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ABSTRACT

Estimating binding energies is vital for drug discovery, yet supervised methods are
hampered by limited experimental data. Recent protein structure predictors (e.g.
AlphaFold3) offer unsupervised alternatives via confidence metrics that correlate
with binding energies. However, these metrics operate on a fixed scale, limiting
their ability to capture fine-grained energy differences. Leveraging the Joint Energy-
based Model (JEM) framework, we show that protein structure predictors implicitly
define an energy function, and we introduce two new energy-based models derived
from the confidence head. Our EBMs consistently improve binding energy predic-
tion, outperforming both traditional confidence metrics and unsupervised baselines,
and demonstrate that structure prediction models can be repurposed as powerful
unsupervised energy predictors.

1 INTRODUCTION

Accurate binding energy estimation is key to molecular engineering tasks like virtual screening and
protein-protein interaction design. One approach is to apply supervised methods that predict binding
free energies (∆G) or their changes (∆∆G), but these rely on limited, costly experimental datasets.
On the other hand, empirical energy functions (e.g., molecular mechanics or Rosetta scoring) are
computationally intensive despite offering physical insight (Miller III et al., 2012; Schymkowitz
et al., 2005). Recent approaches use confidence estimates from protein structure prediction models to
address these challenges. For instance, interface pTM (ipTM) (Evans et al., 2021) correlates with
experimental binding affinities and serves as an unsupervised proxy (Zambaldi et al., 2024). However,
these confidence metrics operate on fixed, discretized scales and lack probabilistic interpretation,
limiting their effectiveness for capturing continuous, fine-grained energy landscapes.

Figure 1: (a) Energy functions are derived from classifier outputs of protein structure predictors. (b)
Application of JEM to protein structure predictors.

In this work, we extract energy functions directly from black-box structure prediction models using
the Joint Energy-based Model (JEM) framework (Grathwohl et al., 2019). We derive two EBMs for
scoring molecular interactions: pAEnergy, from the outputs of the confidence head, and pTMEnergy,
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a weighted variant of pAEnergy. Unlike models that require extensive experimental data or high-
resolution crystal structures, our method leverages pretrained predictors to capture rich interaction
information. This yields a continuous energy landscape that overcomes the limitations of fixed-scale
confidence scores.

2 RELATED WORK

Please see Appendix A.1.

3 METHODS: FROM CONFIDENCE TO ENERGY

Figure 2: Scatter plots comparing ipTM and
pTMEnergy by their association with ∆∆G.

Motivation. State-of-the-art protein folding
models provide confidence scores that have been
used as binding affinity proxies in virtual screen-
ing (Bennett et al., 2023). However, these met-
rics operate on a binary scale, limiting their
utility for tasks like ∆∆G prediction, which
requires a continuous measure. For example,
the Alphafold3 ipTM score difference shows
poor correlation with true ∆∆G on the SKEMPI
dataset (Pearson R = 0.102; Figure 2).

We propose an alternative measure of binding
affinity by taking an energy-based modeling
(EBM) view of protein folding models. Specif-
ically, our goal is to extract an energy function
Eθ(x) from any black-box protein structure pre-
dictor where x is the sequence or structure of a
protein complex, depending on the predictor’s input. Under the EBM framework, the probability
density p(x) is expressed as:

pθ(x) =
exp(−Eθ(x))

Z(θ)
(1)

where Eθ(x) represents the un-normalized log-likelihood (energy) of any input x. In the context
of proteins, Eθ(x) can be viewed as a measure of binding affinity, where a lower energy means
better stability. Compared to standard confidence metrics, this energy score gives a more continuous
measure of binding affinity, which is more suitable for fine-grained tasks like ∆∆G prediction.

3.1 CASTING PROTEIN FOLDING MODELS AS EBMS

To obtain an EBM from a protein folding model, we leverage the fact that any classifier implicitly
defines an energy function (Grathwohl et al., 2019). Consider a classification model fθ which maps
protein x to K real-valued logits. In the final softmax layer, these logits parameterize a categorical
distribution where fθ(x)[y] denotes the logit corresponding to the yth class label:

pθ(y|x) =
exp(fθ(x)[y])∑
y′ exp(fθ(x)[y′])

(2)

The logits can be reinterpreted to define an EBM over protein sequences or structures x and labels y:

pθ(x, y) =
exp(fθ(x)[y])

Z(θ)
, (3)

where Eθ(x, y) = −fθ(x)[y]. We can marginalize out y to arrive at a probability density for x and
subsequently define an energy function Eθ(x):

pθ(x) =

∑
y exp(fθ(x)[y])

Z(θ)
(4)

Eθ(x) = −LogSumExpy(fθ(x)[y]) (5)
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Thus, we can leverage any classifier as an EBM, where LogSumExp(·) over the logits defines an
energy function. To apply this method to protein structure predictors, we notice that most of them
employ classifiers for the task of confidence (pAE/pTM) prediction. Based on this observation, we
propose two EBMs for unsupervised binding energy prediction: pAEnergy and pTMEnergy. Since
the confidence head’s input is a predicted structure, these EBMs estimate energy of a predicted
complex structure.

