wenjun Hou, Yi Ouyang, Chak Tou Leong, Xian Wu, and Yefeng
Zheng. Autopal: Autonomous adaptation to users for personal ai companionship. arXiv preprint
arXiv:2406.13960, 2024.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory. arXiv preprint arXiv:2504.19413, 2025.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Sanjiban Choudhury. Process reward models for llm agents: Practical framework and directions. arXiv
preprint arXiv:2502.10325, 2025.

Yufan Dang, Chen Qian, Xueheng Luo, Jingru Fan, Zihao Xie, Ruijie Shi, Weize Chen, Cheng Yang, Xiaoyin
Che, Ye Tian, et al. Multi-agent collaboration via evolving orchestration. arXiv preprint arXiv:2505.19591,
2025.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing Systems,
36:28091–28114, 2023.

Yihe Deng, Pan Lu, Fan Yin, Ziniu Hu, Sheng Shen, Quanquan Gu, James Y Zou, Kai-Wei Chang, and Wei
Wang. Enhancing large vision language models with self-training on image comprehension. Advances in
Neural Information Processing Systems, 37:131369–131397, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Bidirectional encoder represen-
tations from transformers. arXiv preprint arXiv:1810.04805, 15, 2018.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng
Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected by supervised
fine-tuning data composition. arXiv preprint arXiv:2310.05492, 2023.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Shihan Dou, Ming Zhang, Chenhao Huang, Jiayi Chen, Feng Chen, Shichun Liu, Yan Liu, Chenxiao Liu,
Cheng Zhong, Zongzhang Zhang, Tao Gui, Chao Xin, Wei Chengzhi, Lin Yan, Qi Zhang, Yonghui Wu,
and Xuanjing Huang. Evalearn: Quantifying the learning capability and efficiency of llms via sequential
problem solving, 2025. URL https://arxiv.org/abs/2506.02672.

Yaxin Du, Yuzhu Cai, Yifan Zhou, Cheng Wang, Yu Qian, Xianghe Pang, Qian Liu, Yue Hu, and Siheng
Chen. Swe-dev: Evaluating and training autonomous feature-driven software development, 2025. URL
https://arxiv.org/abs/2505.16975.

56

https://arxiv.org/abs/2506.02672
https://arxiv.org/abs/2505.16975

Published in Transactions on Machine Learning Research (01/2026)

Zhuoyun Du, Lujie Zheng, Renjun Hu, Yuyang Xu, Xiawei Li, Ying Sun, Wei Chen, Jian Wu, Haolei
Cai, and Haohao Ying. Llms can simulate standardized patients via agent coevolution. arXiv preprint
arXiv:2412.11716, 2024.

Zhiyu Fan, Kirill Vasilevski, et al. Swe-effi: Re-evaluating software ai agent system effectiveness under
resource constraints. arXiv preprint arXiv:2509.09853, 2025.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and Tat-
Seng Chua. Alphaedit: Null-space constrained model editing for language models. In The Thirteenth
International Conference on Learning Representations, 2025a.

Tianqing Fang, Hongming Zhang, Zhisong Zhang, Kaixin Ma, Wenhao Yu, Haitao Mi, and Dong Yu.
Webevolver: Enhancing web agent self-improvement with coevolving world model. arXiv preprint
arXiv:2504.21024, 2025b.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm agent
training. arXiv preprint arXiv:2505.10978, 2025a.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm agent
training, 2025b. URL https://arxiv.org/abs/2505.10978.

Yichun Feng, Jiawei Wang, Lu Zhou, and Yixue Li. Doctoragent-rl: A multi-agent collaborative reinforce-
ment learning system for multi-turn clinical dialogue. arXiv preprint arXiv:2505.19630, 2025c.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel. Prompt-
breeder: Self-referential self-improvement via prompt evolution. arXiv preprint arXiv:2309.16797, 2023.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae, and
Honglak Lee. Autoguide: Automated generation and selection of state-aware guidelines for large lan-
guage model agents. arXiv e-prints, pp. arXiv–2403, 2024.

Hang Gao and Yongfeng Zhang. PTR: precision-driven tool recommendation for large language models.
CoRR, abs/2411.09613, 2024.

Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min Lin, and Tianyu
Pang. Flowreasoner: Reinforcing query-level meta-agents. arXiv preprint arXiv:2504.15257, 2025.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang, and Yi Wu.
On designing effective rl reward at training time for llm reasoning. arXiv preprint arXiv:2410.15115, 2024.

Anthony Garuccio. A genetic programming approach to solving optimization problems on agent-based
models. Master’s thesis, Duquesne University, 2016.

Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al. Openagi:
When llm meets domain experts. Advances in Neural Information Processing Systems, 36:5539–5568,
2023.

Jiahui Geng, Qing Li, Herbert Woisetschlaeger, Zongxiong Chen, Fengyu Cai, Yuxia Wang, Preslav Nakov,
Hans-Arno Jacobsen, and Fakhri Karray. A comprehensive survey of machine unlearning techniques for
large language models. arXiv preprint arXiv:2503.01854, 2025a.

Jiayi Geng, Howard Chen, Dilip Arumugam, and Thomas L Griffiths. Are large language models reliable ai
scientists? assessing reverse-engineering of black-box systems. arXiv preprint arXiv:2505.17968, 2025b.

Gaurav Ghosal, Tatsunori Hashimoto, and Aditi Raghunathan. Understanding finetuning for factual knowl-
edge extraction. arXiv preprint arXiv:2406.14785, 2024.

Ryan Greenblatt, Buck Shlegeris, Kshitij Sachan, and Fabien Roger Sato. Alignment faking in large lan-
guage models. Anthropic Research, December 2024. URL https://www.anthropic.com/research/
alignment-faking.

57

https://arxiv.org/abs/2505.10978
https://www.anthropic.com/research/alignment-faking
https://www.anthropic.com/research/alignment-faking

Published in Transactions on Machine Learning Research (01/2026)

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519, 2025.

Zhenyu Guan, Xiangyu Kong, Fangwei Zhong, and Yizhou Wang. Richelieu: Self-evolving llm-based agents
for ai diplomacy. Advances in Neural Information Processing Systems, 37:123471–123497, 2024.

Dadi Guo, Tianyi Zhou, Dongrui Liu, Chen Qian, Qihan Ren, Shuai Shao, Zhiyuan Fan, Yi R. Fung, Kun
Wang, Linfeng Zhang, and Jing Shao. Towards self-evolving benchmarks: Synthesizing agent trajectories
via test-time exploration under validate-by-reproduce paradigm. arXiv preprint arXiv:2510.00415, 2025a.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025b.

Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong, Matthew R Scott, and Dinglong
Huang. Curriculumnet: Weakly supervised learning from large-scale web images. In Proceedings of the
European conference on computer vision (ECCV), pp. 135–150, 2018.

Dongyoon Hahm, Taywon Min, Woogyeol Jin, and Kimin Lee. Unintended misalignment from agentic
fine-tuning: Risks and mitigation. arXiv preprint arXiv:2508.14031, 2025.

Siwei Han, Jiaqi Liu, Yaofeng Su, Wenbo Duan, Xinyuan Liu, Cihang Xie, Mohit Bansal, Mingyu Ding,
Linjun Zhang, and Huaxiu Yao. Alignment tipping process: How self-evolution pushes llm agents off the
rails. arXiv preprint arXiv:2510.04860, 2025.

Mohd Ariful Haque, Justin Williams, Sunzida Siddique, Md. Hujaifa Islam, Hasmot Ali, Kishor Datta Gupta,
and Roy George. Advanced tool learning and selection system (ATLASS): A closed-loop framework using
LLM. CoRR, abs/2503.10071, 2025.

Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models. arXiv preprint
arXiv:2305.18466, 2023.

Ami Hauptman and Moshe Sipper. Evolution of an efficient search algorithm for the mate-in-n problem in
chess. In European Conference on Genetic Programming, pp. 78–89, 2007.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. WebVoyager: Building an end-to-end web agent with large multimodal models. arXiv preprint
arXiv:2401.13919, 2024.

Yufei He, Ruoyu Li, Alex Chen, Yue Liu, Yulin Chen, Yuan Sui, Cheng Chen, Yi Zhu, Luca Luo, Frank
Yang, and Bryan Hooi. Enabling self-improving agents to learn at test time with human-in-the-loop
guidance. In Saloni Potdar, Lina Rojas-Barahona, and Sebastien Montella (eds.), Proceedings of the
2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pp. 1625–1653,
Suzhou (China), November 2025a. Association for Computational Linguistics. ISBN 979-8-89176-333-3.
URL https://aclanthology.org/2025.emnlp-industry.115/.

Yufei He, Juncheng Liu, Yue Liu, Yibo Li, Tri Cao, Zhiyuan Hu, Xinxing Xu, and Bryan Hooi. Evotest: Evo-
lutionary test-time learning for self-improving agentic systems. arXiv preprint arXiv:2510.13220, 2025b.

Erik Hemberg, Stephen Moskal, and Una-May O’Reilly. Evolving code with a large language model. Genetic
Programming and Evolvable Machines, 25(2):21, 2024.

John H. Holland. Adaptation in natural and artificial systems, 1976.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh Agarwal.
V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457, 2024.

