SCIENCEBOARD: Evaluating Multimodal Autonomous Agents
in Realistic Scientific Workflows

Qiushi Sun'? Zhoumianze Liu?? Chang Ma' Zichen Ding? Fangzhi Xu’? Zhangyue Yin> Haiteng Zhao*
Zhenyu Wu? Kanzhi Cheng’®> Zhaoyang Liu’> Qintong Li' Jianing Wang® Xiangru Tang’ Tianbao Xie '
Xiachong Feng' Xiang Li® Ben Kao! Wenhai Wang? Biqing Qi’> Lingpeng Kong' Zhiyong Wu?

Abstract

Large Language Models have extended their im-
pact beyond Natural Language Processing, sub-
stantially fostering the development of interdis-
ciplinary research. Recently, various agents
have been developed to assist scientific discov-
ery progress across multiple aspects and domains.
Among these, computer-using agents, capable
of interacting with operating systems as humans
do, are paving the way to automated scientific
problem-solving and addressing routines in re-
searchers’ workflows. Recognizing the transfor-
mative potential of these agents, we introduce
SCIENCEBOARD, which encompasses two com-
plementary contributions: (i) a realistic envi-
ronment providing authentic scientific discovery
workflows with integrated professional software,
where agents can autonomously interact via differ-
ent interfaces to accelerate complex research tasks
and experiments; and (ii) a challenging bench-
mark of 169 high-quality, rigorously validated
real-world tasks curated by humans, spanning
multiple scientific-discovery workflows. Exten-
sive evaluations show that, despite some promis-
ing results, current agents still fall short of reliably
assisting scientists with complex workflows (15%
success rate). In-depth analysis further paves the
way to build more capable agents for scientific
discovery. Our codes are available at this link.

1. Introduction

In the pursuit of scientific advances, researchers combine
ingenuity and creativity to perform novel research grounded
in experimental explorations. In the modern era, scien-
tific discovery is increasingly driven by specialized tools

"The University of Hong Kong “Shanghai AI Laboratory
3Fudan University *Peking University *Nanjing University ®East
China Normal University ’ Yale University. Correspondence to:
Qiushi Sun <qiushisun@connect.hku.hk>.

Workshop on Computer-use Agents @ ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s).

that empower scientists to engage deeply with the experi-
mental world (Hacking, 1983). Tools like simulation en-
gines (Hollingsworth & Dror, 2018), analysis software (The
MathWorks Inc., 2022), and visualization platforms (God-
dard et al., 2018) are essential for formulating hypotheses,
validating results, and advancing scientific understanding.

With the increasing complexity of scientific tools and the
growing demand for more streamlined scientific workflows,
there is a rising expectation that agents will play a central
role in automating research pipelines and assisting human re-
searchers as “Al co-scientists” (Luo et al., 2025; Schmidgall
et al., 2025; Gottweis et al., 2025). For example, while a
human scientist may take weeks to master a protein analysis
tool (Meng et al., 2023) and spend hours making sufficient
observations, an autonomous agent could perform the same
tasks within minutes. By enabling fully autonomous work-
flows—from tool usage to making novel discoveries (Lu
et al., 2024a)—such agents promise to accelerate science
and empower researchers with unprecedented capabilities.

Recently emerging computer-using agents (Wu et al., 2024;
OpenAl, 2025a), capable of operating digital devices in a
human-like manner, present a promising approach toward
achieving these visions. These agents can interact with oper-
ating systems through Command-Line Interfaces (CLI; Sun
et al., 2024a; Wang et al., 2024d) or perform mouse / key-
board actions via Graphical User Interfaces (GUI; Cheng
et al., 2024; Wu et al., 2025). By closely mimicking the user
experience when interacting with tools (Xie et al., 2024;
Rawles et al., 2025; Hu et al., 2024), these agents enable a
unified paradigm where software can be leveraged to auto-
mate complex scientific workflows with maximum flexibil-
ity. As illustrated in Figure 1, to predict the protein structure
of an amino acid sequence, the agent launches ChimeraX,
selects the AlphaFold widget, and inputs the sequence for
prediction. In this way, scientific tasks could be performed
through step-by-step autonomous interaction with software.

To initiate the use of computer-using agents to assist hu-
man scientists with daily tasks, we introduce SCIENCE-
BOARD, a novel realistic environment designed for devel-
oping Al-powered research assistants. Our infrastructure

https://qiushisun.github.io/ScienceBoard-Home/

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Instruction: Predict the protein structure for the amino acid sequence of 'MGND..." via AlphaFold in ChimeraX.

Step1: Toggle the widget of AlphaFold.

K]

Step2: Input the given sequence and call ~ Step3: Wait until the prediction finished.

out AlphaFold for structure prediction.

Instruction: Show planets' orbits of Solar System in Celestia.

Step1: Select the Sol and click 'Goto' in
contect menu.

Step2: Slide the mouse wheel to move
the camera away from Sol.

3

Step3: Click to show orbits of planets.

Figure 1. SCIENCEBOARD is a pioneering computer environment for scientific discovery agents, integrated with a suite of professional
software and tools. It serves as an infrastructure enabling computer-using agents to assist in scientific workflows. Based on instructions,
agents autonomously interact with the environment via GUI actions or generated code to complete realistic tasks.

comprises a scalable framework for scientific exploration
that integrates: (1) a flexible ecosystem comprising scien-
tific software across multiple domains, and (2) standard-
ized evaluation pipelines for rigorous assessment. It sup-
ports dual-mode interaction, allowing LLM/VLM-based
computer agents to operate through either CLI or GUL

Building upon SCIENCEBOARD, we curate a benchmark
comprising 169 tasks that encompass scientific experiment
workflows drawn from six scientific domains, including
algebra, biochemistry, theorem proving, geographic infor-
mation systems, astronomy, and scientific documentation.
These high-quality and challenging tasks are meticulously
designed by annotators with disciplinary backgrounds, sim-
ulating the daily routines faced by human scientists. Agents
are required to complete these tasks through interactions
with the system via CLI and GUI actions, leveraging vi-
sual or structured information (or both). Unlike widely
used desktop applications, scientific software exhibits con-
siderable complexity in I/O formats. Consequently, we
reconfigure all software involved to ensure the accuracy
and reliability of execution-based evaluation. We design a
suite of evaluation functions that verify task completion by
retrieving the internal states of the system.

We evaluate state-of-the-art LLMs and VLMs as agents on
SCIENCEBOARD, incorporating both proprietary models
and their open-source counterparts. Across different ob-
servation settings, the average success rate of these agents
ranges between 0% to 15%, with performance peaking at
20% in the most favorable subcategories. This demonstrates

that current computer-using agents, while promising, remain
far from capable of serving as scientific assistants. Our anal-
ysis further reveals their inherent limitations and explores
design principles for developing more competent agents.

2. Related Works

Computer-Using Agents. Language agents (Sumers et al.,
2024) have recently garnered significant attention due to
their interactive capabilities (Li et al., 2023; Sun et al.,
2024c; Hong et al., 2024; Liu et al., 2024a). Recent stud-
ies indicate their potential to interact with operating sys-
tems and automate computer tasks as humans do, lead-
ing to the proliferation of computer-using agents (OpenAl,
2025a). One line of research utilizes Command Line Inter-
face (CLI), where agents generate executable scripts (e.g.,
Python or Shell scripts) to interact with systems program-
matically (Wang et al., 2024a). In this process, agents per-
form code synthesis (Sun et al., 2024a) or invoke APIs (Wu
et al., 2024; Zhang et al., 2024) to manipulate computers.
Another line of research focuses on Graphical User Interface
(GUI) agents (Cheng et al., 2024; Wu et al., 2025; Lin et al.,
2024) that interact with digital devices through human-like
mouse and keyboard actions (Niu et al., 2024; Zheng et al.,
2024; Gou et al., 2025). These agents transform user instruc-
tions into executable actions within the operating system
(e.g., clicking an icon or scrolling through a page). Powered
by VLMs, GUI agents have been applied to automate desk-
top (Xie et al., 2024) and mobile (Rawles et al., 2025) tasks,
as well as specialized engineering workflows (Cao et al.,
2024), showing promising paths toward digital automation.

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

This work initiates the use of computer-using agents science,
taking a step closer to autonomous research assistants.

Al for Scientific Discovery. The rapid advancement of
LLMs has reshaped the landscape of scientific discov-
ery (Microsoft, 2023), boosting multiple stages of the re-
search cycle (Luo et al., 2025). With the rise of LLM/VLM-
based agents, there is a growing demand for these game-
changers with college-level knowledge (Wang et al., 2024b)
to transcend traditional tasks like question answering (Lu
et al., 2022; Krithara et al., 2023; Lu et al., 2024b). Recent
efforts have been directed towards harnessing such power
to assist with diverse components of the research cycle, in-
cluding idea and hypothesis generation (Si et al., 2024; Liu
et al., 2024b), data analysis (Chen et al., 2025), scientific
programming (Tian et al., 2024; Novikov et al., 2025), pa-
per writing (Wang et al., 2024c), and peer-reviewing (Yu
et al., 2024). Meanwhile, incorporating domain knowl-
edge or even constructing foundation models (Microsoft,
2025) can endow these agents with the capability to solve
domain-specific problems, such as theorem proving (Song
et al., 2025), chemical reasoning (Ouyang et al., 2024; Tang
et al., 2025) and biological discovery (Wang et al., 2025;
Zhao et al., 2025; Wang et al., 2025; Frey et al., 2025).
With the vision of constructing autonomous research as-
sistants (Schmidgall et al., 2025), our work represents the
first to support agents in executing end-to-end scientific
exploration workflows, thereby laying a cornerstone for
advancing Al-powered scientific discovery.

3. SCIENCEBOARD Environment

In this part, we introduce SCIENCEBOARD environment,
which encompasses real-world science software that could
be manipulated through GUI and CLI interfaces. The in-
terface is developed based on an Ubuntu virtual machine
(VM), serving as the underlying infrastructure. The dynamic
and visually intensive environments distinguish SCIENCE-
BOARD from all previous works that evaluate the scientific
capabilities of models or agents.

3.1. Preliminaries and Task Definition

A computer-using agent receives task instructions, selects ac-
tions to manipulate software, and receives feedback reflect-
ing changes in the environment (tabletop). This interaction
is modeled as a Partially Observable Markov Decision Pro-
cess (POMDP), defined by the tuple (g, S, A, O, T), where
g is the goal, S is the state space, A is the action space, O
is the observation space (including environment feedback),
and T : S x A — § is the state transition function. Given a
policy , the agent predicts actions at each time step ¢ based
on the goal g and memory m; = 0;,a;,0541,0541,-..,0;
(0 < j < t), which records the sequence of past actions and
observations. The trajectory 7 = [sg, ag, $1,a1, - . -, St] is
determined by the policy and environment dynamics:

T

pr(T) :p(so)Hﬂ'(at|97St,mt)T(5t+1|8t7at) ()

t=0

Observation and Memory. We evaluate computer agents
using three types of observation spaces: text-only, visual-
only, and combined text-visual observations. For text-based
observations, we use accessibility trees (allytree') to
generate structured textual representations of screenshots.
For visual observations, we capture high-resolution screen-
shots directly. The specific observation combinations used
in our experiments are detailed in Section 5.1, with further
information in Appendix C.5. Our POMDP agent requires
memory to retain history. Following previous work (Yao
et al., 2023; Ma et al., 2024), we construct this memory by
concatenating the agent’s most recent observations.

Goal and Unified Action Space. Each task is specified
by a natural language (NL) instruction, such as Display
atoms in sphere style, describing the user’s in-
tended goal. The policy model decomposes a complex
goal instruction into a sequence of actions. We specially
design a unified action space A in SCIENCEBOARD, inte-
grating diverse interaction modalities crucial for scientific
tasks. For GUI actions, agents can perform the full range
of human-computer interactions, including mouse move-
ments, clicks, keystrokes, and other typical input behaviors
as in prior work (Xie et al., 2024; Zhou et al., 2024) (e.g.,
CLICK[991, 019]). For CLI actions, agents can in-
teract at two levels: (a) invoking system-level commands
within the Ubuntu terminal, and (b) utilizing application-
specific CLI or scripting mechanisms. Moreover, .4 com-
prises an answer action, enabling agents to provide spe-
cific answers for QA tasks, and a call_api action, allow-
ing agents to leverage predefined external APIs to broaden
their capabilities. A comprehensive list of supported action
types is available in Appendix C.4.

LLM/VLM-based Policy Model. An LLM / VLM model
acts as the policy model to drive the agent’s behavior. The
policy model receives the current observation and generates
the next action accordingly. For pure-text observation, we
adopt LLMs as the policy. Otherwise, we leverage VLMs.

3.2. Scientific Discovery Evaluation Framework

Unlike prior work that primarily focuses on static QA or
single-step tasks, we aim to provide agents with a realistic
environment to support autonomous exploration, which in
turn introduces greater challenges for planning and action.
In SCIENCEBOARD, we (1) simulate scenarios where sci-
entific software is used to solve domain-specific problems,

'allytree: Accessibility (ally) trees are hierarchical struc-
tures representing UI elements on the screen.