3.1.1 PAENERGY

Protein structure predictors employ a classification head in their confidence model which predicts
the predicted aligned error (pAE) between residue pairs. For an input protein complex, consider the
ground-truth structure’s Cα atoms X true = {x⃗true

j }, its backbone frames {T true
i }, predicted structure’s

Cα atoms X = {x⃗j}, and corresponding backbone frames {Ti}. We can compute a pairwise error
matrix eij = T−1

i · x⃗j − T true−1

i · xtrue
j , capturing the error between true and predicted Cα positions

when aligned on backbone frames. The magnitude of this error is then discretized into error bins to
form a classification target.

Within the confidence model, the pAE head is trained to predict the discretized pAE matrix where
pAE[i, j, y] gives the probability that the alignment error magnitude between residues i and j falls
into bin y. The logits are correspondingly denoted as fθpAE(x)[i, j, y] and are supervised with a
cross-entropy loss against the true alignment error. We define pAEnergy as an energy function
derived from these logits:

EpAE(x) = − 1

M

∑
i<j

LogSumExpy(fpAE(x)[i, j, y]) (6)

3.1.2 PTMENERGY

As introduced by the original AlphaFold work (Jumper et al., 2021), the confidence model’s predicted
pAE matrix can be used to define a global confidence metric called the pTM score:

pTM = max
i

1

Nres

∑
j

E
[
g(eij)

]
(7)

The expectation is taken over the probability distribution over pairwise alignment errors bins between
residues i and j, defined by eij . The scaling function g is defined as:

g(dij) =
1

1 +
(

dij

d0(Nres)

)2 (8)

d0(Nres) = 1.24 3
√

maximum(Nres, 19)− 15− 1.8 (9)

The behavior of the pTM score is strongly influenced by g which weights each predicted bin
probability within the expectation. Because g(dij) decreases as the predicted error bin grows, larger
error bins receive a lower weight within the expectation. This incorporates the physical inductive
bias that in real proteins, accurate local packing is critical for stability and function. We incorporate
scaling function g and call this weighted energy function pTMEnergy:

EpTM(x) = − 1

M

∑
i<j

EpTM[i, j] (10)

EpTM[i, j] = LogSumExpy
(
log g(y) + fpAE(x)[i, j, y]

)
Following the approach of the ipTM score in AlphaFold-Multimer (Evans et al., 2021), we restrict
the summation to interface residue pairs when computing all versions of our energy functions.
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4 EXPERIMENTS

4.1 ENERGY PREDICTS PROTEIN-PROTEIN INTERACTION MUTATION EFFECTS

Protein-protein interactions (PPIs) are vital for many biological processes, and mutations at their
interfaces can dramatically affect function (Cheng et al., 2021). Predicting the effect of a mutation is
therefore valuable, quantified as the change in binding free energy ∆∆G = ∆Gmut −∆Gwt.

Experimental setup. We use SKEMPI v2 (Jankauskaitė et al., 2019), which provides ∆∆G
measurements for 7,085 mutations across 348 protein complexes. Predicted ∆∆G is the difference
between the predicted energies of mutant and wild-type complexes. We evaluate our method using
AlphaFold3 (Abramson et al., 2024) and Chai-1 (Discovery et al., 2024). AlphaFold3 employs MSAs
via Jackhmmer/Nhmmer (10 minutes per sample), whereas Chai-1 uses language model embeddings
to bypass MSA computation. We compare against unsupervised ∆∆G rediction methods that do
not require high-resolution crystal structures, including ESM-1v (Meier et al., 2021), PSSM, MSA
Transformer (Rao et al., 2021), and Tranception (Notin et al., 2022). Additionally, we compare
against DSMBind (Jin et al., 2023) and BA-Cycle (Jiao et al., 2024), state-of-the-art structure-based
unsupervised binding prediction models. To ensure a fair comparison with our method which does
not require crystal structures, we use AlphaFold3-predicted structures as the input to these models.