58

https://aclanthology.org/2025.emnlp-industry.115/

Published in Transactions on Machine Learning Research (01/2026)

Mengkang Hu, Yao Mu, Xinmiao Yu, Mingyu Ding, Shiguang Wu, Wenqi Shao, Qiguang Chen, Bin Wang,
Yu Qiao, and Ping Luo. Tree-planner: Efficient close-loop task planning with large language models,
2024a. URL https://arxiv.org/abs/2310.08582.

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jianguang Lou, Qingwei Lin, Ping Luo, and Saravan
Rajmohan. Agentgen: Enhancing planning abilities for large language model based agent via environment
and task generation. arXiv preprint arXiv:2408.00764, 2024b.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024c.

Yuanzhe Hu, Yu Wang, and Julian McAuley. Evaluating memory in llm agents via incremental multi-turn
interactions. In ICML 2025 Workshop on Long-Context Foundation Models, 2025.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and Si-
heng Chen. Self-evolving multi-agent collaboration networks for software development. arXiv preprint
arXiv:2410.16946, 2024d.

Wenyue Hua, Xianjun Yang, Mingyu Jin, Zelong Li, Wei Cheng, Ruixiang Tang, and Yongfeng Zhang.
Trustagent: Towards safe and trustworthy llm-based agents through agent constitution. In Trustworthy
Multi-modal Foundation Models and AI Agents (TiFA), 2024.

Baixiang Huang, Zhen Tan, Haoran Wang, Zijie Liu, Dawei Li, Ali Payani, Huan Liu, Tianlong Chen, and
Kai Shu. Model editing as a double-edged sword: Steering agent ethical behavior toward beneficence or
harm. arXiv preprint arXiv:2506.20606, 2025a.

Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin Huang,
Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. arXiv preprint
arXiv:2508.05004, 2025b.

D Huang, JM Zhang, M Luck, Q Bu, Y Qing, and H Cui. Agentcoder: Multi-agent code generation with
effective testing and self-optimization. University of Hong Kong, King’s College London, University of
Sussex, Shanghai Jiao Tong University, 2024.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large
language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Jonas Hübotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time: Active
fine-tuning of llms. arXiv preprint arXiv:2410.08020, 2024.

Dongwei Jiang, Alvin Zhang, Andrew Wang, Nicholas Andrews, and Daniel Khashabi. Feedback friction:
Llms struggle to fully incorporate external feedback. arXiv preprint arXiv:2506.11930, 2025a.

Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexander G Hauptmann. Easy samples first: Self-paced
reranking for zero-example multimedia search. In Proceedings of the 22nd ACM international conference
on Multimedia, pp. 547–556, 2014.

Yuhua Jiang, Yuwen Xiong, Yufeng Yuan, Chao Xin, Wenyuan Xu, Yu Yue, Qianchuan Zhao, and Lin
Yan. PAG: Multi-turn reinforced llm self-correction with policy as generative verifier. arXiv preprint
arXiv:2506.10406, 2025b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Carlos E Jimenez, John Yang, et al. Swe-bench: Can language models resolve real-world github issues? In
ICLR, 2024.

Ruofan Jin, Zaixi Zhang, Mengdi Wang, and Le Cong. Stella: Self-evolving LLM agent for biomedical
research. arXiv preprint arXiv:2507.02004, 2025. URL https://arxiv.org/abs/2507.02004.

59

https://arxiv.org/abs/2310.08582
https://arxiv.org/abs/2507.02004

Published in Transactions on Machine Learning Research (01/2026)

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang, Xinya
Du, and Dong Yu. Dsbench: How far are data science agents from becoming data science experts?, 2025.
URL https://arxiv.org/abs/2409.07703.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey. Journal
of artificial intelligence research, 4:237–285, 1996.

Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language models via
self-certainty, 2025. URL https://arxiv.org/abs/2502.18581.

Zixuan Ke, Austin Xu, Yifei Ming, Xuan-Phi Nguyen, Caiming Xiong, and Shafiq Joty. Mas-zero: Designing
multi-agent systems with zero supervision, 2025. URL https://arxiv.org/abs/2505.14996.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan,
Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling declarative
language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714, 2023.

Jiin Kim, Byeongjun Shin, Jinha Chung, and Minsoo Rhu. The cost of dynamic reasoning: Demystifying ai
agents and test-time scaling from an ai infrastructure perspective. arXiv preprint arXiv:2506.04301, 2025.

Louis Kirsch, James Harrison, Daniel Freeman, Jascha Sohl-Dickstein, and Jürgen Schmidhuber. Towards
general-purpose in-context learning agents. Workshop on Distribution Shifts, 37th Conference on Neural
Information . . . , 2023.

Woosung Koh, Wonbeen Oh, Jaein Jang, MinHyung Lee, Hyeongjin Kim, Ah Yeon Kim, Joonkee Kim,
Junghyun Lee, Taehyeon Kim, and Se-Young Yun. Adastar: Adaptive data sampling for training self-
taught reasoners. arXiv preprint arXiv:2505.16322, 2025.

Harsha Kokel, Michael Katz, Kavitha Srinivas, and Shirin Sohrabi. Acpbench: Reasoning about action,
change, and planning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp.
26559–26568, 2025.

John R Koza. Human-competitive results produced by genetic programming. Genetic programming and
evolvable machines, 11(3):251–284, 2010.

Aviral Kumar, Rishabh Agarwal, Disha Shrivastava, Feryal Behbahani, Aleksandra Faust, et al. Training
language models to self-correct via reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Invariant Labs. mcp-scan, 2025. URL https://github.com/invariantlabs-ai/mcp-scan.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang,
Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: A large language model-based web navigating agent.
In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
5295–5306, 2024.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning with
algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma Brun-
skill. Supervised pretraining can learn in-context reinforcement learning. Advances in Neural Information
Processing Systems, 36:43057–43083, 2023.

Ido Levy, Ben Wiesel, Sami Marreed, Alon Oved, Avi Yaeli, and Segev Shlomov. St-webagentbench: A
benchmark for evaluating safety and trustworthiness in web agents. arXiv preprint arXiv:2410.06703,
2024.

Hongxin Li, Jingfan Chen, Jingran Su, Yuntao Chen, Qing Li, and Zhaoxiang Zhang. AutoGUI: Scaling gui
grounding with automatic functionality annotations from LLMs. arXiv preprint arXiv:2502.01977, 2025a.

60

https://arxiv.org/abs/2409.07703
https://arxiv.org/abs/2502.18581
https://arxiv.org/abs/2505.14996
https://github.com/invariantlabs-ai/mcp-scan

Published in Transactions on Machine Learning Research (01/2026)

Junkai Li, Yunghwei Lai, Weitao Li, Jingyi Ren, Meng Zhang, Xinhui Kang, Siyu Wang, Peng Li, Ya-Qin
Zhang, Weizhi Ma, and Yang Liu. Agent hospital: A simulacrum of hospital with evolvable medical agents.
arXiv preprint arXiv:2405.02957, 2024a.

Loka Li, Zhenhao Chen, Guangyi Chen, Yixuan Zhang, Yusheng Su, Eric Xing, and Kun Zhang. Confi-
dence matters: Revisiting intrinsic self-correction capabilities of large language models. arXiv preprint
arXiv:2402.12563, 2024b.

Mengdi Li, Jiaye Lin, Xufeng Zhao, Wenhao Lu, Peilin Zhao, Stefan Wermter, and Di Wang. Curriculum-rlaif:
Curriculum alignment with reinforcement learning from ai feedback. arXiv preprint arXiv:2505.20075,
2025b.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv preprint
arXiv:2304.08244, 2023.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li, Ann-
Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring and reducing
malicious use with unlearning. arXiv preprint arXiv:2403.03218, 2024c.

Ning Li, Xiangmou Qu, Jiamu Zhou, Jun Wang, Muning Wen, Kounianhua Du, Xingyu Lou, Qiuying Peng,
Jun Wang, and Weinan Zhang. MobileUse: A gui agent with hierarchical reflection for autonomous mobile
operation. arXiv preprint arXiv:2507.16853, 2025c.

Xiaopeng Li, Pengyue Jia, Derong Xu, Yi Wen, Yingyi Zhang, Wenlin Zhang, Wanyu Wang, Yichao Wang,
Zhaocheng Du, Xiangyang Li, et al. A survey of personalization: From rag to agent. arXiv preprint
arXiv:2504.10147, 2025d.

Yi-Chen Li, Tian Xu, Yang Yu, Xuqin Zhang, Xiong-Hui Chen, Zhongxiang Ling, Ningjing Chao, Lei
Yuan, and Zhi-Hua Zhou. Generalist reward models: Found inside large language models. arXiv preprint
arXiv:2506.23235, 2025e.

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, and Yongfeng
Zhang. Autoflow: Automated workflow generation for large language model agents. arXiv preprint
arXiv:2407.12821, 2024d.

Xuechen Liang, Yangfan He, Yinghui Xia, Xinyuan Song, Jianhui Wang, Meiling Tao, Li Sun, Xinhang
Yuan, Jiayi Su, Keqin Li, Siyuan Chen, and Tianyu Shi. Self-evolving agents with reflective and memory-
augmented abilities. arXiv preprint arXiv:2409.00872, 2024.