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Software

Screenshot

{ ﬂ:’ D Install @

*} Environment (Virtual Machine)

AllyTree

a ‘VMManager

GrassGIS

-> -——->
/)Q -------- Celestia
New & ’G < { ChimeraX
> Set of Mark
APP ,
H it A
o io O ie MONTTOR | | STATES
Evaluator H obs i Action @yl
init ()i !true = & Iy
B Task Ei @ii 9@ ii TaskO
Files 1) iV [R Complete
% Config --==--t- > init() r-> predict() --> eval() r--p-=-- >
Files Setup oy o Task Q
B8 Downlond Env. Incomplete
moe ~ownioads _ /Interact
e
fgl Agent

Figure 2. Overview of the SCIENCEBOARD infrastructure. The environment is built upon a VM pre-installed with scientific discovery
software. It supports both CLI and GUI interfaces to enable autonomous agent interaction. For each task designed to evaluate the agent’s
capability as a research assistant, an initialization script, configs, and related files are provided. Agents perceive the environment and are
expected to plan and act accordingly. After the interaction, Evaluation functions determine completion based on the VM internal states.

(2) enable agents to interact with the environment through
diverse observations, and (3) ensure that agent behaviors
can be rigorously evaluated, as shown in Figure 2.

Scientific Software Installation and Adaptation. For
each domain, we select an open-source application that sup-
ports both visual and textual observations as the agent’s
playground. To enable access to the internal state of each
application within the VM, we adapt the software accord-
ingly. Given the complexity and limited completeness of
scientific applications, we inject a lightweight server that
launches alongside the application’s main UI process to
expose internal states via HTTP requests. This server is
capable of querying the application’s runtime internal states,
which serve as the basis for downstream evaluation. For
applications that do not natively support remote control via
RESTful APIs, we modify and recompile their source code
to ensure that both Ul elements and internal states can be
accessed. In addition, the server supports partial state con-
trol of the software, allowing us to initialize with specific
configurations to simulate contextualized task environments.
More about the software selected and further implementa-
tion details are provided in Appendix C.3.

Agent Interactions with the Environment. The
LLM/VLM agent interacts with the environment as
described in Section 3.1, receiving observations and
executing actions accordingly. Scientific software processes
these actions and returns updated states. The agent operates
autonomously, continuing this loop until it outputs a signal
(DONE or FAIL) or reaches the predefined attempt limit.

Evaluation Pipeline. Given the task diversity and com-
plexity, conventional answer-matching metrics and even
execution-based evaluations, such as those used in OS-

World (Xie et al., 2024) and WebArena (Zhou et al., 2024),
often lack the granularity required to assess workflows ac-
curately. For instance, as shown in Table 1, the rotation of
a protein does not affect the correctness of visualization,
whereas computational tasks in astronomy are usually influ-
enced by the current clock state. Therefore, we propose a
fine-grained evaluation based on both the correctness of key
I/0O during the workflow and the final state of the VM.

To handle the diverse criteria for determining task correct-
ness (e.g., exact matching, range-based assessment, numeri-
cal tolerance, file comparison), we design a set of evaluation
templates. For each specific task, the relevant template is
then instantiated with the appropriate parameters and ex-
pected gold standard values. This ensures both consistent
validation and scalability for future extension. More evalua-
tion details are in Appendix C.2.

4. SCIENCEBOARD Benchmark

In this section, we present the covered domains, the anno-
tation pipeline, and statistics of the benchmark constructed
based on the SCIENCEBOARD environment.

4.1. Domain and Task Coverage

As a pioneering benchmark for scientific exploration, SCI-
ENCEBOARD spans six domains selected for their relevance
to key stages of the scientific workflow, such as simulation,
modeling, prediction, and knowledge. These choices are
informed by efforts on LLMs for science (Microsoft, 2023).
In selecting software for each domain, we consider not only
its representativeness, but also practical criteria for evalu-

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Table 1. Typical evaluation cases of SCIENCEBOARD include exact matching, range-based assessment, and numerical tasks with tolerance.
We have tailored appropriate evaluation methods for each task. Additional evaluation strategies are detailed in Appendix D.5.

Initial State Instruction

Evaluation Script (Simplified)

Select all water molecules and draw their
centroids with radius of 1A in ChimeraX.

{
"type":"info", "key":"sell",
"value": ["atom id #!1/A:201Q@0 idatm_type 03"

"o

oA
"type":"states",
"find":"lambda k,v:k.endswith(’._name’)",
"key":"lambda k:’..._atoms_drawing’",
"value":"[[13.0012 1.7766 21.3672 1.]]1"

’boundary_region’ in Grass GIS.

Display and ONLY display the layer of

"type":"info",
"key":"lambda dump:len (dump[’layers’])",
"value":1

},{"type":"info"
"key":"lambda dump:dump[’layers’][0][’'name’]",
"value":"boundary_region@PERMANENT"

ation: open-source availability, allytree compatibility,
and no requirement for user authentication.

(1) Biochemistry. We employ UCSF ChimeraX (God-
dard et al., 2018; Meng et al., 2023), a molecular anal-
ysis tool that supports structural modeling (e.g., Al-
phaFold (Jumper et al., 2021)). The tasks assess the
agent’s ability to manipulate biomolecular structures,
as well as to reason over spatial conformations and
biochem annotations.

(2) Algebra. KAlgebra is employed to evaluate the
agent’s potential in symbolic mathematics. Tasks
involve executing algebraic expressions, interpreting
plots, and manipulating symbolic functions. These sce-
narios require the agent to exhibit strong mathematical
symbolic reasoning and visual grounding capability.

(3) Theorem Proving. We use L.ean 4 (Moura & Ullrich,
2021) as a proof assistant to assess agents’ abilities in
formal logic and deductive reasoning. The ATP tasks in
this category emphasize syntactic precision and logical
coherence, evaluating the agent’s capability to generate
semantically valid formal proofs.

(4) Geographic Information System. GrassGIS, a com-
putational engine for raster, vector, and geospatial pro-
cessing, is included to examine the agent’s skills in
understanding terrain, hydrology, and handling spatio-
temporal data, with support for functions such as ecosys-
tem modeling.

(5) Astronomy. We integrate Celestia, a planetarium
software simulating real-world astronomical scenarios.
Agents must demonstrate temporal-spatial awareness
and knowledge of the cosmos and celestial objects by
tracking planetary systems, simulating orbital events,
and querying object metadata across time and space.

(6) Scientific Documentation. To simulate research
documentation workflows, we adapt and incorporate
TeXstudio to assess the agent’s technical writing
capabilities. In standalone tasks, agents are expected
to compose well-structured abstracts, generate plots,
and produce formal reports based on provided instruc-
tions. In cross-application scenarios, TeXstudio is
coupled with the aforementioned software to evaluate
whether agents can extract meaningful insights from ex-
periments and synthesize them into coherent narratives.

These domains enable evaluating a science agent’s capabili-
ties across multiple dimensions, including visual / textual
reasoning, math, coding, tool use, spatial understanding,
domain-specific knowledge, and more. Additionally, to
explore the potential for end-to-end scientific automation,
documentation tasks are integrated with other domains to
support cross-application workflows—such as automatically
generating an experimental report based on completed up-
stream tasks. More details about the software platforms
used to instantiate and convey the tasks in SCIENCEBOARD
are provided in Appendix C.3.

4.2. Task Annotation Pipeline

To effectively construct tasks that are appropriately chal-
lenging, diverse, and aligned with the features of scientific
software, we leverage an annotation pipeline that spans from
training annotators with tutorials and handbooks to conduct-
ing execution-based validation, as shown in Figure 3. The
specific pipeline is as follows:

(1) Tutorial Learning. Annotators initially collect and
learn from tutorials and handbooks related to the soft-
ware. After that, each annotator studies and explores a
software’s basic operations, e.g., plotting the Bernoulli

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

r -

Agentic Prompt: You
are an expert in

] color non-carbon ..

Step 1: Learn Tutorials
and Handbooks

Step 5: Write Evaluation Function

Difficulty:
Easy

=y Learn .99 Biochemistry...
""" > Lh |
= Task: Display atom in sphere style and

Step 2: Task Curation

App Install X

Agentic Prompt Difficulty ~ Task 1 Q
_ © AsgenticPrompt Difficulty ~ Task2 O
f-)h° AgenticPrompt Difficulty Task3 Q
Step 3: Task Formalization
and Verification

G
==

File Download

Step 4: Task Configuration

Figure 3. The annotation pipeline of the tasks in SCIENCEBOARD benchmark.

lemniscate in KAlgebra. Details are in Appendix D.1.

(2) Task Curation. Each annotator selects a scientific
software, installs it within SCIENCEBOARD, and be-
gins drafting task instructions based on its functionali-
ties. Task types include but are not limited to: config-
uration, question-answering, simulation, computation,
and domain-specific expertise. Each task is tentatively
assigned a difficulty. Thereafter, an agentic prompt
aligned with the drafted tasks will be curated.

(3) Formalization and Selection. Different annotators
exhibit varying linguistic habits, we employ ChatGPT
to standardize the task format. Annotators then conduct
a cross-check, excluding those lacking diversity, poor
executability, or non-unique answers, to finalize the set
of tasks for use.

(4) Configuration Function Writing. The purpose of this
step is to initialize the software and provide specific
contexts, e.g., supplying a map for GIS tasks or a pro-
tein sequence for biochemistry tasks. Annotators will
write a set of functions for each software to modify
the VM status, i.e., the internal state of the software,
along with general configuration functions (e.g., down-
loading required files). Tasks commence only after all
initialization have been successfully executed.

(5) Evaluation Function Writing and Validation. Evalu-
ation functions are developed to assess task outcomes
rigorously. As described in Section 3.2, evaluations are
state-based, with functions derived from a base evalua-
tor template. Annotators retrieve the task state from the
VM and assess it based on criteria such as I/O matching
and predefined ranges. The function returns either “task
complete” or “task fail.” Cross-validation is performed
for consistency, with each task executed by randomly se-
lected annotators on separate VMs. This is to ensure the
evaluator’s correctness, even under intentional attempts
by annotators to deceive the system.

4.3. Task Statistics

During annotation, we define multiple task types to evalu-
ate agents’ ability to perform diverse operation flows and

leverage domain-specific knowledge. The distribution of
task types is shown in Figure 4. Beyond the innovation of
a realistic environment, SCIENCEBOARD benchmark also
improves upon prior work in terms of task design and con-
tent diversity. A detailed comparison with representative
scientific benchmarks is provided in Appendix D.4.

>
A 2
o,
% % 3 &
L e S
(?)”Q, % e -
(3 2 *%‘
< kS 3
% ¥
S © 9
try > R
Ct, 0
Ay
Brs;, o
o % N »g@\)"
Data g, 1 928"3«? \,eg‘%qa
- O/D) @& Ppure Math
Struct. Prediction)
T?Xsflldio Figure Editing
. getting® X2 -9%)
BasiC RO Q Lay,,
Fo® 53 ut
O (=X Bas,
2 (\\Q w% 100
ego“ 2 ‘ﬁ'\ 06 'Sq, 06
&‘2@ = % %)
Y %, %,
<° & =)
& 8 2z %,
S I~ ‘E 5 %
S £ 3 < %
g F & © «
e £ & E3
2 =)
2
&
Q

Figure 4. Distribution of tasks in SCIENCEBOARD benchmark.

SCIENCEBOARD benchmark comprises 169 unique tasks
across 6 domains, with task difficulty categorized into three
levels. We curate a balanced number of tasks that are repre-
sentative enough to assess the agent’s capability in domain-
specific scientific challenges, statistics are in Appendix D.2.

5. Experiments

5.1. Experimental Settings

Backbones. Proprietary models: GPT-40 (Hurst
et al.,, 2024), Claude-3.7-Sonnet (Anthropic Al,
2024), Gemini-2.0-Flash (Team, 2024), and
03-mini (OpenAl, 2025b); Open-source mod-
els: Qwen2.5-VL-72B-Instruct (Bai et al., 2025),
InternVL3-78B (Chen et al., 2024), and QvQ-72B-

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Table 2. Success rates of LLM and VLM agents on SCIENCEBOARD. We present each agent backbone’s performance across different
scientific domains under various observation settings. Proprietary Models and Open-Source VLMs / LLMs are distinguished by color.