Pearson Spearman

Baselines

ESM-1v 0.192 0.157
PSSM 0.016 0.067
MSA Trans. 0.117 0.131
Tranception 0.114 0.140
DSMBind 0.101 0.067
BA-Cycle 0.234 0.165

Chai-1

ipTM .142.007 .158.009
pAEnergy .188.004 .139.013
pTMEnergy .195.004 .173.010
Ensemble .268.006 .225.007

AF3

ipTM .102.006 .233.011
pAEnergy .105.009 .123.005
pTMEnergy .265.003 .208.004
Ensemble .309.004 .278.007

Figure 3: To the left, the table presents the overall correlation results on the SKEMPI v2 dataset.
Chai-1 and AlphaFold3 results are averaged across five structure predictions per sequence. To the
right, we illustrate the per-structure Pearson correlation.

Benchmark Results. pTMEnergy consistently outperforms baseline methods and standard con-
fidence scores. For Chai-1, pTMEnergy improves Pearson correlation by 37% and Spearman
correlation by nearly 10% compared to ipTM. To further improve prediction accuracy, we introduce
an ensemble, which combines ipTM and pTMEnergy ranks with equal weight. This ensemble strategy
leads to a substantial boost in performance, nearly doubling Chai-1’s Pearson correlation and tripling
it for AlphaFold3. As shown in Appendix A.3, the boost is consistent across complexes with single
and multiple mutations. Figure 3 also shows per-structure correlations, where mutations are grouped
by wild-type complex and metrics averaged within each group. By stratifying mutant groups by
wild-type ipTM scores, we find that for high-quality complexes, pTMEnergy outperforms ipTM
(further demonstrated in Appendix A.2). This indicates that confident structure predictions yield logit
distributions that effectively capture binding-relevant energetic information.

4.2 ENERGY IDENTIFIES SUCCESSFUL RNA APTAMERS

Experimental setup. Next, we evaluate our EBMs on RNA aptamer virtual screening. We aim to
identify aptamers that bind GFP from a large candidate pool. The dataset, curated by Huang et al.
(2024), consists of GFPapt mutants (Shui et al., 2012). Kd values range from 0nM to 125nM, and
aptamers with Kd < 10 are considered positives. We compare with all baselines reported in Huang
et al. (2024) and structures are predicted using RosettaFold2NA (RF2NA) (Baek et al., 2024).
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Table 1: Performance of energy-based scoring for RNA aptamer virtual screening. RosettaFold2NA
results are averaged across five structure predictions per sequence.

AUPRC Precision@10 Precision@50

Baselines

Transformer .288.018 .233.094 .273.073
SE(3) Transformer .288.015 .200.141 .267.061
Equiformer .311.005 .300.000 .367.024
EGNN .267.047 .340.081 .308.013
GVP-GNN .317.071 .300.081 .380.082
FA .290.014 .300.141 .333.033
FAFormer .322.004 .400.078 .413.041

RosettaFold2NA
ipTM .253.001 .150.035 .290.007
pAEnergy .343.006 .400.071 .380.000
pTMEnergy .352.007 .400.071 .420.000

Benchmark Results. Table 1 shows that pTMEnergy achieves the highest AUPRC, outperforming
the best structure-based baseline (FAFormer) by nearly 10%. pAEnergy also improved performance
over RF2NA ipTM, highlighting its ability to better distinguish high-affinity binders.

4.3 ENERGY IDENTIFIES MINIPROTEIN BINDERS

Experimental setup. Finally, we evaluate the accuracy of our EBMs in screening for protein-binding
miniproteins. Our task is to distinguish miniprotein binders from nonbinders across multiple targets
that were experimentally screened at large scale by Cao et al. (2022), focusing on the 10 targets
selected by Bennett et al. (2023). Further dataset details are given in Appendix A.5. All metrics are
computed using the Chai-1 model (no MSA), as AlphaFold3’s MSA computation is prohibitively
time-intensive. We benchmark against DSMBind (Jin et al., 2023) and FoldX (Schymkowitz et al.,
2005) which is a physics-based energy function, using Chai-predicted structures for both.

Benchmark Results. As shown in Table 2, pTMEnergy achieves the strongest performance across
all evaluation metrics. Further evidence that pTMEnergy, as a continuous energy-based metric, leads
to better separation between binders and non-binders is given in Appendix A.6.

Table 2: Performance of different metrics in identifying miniprotein binders, averaged across targets.
Metric AUPRC Precision@10 Precision@50
FoldX 0.161 0.207 0.132
DSMBind 0.132 0.000 0.008
ipTM 0.177 0.300 0.244
pAEnergy 0.121 0.120 0.120
pTMEnergy 0.181 0.340 0.252

5 CONCLUSION

In this work, we demonstrate that protein structure predictors implicitly define energy-based models,
enabling unsupervised binding energy prediction. By leveraging the confidence classification heads of
structure predictors, we introduce pAEnergy and pTMEnergy which provide continuous measures of
binding affinity. Our experiments show that these energy functions outperform traditional confidence
metrics and unsupervised baselines across multiple tasks.