Junwei Liao, Muning Wen, Jun Wang, and Weinan Zhang. Marft: Multi-agent reinforcement fine-tuning,
2025. URL https://arxiv.org/abs/2504.16129.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth International
Conference on Learning Representations, 2023.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula, Prithviraj
Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and slow thinking for
complex interactive tasks. Advances in Neural Information Processing Systems, 36:23813–23825, 2023.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches
out, pp. 74–81, 2004.

Guanyu Lin, Tao Feng, Pengrui Han, Ge Liu, and Jiaxuan You. Arxiv copilot: A self-evolving and efficient
LLM system for personalized academic assistance. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pp. 122–130, 2024. URL https://
arxiv.org/abs/2409.04593. arXiv:2409.04593.

61

https://arxiv.org/abs/2504.16129
https://arxiv.org/abs/2409.04593
https://arxiv.org/abs/2409.04593

Published in Transactions on Machine Learning Research (01/2026)

Sam Lin, Wenyue Hua, Lingyao Li, Zhenting Wang, and Yongfeng Zhang. Ado: Automatic data optimization
for inputs in llm prompts. arXiv preprint arXiv:2502.11436, 2025a.

Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify: A self-play
framework for code and test generation. arXiv preprint arXiv:2502.14948, 2025b.

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun Zhang,
Kaitao Song, Kunlun Zhu, Yuheng Cheng, Suyuchen Wang, Xiaoqiang Wang, Yuyu Luo, Haibo Jin, Peiyan
Zhang, Ollie Liu, Jiaqi Chen, Huan Zhang, Zhaoyang Yu, Haochen Shi, Boyan Li, Dekun Wu, Fengwei
Teng, Xiaojun Jia, Jiawei Xu, Jinyu Xiang, Yizhang Lin, Tianming Liu, Tongliang Liu, Yu Su, Huan Sun,
Glen Berseth, Jianyun Nie, Ian Foster, Logan Ward, Qingyun Wu, Yu Gu, Mingchen Zhuge, Xiangru Tang,
Haohan Wang, Jiaxuan You, Chi Wang, Jian Pei, Qiang Yang, Xiaoliang Qi, and Chenglin Wu. Advances
and challenges in foundation agents: From brain-inspired intelligence to evolutionary, collaborative, and
safe systems, 2025a. URL https://arxiv.org/abs/2504.01990.

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun Zhang,
Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From brain-inspired
intelligence to evolutionary, collaborative, and safe systems. arXiv preprint arXiv:2504.01990, 2025b.

Ben Liu, Jihan Zhang, Fangquan Lin, Xu Jia, and Min Peng. One size doesn’t fit all: A personalized
conversational tutoring agent for mathematics instruction. arXiv preprint arXiv:2502.12633, 2025c. URL
https://arxiv.org/abs/2502.12633.

Bo Liu, Leon Guertler, Simon Yu, Zichen Liu, Penghui Qi, Daniel Balcells, Mickel Liu, Cheston Tan, Weiyan
Shi, Min Lin, et al. Spiral: Self-play on zero-sum games incentivizes reasoning via multi-agent multi-turn
reinforcement learning. arXiv preprint arXiv:2506.24119, 2025d.

Dongrui Liu, Huiqi Deng, Xu Cheng, Qihan Ren, Kangrui Wang, and Quanshi Zhang. Towards the difficulty
for a deep neural network to learn concepts of different complexities. Advances in Neural Information
Processing Systems, 36:41283–41304, 2023a.

Shaoteng Liu, Haoqi Yuan, Minda Hu, Yanwei Li, Yukang Chen, Shu Liu, Zongqing Lu, and Jiaya Jia.
Rl-gpt: Integrating reinforcement learning and code-as-policy. Advances in Neural Information Processing
Systems, 37:28430–28459, 2024.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen Men,
Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint arXiv:2308.03688, 2023b.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang, and Fei
Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative reasoners. arXiv
preprint arXiv:2504.14239, 2025e.

Yuxuan Liu, Hongda Sun, Wei Liu, Jian Luan, Bo Du, and Rui Yan. Mobilesteward: Integrating
multiple app-oriented agents with self-evolution to automate cross-app instructions. arXiv preprint
arXiv:2502.16796, 2025f.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In Advances
in Neural Information Processing Systems, volume 30, pp. 6467–6476, 2017.

Reza Lotfian and Carlos Busso. Curriculum learning for speech emotion recognition from crowdsourced
labels. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(4):815–826, 2019.

Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei Wang, Qi Zhu, Fei Mi, Baojun Wang, Weichao Wang,
Xingshan Zeng, Lifeng Shang, Xin Jiang, and Qun Liu. SELF: Self-evolution with language feedback.
arXiv preprint arXiv:2310.00533, 2023.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma,
Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation benchmark
for llm tool use capabilities. arXiv preprint arXiv:2408.04682, 2024a.

62

https://arxiv.org/abs/2504.01990
https://arxiv.org/abs/2502.12633

Published in Transactions on Machine Learning Research (01/2026)

Junting Lu, Zhiyang Zhang, Fangkai Yang, Jue Zhang, Lu Wang, Chao Du, Qingwei Lin, Saravan Rajmohan,
Dongmei Zhang, and Qi Zhang. Axis: Efficient human-agent-computer interaction with api-first llm-based
agents. arXiv preprint arXiv:2409.17140, 2024b.

Xiaoya Lu, Dongrui Liu, Yi Yu, Luxin Xu, and Jing Shao. X-boundary: Establishing exact safety boundary
to shield llms from multi-turn jailbreaks without compromising usability. arXiv preprint arXiv:2502.09990,
2025.

Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi Chen, Ziyue
Qiao, Qingqing Long, Rongcheng Tu, Xiao Luo, Wei Ju, Zhiping Xiao, Yifan Wang, Meng Xiao, Chenwu
Liu, Jingyang Yuan, Shichang Zhang, Yiqiao Jin, Fan Zhang, Xian Wu, Hanqing Zhao, Dacheng Tao,
Philip S. Yu, and Ming Zhang. Large language model agent: A survey on methodology, applications and
challenges, 2025a. URL https://arxiv.org/abs/2503.21460.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language action model
for gui agents. arXiv preprint arXiv:2504.10458, 2025b.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine
Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-Refine: Iterative refinement with
self-feedback. In Advances in Neural Information Processing Systems, 2023a. URL https://arxiv.org/
abs/2303.17651.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine
Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-
feedback. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 46534–46594. Curran Associates, Inc., 2023b.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165. Elsevier, 1989.

Ethan Mendes and Alan Ritter. Language models can self-improve at state-value estimation for better search.
arXiv preprint arXiv:2503.02878, 2025.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia: a benchmark
for general ai assistants. In The Twelfth International Conference on Learning Representations, 2023.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in context.
arXiv preprint arXiv:2110.15943, 2021.

Amir Moeini, Jiuqi Wang, Jacob Beck, Ethan Blaser, Shimon Whiteson, Rohan Chandra, and Shangtong
Zhang. A survey of in-context reinforcement learning. arXiv preprint arXiv:2502.07978, 2025.

Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
and Quoc Viet Hung Nguyen. A survey of machine unlearning. arXiv preprint arXiv:2209.02299, 2022.

Kolby Nottingham, Bodhisattwa Prasad Majumder, Bhavana Dalvi Mishra, Sameer Singh, Peter Clark, and
Roy Fox. Skill set optimization: Reinforcing language model behavior via transferable skills. In ICML.
OpenReview.net, 2024.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wagner,
Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphaevolve: A
coding agent for scientific and algorithmic discovery. arXiv preprint arXiv:2506.13131, 2025.

Openai. Introducing swe-bench verified, 2024. https://openai.com/index/
introducing-swe-bench-verified.

63

https://arxiv.org/abs/2503.21460
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://openai.com/index/introducing-swe-bench-verified
https://openai.com/index/introducing-swe-bench-verified

Published in Transactions on Machine Learning Research (01/2026)

Siru Ouyang, Jun Yan, I-Hung Hsu, Yanfei Chen, Ke Jiang, Zifeng Wang, Rujun Han, Long T. Le, Samira
Daruki, Xiangru Tang, Vishy Tirumalashetty, George Lee, Mahsan Rofouei, Hangfei Lin, Jiawei Han,
Chen-Yu Lee, and Tomas Pfister. Reasoningbank: Scaling agent self-evolving with reasoning memory.
arXiv preprint arXiv:2509.25140, 2025.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang, Shuyan
Zhou, Tongshuang Wu, et al. Webcanvas: Benchmarking web agents in online environments. arXiv
preprint arXiv:2406.12373, 2024.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, pp. 311–318, 2002.

Shubham Parashar, Shurui Gui, Xiner Li, Hongyi Ling, Sushil Vemuri, Blake Olson, Eric Li, Yu Zhang, James
Caverlee, Dileep Kalathil, et al. Curriculum reinforcement learning from easy to hard tasks improves llm
reasoning. arXiv preprint arXiv:2506.06632, 2025.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural networks, 113:54–71, 2019.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th annual
acm symposium on user interface software and technology, pp. 1–22, 2023.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. In NeurIPS, 2024.

Joachim Winther Pedersen, Erwan Plantec, Eleni Nisioti, Marcello Barylli, Milton Montero, Kathrin Korte,
and Sebastian Risi. Hypernetworks that evolve themselves. In Artificial Life Conference Proceedings 37,
volume 2025, pp. 17. MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . ,
2025.