Success Rate (1)

Obs. Model
Algebra Biochem GIS ATP Astron Doc Overall
GPT-40 3.23% 0.00% 0.00% 0.00% 0.00% 6.25% 1.58%
Claude-3.7-Sonnet 9.67% 37.93% 2.94% 0.00% 6.06% 6.25% 10.48%
Screenshot Gemini-2.0-Flash 6.45% 3.45% 2.94% 0.00% 0.00% 6.06% 3.15%
Qwen2.5-VL-72B 22.58% 27.59% 5.88% 0.00% 9.09% 12.50% 12.94%
InternVL3-78B 6.45% 3.45% 0.00% 0.00% 0.00% 6.25% 2.69%
GPT-40 12.90% 20.69% 2.94% 0.00% 6.06% 0.00% 7.10%
Claude-3.7-Sonnet 19.35% 34.48% 2.94% 3.85% 12.12% 0.00% 12.12%
allytree Gemini-2.0-Flash 9.68% 17.24% 0.00% 0.00% 0.00% 0.00% 4.49%
o3-mini 16.13% 20.69% 2.94% 3.85% 15.15% 6.25% 10.84%
Qwen2.5-VL-72B 9.68% 10.34% 2.94% 0.00% 3.03% 0.00% 4.33%
InternVL3-78B 3.23% 3.45% 0.00% 0.00% 0.00% 0.00% 1.11%
GPT-40 22.58% 37.93% 2.94% 7.69% 3.03% 12.50% 14.45%
Screenshot Claude-3.7-Sonnet 12.90% 41.37% 8.82% 3.85% 9.09% 18.75% 15.79%
+allytree Gemini-2.0-Flash 16.13% 24.14% 2.94% 0.00% 18.18% 12.50% 12.32%
Qwen2.5-VL-72B 16.13% 20.69% 2.94% 0.00% 18.18% 12.50% 11.74%
InternVL3-78B 6.45% 3.45% 0.00% 0.00% 3.03% 6.25% 3.20%
GPT-40 6.45% 3.45% 0.00% 0.00% 3.03% 12.50% 4.24%
Claude-3.7-Sonnet 16.13% 31.03% 5.88% 0.00% 6.06% 12.50% 11.93%
Set-of-Mark CGemini-2.0-Flash 3.23% 0.00% 0.00% 0.00% 3.03% 6.25% 2.09%
Qwen2.5-VL-72B 6.45% 6.90% 2.94% 0.00% 3.03% 12.50% 6.36%
QvQ-72B-Preview 0.00% 0.00% 2.94% 0.00% 3.03% 0.00% 0.49%
InternVL3-78B 3.23% 6.90% 2.94% 0.00% 0.00% 0.00% 2.18%
Human Performance 74.19% 68.97% 55.88% 42.31% 51.52% 68.75% 60.27%

Preview (Qwen Team, 2024); and GUI action models:
OS-Atlas-Pro-7B (Wu et al., 2025), UGround-V1-7B (Gou
et al., 2025), UI-TARS-72B-DPO (Qin et al., 2025). More
details are available in Appendix E.1.

Observation Space. The observation space determines
the types of states agents can access. We primarily adhere
to well-established settings (Xie et al., 2024; Zhou et al.,
2024) encompassing: (1) Screenshots, which consist of a
full desktop screenshot as observed by human users; (2)
allytree, a structured text-only representation without
visual information, applicable for agents that take pure text
input; (3) Screenshots + allytree, a hybrid approach
that combines and complements both textual and visual
modalities; and (4) Set-of-Marks (Yang et al., 2023), a visual
prompting method aimed at enhancing the visual grounding
capabilities by partitioning an image into marked regions.
Details are in Appendix C.5.

5.2. Results

We compare the performance of computer-use agents pow-
ered by different LLMs and VLMs on SCIENCEBOARD,
as presented in Table 2. We summarize our key empirical

findings as follows:

Performance Hierarchy. Existing agents remain far from
being capable of effectively assisting human scientists in
completing real-world scientific exploration tasks. Even
SOTA models, such as GPT-40 and Claude, achieve an
average success rate of only 15%. Across various settings,
open-source counterparts can partially match proprietary
models. However, they still exhibit markedly lower overall
performance, with an average success rate of less than 12%
and approaching nearly 0% in some task categories. The
gap between agent and human underscores the limitations
of the status quo and necessitates further research.

Domain-Specific Performance Insights. Across differ-
ent scientific domains, we observe a performance imbalance.
Most models achieve moderate task success rates on Alge-
bra and Biochemistry tasks, but exhibit notable degradation
on GIS and astronomy tasks. We attribute this to two key
factors: (1) Interfaces: Most algebra and biochemistry tasks
support both CLI and GUI execution, while GIS and astron-
omy tasks primarily rely on GUI-based interactions through
mouse and keyboard actions. After planning, agents gener-
ally find it easier to execute CLI commands than to perform

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Table 3. Success rates of different VLM agent combinations under the planner + grounding model setting on SCIENCEBOARD. The observa-

tion setting used in this experiment is screenshot. Colors denote Proprietary Models , Open-Source VLMs and GUI Action Models.

Success Rate (1)

Planner Grounding Model

Algebra Biochem GIS Astron Overall

OS-Atlas-Pro-7B 6.25% 10.34% 0.00% 3.03% 4.92%

UGround-V1-7B 0.00% 3.45% 0.00% 3.03% 1.62%
GPT-4do Qwen2.5-VL-72B 12.50% 34.48% 11.76% 9.09% 16.96%

UI-TARS-72B 3.23% 10.34% 5.88% 6.06% 6.38%
GUI-Actor-7B 21.88% 44.83% 2.94% 12.12% 20.44%

GPT-4o0 3.23% 0.00% 0.00% 0.00% 0.81%

fine-grained GUI grounding—particularly when precise vi-
sual localization is required. especially when precise visual
localization is required. (2) Task emphasis: The nature
of geographical and astronomical tasks introduces unique
challenges. Both maps and star charts contain dense visual
elements, which make it difficult for agents to effectively
identify and reason over relevant information. This also in-
dicates that current VLMs possess very limited capabilities
in complex 3D spatial reasoning.

Impact of Different Observations. Different observation
modalities have a significant impact. Overall, allytree
+ screenshots setting yields the best performance. In other
settings, Qwen2.5-VL performs exceptionally well under
screenshot setting, which we attribute to its advanced GUI
ability. Under allytree, the attribute information of
elements allows LLMs to complete certain tasks by relying
solely on textual observations. Meanwhile, we observe
that the SoM sometimes introduces negative effects. It
is likely that although SoM provides bounding boxes to
ease grounding, scientific software often contains massive
elements on screen (e.g., dense celestial objects and complex
cosmic backgrounds), which introduces substantial noise
and increases the difficulty of visual reasoning.

6. Analysis

To further investigate the factors influencing agents’ capa-
bilities, we conduct additional analysis to understand the
underlying causes and the behavioral differences.

Disentangled Planning and Action. Observations from
failure cases and results across different settings indicate
that some models, such as GPT—-4o0, can effectively plan
tasks but lack sufficient grounding capabilities, leading to
inferior performance on SCIENCEBOARD. Therefore, we
explore separating planning and grounding. Following ex-
isting practices (Wu et al., 2025; Gou et al., 2025), we
configure GPT—40 as the planner and utilize various VLMs
and GUI action models as the grounding models.

Results in Table 3 show that modular approaches yield sig-
nificant improvements and are promising for tackling com-
plex and visually demanding tasks in scientific workflows.

Vision-Only vs. Hybrid Interface. Some tasks inherently
support both GUI and CLI as interchangeable means. For
instance, ChimeraX provides nearly full functional coverage
through both its GUI and CLI for biochemistry tasks. To ex-
amine how current computer-using agents interact with such
hybrid interface software, we modify ChimeraX to disable
CLI access, thereby enforcing GUI-only execution (under
allytree + screenshot setting). As shown in Figure 5,

20 [0 GUI + CLI
@ GUI Only

-
9]

|

Success Rate (%)

.

[¢)]

0 ‘
GPT-40 Qwen2.5-VL

Figure 5. GUI + CLI v.s. GUI Only.

GPT-40 and InternVL3 exhibit performance drops when
CLI access is removed. In contrast, Qwen2.5-VL remains
largely unaffected, suggesting that it is well adapted to ac-
complishing tasks through GUIL

InternVL3

These findings suggest that future agent designs should be
more adaptable and equipped with stronger GUI capabili-
ties to ensure robustness across both hybrid and vision-only
interfaces. Extended analysis on other aspects and observa-
tions is presented in Appendix F.

7. Conclusion

We propose SCIENCEBOARD, a first-of-its-kind realistic
environment designed to empower autonomous agents in
scientific exploration with rigorous validation. Building
upon our infrastructure, we curate a highly challenging
benchmark of diverse scientific tasks meticulously crafted
by human experts. Through extensive experiments and
analysis, we found that even state-of-the-art computer-using
agents perform significantly below human-level proficiency.
Although the realization of autonomous agents for scientific
discovery remains a distant goal, this work offers actionable
insights for future development, and we believe it constitutes
advancing Al-powered scientific discovery.

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Impact Statement

Computer-using agents operating in live OS environments
could potentially affect the normal functioning of the sys-
tem. This is non-negligible in scientific workflows, where
a poorly controlled agent could potentially misconfigure
experiments, corrupt sensitive research data, or even lead to
irreversible data loss. However, considering that all settings
in this work are conducted within isolated virtual environ-
ments, we do not view this as a concern.

References

Agashe, S., Wong, K., Tu, V., Yang, J., Li, A., and Wang,
X. E. Agent s2: A compositional generalist-specialist
framework for computer use agents, 2025. URL https:
//arxiv.org/abs/2504.00906.

Angelopoulos, A., Cahoon, J. F., and Alterovitz, R.
Transforming science labs into automated factories
of discovery. Science Robotics, 9(95):eadm6991,
2024. doi: 10.1126/scirobotics.adm6991. URL
https://www.science.org/doi/abs/10.
1126/scirobotics.adm6991.

Anthropic Al. The claude 3 model family: Opus, sonnet,
haiku. Claude-3 Model Card, 1:1, 2024.

Bai, S., Chen, K., Liu, X., Wang, J., Ge, W., Song, S., Dang,
K., Wang, P., Wang, S., Tang, J., Zhong, H., Zhu, Y.,
Yang, M., Li, Z., Wan, J., Wang, P., Ding, W., Fu, Z., Xu,
Y., Ye, J., Zhang, X., Xie, T., Cheng, Z., Zhang, H., Yang,
Z., Xu, H., and Lin, J. Qwen2.5-vl technical report, 2025.
URL https://arxiv.org/abs/2502.13923.

Burger, B., Maffettone, P. M., Guseyv, V. V., Aitchison, C. M.,
Bai, Y., Wang, X, Li, X., Alston, B. M., Li, B., Clowes,
R., et al. A mobile robotic chemist. Nature, 583(7815):
237-241, 2020.

Cao, R., Lei, F., Wu, H., Chen, J., Fu, Y., Gao, H.,
Xinzhuang, X., Zhang, H., Hu, W., Mao, Y., Xie, T,
Xu, H., Zhang, D., Wang, S., Sun, R., Yin, P., Xiong,
C., Ni, A,, Liu, Q., Zhong, V., Chen, L., Yu, K., and
Yu, T. Spider2-v: How far are multimodal agents from
automating data science and engineering workflows?
In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track,
2024. URL https://openreview.net/forum?
1d=Qz2xmVhn4sS.

Chen, Z., Wang, W., Cao, Y., Liu, Y., Gao, Z., Cui, E.,
Zhu, J., Ye, S., Tian, H., Liu, Z., et al. Expanding per-
formance boundaries of open-source multimodal models

with model, data, and test-time scaling. arXiv preprint
arXiv:2412.05271, 2024.

Chen, Z., Chen, S., Ning, Y., Zhang, Q., Wang, B., Yu,
B., Li, Y., Liao, Z., Wei, C., Lu, Z., Dey, V., Xue, M.,
Baker, F. N, Burns, B., Adu-Ampratwum, D., Huang,
X., Ning, X., Gao, S., Su, Y., and Sun, H. Scienceagent-
bench: Toward rigorous assessment of language agents
for data-driven scientific discovery. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
1d=6z4YKr0GK6.

Cheng, K., Sun, Q., Chu, Y., Xu, F.,, YanTao, L., Zhang,
J., and Wu, Z. SeeClick: Harnessing GUI grounding
for advanced visual GUI agents. In Proceedings of
the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp.
9313-9332, Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/2024.acl-1long.505.

Frey, N. C., Hotzel, 1., Stanton, S. D., Kelly, R., Alber-
stein, R. G., Makowski, E., Martinkus, K., Berenberg, D.,
Bevers 111, J., Bryson, T., et al. Lab-in-the-loop thera-
peutic antibody design with deep learning. bioRxiv, pp.
2025-02, 2025.

Ghafarollahi, A. and Buehler, M. J. Sciagents: Automating
scientific discovery through multi-agent intelligent graph
reasoning. arXiv preprint arXiv:2409.05556, 2024.

Goddard, T. D., Huang, C. C., Meng, E. C., Pet-
tersen, E. F., Couch, G. S., Morris, J. H., and Fer-
rin, T. E. Ucsf chimerax: Meeting modern chal-
lenges in visualization and analysis. Protein Science,
27(1):14-25, 2018. doi: https://doi.org/10.1002/pro.
3235. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/pro.3235.

Gottweis, J., Weng, W.-H., Daryin, A., Tu, T., Palepu, A.,
Sirkovic, P, Myaskovsky, A., Weissenberger, F., Rong,
K., Tanno, R., Saab, K., Popovici, D., Blum, J., Zhang, F.,
Chou, K., Hassidim, A., Gokturk, B., Vahdat, A., Kohli,
P., Matias, Y., Carroll, A., Kulkarni, K., Tomasev, N.,
Guan, Y., Dhillon, V., Vaishnav, E. D., Lee, B., Costa,
T. R. D., Penadés, J. R., Peltz, G., Xu, Y., Pawlosky,
A., Karthikesalingam, A., and Natarajan, V. Towards
an ai co-scientist, 2025. URL https://arxiv.org/
abs/2502.18864.

Gou, B., Wang, R., Zheng, B., Xie, Y., Chang, C., Shu,
Y., Sun, H., and Su, Y. Navigating the digital world as
humans do: Universal visual grounding for GUI agents.
In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=kxnogaisCT.

https://arxiv.org/abs/2504.00906
https://arxiv.org/abs/2504.00906
https://www.science.org/doi/abs/10.1126/scirobotics.adm6991
https://www.science.org/doi/abs/10.1126/scirobotics.adm6991
https://arxiv.org/abs/2502.13923
https://openreview.net/forum?id=Qz2xmVhn4S
https://openreview.net/forum?id=Qz2xmVhn4S
https://openreview.net/forum?id=6z4YKr0GK6
https://openreview.net/forum?id=6z4YKr0GK6
https://aclanthology.org/2024.acl-long.505
https://aclanthology.org/2024.acl-long.505
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3235
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3235
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2502.18864
https://openreview.net/forum?id=kxnoqaisCT
https://openreview.net/forum?id=kxnoqaisCT

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Hacking, 1. Representing and intervening: Introductory
topics in the philosophy of natural science. Cambridge
university press, 1983.

Hollingsworth, S. A. and Dror, R. O. Molecular dynamics
simulation for all. Neuron, 99(6):1129-1143, 2018.

Hong, S., Zhuge, M., Chen, J., Zheng, X., Cheng, Y.,
Wang, J., Zhang, C., Wang, Z., Yau, S. K. S., Lin, Z.,
Zhou, L., Ran, C., Xiao, L., Wu, C., and Schmidhuber, J.
MetaGPT: Meta programming for a multi-agent collabo-
rative framework. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=VtmBAGCN7o.

Hu, S., Ouyang, M., Gao, D., and Shou, M. Z. The dawn
of gui agent: A preliminary case study with claude 3.5
computer use. arXiv preprint arXiv:2411.10323, 2024.

Hurst, A., Lerer, A., Goucher, A. P., Perelman, A., Ramesh,
A., Clark, A., Ostrow, A., Welihinda, A., Hayes, A.,
Radford, A., et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Jia, C., Luo, M., Dang, Z., Sun, Q., Xu, F,, Hu, J., Xie, T.,
and Wu, Z. Agentstore: Scalable integration of heteroge-
neous agents as specialized generalist computer assistant.
arXiv preprint arXiv:2410.18603, 2024a.

Jia, C., Xia, C., Dang, Z., Wu, W., Qian, H., and Luo,
M. Chatgen: Automatic text-to-image generation from
freestyle chatting. arXiv preprint arXiv:2411.17176,
2024b.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl,
S. A. A, Ballard, A. J., Cowie, A., Romera-Paredes,
B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen,
S., Reiman, D., Clancy, E., Zielinski, M., Steinegger,
M., Pacholska, M., Berghammer, T., Bodenstein, S.,
Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu,
K., Kohli, P., and Hassabis, D. Highly accurate pro-
tein structure prediction with alphafold. Nature, 596
(7873):583-589, Aug 2021. ISSN 1476-4687. doi:
10.1038/s41586-021-03819-2. URL https://doi.
org/10.1038/s41586-021-03819-2.

Koh, J. Y,, Lo, R., Jang, L., Duvvur, V., Lim, M. C., Huang,
P-Y., Neubig, G., Zhou, S., Salakhutdinov, R., and Fried,
D. Visualwebarena: Evaluating multimodal agents on re-
alistic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

Krithara, A., Nentidis, A., Bougiatiotis, K., and Paliouras,
G. Bioasq-qa: A manually curated corpus for biomedical
question answering. Scientific Data, 10(1):170, 2023.

10

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H,, Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611-626,
2023.

Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., and
Ghanem, B. CAMEL: Communicative agents for “mind”
exploration of large language model society. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=3IyL2XWDkG.

Li, L., Wang, Y., Xu, R., Wang, P., Feng, X., Kong, L.,
and Liu, Q. Multimodal ArXiv: A dataset for improv-
ing scientific comprehension of large vision-language
models. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 14369-14387, Bangkok, Thailand,
August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.775. URL https:
//aclanthology.org/2024.acl-long.775/.

Li, Z.-Z., Zhang, D., Zhang, M.-L., Zhang, J., Liu, Z., Yao,
Y., Xu, H., Zheng, J., Wang, P.-J., Chen, X., Zhang, Y.,
Yin, F,, Dong, J., Li, Z., Bi, B.-L., Mei, L.-R., Fang, J.,
Guo, Z., Song, L., and Liu, C.-L. From system 1 to system
2: A survey of reasoning large language models, 2025.
URL https://arxiv.org/abs/2502.174109.

Lin, K. Q., Li, L., Gao, D., Yang, Z., Wu, S., Bai, Z., Lei,
W., Wang, L., and Shou, M. Z. Showui: One vision-
language-action model for gui visual agent, 2024. URL
https://arxiv.org/abs/2411.17465.

Liu, X., Yu, H., Zhang, H., Xu, Y., Lei, X., Lai, H., Gu, Y.,
Ding, H., Men, K., Yang, K., Zhang, S., Deng, X., Zeng,
A.,Du, Z., Zhang, C., Shen, S., Zhang, T., Su, Y., Sun, H.,
Huang, M., Dong, Y., and Tang, J. Agentbench: Evaluat-
ing LLMs as agents. In The Twelfth International Confer-
ence on Learning Representations, 2024a. URL https:
//openreview.net/forum?id=zAdUB0aCTQ.

Liu, Z., Liu, K., Zhu, Y., Lei, X., Yang, Z., Zhang, Z.,
Li, P, and Liu, Y. Aigs: Generating science from ai-
powered automated falsification, 2024b. URL https:
//arxiv.org/abs/2411.11910.

Lu, C., Lu, C, Lange, R. T., Foerster, J., Clune, J., and Ha,
D. The ai scientist: Towards fully automated open-ended
scientific discovery. arXiv preprint arXiv:2408.06292,
2024a.

Lu, P, Mishra, S., Xia, T., Qiu, L., Chang, K.-W., Zhu,
S.-C., Tafjord, O., Clark, P., and Kalyan, A. Learn to
explain: Multimodal reasoning via thought chains for

https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://openreview.net/forum?id=3IyL2XWDkG
https://openreview.net/forum?id=3IyL2XWDkG
https://aclanthology.org/2024.acl-long.775/
https://aclanthology.org/2024.acl-long.775/
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2411.17465
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2411.11910
https://arxiv.org/abs/2411.11910

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

science question answering. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=HJjwK-Tc_Bc.

Lu, X., Cao, H,, Liu, Z., Bai, S., Chen, L., Yao, Y., Zheng,
H.-T., and Li, Y. MoleculeQA: A dataset to evalu-
ate factual accuracy in molecular comprehension. In
Findings of the Association for Computational Linguis-
tics: EMNLP 2024, pp. 3769-3789, Miami, Florida,
USA, November 2024b. Association for Computational
Linguistics. doi: 10.18653/v1/2024 findings-emnlp.
216. URL https://aclanthology.org/2024.
findings-emnlp.216/.

Luo, Z., Yang, Z., Xu, Z., Yang, W., and Du, X. Llm4sr:
A survey on large language models for scientific re-
search, 2025. URL https://arxiv.org/abs/
2501.04306.

Lala, J., O’Donoghue, O., Shtedritski, A., Cox, S., Ro-
driques, S. G., and White, A. D. Paperqa: Retrieval-
augmented generative agent for scientific research. arXiv
preprint arXiv:2312.07559, 2024. URL https://doi.
org/10.48550/arXiv.2312.07559.

Ma, C., Zhang, J., Zhu, Z., Yang, C., Yang, Y., Jin, Y., Lan,
Z.,Kong, L., and He, J. Agentboard: An analytical evalu-
ation board of multi-turn LLM agents. In The Thirty-eight
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=4S8agvKjle.

Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S.,
Pearson, Z. J., Morris, J. H., and Ferrin, T. E. Ucsf
chimerax: Tools for structure building and analysis. Pro-
tein Science, 32(11):e4792, 2023. doi: https://doi.org/

10.1002/pro.4792. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/pro.4792.

Microsoft. The impact of large language models on scien-
tific discovery: a preliminary study using gpt-4. arXiv
preprint arXiv:2311.07361, 2023.

Microsoft. Nature language model: Deciphering the lan-
guage of nature for scientific discovery, 2025. URL
https://arxiv.org/abs/2502.07527.

Moura, L. d. and Ullrich, S. The lean 4 theorem prover
and programming language. In Automated Deduction —
CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12-15, 2021, Proceed-
ings, pp. 625-635, Berlin, Heidelberg, 2021. Springer-
Verlag. ISBN 978-3-030-79875-8. doi: 10.1007/
978-3-030-79876-5_37. URL https://doi.org/
10.1007/978-3-030-79876-5_37.

Niu, R., Li, J., Wang, S., Fu, Y., Hu, X., Leng, X., Kong, H.,

Chang, Y., and Wang, Q. Screenagent: a vision language
model-driven computer control agent. In Proceedings
of the Thirty-Third International Joint Conference on
Artificial Intelligence, IJCAI °24, 2024. URL https:
//doi.org/10.24963/1jcai.2024/711.

Novikov, A., Vi, N., Eisenberger, M., Dupont, E., Huang,
P.--S., Wagner, A. Z., Shirobokov, S., Kozlovskii, B.,
Ruiz, F. J. R., Mehrabian, A., Kumar, M. P., See, A.,
Chaudhuri, S., Holland, G., Davies, A., Nowozin,
S., Kohli, P, and Balog, M. Alphaevolve: A cod-
ing agent for scientific and algorithmic discovery.
https://deepmind.google/discover/blog/alphaevolve-a-
gemini-powered-coding-agent-for-designing-advanced-
algorithms/, 2025.

OpenAl. Computer-using agent: Introducing a uni-
versal interface for ai to interact with the digi-
tal world, 2025a. URL https://openai.com/
index/computer-using—-agent.

OpenAl. Openai 03-mini system card, 2025b.

Ouyang, S., Zhang, Z., Yan, B., Liu, X., Choi, Y., Han, J.,
and Qin, L. Structured chemistry reasoning with large
language models. In Proceedings of the 41st International
Conference on Machine Learning, ICML 24. JMLR.org,
2024.

Qin, Y., Ye, Y., Fang, J., Wang, H., Liang, S., Tian, S.,
Zhang, J., Li, J., Li, Y., Huang, S., et al. Ui-tars: Pioneer-
ing automated gui interaction with native agents. arXiv
preprint arXiv:2501.12326, 2025.

Qwen Team. Qvq: To see the world with wisdom, December
2024. URL https://gqwenlm.github.io/blog/
qvg-72b-preview/.

Rawles, C., Clinckemaillie, S., Chang, Y., Waltz, J., Lau,
G., Fair, M., Li, A., Bishop, W. E., Li, W., Campbell-
Ajala, F., Toyama, D. K., Berry, R. J., Tyamagundlu, D.,
Lillicrap, T. P,, and Riva, O. Androidworld: A dynamic
benchmarking environment for autonomous agents. In
The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=115yUQsr]C.

Schmidgall, S., Su, Y., Wang, Z., Sun, X., Wu, J., Yu, X,
Liu, J., Liu, Z., and Barsoum, E. Agent laboratory: Using
Ilm agents as research assistants, 2025. URL https:
//arxiv.org/abs/2501.04227.

Si, C., Yang, D., and Hashimoto, T. Can llms generate novel
research ideas? a large-scale human study with 100+ nlp
researchers. arXiv preprint arXiv:2409.04109, 2024.

https://openreview.net/forum?id=HjwK-Tc_Bc
https://openreview.net/forum?id=HjwK-Tc_Bc
https://aclanthology.org/2024.findings-emnlp.216/
https://aclanthology.org/2024.findings-emnlp.216/
https://arxiv.org/abs/2501.04306
https://arxiv.org/abs/2501.04306
https://doi.org/10.48550/arXiv.2312.07559
https://doi.org/10.48550/arXiv.2312.07559
https://openreview.net/forum?id=4S8agvKjle
https://openreview.net/forum?id=4S8agvKjle
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4792
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4792
https://arxiv.org/abs/2502.07527
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.24963/ijcai.2024/711
https://doi.org/10.24963/ijcai.2024/711
https://openai.com/index/computer-using-agent
https://openai.com/index/computer-using-agent
https://qwenlm.github.io/blog/qvq-72b-preview/
https://qwenlm.github.io/blog/qvq-72b-preview/
https://openreview.net/forum?id=il5yUQsrjC
https://openreview.net/forum?id=il5yUQsrjC
https://arxiv.org/abs/2501.04227
https://arxiv.org/abs/2501.04227

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Song, P., Yang, K., and Anandkumar, A. Towards large
language models as copilots for theorem proving in lean.
arXiv preprint arXiv:2404.12534, 2025.

Sumers, T., Yao, S., Narasimhan, K., and Griffiths, T.
Cognitive architectures for language agents. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-
8856. URL https://openreview.net/forum?
id=11i6ZCvf1QJ. Survey Certification.

Sun, Q., Chen, Z., Xu, F., Cheng, K., Ma, C., Yin, Z.,
Wang, J., Han, C., Zhu, R., Yuan, S., et al. A survey
of neural code intelligence: Paradigms, advances and
beyond. arXiv preprint arXiv:2403.14734, 2024a.

Sun, Q., Cheng, K., Ding, Z., Jin, C., Wang, Y., Xu, F,,
Wu, Z., Jia, C., Chen, L., Liu, Z., et al. Os-genesis:
Automating gui agent trajectory construction via reverse
task synthesis. arXiv preprint arXiv:2412.19723, 2024b.