Dengyun Peng, Yuhang Zhou, Qiguang Chen, Jinhao Liu, Jingjing Chen, and Libo Qin. Dlpo: Towards
a robust, efficient, and generalizable prompt optimization framework from a deep-learning perspective.
arXiv preprint arXiv:2503.13413, 2025.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and Tom M Mitchell.
Competence-based curriculum learning for neural machine translation. arXiv preprint arXiv:1903.09848,
2019.

Julien Pourcel, Cédric Colas, and Pierre-Yves Oudeyer. Self-improving language models for evolutionary
program synthesis: A case study on arc-agi. arXiv preprint arXiv:2507.14172, 2025.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with" gradient descent" and beam search. arXiv preprint arXiv:2305.03495, 2023.

Yingming Pu, Tao Lin, and Hongyu Chen. Piflow: Principle-aware scientific discovery with multi-agent
collaboration. arXiv preprint arXiv:2505.15047, 2025.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and Rafael
Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv preprint
arXiv:2408.07199, 2024.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Jiadai Sun, Xinyue Yang, Yu Yang, Shuntian
Yao, Wei Xu, Jie Tang, and Yuxiao Dong. Webrl: Training llm web agents via self-evolving online
curriculum reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Chen Qian, Yufan Dang, Jiahao Li, Wei Liu, Zihao Xie, Yifei Wang, Weize Chen, Cheng Yang, Xin Cong, Xi-
aoyin Che, et al. Experiential co-learning of software-developing agents. arXiv preprint arXiv:2312.17025,
2023a.

64

Published in Transactions on Machine Learning Research (01/2026)

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. CREATOR: Tool Creation for
Disentangling Abstract and Concrete Reasoning of Large Language Models. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023b. URL https://openreview.net/forum?id=
aCHq10rQiH.

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu, and
Maosong Sun. Investigate-consolidate-exploit: A general strategy for inter-task agent self-evolution. arXiv
preprint arXiv:2401.13996, 2024a.

Lang Qian, Peng Sun, Yilei Wang, Jiayue Jin, Azzedine Boukerche, and Liang Song. A new online evolu-
tive optimization method for driving agents. In GLOBECOM 2024-2024 IEEE Global Communications
Conference, pp. 2244–2249. IEEE, 2024b.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world apis. arXiv
preprint arXiv:2307.16789, 2023.

Jiahao Qiu, Xuan Qi, Hongru Wang, Xinzhe Juan, Yimin Wang, Zelin Zhao, Jiayi Geng, Jiacheng Guo,
Peihang Li, Jingzhe Shi, Shilong Liu, and Mengdi Wang. Alita-g: Self-evolving generative agent for agent
generation. arXiv preprint arXiv:2510.23601, 2025a.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin Yao, Qihan
Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan Huang, Shilong Liu, Hongru Wang,
and Mengdi Wang. Alita: Generalist agent enabling scalable agentic reasoning with minimal predefinition
and maximal self-evolution. CoRR, abs/2505.20286, 2025b.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. Towards completeness-oriented tool retrieval for large language models. In CIKM, pp. 1930–1940.
ACM, 2024a.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. From exploration to mastery: Enabling llms to master tools via self-driven interactions. In ICLR.
OpenReview.net, 2025.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching language
model agents how to self-improve. Advances in Neural Information Processing Systems, 37:55249–55285,
2024b.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36:53728–53741, 2023.

Kiran Ramnath, Kang Zhou, Sheng Guan, Soumya Smruti Mishra, Xuan Qi, Zhengyuan Shen, Shuai Wang,
Sangmin Woo, Sullam Jeoung, Yawei Wang, et al. A systematic survey of automatic prompt optimization
techniques. arXiv preprint arXiv:2502.16923, 2025.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and forgetting
functions. Psychological review, 97(2):285, 1990.

Maxime Robeyns, Martin Szummer, and Laurence Aitchison. A self-improving coding agent. arXiv preprint
arXiv:2504.15228, 2025a.

Maxime Robeyns, Martin Szummer, and Laurence Aitchison. A self-improving coding agent, 2025b. URL
https://arxiv.org/abs/2504.15228.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience replay
for continual learning. Advances in neural information processing systems, 32, 2019.

Kai Ruan, Mowen Huang, Ji-Rong Wen, and Hao Sun. Benchmarking llms’ swarm intelligence. arXiv
preprint arXiv:2505.04364, 2025.

65

https://openreview.net/forum?id=aCHq10rQiH
https://openreview.net/forum?id=aCHq10rQiH
https://arxiv.org/abs/2504.15228

Published in Transactions on Machine Learning Research (01/2026)

Rana Salama, Jason Cai, Michelle Yuan, Anna Currey, Monica Sunkara, Yi Zhang, and Yassine Benajiba.
Meminsight: Autonomous memory augmentation for llm agents. arXiv preprint arXiv:2503.21760, 2025.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. In NeurIPS, 2023.

Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can large
reasoning models self-train?, 2025. URL https://arxiv.org/abs/2505.21444.

Lianlei Shan, Shixian Luo, Zezhou Zhu, Yu Yuan, and Yong Wu. Cognitive memory in large language models.
arXiv preprint arXiv:2504.02441, 2025.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic LLM
agent search in modular design space. In ICLR. OpenReview.net, 2025.

Shuai Shao, Qihan Ren, Chen Qian, Boyi Wei, Dadi Guo, Jingyi Yang, Xinhao Song, Linfeng Zhang, Weinan
Zhang, Dongrui Liu, and Jing Shao. Your agent may misevolve: Emergent risks in self-evolving llm agents.
arXiv preprint arXiv:2509.26354, 2025.

Yijia Shao, Tianshi Li, Weiyan Shi, Yanchen Liu, and Diyi Yang. Privacylens: Evaluating privacy norm
awareness of language models in action. Advances in Neural Information Processing Systems, 37:89373–
89407, 2024a.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024b.

Ming Shen. Rethinking data selection for supervised fine-tuning. arXiv preprint arXiv:2402.06094, 2024.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang, Sayna
Ebrahimi, and Hao Wang. Continual learning of large language models: A comprehensive survey. ACM
Computing Surveys, 2024.

Quan Shi, Carlos E Jimenez, Shunyu Yao, Nick Haber, Diyi Yang, and Karthik Narasimhan. When models
know more than they can explain: Quantifying knowledge transfer in human-ai collaboration. arXiv
preprint arXiv:2506.05579, 2025a.

Yucheng Shi, Wenhao Yu, Zaitang Li, Yonglin Wang, Hongming Zhang, Ninghao Liu, Haitao Mi, and Dong
Yu. Mobilegui-rl: Advancing mobile gui agent through reinforcement learning in online environment,
2025b. URL https://arxiv.org/abs/2507.05720.

Zhengliang Shi, Yuhan Wang, Lingyong Yan, Pengjie Ren, Shuaiqiang Wang, Dawei Yin, and Zhaochun
Ren. Retrieval models aren’t tool-savvy: Benchmarking tool retrieval for large language models. CoRR,
abs/2503.01763, 2025c.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. In Advances in Neural Information Pro-
cessing Systems, 2023. URL https://arxiv.org/abs/2303.11366.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

Toby Simonds and Akira Yoshiyama. Ladder: Self-improving llms through recursive problem decomposition.
arXiv preprint arXiv:2503.00735, 2025.

Toby Simonds, Kevin Lopez, Akira Yoshiyama, and Dominique Garmier. Self rewarding self improving,
2025. URL https://arxiv.org/abs/2505.08827.

66

https://arxiv.org/abs/2505.21444
https://arxiv.org/abs/2507.05720
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2505.08827

Published in Transactions on Machine Learning Research (01/2026)

Karl Sims. Evolving virtual creatures. In Proceedings of the 21st Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’94, pp. 15–22, New York, NY, USA, 1994. As-
sociation for Computing Machinery. ISBN 0897916670. doi: 10.1145/192161.192167. URL https:
//doi.org/10.1145/192161.192167.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be
more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Kefan Song, Amir Moeini, Peng Wang, Lei Gong, Rohan Chandra, Yanjun Qi, and Shangtong Zhang.
Reward is enough: Llms are in-context reinforcement learners. arXiv preprint arXiv:2506.06303, 2025.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002.

Dimitri Staufer. What should llms forget? quantifying personal data in llms for right-to-be-forgotten re-
quests. arXiv preprint arXiv:2507.11128, 2025.

Katharina Stein, Daniel Fišer, Jörg Hoffmann, and Alexander Koller. Automating the generation of prompts
for llm-based action choice in pddl planning. In Proceedings of the Fourteenth International Conference
on Automated Planning and Scheduling (ICAPS 2025). AAAI Press, 2025.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö. Arık. Learn-by-interact:
A data-centric framework for self-adaptive agents in realistic environments, 2025. URL https://arxiv.
org/abs/2501.10893.

Chuanneng Sun, Songjun Huang, and Dario Pompili. Llm-based multi-agent reinforcement learning: Current
and future directions. arXiv preprint arXiv:2405.11106, 2024a.

Haochen Sun, Shuwen Zhang, Lujie Niu, Lei Ren, Hao Xu, Hao Fu, Fangkun Zhao, Caixia Yuan, and Xiaojie
Wang. Collab-overcooked: Benchmarking and evaluating large language models as collaborative agents.
arXiv preprint arXiv:2502.20073, 2025a.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. AdaPlanner: Adaptive planning
from feedback with language models. In Advances in Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=rnKgbKmelt.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu, Chengyou
Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory construction via
reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024b.