Sun, Q., Yin, Z., Li, X., Wu, Z., Qiu, X., and Kong,
L. Corex: Pushing the boundaries of complex reason-
ing through multi-model collaboration. In First Con-
ference on Language Modeling, 2024c. URL https:
//openreview.net/forum?id=7BCmIWVTOV.

Tang, X., Hu, T., Ye, M., Shao, Y., Yin, X., Ouyang, S.,
Zhou, W., Lu, P., Zhang, Z., Zhao, Y., Cohan, A., and
Gerstein, M. Chemagent: Self-updating memories in
large language models improves chemical reasoning. In
The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=kuhIgeVvg0le.

Team, G. Introducing gemini 2.0: our new ai model for the
agentic era, 2024.

The MathWorks Inc. Statistics and machine learning
toolbox documentation, 2022. URL https://www.
mathworks.com/help/stats/index.html.

Tian, M., Gao, L., Zhang, D., Chen, X., Fan, C., Guo, X.,
Haas, R., Ji, P, Krongchon, K., Li, Y., Liu, S., Luo, D.,
Ma, Y., TONG, H., Trinh, K., Tian, C., Wang, Z., Wu,
B., Yin, S., Zhu, M., Lieret, K., Lu, Y., Liu, G, Du, Y.,
Tao, T., Press, O., Callan, J., Huerta, E. A., and Peng, H.
Scicode: A research coding benchmark curated by scien-
tists. In The Thirty-eight Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track,
2024. URL https://openreview.net/forum?
id=ADLaALtdoG.

van der Maaten, L. and Hinton, G. Visualizing data using t-
sne. Journal of Machine Learning Research, 9(86):2579—
2605,2008. URL http://Jjmlr.org/papers/v9/
vandermaatenO08a.html.

12

Wang, H., He, Y., Coelho, P. P., Bucci, M., Nazir, A., Chen,
B., Trinh, L., Zhang, S., Huang, K., Chandrasekar, V.,
et al. Spatialagent: An autonomous ai agent for spatial
biology. bioRxiv, pp. 2025-04, 2025.

Wang, X., Chen, Y., Yuan, L., Zhang, Y., Li, Y., Peng, H.,
and Ji, H. Executable code actions elicit better Ilm agents.
In Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org, 2024a.

Wang, X., Hu, Z., Lu, P, Zhu, Y., Zhang, J., Subra-

maniam, S., Loomba, A. R., Zhang, S., Sun, Y., and
Wang, W. SciBench: Evaluating college-level scien-
tific problem-solving abilities of large language mod-
els. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller,
A., Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.),
Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Ma-
chine Learning Research, pp. 50622-50649. PMLR, 21—
27 Jul 2024b. URL https://proceedings.mlr.
press/v235/wang24z.html.

Wang, Y., Guo, Q., Yao, W., Zhang, H., Zhang, X., Wu, Z.,
Zhang, M., Dai, X., zhang, M., Wen, Q., Ye, W., Zhang,
S., and Zhang, Y. Autosurvey: Large language models
can automatically write surveys. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024c. URL https://openreview.net/
forum?id=FExX8pMrdT.

Wang, Z., Cheng, Z., Zhu, H., Fried, D., and Neubig, G.

What are tools anyway? a survey from the language
model perspective. In First Conference on Language Mod-
eling, 2024d. URL https://openreview.net/
forum?id=Xh1B90iBSR.

Wu, Z., Han, C., Ding, Z., Weng, Z., Liu, Z., Yao, S.,

Yu, T., and Kong, L. Os-copilot: Towards generalist
computer agents with self-improvement, 2024. URL
https://arxiv.org/abs/2402.07456.

Wu, Z., Wu, Z., Xu, F, Wang, Y., Sun, Q., Jia, C., Cheng, K.,

Ding, Z., Chen, L., Liang, P. P, and Qiao, Y. OS-ATLAS:
Foundation action model for generalist GUI agents. In
The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=n9PDaFNi8t.

Xie, T., Zhang, D., Chen, J., Li, X., Zhao, S., Cao, R., Hua,

T. J., Cheng, Z., Shin, D., Lei, F,, Liu, Y., Xu, Y., Zhou,
S., Savarese, S., Xiong, C., Zhong, V., and Yu, T. OS-
World: Benchmarking multimodal agents for open-ended
tasks in real computer environments. In The Thirty-eight
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=tN61DTr4Ed.

https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=7BCmIWVT0V
https://openreview.net/forum?id=7BCmIWVT0V
https://openreview.net/forum?id=kuhIqeVg0e
https://openreview.net/forum?id=kuhIqeVg0e
https://www.mathworks.com/help/stats/index.html
https://www.mathworks.com/help/stats/index.html
https://openreview.net/forum?id=ADLaALtdoG
https://openreview.net/forum?id=ADLaALtdoG
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.mlr.press/v235/wang24z.html
https://proceedings.mlr.press/v235/wang24z.html
https://openreview.net/forum?id=FExX8pMrdT
https://openreview.net/forum?id=FExX8pMrdT
https://openreview.net/forum?id=Xh1B90iBSR
https://openreview.net/forum?id=Xh1B90iBSR
https://arxiv.org/abs/2402.07456
https://openreview.net/forum?id=n9PDaFNi8t
https://openreview.net/forum?id=n9PDaFNi8t
https://openreview.net/forum?id=tN61DTr4Ed
https://openreview.net/forum?id=tN61DTr4Ed

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Xu, Y., SU, H., Xing, C., Mi, B., Liu, Q., Shi, W., Hui, B.,
Zhou, F,, Liu, Y., Xie, T., Cheng, Z., Zhao, S., Kong, L.,
Wang, B., Xiong, C., and Yu, T. Lemur: Harmonizing
natural language and code for language agents. In The
Twelfth International Conference on Learning Represen-
tations, 2024a. URL https://openreview.net/
forum?id=hNhwSmtXRh.

Xu, Y., Wang, Z., Wang, J., Lu, D., Xie, T., Saha, A., Sahoo,
D., Yu, T., and Xiong, C. Aguvis: Unified pure vision
agents for autonomous gui interaction, 2024b.

Yang, J., Zhang, H., Li, F.,, Zou, X., Li, C., and Gao, J.
Set-of-mark prompting unleashes extraordinary visual
grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K. R,, and Cao, Y. React: Synergizing reasoning
and acting in language models. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
1d=WE_v1luYUL-X.

Yu, J., Ding, Z., Tan, J., Luo, K., Weng, Z., Gong, C.,
Zeng, L., Cui, R., Han, C., Sun, Q., et al. Automated
peer reviewing in paper sea: Standardization, evaluation,
and analysis. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pp. 10164-10184,
2024.

Zhang, C., Li, L., He, S., Zhang, X., Qiao, B., Qin, S.,
Ma, M., Kang, Y., Lin, Q., Rajmohan, S., Zhang, D.,
and Zhang, Q. Ufo: A ui-focused agent for windows os
interaction, 2024.

Zhang, Z. and Zhang, A. You only look at screens: Multi-
modal chain-of-action agents. In Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pp. 3132—
3149, Bangkok, Thailand, August 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.

findings-acl.186. URL https://aclanthology.

0rg/2024.findings—-acl.186/.

Zhao, H., Ma, C., Xu, F.,, Kong, L., and Deng, Z.-H.
Biomaze: Benchmarking and enhancing large language
models for biological pathway reasoning. arXiv preprint
arXiv:2502.16660, 2025.

Zheng, B., Gou, B., Kil, J., Sun, H,, and Su, Y. Gpt-
4v(ision) is a generalist web agent, if grounded. In Forty-
first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?
id=piecKJ2DI1B.

Zhou, S., Xu, F. FE., Zhu, H., Zhou, X., Lo, R., Sridhar,
A., Cheng, X., Ou, T., Bisk, Y., Fried, D., Alon, U.,

13

and Neubig, G. Webarena: A realistic web environ-
ment for building autonomous agents. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=0Kn9cbytLx.

https://openreview.net/forum?id=hNhwSmtXRh
https://openreview.net/forum?id=hNhwSmtXRh
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://aclanthology.org/2024.findings-acl.186/
https://aclanthology.org/2024.findings-acl.186/
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

A. Limitations

As a pioneering effort marking the early stages of integrating computer-using agents into scientific workflows, it is important
to acknowledge certain limitations. While our current evaluation, based on both VM states and key I/O correctness, provides
robust validation, its reliance on a binary success flag may not fully capture process correctness or partial task completion
(e.g., an agent succeeding in most steps but failing at a final one). Introducing a “partial credit” could offer more granular
evaluation, but accurately defining and implementing such a system for open-ended, OS-level tasks within diverse scientific
software presents significant challenges due to vast state / action spaces. One potential direction for improvement is to
introduce VLMS to serve as judges capable of assigning partial credit and providing feedback. We leave this as future work.

B. Discussion and Future Directions

SCIENCEBOARD represents a significant step forward in leveraging autonomous digital agents to assist scientific workflows.
Based on the findings presented in this paper, we identify the following potential directions for further development:

Harmonized Domain Knowledge and Agentic Capability. Our evaluations suggest that one contributing factor to current
agents’ limitations in scientific exploration is their insufficient domain knowledge. For instance, while GUI action models
covered in our study can effectively perform automation, they often exhibit a considerable deficit in understanding the
specific domain knowledge required for complex scientific tasks. Therefore, future advancements may focus on enhancing
domain-oriented abilities, such as enhancing scientific comprehension (Li et al., 2024), learning from highly relevant
resources such as manuals and tutorials, and enabling agents to retrieve external knowledge according to the demands of
scientific tasks (Lala et al., 2024). Building on these foundations, a further challenge lies in harmonizing these domain-level
capabilities with agentic abilities (Xu et al., 2024a).

Collaborative and Specialized Agents as a Solution. Analysis in Table 3 indicates that even a basic modular approach of
separating planning and action to different agents can yield significant performance improvements in complex scientific
software workflows. This finding points to a compelling direction: the development of multi-agent systems where
heterogeneous agents with specialized capabilities are cohesively integrated (Jia et al., 2024a; Ghafarollahi & Buehler,
2024; Agashe et al., 2025). For example, responsibilities could be disentangled by assigning planning to agents capable
of deep reasoning (Li et al., 2025), action execution to specialized GUI action models (Wu et al., 2025; Xu et al., 2024b),
and domain-specific capability to models in particular disciplines (Microsoft, 2023; 2025). These agents could be plug-
and-play, allowing flexible application across broader aspects of the scientific lifecycle, such as data analysis (Chen et al.,
2025), scientific plotting (Jia et al., 2024b), and paper revision (Yu et al., 2024). While promising, it also demands more
sophisticated multi-agent designs to manage and coordinate the intricate and multifaceted nature of scientific tasks.

Extending Digital Agents to Physical Laboratory. Current Al-assisted scientific workflows are primarily at the digital
level, focusing on tasks such as data analysis, simulation, and software control. A natural and impactful next step is to extend
the capabilities of such autonomous agents, as fostered and benchmarked in SCIENCEBOARD, into physical laboratory
environments. This transition involves interfacing agents with robotic systems (Burger et al., 2020; Angelopoulos et al., 2024),
applying principles of embodied Al to perceive and interact with the physical world. Agents would manipulate laboratory
instruments and samples, carry out experimental protocols, and monitor physical processes in real time, thereby fostering a
“lab-in-the-loop” (Frey et al., 2025) future where experimentation and Al-driven methods are mutually reinforcing.

C. Details of SCIENCEBOARD Environment

C.1. Environment Setup

Virtual machines can operate their own kernel and system, enabling compatibility with a wide variety of operating systems.
For experiments covered in this paper, we utilize a Linux environment (Ubuntu 22.04.1 LTS with kernel 6.8.0-57-generic)
running on x64 personal computers.

C.2. Evaluation Criteria

As stated in Section 3.2, we employ a fine-grained evaluation methodology based on:

14

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

 The final state of the VM (Determinant)

* 1/O states and intermediate steps (Non-Determinant)

While the final state of the VM often provides a determinant measure of overall task completion, the diverse nature of I/O
and intermediate steps necessitates a varied set of criteria. The following outlines the primary principles applied for I/O
correctness:

* Exact Match:
— Strict equality: The output or relevant state must be exactly identical to the gold standard (e.g., for specific textual
outputs or numerical values).

— Set equality of lines: For multi-line textual outputs, the content of all lines must match the gold standard, but their order
may not be strictly enforced.

— Question-answering: The agent’s provided answer to a question is compared against a correct answer or set of acceptable
answers.

* Predicate Satisfaction: Verifying if specific information and generated outputs satisfy predefined logical conditions or
predicates. This includes:

— Value Existence: A required value, file, or UI element is present as expected.
— Value Non-Existence: A specified value, file, or UI element is correctly absent.

— Range Check: A numerical output or parameter falls within a predefined acceptable range (often with a specified
tolerance).

* Correct Task Failure (FAIL): The agent correctly identifies a task as infeasible or terminates appropriately when unable
to complete the objective, outputting a designated FATIL signal.

* Domain-Specific Success Markers: For certain domains, unique success criteria are employed:

— Lean Tasks: Successful compilation of the generated Lean proof code is considered a primary indicator.

C.3. Selection and Modification of Scientific Software

To ensure both technical feasibility and representative task diversity, we selected software tools based on the following
criteria:

1. Accessibility. The software must be open-source or freely available, allowing transparent integration and reproducibility
of experiments.