Qiushi Sun, Mukai Li, Zhoumianze Liu, Zhihui Xie, Fangzhi Xu, Zhangyue Yin, Kanzhi Cheng, Zehao Li,
Zichen Ding, Qi Liu, et al. Os-sentinel: Towards safety-enhanced mobile gui agents via hybrid validation
in realistic workflows. arXiv preprint arXiv:2510.24411, 2025b.

Zeyi Sun, Ziyu Liu, Yuhang Zang, Yuhang Cao, Xiaoyi Dong, Tong Wu, Dahua Lin, and Jiaqi Wang.
Seagent: Self-evolving computer use agent with autonomous learning from experience. arXiv preprint
arXiv:2508.04700, 2025c.

Heng Tang, Feng Liu, Xinbo Chen, Jiawei Chen, Bohao Wang, Changwang Zhang, Jun Wang, Yuegang
Sun, Bingde Hu, and Can Wang. Bridging the gap: Self-optimized fine-tuning for llm-based recommender
systems. arXiv preprint arXiv:2505.20771, 2025.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolalpaca:
Generalized tool learning for language models with 3000 simulated cases. arXiv preprint arXiv:2306.05301,
2023.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,
Dacheng Tao, and Jingren Zhou. A survey on self-evolution of large language models. arXiv preprint
arXiv:2404.14387, 2024.

67

https://doi.org/10.1145/192161.192167
https://doi.org/10.1145/192161.192167
https://arxiv.org/abs/2501.10893
https://arxiv.org/abs/2501.10893
https://openreview.net/forum?id=rnKgbKmelt

Published in Transactions on Machine Learning Research (01/2026)

Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman, and Gal Yona.
Confidence improves self-consistency in llms. arXiv preprint arXiv:2502.06233, 2025.

Yi Tay, Shuohang Wang, Luu Anh Tuan, Jie Fu, Minh C Phan, Xingdi Yuan, Jinfeng Rao, Siu Cheung Hui,
and Aston Zhang. Simple and effective curriculum pointer-generator networks for reading comprehension
over long narratives. arXiv preprint arXiv:1905.10847, 2019.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Agentic predictor: Performance prediction for agentic
workflows via multi-view encoding. arXiv preprint arXiv:2505.19764, 2025.

Keyon Vafa, Peter G Chang, Ashesh Rambachan, and Sendhil Mullainathan. What has a foundation model
found? using inductive bias to probe for world models. arXiv preprint arXiv:2507.06952, 2025.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati.
Planbench: An extensible benchmark for evaluating large language models on planning and reasoning
about change. Advances in Neural Information Processing Systems, 36:38975–38987, 2023.

Luanbo Wan and Weizhi Ma. Storybench: A dynamic benchmark for evaluating long-term memory with
multi turns. arXiv preprint arXiv:2506.13356, 2025.

Ziyu Wan, Yunxiang Li, Xiaoyu Wen, Yan Song, Hanjing Wang, Linyi Yang, Mark Schmidt, Jun Wang,
Weinan Zhang, Shuyue Hu, and Ying Wen. Rema: Learning to meta-think for llms with multi-agent
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.09501.

Bin Wang, Zexin Liu, Hao Yu, Ao Yang, Yenan Huang, Jing Guo, Huangsheng Cheng, Hui Li, and Huiyu
Wu. Mcpguard: Automatically detecting vulnerabilities in mcp servers. arXiv preprint arXiv:2510.23673,
2025a.

Bo Wang, Weiyi He, Pengfei He, Shenglai Zeng, Zhen Xiang, Yue Xing, and Jiliang Tang. Unveiling privacy
risks in llm agent memory. arXiv preprint arXiv:2502.13172, 2025b.

Borui Wang, Kathleen McKeown, and Rex Ying. Dystil: Dynamic strategy induction with large language
models for reinforcement learning, 2025c. URL https://arxiv.org/abs/2505.03209.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023a.

Hanlin Wang, Chak Tou Leong, Jiashuo Wang, Jian Wang, and Wenjie Li. Spa-rl: Reinforcing llm agents
via stepwise progress attribution. arXiv preprint arXiv:2505.20732, 2025d.

Haoyu Wang, Dong Fang, et al. Fela: A multi-agent evolutionary system for feature engineering of industrial
event log data. arXiv preprint arXiv:2510.25223, 2025e.

Hongru Wang, Yujia Qin, Yankai Lin, Jeff Z. Pan, and Kam-Fai Wong. Empowering large language models:
Tool learning for real-world interaction. In Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’24, pp. 2983–2986, New York, NY, USA,
2024a. Association for Computing Machinery. ISBN 9798400704314. doi: 10.1145/3626772.3661381. URL
https://doi.org/10.1145/3626772.3661381.

Hongru Wang, Rui Wang, Boyang Xue, Heming Xia, Jingtao Cao, Zeming Liu, Jeff Z. Pan, and Kam-
Fai Wong. AppBench: Planning of multiple APIs from various APPs for complex user instruction. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 15322–15336, Miami, Florida, USA, November
2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.856. URL https:
//aclanthology.org/2024.emnlp-main.856/.

Hongru Wang, Deng Cai, Wanjun Zhong, Shijue Huang, Jeff Z. Pan, Zeming Liu, and Kam-Fai Wong.
Self-reasoning language models: Unfold hidden reasoning chains with few reasoning catalyst, 2025f. URL
https://arxiv.org/abs/2505.14116.

68

https://arxiv.org/abs/2503.09501
https://arxiv.org/abs/2505.03209
https://doi.org/10.1145/3626772.3661381
https://aclanthology.org/2024.emnlp-main.856/
https://aclanthology.org/2024.emnlp-main.856/
https://arxiv.org/abs/2505.14116

Published in Transactions on Machine Learning Research (01/2026)

Hongru Wang, Cheng Qian, Manling Li, Jiahao Qiu, Boyang Xue, Mengdi Wang, Heng Ji, and Kam-Fai
Wong. Toward a theory of agents as tool-use decision-makers, 2025g. URL https://arxiv.org/abs/
2506.00886.

Hongru Wang, Cheng Qian, Jiahao Qiu, et al. OTC-PO: Optimal tool calls via reinforcement learning. arXiv
preprint arXiv:2504.14870, 2025h.

Kun Wang, Guibin Zhang, Zhenhong Zhou, Jiahao Wu, Miao Yu, Shiqian Zhao, Chenlong Yin, Jinhu Fu,
Yibo Yan, Hanjun Luo, et al. A comprehensive survey in llm (-agent) full stack safety: Data, training and
deployment. arXiv preprint arXiv:2504.15585, 2025i.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. IEEE transactions on pattern analysis and machine intelligence, 46(8):
5362–5383, 2024c.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv preprint
arXiv:2312.08935, 2023b.

Peng Wang, Ruihan Tao, Qiguang Chen, Mengkang Hu, and Libo Qin. X-webagentbench: A multilingual
interactive web benchmark for evaluating global agentic system. arXiv preprint arXiv:2505.15372, 2025j.

Renxi Wang, Xudong Han, Lei Ji, Shu Wang, Timothy Baldwin, and Haonan Li. Toolgen: Unified tool
retrieval and calling via generation. In ICLR. OpenReview.net, 2025k.

Rui Wang, Ce Zhang, Jun-Yu Ma, Jianshu Zhang, Hongru Wang, Yi Chen, Boyang Xue, Tianqing Fang,
Zhisong Zhang, Hongming Zhang, Haitao Mi, Dong Yu, and Kam-Fai Wong. Explore to evolve: Scal-
ing evolved aggregation logic via proactive online exploration for deep research agents. arXiv preprint
arXiv:2510.14438, 2025l.

Saizhuo Wang, Hang Yuan, Lionel M Ni, and Jian Guo. Quantagent: Seeking holy grail in trading by
self-improving large language model. arXiv preprint arXiv:2402.03755, 2024d.

Shaobo Wang, Zhengbo Jiao, Zifan Zhang, Yilang Peng, Xu Ze, Boyu Yang, Wei Wang, Hu Wei, and
Linfeng Zhang. Socratic-zero: Bootstrapping reasoning via data-free agent co-evolution. arXiv preprint
arXiv:2509.24726, 2025m.

Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang. Benchmark self-evolving: A
multi-agent framework for dynamic llm evaluation. arXiv preprint arXiv:2402.11443, 2024e.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge editing for
large language models: A survey. ACM Computing Surveys, 57(3):1–37, 2024f.

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Distrl: An asynchronous dis-
tributed reinforcement learning framework for on-device control agents. arXiv preprint arXiv:2410.14803,
2024g.

Tevin Wang and Chenyan Xiong. Autorule: Reasoning chain-of-thought extracted rule-based rewards im-
prove preference learning. arXiv preprint arXiv:2506.15651, 2025.

Xiao Wang, Yuansen Zhang, Tianze Chen, Songyang Gao, Senjie Jin, Xianjun Yang, Zhiheng Xi, Rui Zheng,
Yicheng Zou, Tao Gui, et al. Trace: A comprehensive benchmark for continual learning in large language
models. arXiv preprint arXiv:2310.06762, 2023c.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE transactions on pattern
analysis and machine intelligence, 44(9):4555–4576, 2021.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P Xing,
and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level prompt
optimization. arXiv preprint arXiv:2310.16427, 2023d.