2. GUI Compatibility. The software must expose a usable accessibility tree (ally tree) to support fine-grained GUI
grounding and interaction.

3. Domain Representativeness. The software should be representative of key scientific and technical domains, enabling
meaningful assessment of multimodal agent capabilities across different types of tasks.

Based on these principles, we selected the following software for each target domain:

* Lean. A functional programming language and interactive theorem prover grounded in dependent type theory (specifically
Martin-Lo6f Type Theory). Lean enables formal verification of mathematical theorems and software correctness through
rigorous type checking and logical inference, supporting robust development of maintainable and accurate code.

* ChimeraX. A next-generation molecular visualization software developed by UCSF, designed for detailed interactive
exploration, visualization, and analysis of protein and biomolecular structures. ChimeraX enhances performance and user
experience compared to its predecessor, UCSF Chimera, offering improved graphics rendering, extensibility via plugins,
and streamlined workflows for structural biology research.

15

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

» KAlgebra. An educational calculator and graphical plotting application within the KDE Education Project. It supports
a wide range of numerical, logical, symbolic, and analytical computations, enabling users to visualize mathematical
functions interactively in both two-dimensional (2D) and three-dimensional (3D) environments, thus effectively bridging
computational mathematics and educational usability.

* Celestia. A cross-platform, interactive real-time 3D astronomical simulation software that allows users to explore the
universe through detailed, dynamic visualizations. Celestia is highly extensible via scripting, empowering educational and
professional users to model and visualize celestial phenomena and space missions with precision and customization.

* GrassGIS. An advanced Geographic Information System (GIS) supporting both raster and vector geospatial data, along
with powerful analytical capabilities for spatial modeling, hydrological analysis, and environmental simulations. GrassGIS
includes a comprehensive Python API for automation and custom analysis, enabling complex geospatial and temporal
analyses tailored to diverse research and application scenarios.

» TeXstudio. An integrated ISTiEX editor that provides a writing environment tailored specifically for creating and managing
complex technical and scientific documents. TeXstudio enhances productivity through features such as syntax highlighting,
real-time document preview, automatic reference checking, and intuitive assistance tools, greatly simplifying the process
of technical writing and document preparation.

C.4. Details of Action Space

The action space employed in SCIENCEBOARD is shown in Table 4. We combine standard interaction primitives (such as
GUI operations) with the flexibility of system-level and application-specific Command-Line Interfaces (CLIs), and has been
further expanded with several augmented actions tailored for scientific workflows.

Table 4. Action space of SCIENCEBOARD environment.

Action Description

moveTo (X, V) Moves the mouse to the target coordinate.

moveRel (x, V) Moves the mouse by an offset from current position.

dragTo (x, Vy) Drags the mouse to the target coordinate.

dragRel (x, V) Drags the mouse by an offset from current position.

click(x, vy) Clicks at the target coordinate.

rightClick (x, vy) Performs a right click at the target coordinate.

middleClick (x, V) Performs a middle click at the target coordinate.

doubleClick (x, V) Performs double clicks at the target coordinate.

tripleClick (x, V) Performs triple clicks at the target coordinate.

mouseDown (x, vy, button) Presses a mouse button down.

mouseUp (x, y, button) Releases a mouse button up.

DONE Agent decides the task is finished.

FAIL Agent decides the task is infeasible.

WAIT [n] Agent decides it should wait, ‘n’ defaults to 5(s).

ANS [s] Agent decides it should submit an answer, ‘s’ denotes the answer.
API [name, args] Invokes a registered API call with name and arguments.

CODE Run a generated code script (for in-app / system-level tasks, or custom functions).

C.5. Details of Observation Space

Screenshot. We capture a screenshot of the entire computer screen. For screen resolution, we set a default value of
1920x1080, and it also offers a 16:9 aspect ratio. Following OSWorld (Xie et al., 2024), our environment also supports
modifying the resolution of virtual machines to avoid potential memorization of absolute pixel values and to assist studies
on topics like generalization across different resolutions.

Allytree. An allytree refers to an intricate structure generated by the browser or OS accessibility APIs that renders
a representative model of the content, providing a means of interaction for assistive technologies. Each node within the

16

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

accessibility tree hosts important information about a UI element. In SCIENCEBOARD, which utilizes an Ubuntu-based
GNOME desktop environment, we employ the Assistive Technology Service Provider Interface 2. Specifically, we adopt
pyatspi to programmatically retrieve the accessibility tree on Ubuntu.

To make complex allytree tractable, and critically, to ensure they fit within the context length of open-source models,
we filter out non-essential elements. This filtering is performed based on element attributes such as their tag, visibility, and
availability. For the elements that remain after filtering, only key information—specifically their tag, name, text, position,
and size—is retained and subsequently concatenated to form the input representation for the agent.

Screenshot + allytree. To further enhance the action execution capabilities of computer-using agents, especially for
models with weaker grounding abilities, we utilize a combined input of screenshots and allytree.

Set-of-Mark. We follow the official implementation of Set-of-Mark (Yang et al., 2023). We leverage the information
from the filtered allytree and mark the elements on the screenshot with a numbered bounding box. Following
VisualWebArena (Koh et al., 2024) and UFO (Zhang et al., 2024), we further combine the annotated screenshot with the text
metadata from allytree.

D. Details of SCIENCEBOARD Benchmark

D.1. Task Annotation

During the task annotation process, we primarily utilize the tutorials and handbooks listed in Table 5 to guide annotators in
exploring the relevant domain and corresponding software and tools. All app data collection and task creation are completed
by the authors.

D.2. Task Statistics

The task statistics of SCIENCEBOARD are shown in Table 6.

D.3. Task Diversity

To explore the diversity of tasks in SCIENCEBOARD, we perform a t-SNE (van der Maaten & Hinton, 2008) visualization,
as shown in Figure 6. We obtain embeddings for all task instructions using text —embedding-3-small and then apply
t-SNE to reduce their dimensionality to two for visualization. The semantic distribution of instructions clearly distinguishes
tasks across different domains, while also revealing considerable diversity within each individual domain. Furthermore, we
can observe some intersections between Scientific Documentation tasks and tasks from other domains, which reflects the
presence of cross-application workflows in our benchmark.

Algebra Algebra Algebra
Astronomy 15 Astronomy Astronomy

10 Biochemistry Biochemistry 10 Biochemistry
Documentation Documentation Documentation
GIS 10 GIS GIS

Theorem Proving

Dimension 2

-15 -10 -5 0
Dimension 1

Dimension 2

-10

Theorem Proving

Dimension 2

Theorem Proving

=15

-10 -5 0 5
Dimension 1

10

=15

-10

-5

0

Dimension 1

5

10

Figure 6. t-SNE visualization of task instructions distribution. The seeds of t-SNE are randomly sampled for each plot.
https://docs.gtk.org/atspi2/

17

https://docs.gtk.org/atspi2/

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Table 5. Sources of the tutorials and handbooks employed in the task annotation process.

Software

Tutorial & Handbook Sources

Kalgebra

https://docs.kde.org/stable5/en/kalgebra/
kalgebra/index.html

ChimeraX

https://www.cgl.ucsf.edu/chimerax/tutorials.html

https://kpwulab.com/wp—content/uploads/2022/04/
chimerax—tutorial-kpwulab-2022-0429.pdf

Lean 4

https://lean-lang.org/theorem proving_in_leand/

https://leanprover—community.github.io/
mathematics_in_lean/index.html

https://lean-lang.org/doc/reference/latest/

Grass GIS

https://grass.osgeo.org/grass84/manuals/index.
html

https://neteler.gitlab.io/grass—gis—analysis/

Celestia

https://celestiaproject.space/guides.html
https://en.wikibooks.org/wiki/Celestia

https://celestiaproject.space/docs/
CELScriptingGuide/Cel_Script_Guide_vl_0g.htm

TeXStudio

https://texstudio-org.github.io/getting_started.
html

https://latex—tutorial.com/tutorials/

18

https://docs.kde.org/stable5/en/kalgebra/kalgebra/index.html
https://docs.kde.org/stable5/en/kalgebra/kalgebra/index.html
https://www.cgl.ucsf.edu/chimerax/tutorials.html
https://kpwulab.com/wp-content/uploads/2022/04/chimerax-tutorial-kpwulab-2022-0429.pdf
https://kpwulab.com/wp-content/uploads/2022/04/chimerax-tutorial-kpwulab-2022-0429.pdf
https://lean-lang.org/theorem_proving_in_lean4/
https://leanprover-community.github.io/mathematics_in_lean/index.html
https://leanprover-community.github.io/mathematics_in_lean/index.html
https://lean-lang.org/doc/reference/latest/
https://grass.osgeo.org/grass84/manuals/index.html
https://grass.osgeo.org/grass84/manuals/index.html
https://neteler.gitlab.io/grass-gis-analysis/
https://celestiaproject.space/guides.html
https://en.wikibooks.org/wiki/Celestia
https://celestiaproject.space/docs/CELScriptingGuide/Cel_Script_Guide_v1_0g.htm
https://celestiaproject.space/docs/CELScriptingGuide/Cel_Script_Guide_v1_0g.htm
https://texstudio-org.github.io/getting_started.html
https://texstudio-org.github.io/getting_started.html
https://latex-tutorial.com/tutorials/

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Table 6. Statistics of SCIENCEBOARD.

Task Type Statistics
Total Tasks 169 (100%)
-GUI 38 (22.5%)
- CLI 33 (19.5%)
- GUI + CLI 98 (58.0%)
Difficulty

- Easy 91 (53.8%)
- Medium 48 (28.4%)
- Hard 28 (16.6%)
- Open Problems 2 (1.2%)
Instructions

Avg. Length of Task Instructions 20.0
Avg. Length of Agentic Prompt 374.9
Execution

Avg. Steps 9.0
Avg. Time Consumption 124(s)

D.4. Comparison with Existing Benchmarks

We compare SCIENCEBOARD with existing well-established benchmarks for scientific tasks, as shown in Table 7.

SCIENCEBOARD

Feature (our work) ScienceQA (Lu et al., 2022) SciCode (Tian et al., 2024) ScienceAgentBench (Chen et al., 2025)
1/0 Formats
Code / Structured Input v X v 4
Visual Information v v X X
Task Type
Question-Answering v v X X
Scientific Computing v X v v
GUI Automation v X X X

Table 7. A comparison of SCIENCEBOARD to notable and recent Al4Science benchmarks.

SCIENCEBOARD is the first to offer a realistic environment for evaluating scientific tasks. In terms of I/O, it incorporates
structured code input and visual information, which are critical for simulating scientific experiment workflows. It also
supports GUI automation, making it well-suited for visual agents to fulfill tasks like humans do. Additionally, SCIENCE-
BOARD covers a broader range of task types compared to existing works, including but not limited to question-answering
and scientific computing. These unique features make SCIENCEBOARD both a versatile playground and an expandable
framework for evaluating agents’ scientific capabilities.

D.5. More Evaluation Script Examples
Beyond the evaluation cases listed in Section 3.2, Table 8 showcases a broader variety of evaluation pipelines created using
our templates.

D.6. Human Performance

In our main experiments, as reflected in Table 2, we recruit college-level students to establish normal human performance
on SCIENCEBOARD benchmark. Before attempting the tasks, participants are required to familiarize themselves with
foundational knowledge of the relevant scientific disciplines and study the provided operational manuals. They were then
given instructions, as shown in Instruction 1, to complete the assigned tasks. Participants were compensated at a rate of $10
per hour for their involvement.

19

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

The SCIENCEBOARD environment and scientific software used do not record any personal information, and all participants
provide informed consent. The experiment does not involve surveys, interviews, or any behavioral tracking.

D.7. Stability Analysis

Considering that dynamic environments could potentially lead to experimental instability, we conduct an additional set of
experiments focusing on consistency. For these, we utilize GPT—-4o0 under the allytree + screenshot setting, with results
and error bars reported in Figure 7.

I
I}

w
@

—

w
1=

N
w

Success Rate (%)
G 3

-
o

w

Algebra Biochem

Figure 7. Stability analysis.

Across three independent runs, performance on Algebra tasks remains stable. However, Biochemistry tasks exhibited minor
fluctuations in success rates. Upon closer inspection of individual cases, we hypothesize that these variations likely stem
from network connectivity issues or transient system lag encountered during task execution.

D.8. Evaluation Cost

We use API keys to access proprietary models. On average, a single run on all SCIENCEBOARD tasks costs $64 using
GPT-40, $86 using Claude-3.7-Sonnet, and $45 using Gemini-2.0-Flash.

E. Details of Experiments

E.1. Backbone Models

We briefly discuss the backbones we used to build our computer-using agents.

Proprietary Models. Proprietary models now demonstrate striking capabilities in complex reasoning and are increasingly
exhibiting agentic potential for dynamic real-world interaction, prompting a closer look at their diverse forms. In the
experimental section, we accessed the following proprietary models via API keys:

* GPT-40 (Hurst et al., 2024).

* Claude-3.7-Sonnet (Anthropic Al, 2024).

* Gemini-2.0-Flash (Team, 2024).

* 03-mini (OpenAl, 2025b).