69

https://arxiv.org/abs/2506.00886
https://arxiv.org/abs/2506.00886

Published in Transactions on Machine Learning Research (01/2026)

Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang, and Bryon Aragam. Scoreflow: Mastering LLM agent
workflows via score-based preference optimization. arXiv preprint arXiv:2502.04306, 2025n.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. arXiv preprint
arXiv:2212.10560, 2022.

Yue Wang, Tianfan Fu, Yinlong Xu, Zihan Ma, Hongxia Xu, Bang Du, Yingzhou Lu, Honghao Gao, Jian Wu,
and Jintai Chen. Twin-gpt: digital twins for clinical trials via large language model. ACM Transactions
on Multimedia Computing, Communications and Applications, 2024h.

Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and Heng Ji.
Mobile-agent-e: Self-evolving mobile assistant for complex tasks. arXiv preprint arXiv:2501.11733, 2025o.

Zhenting Wang, Guofeng Cui, Kun Wan, and Wentian Zhao. Dump: Automated distribution-level curriculum
learning for rl-based llm post-training. arXiv preprint arXiv:2504.09710, 2025p.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin, Kefan Yu,
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Yiping Lu, Kyunghyun Cho, Jiajun Wu, Li Fei-Fei, Lijuan
Wang, Yejin Choi, and Manling Li. Ragen: Understanding self-evolution in llm agents via multi-turn
reinforcement learning. arXiv preprint arXiv:2504.20073, 2025q.

Ziqi Wang, Le Hou, Tianjian Lu, Yuexin Wu, Yunxuan Li, Hongkun Yu, and Heng Ji. Enabling lanuguage
models to implicitly learn self-improvement. In The Twelfth International Conference on Learning Repre-
sentations, 2024i. URL https://openreview.net/forum?id=2tVHNRZuCs.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory. arXiv preprint
arXiv:2409.07429, 2024j.

Boyi Wei, Benedikt Stroebl, Jiacen Xu, Joie Zhang, Zhou Li, and Peter Henderson. Dynamic risk assessments
for offensive cybersecurity agents. arXiv preprint arXiv:2505.18384, 2025a.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won Chung,
Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet challenging bench-
mark for browsing agents. arXiv preprint arXiv:2504.12516, 2025b.

Lai Wei, Yuting Li, Chen Wang, Yue Wang, Linghe Kong, Weiran Huang, and Lichao Sun. Unsupervised
post-training for multi-modal llm reasoning via grpo, 2025c. URL https://arxiv.org/abs/2505.22453.

Qianshan Wei, Tengchao Yang, Yaochen Wang, Xinfeng Li, Lijun Li, Zhenfei Yin, Yi Zhan, Thorsten Holz,
Zhiqiang Lin, and XiaoFeng Wang. A-memguard: A proactive defense framework for llm-based agent
memory. arXiv preprint arXiv:2510.02373, 2025d.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv,
Neel Jain, Khalid Saifullah, Sreemanti Dey, et al. Livebench: A challenging, contamination-limited llm
benchmark. arXiv preprint arXiv:2406.19314, 2024.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. Advances in Neural
Information Processing Systems, 36:36637–36651, 2023.

Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang, Yulan
He, Deyu Zhou, Pengjun Xie, et al. Webwalker: Benchmarking llms in web traversal. arXiv preprint
arXiv:2501.07572, 2025.

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan, Xiang Zhang, and Wenliang Chen. Seal-tools: Self-
instruct tool learning dataset for agent tuning and detailed benchmark. In CCF International Conference
on Natural Language Processing and Chinese Computing, pp. 372–384. Springer, 2024.

70

https://openreview.net/forum?id=2tVHNRZuCs
https://arxiv.org/abs/2505.22453

Published in Transactions on Machine Learning Research (01/2026)

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang, Guanyu Li, Yiwen Ding, Wei He, Boyang Hong,
Shihan Do, Wenyu Zhan, et al. Enhancing llm reasoning via critique models with test-time and training-
time supervision. arXiv preprint arXiv:2411.16579, 2024.

Chunqiu Steven Xia, Zhe Wang, Yan Yang, Yuxiang Wei, and Lingming Zhang. Live-swe-agent: Can software
engineering agents self-evolve on the fly? arXiv preprint arXiv:2511.13646, 2025a.

Peng Xia, Kaide Zeng, Jiaqi Liu, Can Qin, Fang Wu, Yiyang Zhou, Caiming Xiong, and Huaxiu Yao.
Agent0: Unleashing self-evolving agents from zero data via tool-integrated reasoning. arXiv preprint
arXiv:2511.16043, 2025b.

Jinyu Xiang, Jiayi Zhang, Zhaoyang Yu, Fengwei Teng, Jinhao Tu, Xinbing Liang, Sirui Hong, Chenglin
Wu, and Yuyu Luo. Self-supervised prompt optimization. arXiv preprint arXiv:2502.06855, 2025.

Han Xiao, Guozhi Wang, Yuxiang Chai, Zimu Lu, Weifeng Lin, Hao He, Lue Fan, Liuyang Bian, Rui Hu,
Liang Liu, et al. Ui-genie: A self-improving approach for iteratively boosting mllm-based mobile gui
agents. arXiv preprint arXiv:2505.21496, 2025a.

Yijia Xiao, Edward Sun, Di Luo, and Wei Wang. Tradingagents: Multi-agents llm financial trading frame-
work. arXiv preprint arXiv:2412.20138, 2024.

Yunzhong Xiao, Yangmin Li, Hewei Wang, Yunlong Tang, and Zora Zhiruo Wang. Toolmem: Enhancing
multimodal agents with learnable tool capability memory. arXiv preprint arXiv:2510.06664, 2025b.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua, Zhoujun
Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents for open-ended
tasks in real computer environments. Advances in Neural Information Processing Systems, 37:52040–
52094, 2024.

Wenpeng Xing, Zhonghao Qi, Yupeng Qin, Yilin Li, Caini Chang, Jiahui Yu, Changting Lin, Zhenzhen Xie,
and Meng Han. Mcp-guard: A defense framework for model context protocol integrity in large language
model applications. arXiv preprint arXiv:2508.10991, 2025.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei Lin, and
Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow complex instructions.
In The Twelfth International Conference on Learning Representations, 2024a.

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang, Xuhui
Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on consequential
real world tasks. arXiv preprint arXiv:2412.14161, 2024b.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic memory
for llm agents. arXiv preprint arXiv:2502.12110, 2025a.

Zicheng Xu, Guanchu Wang, Guangyao Zheng, Yu-Neng Chuang, Alexander Szalay, Xia Hu, and Vladimir
Braverman. Self-ensemble: Mitigating confidence distortion for large language models, 2025b. URL
https://arxiv.org/abs/2506.01951.

Cilin Yan, Jingyun Wang, Lin Zhang, Ruihui Zhao, Xiaopu Wu, Kai Xiong, Qingsong Liu, Guoliang Kang,
and Yangyang Kang. Efficient and accurate prompt optimization: the benefit of memory in exemplar-
guided reflection. arXiv preprint arXiv:2411.07446, 2024.

Sikuan Yan, Xiufeng Yang, Zuchao Huang, Ercong Nie, Zifeng Ding, Zonggen Li, Xiaowen Ma, Kristian Ker-
sting, Jeff Z. Pan, Hinrich Schütze, Volker Tresp, and Yunpu Ma. Memory-r1: Enhancing large language
model agents to manage and utilize memories via reinforcement learning. arXiv preprint arXiv:2508.19828,
2025.

Cheng Yang, Xuemeng Yang, Licheng Wen, Daocheng Fu, Jianbiao Mei, Rong Wu, Pinlong Cai, Yufan
Shen, Nianchen Deng, Botian Shi, Yu Qiao, and Haifeng Li. Learning on the job: An experience-driven
self-evolving agent for long-horizon tasks. arXiv preprint arXiv:2510.08002, 2025a.

71

https://arxiv.org/abs/2506.01951

Published in Transactions on Machine Learning Research (01/2026)

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. Large
language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press, Niklas
Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal: Do ai systems
generalize to visual software domains? arXiv preprint arXiv:2410.03859, 2024.

Kaiqi Yang, Hang Li, Yucheng Chu, Ahreum Han, Yasemin Copur-Gencturk, Jiliang Tang, and Hui Liu.
A llm-driven multi-agent systems for professional development of mathematics teachers. arXiv preprint
arXiv:2507.05292, 2025b. URL https://arxiv.org/abs/2507.05292.

Yue Yang, MingKang Chen, Qihua Liu, Mengkang Hu, Qiguang Chen, Gengrui Zhang, Shuyue Hu, Guangtao
Zhai, Yu Qiao, Yu Wang, et al. Truly assessing fluid intelligence of large language models through dynamic
reasoning evaluation. arXiv preprint arXiv:2506.02648, 2025c.

Yutao Yang, Jie Zhou, Xuanwen Ding, Tianyu Huai, Shunyu Liu, Qin Chen, Yuan Xie, and Liang He. Recent
advances of foundation language models-based continual learning: A survey. ACM Computing Surveys,
57(5):1–38, 2025d.

Ziyi Yang, Weizhou Shen, Chenliang Li, Ruijun Chen, Fanqi Wan, Ming Yan, Xiaojun Quan, and Fei
Huang. Spell: Self-play reinforcement learning for evolving long-context language models. arXiv preprint
arXiv:2509.23863, 2025e.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-world
web interaction with grounded language agents. Advances in Neural Information Processing Systems, 35:
20744–20757, 2022.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A benchmark for tool-
agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Rui Ye, Xiangru Liu, Qingyun Wu, Xinyuan Pang, Zhaopeng Yin, Lu Bai, et al. X-mas: Towards building
multi-agent systems with heterogeneous llms. arXiv preprint arXiv:2505.16997, 2025a.

Rui Ye et al. Mas-gpt: Training llms to build llm-based multi-agent systems. arXiv preprint, 2025b.

S. Yellamraju, , et al. TextGrad: Automatic "differentiation" via text. arXiv preprint arXiv:2406.07496,
2024.

Li Yin and Zhangyang Wang. Llm-autodiff: Auto-differentiate any llm workflow. arXiv e-prints, pp. arXiv–
2501, 2025.

Xunjian Yin, Xinyi Wang, Liangming Pan, Li Lin, Xiaojun Wan, and William Yang Wang. Gödel agent:
A self-referential agent framework for recursive self-improvement, 2025. URL https://arxiv.org/abs/
2410.04444.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,
Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. arXiv
preprint arXiv:2503.14476, 2025a.

Wenhao Yu, Zhenwen Liang, Chengsong Huang, Kishan Panaganti, Tianqing Fang, Haitao Mi, and Dong
Yu. Guided self-evolving llms with minimal human supervision. arXiv preprint arXiv:2512.02472, 2025b.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi Fung, Hao Peng, and Heng Ji. CRAFT: Customizing LLMs
by Creating and Retrieving from Specialized Toolsets. In 12th International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=G0vdDSt9XM.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards
automatic multi-agent generation via evolutionary algorithms. arXiv preprint arXiv:2406.14228, 2024b.

72

https://arxiv.org/abs/2507.05292
https://arxiv.org/abs/2410.04444
https://arxiv.org/abs/2410.04444
https://openreview.net/forum?id=G0vdDSt9XM

Published in Transactions on Machine Learning Research (01/2026)

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards
automatic multi-agent generation via evolutionary algorithms, 2025a. URL https://arxiv.org/abs/
2406.14228.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024c.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and
Jason E. Weston. Self-rewarding language models. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 57905–57923. PMLR,
2024d.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models, 2025b. URL https://arxiv.org/abs/2401.10020.

Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin Hou,
Jinwei Chen, Peng-Tao Jiang, and Bo Li. Enhancing visual grounding for gui agents via self-evolutionary
reinforcement learning. arXiv preprint arXiv:2505.12370, 2025c.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf: Rank responses
to align language models with human feedback without tears. arXiv preprint arXiv:2304.05302, 2023.

Murong Yue, Wenhan Lyu, Wijdane Mifdal, Jennifer Suh, Yixuan Zhang, and Ziyu Yao. Mathvc: An llm-
simulated multi-character virtual classroom for mathematics education. arXiv preprint arXiv:2404.06711,
2025. URL https://arxiv.org/abs/2404.06711.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman. Quiet-star:
Language models can teach themselves to think before speaking. arXiv preprint arXiv:2403.09629, 2024.

Yunpeng Zhai, Shuchang Tao, Cheng Chen, Anni Zou, Ziqian Chen, Qingxu Fu, Shinji Mai, Li Yu, Jiaji Deng,
Zouying Cao, Zhaoyang Liu, Bolin Ding, and Jingren Zhou. Agentevolver: Towards efficient self-evolving
agent system. arXiv preprint arXiv:2511.10395, 2025.

Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zihan Zhao, and Kai Yu. Large language models are
semi-parametric reinforcement learning agents. Advances in Neural Information Processing Systems, 36,
2024a.

Enci Zhang, Xingang Yan, Wei Lin, Tianxiang Zhang, and Qianchun Lu. Learning like humans: Advancing
llm reasoning capabilities via adaptive difficulty curriculum learning and expert-guided self-reformulation.
arXiv preprint arXiv:2505.08364, 2025a.

Genghan Zhang, Weixin Liang, Olivia Hsu, and Kunle Olukotun. Adaptive self-improvement llm agentic
system for ml library development. arXiv preprint arXiv:2502.02534, 2025b.

Guanghui Zhang, Kang Chen, Guohao Wan, Hao Chang, Hao Cheng, et al. Evoflow: Evolving diverse
agentic workflows on the fly. arXiv preprint arXiv:2502.07373, 2025c.

Guanghui Zhang, Li Niu, Jianwei Fang, Kun Wang, Lu Bai, et al. Multi-agent architecture search via agentic
supernet. arXiv preprint arXiv:2502.04180, 2025d.

Guibin Zhang, Muxin Fu, Guancheng Wan, Miao Yu, Kun Wang, and Shuicheng Yan. G-memory: Tracing
hierarchical memory for multi-agent systems. arXiv preprint arXiv:2506.07398, 2025e.

Guibin Zhang, Muxin Fu, and Shuicheng Yan. Memgen: Weaving generative latent memory for self-evolving
agents. arXiv preprint arXiv:2509.24704, 2025f.

73

https://arxiv.org/abs/2406.14228
https://arxiv.org/abs/2406.14228
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2404.06711

Published in Transactions on Machine Learning Research (01/2026)

Guibin Zhang, Haotian Ren, Chong Zhan, Zhenhong Zhou, Junhao Wang, He Zhu, Wangchunshu Zhou, and
Shuicheng Yan. Memevolve: Meta-evolution of agent memory systems. arXiv preprint arXiv:2512.18746,
2025g.

Hanrong Zhang, Jingyuan Huang, Kai Mei, Yifei Yao, Zhenting Wang, Chenlu Zhan, Hongwei Wang, and
Yongfeng Zhang. Agent security bench (asb): Formalizing and benchmarking attacks and defenses in
llm-based agents. arXiv preprint arXiv:2410.02644, 2024b.

Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange, and Jeff Clune. Darwin Godel Machine: Open-Ended
Evolution of Self-Improving Agents. arXiv preprint arXiv:2505.22954, 2025h.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation. arXiv preprint
arXiv:2410.10762, 2024c.

Jiayi Zhang, Yiran Peng, Fanqi Kong, Cheng Yang, Yifan Wu, Zhaoyang Yu, Jinyu Xiang, Jianhao Ruan,
Jinlin Wang, Maojia Song, HongZhang Liu, Xiangru Tang, Bang Liu, Chenglin Wu, and Yuyu Luo.
Autoenv: Automated environments for measuring cross-environment agent learning. arXiv preprint
arXiv:2511.19304, 2025i.

Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, Jieping Ye, Mingli Song, and Dacheng
Tao. Consistent paths lead to truth: Self-rewarding reinforcement learning for llm reasoning, 2025j. URL
https://arxiv.org/abs/2506.08745.

Mike Zhang, Amalie Pernille Dilling, Léon Gondelman, Niels Erik Ruan Lyngdorf, Euan D. Lindsay, and
Johannes Bjerva. Sefl: Harnessing large language model agents to improve educational feedback systems.
arXiv preprint arXiv:2502.12927, 2025k. URL https://arxiv.org/abs/2502.12927.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, et al. A comprehensive study of knowledge editing for large language
models. arXiv preprint arXiv:2401.01286, 2024d.

Peiyan Zhang, Haibo Jin, Leyang Hu, Xinnuo Li, Liying Kang, Man Luo, Yangqiu Song, and Haohan Wang.
Revolve: Optimizing ai systems by tracking response evolution in textual optimization. arXiv preprint
arXiv:2412.03092, 2024e.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan Guo,
Yufei Wang, Niklas Muennighoff, et al. A survey on test-time scaling in large language models: What,
how, where, and how well? arXiv preprint arXiv:2503.24235, 2025l.

Qizheng Zhang, Changran Hu, Shubhangi Upasani, Boyuan Ma, Fenglu Hong, Vamsidhar Kamanuru, Jay
Rainton, Chen Wu, Mengmeng Ji, Hanchen Li, et al. Agentic context engineering: Evolving contexts for
self-improving language models. arXiv preprint arXiv:2510.04618, 2025m.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun Wu. Of-
fline training of language model agents with functions as learnable weights. In Forty-first International
Conference on Machine Learning, 2024f.

Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu, Zhiding
Yu, and Guilin Liu. Nemotron-research-tool-n1: Exploring tool-using language models with reinforced
reasoning. arXiv preprint arXiv:2505.00024, 2025n.

Xuemiao Zhang, Liangyu Xu, Feiyu Duan, Yongwei Zhou, Sirui Wang, Rongxiang Weng, Jingang Wang, and
Xunliang Cai. Preference curriculum: Llms should always be pretrained on their preferred data. arXiv
preprint arXiv:2501.13126, 2025o.

Xueqiao Zhang, Chao Zhang, Jianwen Sun, Jun Xiao, Yi Yang, and Yawei Luo. Eduplanner: Llm-based
multi-agent systems for customized and intelligent instructional design. arXiv preprint arXiv:2504.05370,
2025p. URL https://arxiv.org/abs/2504.05370.

74

https://arxiv.org/abs/2506.08745
https://arxiv.org/abs/2502.12927
https://arxiv.org/abs/2504.05370

Published in Transactions on Machine Learning Research (01/2026)

Yijing Zhang, Dyah Adila, Changho Shin, and Frederic Sala. Personalize your llm: Fake it then align it.
arXiv preprint arXiv:2503.01048, 2025q.