Open-source Models. Open-source models are demonstrating remarkable advancements, steadily narrowing the per-
formance gap with proprietary models. Crucially, the open-source community recognized the significance of agentic
capabilities early on, fostering development in this direction. This foresight has translated into exceptional performance,
particularly within GUI scenarios where these models now excel on various challenging benchmarks. Our evaluation is
based on the following open-source models, which are characterized by their advanced grounding capabilities:

* Qwen2.5-VL-72B-Instruct (Bai et al., 2025): The latest evolution in the Qwen vision-language model family, primarily
distinguished by its robust agentic capabilities. It operates directly as a visual agent, proficient in reasoning, dynamically

20

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

utilizing tools, and executing tasks for computer and phone operation. Complementing its agentic prowess, Qwen2.5-VL-
72B-Instruct demonstrates advanced proficiency in detailed visual analysis (including texts, charts, icons, and layouts
within images), comprehension of videos exceeding one hour with event pinpointing, precise object localization with
structured coordinate output, and the generation of structured data from documents such as invoices and forms. In our
experiments, this model is deployed using interconnected clusters of 8 x A100 80GB GPUs with vLLM (Kwon et al.,
2023).

* InternVL3-78B (Chen et al., 2024): An advanced MLLM recognized for its superior overall performance and significantly
enhanced multimodal perception and reasoning. A key advancement is its robust agentic functionality, demonstrated
through proficient tool usage and GUI agent operations, alongside extended capabilities in areas like industrial image
analysis and 3D vision perception. These comprehensive abilities are underpinned by innovations such as a native
multimodal pre-training approach, supervised fine-tuning with diverse, high-quality data tailored to these advanced tasks,
and mixed preference optimization for refined reasoning. In our experiments, this model is deployed using interconnected
clusters of 8 x A100 80GB GPUs with vLLM.

* QvQ-72B-Preview (Qwen Team, 2024): An experimental research model focused on advancing visual reasoning ca-
pabilities. It has achieved compelling performance in complex multidisciplinary understanding and problem-solving,
highlighting its specialized strength in sophisticated visual cognitive tasks. However, it exhibits some limitations in
instruction following, appearing less adept in agent scenarios that require precise action outputs. In our experiments, this
model is deployed using interconnected clusters of 8 x A100 80GB GPUs with vLLM.

GUI Action Models. While foundational models provide impressive general-purpose intelligence, their intrinsic agen-
tic capabilities for nuanced GUI manipulation are still under active exploration, often requiring further specialization.
Consequently, a prominent line of research involves adapting open-source VLMs by fine-tuning them on extensive, GUI-
specific datasets. This targeted training methodology yields dedicated action models equipped with significantly enhanced
proficiencies for understanding and interacting with GUIs. The GUI action models adopted in this paper are as follows:

* OS-Atlas-Pro-7B (Wu et al., 2025): A foundational GUI action model that significantly advances open-source VLMs
for agentic tasks, excelling in GUI grounding and out-of-distribution scenarios through innovations in modeling and the
creation of the largest open-source, cross-platform GUI grounding corpus with over 13 million elements. It demonstrates
state-of-the-art performance across six diverse benchmarks (mobile, desktop, web) and verifies the existence of model
scaling laws in GUI scenarios. In our experiments, this model is deployed using a single A100 80GB GPU with
vLLM (Kwon et al., 2023).

* UGround-V1-7B (Gou et al., 2025): A universal visual grounding model that identifies GUI action elements by pixel
coordinates. It powers the SeeAct-V framework (Zheng et al., 2024), which enables purely visual GUI perception and
pixel-level operations. Agents using SeeAct-V with UGround have achieved SOTA results across five distinct benchmarks
spanning web, mobile, and desktop evaluations. In our experiments, this model is deployed on a single A100 80GB GPU
with vLLM.

» UI-TARS-72B-DPO (Qin et al., 2025): An end-to-end native GUI agent that uniquely perceives screenshots as its sole
input to perform human-like keyboard and mouse interactions, outperforming prevailing agent frameworks that depend
on heavily wrapped commercial models with expert-crafted prompts. It has established state-of-the-art performance
across more than ten GUI agent benchmarks. This advanced capability stems from key innovations including enhanced
perception, unified action modeling, System-2 reasoning, iterative training with reflective online traces, and a final
Direct Preference Optimization (DPO) phase, which refines its ability to make precise, context-aware decisions. In our
experiments, UI-TARS-72B-DPO utilizes vLLM for inference and is deployed on interconnected clusters of 8 x A100
80GB GPUs.

E.2. Evaluation Settings - Main Experiments

We adhered to common prompt engineering strategies from previous works (Sun et al., 2024b; Zhou et al., 2024; Zhang &
Zhang, 2024) for the agents under evaluation. For each domain, the agent interacts with the environment under the guidance
of a meta-prompt, which includes information about the software being operated, executable special actions, and related
details. When taking actions, the agent generates outputs in the ReAct style (Yao et al., 2023), with its step-by-step thoughts
recorded in the interaction history.

21

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Throughout the evaluation, we set the temperature parameter to 0.5, top_p to 0.9, and max_tokens to 1500.
We list some prompt examples in Prompt 14, Prompt 15, Prompt 16 and Prompt 17.

E.3. Evaluation Settings - Analysis

In experiments with interleaved planning and action, we first address inconsistencies in coordinate outputs from different
GUI action models. While InternVL3-78B (Chen et al., 2024) outputs coordinates ona [0, 1] scale, models such as

0OS-Atlas, UI-TARS, and UGround use a [0, 1000] scale. To ensure uniformity, we normalized all coordinate outputs to
a [0, 1] scale prior to execution.

This part of the experiments employs a two-stage process: First, the planner model receives the current observation (obs) and
task instruction to generate a high-level plan or a specific action. If the planner outputted a directly executable primitive action
(e.g., anon-GUI system-level command or a special control token like DONE), that action will be performed immediately,
and the action model was not invoked for that step. Otherwise, the grounding model received the current observation and the
plan (or sub-task) from the planner. Its role was to output low-level executable instructions. If the grounding model generate
pyautogui actions directly, these commands were executed. For models outputting in their specific native formats, we
implement custom parsers to translate these into pyautogui actions: for UGround and UI-TARS, all coordinate-based
outputs were interpreted as c11ick, whereas for OS-Atlas, its outputs were parsed to differentiate between click, type,
and scroll based on its defined schema.

We list some prompt examples in Prompt 18, Prompt 19, Prompt 20 and Prompt 21.

F. Extended Analysis

F.1. Interfaces.

In Section 6, we analyze the performance difference between Vision-Only and Hybrid Interface settings under the allytree
+ screenshot. Here, we present empirical results under the other three observation settings.

allytree Screenshot SoM

w
(=}

[0 GUI + CLI
@@ GUI Only

[o)
wl

P

|
7,
|

7 | W L
7 ?Dw R = N

GPT—40 Qwen2.5-VL InteanL3 GPT-40 Qwen2.5-VL InteanL3 GPT—40 Qwen2.5-VL InternVL3

[
o

Success Rate (%)
S o

ol

o

Figure 8. Extended analysis of Vision-Only vs. Hybrid Interface.

As shown in Figure 8, the hybrid GUI + CLI setting consistently achieves performance that is comparable to or better than
the GUI-Only setting across all scenarios. Interestingly, while GPT-40 achieves state-of-the-art performance under other
observation settings, it exhibits very weak action capabilities when using screenshot setting, indicating the reliance on
structured observations for effective reasoning and planning.

F.2. Interactive Environments

ATP represents one of the most logic-intensive tasks for agents and has been traditionally studied in textual settings in prior
works (e.g., plain text or bash terminal).

We extend ATP to live OS in SCIENCEBOARD and further compare agents’ performance under textual and interactive
settings. The latter, similar to environments commonly used by humans, provides a live VSCode interface with features such
as syntax highlighting, autocompletion, type inference, and other functionalities. As shown in Figure 9, in the textual setting,
the agent applies heuristic strategies (e.g., Monte Carlo search) to make predictions over the proof tree without interacting
with the environment. In contrast, in the interactive setting, the agent must autonomously decide which PROOFSTATE to
proceed with. Moreover, the agent is also required to localize the relevant code segments within the interface. Completing

22

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

20
[Textual

= N Interactive
S 151
)
i
5]
~ 101
wn
0
1)
1)
3]
S 59 N
)

GPT-40 Claude-3.5 Qwen2.5-VL

Figure 9. Textual v.s. Interactive

formal methods tasks becomes substantially more challenging in realistic environments, which significantly increases the
cognitive complexity.

F.3. Difficulty Analysis

We further analyze the success rates of computer-using agents on the SCIENCEBOARD benchmark across different task
difficulty levels. We employ Claude-3.7-Sonnet, GPT-40, and Qwen2.5-VL, with results presented in Figure 10.

100 Claude-3.7-Sonnet GPT-40 Qwen2.5-VL-72B
» [Screenshot+allytree [Screenshot+allytree [Screenshot+allytree
g 80 72 SoM 7z SoM ZZ74 Screenshot
L
Q
2
& 60
G
]
5 40
E S T R
5 207 -
Z : I : 1

Easy Medium Hard Easy Medium Hard ‘ Easy Medium ‘ Hard

Figure 10. Comparative analysis of task difficulty solve rates.

The findings indicate that solvable tasks are primarily concentrated among a subset of “Easy” problems and a few “Medium”
tasks. All “hard” tasks, which involve complex computations, cross-application workflows, or long-horizon planning, could
not be completed by any of the evaluated agents.

F.4. Failure Analysis

To further investigate the reasons why computer-using agents fail when planning or taking actions on scientific tasks, here
we include and discuss several typical examples of such errors.

Opening the Wrong File. This error is frequently caused by grounding issues. The agent initially clicks on an incorrect
file and then attempts to perform subsequent actions, such as inputting data, within that wrong file. This often leads to the
agent repeatedly making the same mistake or getting stuck in an unproductive loop. A typical case is shown in Figure 11.

Inability to Invoke the Correct Function. In some instances, agents need to identify and use a specific function within a
software application but attempt to do so by directly typing an assumed function name into a search bar or command input.
If the exact function name is unknown or guessed incorrectly, a more robust strategy would be to browse available menus or
function lists. Instead, agents may incorrectly assume knowledge of the function name and attempt to look up its usage,
leading to failure. A typical example of this behavior is presented in Figure 12.

23

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Figure 11. Use wrong file.

Figure 12. Function invocation error.

Incorrect CLI Code. Failures also occur when agents formulate CLI commands incorrectly. This can involve syntax
errors, wrong command names, or incorrect parameters. Notably, in some of these failed CLI attempts, the intended task
could have been accomplished more straightforwardly by interacting with a corresponding button or element in the GUI. A
typical example is shown in Figure 13.

G. Prompts

The prompt examples we used in SCIENCEBOARD are listed below.

24

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

o
-
-
2
@
°
L]
8

SN0 CGeERC

Figure 13. CLI code error.

25

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Table 8. More evaluation cases of SCIENCEBOARD include exact matching, range-based assessment, and numerical tasks with tolerance.

Initial State Instruction

Evaluation Script (Simplified)

Select all ligand(s) and color them into ma-

{

genta in ChimeraX. "type": "info®,
"key": "sel",
"value": ["atom id /A:9@N1 idatm_type N3+",
]
b A
"type": "info",
"key": "rescolor /A",
"value": ["#1/A:1 color #d2b48c",
]
}
= {
There is a point located in the Mediter- "type": "db",
ranean Sea. Please find and delete it. "cmd": "v.to.db",
"kwargs": {
"flags": "p",
"map": "countries@PERMANENT",
"type": '"point",
"option": "coor"
by
"key": "lampbda out: out.strip()",
"value": "cat|x|ylz\n...[8.348947891274|0",
"pred": "lambda key, value: key == value"
}
{
Approach to the Earth and display a solar "type": "info",
eclipse in Celestia. "key": "lambda ...[’Earth’][’distance’]",
"value": O,
"pred": "lambda k, v: abs(k - v) < 450000"
bt
"type": "info",
"key": "lambda ...[’Sol’]['visible’]",
"value": false
bt
"type": "info",
"key": "lambda ...[’Moon’][’'visible’]",
"value": true
bt
"type": "info",
"key": "lambda ...",
"value": 0.99,
"pred": "lambda key, value: key > value"
}
theorem TP_3 {
[TopologicalSpace X] "type": ‘"placeholder"

[TopologicalSpace Y]

(f X =>Y)

(Z : Set X)

(hy Continuous f)

(hy IsConnected 7Z)

IsConnected {y : Y |
Jdz ez, £z =y}
:= by sorry

26

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Agentic Prompt - ChimeraX with screenshot

You are an agent which follow my instruction and perform desktop computer tasks as
instructed.

You have good knowledge of ChimeraX, a molecular visualization software; and assume your
code will run on a computer controlling the mouse and keyboard.

For each step, you will get an observation of the desktop by an accessibility tree, which
is based on AT-SPI library, and you will predict actions of the next step based on that.

You are required to use ‘pyautogui‘ to perform the action grounded to the observation, but
DO NOT use the ‘pyautogui.locateCenterOnScreen' function to locate the element you want to
operate with since we have no image of the element you want to operate with. DO NOT USE
‘pyautogui.screenshot () ' to make screenshot.