Yiqun Zhang, Peng Ye, Xiaocui Yang, Shi Feng, Shufei Zhang, Lei Bai, Wanli Ouyang, and Shuyue Hu.
Nature-inspired population-based evolution of large language models. arXiv preprint arXiv:2503.01155,
2025r.

Yuanshuo Zhang, Yuchen Hou, Bohan Tang, Shuo Chen, Muhan Zhang, Xiaowen Dong, and Siheng Chen.
Gnns as predictors of agentic workflow performances. arXiv preprint arXiv:2503.11301, 2025s.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong, and Ji-
Rong Wen. A survey on the memory mechanism of large language model based agents. arXiv preprint
arXiv:2404.13501, 2024g.

Zhehao Zhang, Ryan A Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck Dernoncourt,
Joe Barrow, Tong Yu, Sungchul Kim, et al. Personalization of large language models: A survey. arXiv
preprint arXiv:2411.00027, 2024h.

Zhexin Zhang, Shiyao Cui, Yida Lu, Jingzhuo Zhou, Junxiao Yang, Hongning Wang, and Minlie Huang.
Agent-safetybench: Evaluating the safety of llm agents. arXiv preprint arXiv:2412.14470, 2024i.

Zhexin Zhang, Junxiao Yang, Pei Ke, Shiyao Cui, Chujie Zheng, Hongning Wang, and Minlie Huang. Safe
unlearning: A surprisingly effective and generalizable solution to defend against jailbreak attacks. arXiv
preprint arXiv:2407.02855, 2024j.

Zhongyue Zhang, Zijie Qiu, Yingcheng Wu, Shuya Li, Dingyan Wang, Zhuomin Zhou, Duo An, Yuhan Chen,
Yu Li, Yongbo Wang, et al. Origene: A self-evolving virtual disease biologist automating therapeutic target
discovery. bioRxiv, pp. 2025–06, 2025t.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm agents
are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
19632–19642, 2024a.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun Wu,
Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data. arXiv
preprint arXiv:2505.03335, 2025a.

Haiteng Zhao, Chang Ma, Guoyin Wang, Jing Su, Lingpeng Kong, Jingjing Xu, Zhi-Hong Deng, and Hongxia
Yang. Empowering large language model agents through action learning. CoRR, abs/2402.15809, 2024b.

Henry Hengyuan Zhao, Pan Zhou, and Mike Zheng Shou. Genixer: Empowering multimodal large language
model as a powerful data generator. In European Conference on Computer Vision, pp. 129–147. Springer,
2024c.

Qianchuan Zhao, Yuxiang Xie, Wentao Wang, Jie Li, Lizhou Sha, Jialong Zhang, and Minlie Huang. Riche-
lieu: Self-evolving LLM-based agents for AI diplomacy. arXiv preprint arXiv:2407.06813, 2024d. URL
https://arxiv.org/abs/2407.06813.

Wanjia Zhao, Mert Yuksekgonul, Shirley Wu, and James Zou. Sirius: Self-improving multi-agent systems
via bootstrapped reasoning. arXiv preprint arXiv:2502.04780, 2025b.

Arman Zharmagambetov, Chuan Guo, Ivan Evtimov, Maya Pavlova, Ruslan Salakhutdinov, and Kama-
lika Chaudhuri. Agentdam: Privacy leakage evaluation for autonomous web agents. arXiv preprint
arXiv:2503.09780, 2025.

Boyuan Zheng, Michael Y. Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song, Yu Gu,
Jayanth Srinivasa, Gaowen Liu, Graham Neubig, and Yu Su. Skillweaver: Web agents can self-improve
by discovering and honing skills. CoRR, abs/2504.07079, 2025a.

75

https://arxiv.org/abs/2407.06813

Published in Transactions on Machine Learning Research (01/2026)

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on natural language
planning. arXiv preprint arXiv:2406.04520, 2024a.

Junhao Zheng, Xidi Cai, Qiuke Li, Duzhen Zhang, ZhongZhi Li, Yingying Zhang, Le Song, and Qianli Ma.
Lifelongagentbench: Evaluating llm agents as lifelong learners. arXiv preprint arXiv:2505.11942, 2025b.

Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, and Qianli Ma.
Lifelong learning of large language model based agents: A roadmap. arXiv preprint arXiv:2501.07278,
2025c.

Yuanhang Zheng, Peng Li, Wei Liu, Yang Liu, Jian Luan, and Bin Wang. Toolrerank: Adaptive and
hierarchy-aware reranking for tool retrieval. In LREC/COLING, pp. 16263–16273. ELRA and ICCL,
2024b.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19724–19731, 2024.

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning with pre-
trained models: A survey. arXiv preprint arXiv:2401.16386, 2024a.

Han Zhou, Xingchen Wan, Ruoxi Sun, Hamid Palangi, Shariq Iqbal, Ivan Vulić, Anna Korhonen, and
Sercan Ö. Arık. Multi-agent design: Optimizing agents with better prompts and topologies, 2025a. URL
https://arxiv.org/abs/2502.02533.

Huichi Zhou, Yihang Chen, Siyuan Guo, Xue Yan, Kin Hei Lee, Zihan Wang, Ka Yiu Lee, Guchun Zhang,
Kun Shao, Linyi Yang, et al. Memento: Fine-tuning llm agents without fine-tuning llms. arXiv preprint
arXiv:2508.16153, 2025b.

Jijie Zhou, Eryue Xu, Yaoyao Wu, and Tianshi Li. Rescriber: Smaller-llm-powered user-led data minimiza-
tion for llm-based chatbots. In Proceedings of the 2025 CHI Conference on Human Factors in Computing
Systems, pp. 1–28, 2025c.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854, 2023.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen, Shuai
Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents. arXiv preprint
arXiv:2406.18532, 2024b.

Xueyang Zhou, Weidong Wang, Lin Lu, Jiawen Shi, Guiyao Tie, Yongtian Xu, Lixing Chen, Pan Zhou,
Neil Zhenqiang Gong, and Lichao Sun. Automating safety enhancement for llm-based agents with synthetic
risk scenarios. arXiv preprint arXiv:2505.17735, 2025d.

Yifei Zhou, Sergey Levine, Jason Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging language
model agents, 2025e. URL https://arxiv.org/abs/2506.01716.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. Large language models are human-level prompt engineers. In The Eleventh International Conference
on Learning Representations, 2022.

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong Wang, Cheng
Qian, Xiangru Tang, Heng Ji, et al. Multiagentbench: Evaluating the collaboration and competition of
llm agents. arXiv preprint arXiv:2503.01935, 2025.

Yangyang Zhuang, Wenjia Jiang, Jiayu Zhang, Ze Yang, Joey Tianyi Zhou, and Chi Zhang. Learning to be
a doctor: Searching for effective medical agent architectures. arXiv preprint arXiv:2504.11301, 2025.

76

https://arxiv.org/abs/2502.02533
https://arxiv.org/abs/2506.01716

Published in Transactions on Machine Learning Research (01/2026)

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen Schmidhuber.
Gptswarm: Language agents as optimizable graphs. In ICML. OpenReview.net, 2024.

Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, J Zico Kolter,
Matt Fredrikson, and Dan Hendrycks. Improving alignment and robustness with circuit breakers. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen Zhang, Xinwei
Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint arXiv:2504.16084, 2025.

Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyürek, Yoon Kim, and Pulkit Agrawal. Self-adapting
language models. arXiv preprint arXiv:2506.10943, 2025.

77

	Introduction
	Definitions and Foundations
	Definitions
	Relationships with Other Works

	What to Evolve?
	Models
	Context
	Memory Evolution
	Prompt Optimization

	Tools
	Architecture
	Single-Agent System Optimization
	Multi-Agent System Optimization

	When to Evolve
	Intra-Test-Time Self-Evolution
	Inter-Test-Time Self-Evolution

	How to Evolve
	Reward-based Self-Evolution
	Imitation and Demonstration Learning
	Self-Generated Demonstration Learning
	Cross-Agent Demonstration Learning
	Hybrid Demonstration Learning

	Population-based and Evolutionary Methods
	Single Agent Evolution
	Multi-Agent Evolution

	Cross-cutting Evolutionary Dimensions
	Online and Offline Learning
	On-policy and Off-policy Learning
	Reward Granularity

	Other Dimensions of Self-Evolution Methods

	Where to Evolve?
	General Domain Evolution
	Specialized Domain Evolution

	Evaluation of Self-evolving Agents
	Evaluation Goals, Metrics, and Benchmark Coverage
	Adaptivity
	Retention
	Generalization
	Efficiency
	Safety
	Self-Directedness and Evaluation Trade-offs

	Evaluation Paradigm
	Static Assessment
	Short-Horizon Adaptive Assessment
	Long-Horizon Lifelong Learning Ability Assessment
	Standardized Evaluation Protocols

	Limitations of Current Evaluation Practices
	Underserved Capability Intersections
	Challenges for Fair Comparison

	Future Direction
	Personalize AI Agents
	Generalization
	Safe and Controllable Self-Evolving Agents
	Emergent Risks in Self-Evolving Systems
	Prescriptive Guardrails and Mitigation Strategies

	Ecosystems of Multi-Agents

	Conclusion