You ONLY need to return the code inside a code block, like this:

w

your code here

Return one line or multiple lines of python code to perform the action each time, and

be time efficient. When predicting multiple lines of code, make some small sleep like
‘time.sleep(0.5); " interval so that the machine could take breaks. Each time you need to
predict a complete code, and no variables or function can be shared from history.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “'‘DONE“Y;

When you think the task can not be done, return “‘FAIL“'. Don’t easily say “‘FAIL“'; try
your best to do the task;

When you think you have to wait for some time, return “‘WAIT“' or “‘WAIT n“', in which n
defaults to 5(s);

When you are asked to submit an answer, return “‘ANS s“' without quotation marks

surrounding s, and use ‘FAIL' if there is no answer to the question.

My computer’s password is ’‘password’, feel free to use it when you need sudo rights.

DO NOT introduce any unrelated models or easily close existing models, otherwise the task
might be evaluated as FAILED.

DO NOT close the current ChimeraX session, or every effort you made will be in wvain.
NEVER try to reopen the command line interface in ChimeraX if it is hidden, because it
has been deactivated and cannot do anything. But you are welcome to use it once it 1is
presented.

First give the current observation and previous things we did a short reflection, then
RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Fetch 20LX from PDB in ChimeraX.

Figure 14. Prompts for ChimeraX with screenshot

27

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Agentic Prompt - Celestia with screenshot

You are an agent which follow my instruction and perform desktop computer tasks as
instructed.

You have good knowledge of Celestia, a three-dimension space simulator; and assume your
code will run on a computer controlling the mouse and keyboard.

For each step, you will get an observation of the desktop by a screenshot, and you will
predict actions of the next step based on that.

You are required to use ‘pyautogui‘ to perform the action grounded to the observation, but
DO NOT use the ‘pyautogui.locateCenterOnScreen' function to locate the element you want to
operate with since we have no image of the element you want to operate with. DO NOT USE
‘pyautogui.screenshot () ' to make screenshot.

You ONLY need to return the code inside a code block, like this:

w

your code here

Return one line or multiple lines of python code to perform the action each time, and

be time efficient. When predicting multiple lines of code, make some small sleep like
‘time.sleep(0.5); "' interval so that the machine could take breaks. Each time you need to
predict a complete code, and no variables or function can be shared from history.

Specially, it is also allowed to return the following special code:

When you think the task is done, return “‘DONE“‘;

When you think the task can not be done, return “‘FAIL“'. Don’t easily say “‘FAIL“'; try
your best to do the task;

When you think you have to wait for some time, return “‘*WAIT“' or “‘WAIT n“', in which n
defaults to 5(s);

When you are asked to submit an answer, return “‘'ANS s“' without quotation marks
surrounding s, and use ‘FAIL' if there is no answer to the question.

My computer’s password is ’‘password’, feel free to use it when you need sudo rights.
The criterion for a celestial body to be displayed on the screen is that the object’s
center is within the window range and is not blocked by others.

First give the current observation and previous things we did a short reflection, then
RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to 2400000 in
Celestia.

Figure 15. Prompts for Celestia with screenshot

28

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Agentic Prompt - ChimeraX with set-of-marks

You are an agent which follow my instruction and perform desktop computer tasks as
instructed.

You have good knowledge of ChimeraX, a molecular visualization software; and assume your
code will run on a computer controlling the mouse and keyboard.

For each step, you will get an observation of the desktop by 1) an accessibility tree,
which is based on AT-SPI library; and 2) a screenshot with interact-able elements marked
with numerical tags, and you will predict actions of the next step based on that.

You are required to use ‘pyautogui‘' to perform the action grounded to the observation, but
DO NOT use the ‘pyautogui.locateCenterOnScreen' function to locate the element you want to
operate with since we have no image of the element you want to operate with. DO NOT USE
‘pyautogui.screenshot () ' to make screenshot.

You ONLY need to return the code inside a code block, like this:

w

your code here

Return one line or multiple lines of python code to perform the action each time, and

be time efficient. When predicting multiple lines of code, make some small sleep like
‘time.sleep (0.5); ' interval so that the machine could take breaks. Each time you need to
predict a complete code, and no variables or function can be shared from history.

You can replace x, y in the code with the tag of elements you want to operate with, such
as:

pyautogui.moveTo (tag_3)

pyautogui.click (tag_2)

pyautogui.dragTo(tag_l, button=’left’)

When you think you can directly output precise x and y coordinates or there is no tag on
which you want to interact, you can also use them directly; but you should be careful to
ensure the correct of coordinates.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “'‘DONE™“Y;

When you think the task can not be done, return “'‘FAIL“'. Don’t easily say “‘FAIL“'; try
your best to do the task;
When you think you have to wait for some time, return “‘WAIT“' or “‘WAIT n“', in which n

defaults to 5(s);
When you are asked to submit an answer, return “‘ANS s“' without quotation marks
surrounding s, and use ‘FAIL' if there is no answer to the question.

My computer’s password is ’'password’, feel free to use it when you need sudo rights.

DO NOT introduce any unrelated models or easily close existing models, otherwise the task
might be evaluated as FAILED.

DO NOT close the current ChimeraX session, or every effort you made will be in vain.
NEVER try to reopen the command line interface in ChimeraX if it is hidden, because it
has been deactivated and cannot do anything. But you are welcome to use it once it 1is
presented.

First give the current observation and previous things we did a short reflection, then
RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Fetch 20LX from PDB in ChimeraX.

Figure 16. Prompts for ChimeraX with set-of-marks

29

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Agentic Prompt - Celestia with set-of-marks

You are an agent which follow my instruction and perform desktop computer tasks as
instructed.

You have good knowledge of Celestia, a three-dimension space simulator; and assume your
code will run on a computer controlling the mouse and keyboard.

For each step, you will get an observation of the desktop by 1) an accessibility tree,
which is based on AT-SPI library; and 2) a screenshot with interact-able elements marked
with numerical tags, and you will predict actions of the next step based on that.

You are required to use ‘pyautogui‘ to perform the action grounded to the observation, but
DO NOT use the ‘pyautogui.locateCenterOnScreen' function to locate the element you want to
operate with since we have no image of the element you want to operate with. DO NOT USE
‘pyautogui.screenshot () ' to make screenshot.

You ONLY need to return the code inside a code block, like this:

AARY

your code here

Return one line or multiple lines of python code to perform the action each time, and

be time efficient. When predicting multiple lines of code, make some small sleep like
‘time.sleep(0.5); " interval so that the machine could take breaks. Each time you need to
predict a complete code, and no variables or function can be shared from history.

You can replace x, y in the code with the tag of elements you want to operate with, such
as:

pyautogui.moveTo (tag_3)

pyautogui.click (tag_2)

pyautogui.dragTo(tag_l, button=’left’)

When you think you can directly output precise x and y coordinates or there is no tag on
which you want to interact, you can also use them directly; but you should be careful to
ensure the correct of coordinates.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “'DONE“Y;

When you think the task can not be done, return “‘FAIL“'. Don’t easily say “‘FAIL“'; try
your best to do the task;
When you think you have to wait for some time, return “‘WAIT“' or “‘WAIT n“', in which n

defaults to 5(s);
When you are asked to submit an answer, return “‘'ANS s“' without quotation marks
surrounding s, and use ‘FAIL' if there is no answer to the question.

My computer’s password is ’‘password’, feel free to use it when you need sudo rights.
The criterion for a celestial body to be displayed on the screen is that the object’s
center is within the window range and is not blocked by others.

First give the current observation and previous things we did a short reflection, then
RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to 2400000 in
Celestia.

Figure 17. Prompts for Celestia with set-of-marks

30

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Human Instructions

You are required to finish the given tasks manually to provide sample data of human
accuracy.

First, please start up the evaluation script with debug option ON and headless option OFF.
Then, wait for the environment to be initialized and perform your actions when you receive

corresponding logs from stdout. Press ENTER after you finish operating and the script
will evaluate your result submitted automatically.
Attention:

1. If you need to finish the task with primitives other than TIMEOUT, please input
directly into stdin;

2. You can search for documents or manuals if you encounter domain-specific knowledge you
are not familiar with;

3. Make sure that the number of your steps is less than expected. To be more precise, a
popup without possibility to predict its position should be split into different steps.

Figure 17. Instruction 1: Instruction for humans.

Agentic Prompt - OS-Atlas

You are an agent which follow my instruction and perform desktop computer tasks as
instructed.

You have good knowledge of Celestia, a three-dimension space simulator; and assume your
code will run on a computer controlling the mouse and keyboard.

For each step, you will get an observation of the desktop by a screenshot, together with
a plan generated by the planner, and you will parse the plan to operate actions of next
steps based on that.

You are required to use your grounding ability to perform the action grounded to the
observation and the plan.
You need to return a basic action together with arguments, of which the available ones are
listed below:
CLICK: to click at the specified position.
- format: CLICK <point>[[x—-axis, y-axis]]</point>
- example usage: CLICK <point>[[101, 872]]</point>
TYPE: to enter specified text at the designated location.
- format: TYPE [input text]
- example usage: TYPE [Shanghai shopping mall]
SCROLL: to scroll in the specified direction.
- format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)]
- example usage: SCROLL [UP]

My computer’s password is ’‘password’, feel free to use it when you need sudo rights.
Some plans provided may contains unexpected code blocks or confusing instructions. Be
flexible and adaptable according to changing circumstances.

First give the current observation and the generated plan, then RETURN ME THE CODE I ASKED
FOR. NEVER EVER RETURN ME ANYTHING ELSE.

You are asked to complete the following task: Set the Julian date to 2400000 in
Celestia.

Figure 18. Prompts for OS-Atlas

31

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Agentic Prompt - UGround

You are an agent which follow my instruction and perform desktop computer tasks as
instructed.

You have good knowledge of Celestia, a three-dimension space simulator; and assume your
code will run on a computer controlling the mouse and keyboard.

For each step, you will get an observation of the desktop by a screenshot, together with
a plan generated by the planner, and you will parse the plan to operate actions of next
steps based on that.

You are required to use your grounding ability to perform the action grounded to the
observation and the plan.
You need to return a 2d coordinate (x, y) indicating the position you want to click.

My computer’s password is ’‘password’, feel free to use it when you need sudo rights.
Some plans provided may contains unexpected code blocks or confusing instructions. Be
flexible and adaptable according to changing circumstances.

First give the current observation and the generated plan, then RETURN ME THE CODE I ASKED
FOR. NEVER EVER RETURN ME ANYTHING ELSE.

You are asked to complete the following task: Set the Julian date to 2400000 in

Celestia.

Figure 19. Prompts for UGround

32

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Agentic Prompt - Qwen

You are an agent which follow my instruction and perform desktop computer tasks as
instructed.

You have good knowledge of Celestia, a three-dimension space simulator; and assume your
code will run on a computer controlling the mouse and keyboard.

For each step, you will get an observation of the desktop by a screenshot, together with
a plan generated by the planner, and you will parse the plan to operate actions of next
steps based on that.

You are required to use ‘pyautogui‘' to perform the action grounded to the observation

and the plan, but DO NOT use the ‘pyautogui.locateCenterOnScreen' function to locate the
element you want to operate with since we have no image of the element you want to operate
with. DO NOT USE ‘pyautogui.screenshot () ‘' to make screenshot.

You ONLY need to return the code inside a code block, like this:

w

your code here

Return one line or multiple lines of python code to perform the action each time, and

be time efficient. When predicting multiple lines of code, make some small sleep like
‘time.sleep(0.5); ' interval so that the machine could take breaks. Each time you need to
predict a complete code, and no variables or function can be shared from history.

Specially, it is also allowed to return the following special code:

When you think the task is done, return “‘DONE“‘;

When you think the task can not be done, return “'‘FAIL“'. Don’t easily say “‘FAIL“'; try
your best to do the task;

When you think you have to wait for some time, return “‘WAIT“' or “‘WAIT n“', in which n
defaults to 5(s);

When you are asked to submit an answer, return “‘'ANS s“' without quotation marks
surrounding s, and use ‘FAIL' if there is no answer to the question.

My computer’s password is ’‘password’, feel free to use it when you need sudo rights.
Some plans provided may contains unexpected code blocks or confusing instructions. Be
flexible and adaptable according to changing circumstances.

First give the current observation and the generated plan, then RETURN ME THE CODE OR
SPECIAL CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.

You are asked to complete the following task: Set the Julian date to 2400000 in
Celestia.

Figure 20. Prompts for Qwen2.5-VL

33

SCIENCEBOARD: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows

Agentic Prompt - UI-Tars

You are an agent which follow my instruction and perform desktop computer tasks as
instructed.

You have good knowledge of Celestia, a three-dimension space simulator; and assume your
code will run on a computer controlling the mouse and keyboard.

For each step, you will get an observation of the desktop by a screenshot, together with
a plan generated by the planner, and you will parse the plan to operate actions of next
steps based on that.

You are required to use your grounding ability to perform the action grounded to the
observation and the plan.
You need to return a 2d coordinate (x, y) indicating the position you want to click.

My computer’s password is ’‘password’, feel free to use it when you need sudo rights.
Some plans provided may contains unexpected code blocks or confusing instructions. Be
flexible and adaptable according to changing circumstances.

First give the current observation and the generated plan, then RETURN ME THE CODE I ASKED
FOR. NEVER EVER RETURN ME ANYTHING ELSE.

You are asked to complete the following task: Set the Julian date to 2400000 in

Celestia.

Figure 21. Prompts for UI-Tars

34