Our method poses some limitations. First, our framework requires running a protein folding model
which can be computationally expensive. While Chai-1 in single-sequence mode offers a significantly
faster alternative to MSA-based structure prediction, this computational cost remains a bottleneck
for large-scale virtual screening applications. Future work could explore optimizations to accelerate
structure prediction or approximate its outputs with a lighter-weight alternative.
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Kevin M Jude, Iva Marković, Rameshwar U Kadam, Koen HG Verschueren, et al. Design of
protein-binding proteins from the target structure alone. Nature, 605(7910):551–560, 2022.

Feixiong Cheng, Junfei Zhao, Yang Wang, Weiqiang Lu, Zehui Liu, Yadi Zhou, William R Martin,
Ruisheng Wang, Jin Huang, Tong Hao, et al. Comprehensive characterization of protein–protein
interactions perturbed by disease mutations. Nature genetics, 53(3):342–353, 2021.

Chai Discovery, Jacques Boitreaud, Jack Dent, Matthew McPartlon, Joshua Meier, Vinicius Reis,
Alex Rogozhnikov, and Kevin Wu. Chai-1: Decoding the molecular interactions of life. bioRxiv,
pp. 2024–10, 2024.

Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim Green,
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Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Wei Lu, Jixian Zhang, Jihua Rao, Zhongyue Zhang, and Shuangjia Zheng. Alphafold3, a secret sauce
for predicting mutational effects on protein-protein interactions. bioRxiv, pp. 2024–05, 2024.

Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language models
enable zero-shot prediction of the effects of mutations on protein function. Advances in neural
information processing systems, 34:29287–29303, 2021.

6



Published at the GEM workshop, ICLR 2025

Bill R Miller III, T Dwight McGee Jr, Jason M Swails, Nadine Homeyer, Holger Gohlke, and
Adrian E Roitberg. Mmpbsa. py: an efficient program for end-state free energy calculations.
Journal of chemical theory and computation, 8(9):3314–3321, 2012.

Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N Gomez, Debora
Marks, and Yarin Gal. Tranception: protein fitness prediction with autoregressive transformers
and inference-time retrieval. In International Conference on Machine Learning, pp. 16990–17017.
PMLR, 2022.

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. Msa transformer. In International Conference on Machine Learning, pp.
8844–8856. PMLR, 2021.

Joost Schymkowitz, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau, and Luis Serrano.
The foldx web server: an online force field. Nucleic acids research, 33(suppl 2):W382–W388,
2005.

Bo Shui, Abdullah Ozer, Warren Zipfel, Nevedita Sahu, Avtar Singh, John T Lis, Hua Shi, and
Michael I Kotlikoff. Rna aptamers that functionally interact with green fluorescent protein and its
derivatives. Nucleic acids research, 40(5):e39–e39, 2012.

Vinicius Zambaldi, David La, Alexander E Chu, Harshnira Patani, Amy E Danson, Tristan OC Kwan,
Thomas Frerix, Rosalia G Schneider, David Saxton, Ashok Thillaisundaram, et al. De novo design
of high-affinity protein binders with alphaproteo. arXiv preprint arXiv:2409.08022, 2024.

7



Published at the GEM workshop, ICLR 2025

A APPENDIX

A.1 RELATED WORK

A variety of computational methods have been developed for binding energy prediction. We focus
on unsupervised methods that do not rely on experimental labels which can be categorized into
sequence-based, crystal structure-based, and structure prediction-based techniques.

Sequence-based. Recently, protein language models like ESM-1v (Meier et al., 2021) have enabled
unsupervised prediction of protein mutation effects, enabling success for tasks like antibody affinity
maturation (Hie et al., 2024). We compare the performance of these sequence-based models against
our proposed energy-based scoring functions.

Crystal structure-based. DSMBind (Jin et al., 2023) is an energy-based model that estimates the
likelihood of a particular crystal structure via SE(3) denoising score matching, performing well
for protein-protein and antibody-antigen binding affinity prediction. BA-Cycle (Jiao et al., 2024)
infers binding affinity from protein inverse folding model log-likelihoods, achieving state-of-the-art
performance on PPI mutation effect prediction. However, for large virtual screening libraries, crystal
structures will not be available.

Structure prediction-based. Advancements in biomolecular structure prediction have facilitated
novel energy estimation techniques. Over the past year, AlphaFold3 (Abramson et al., 2024),
followed by Chai-1 (Discovery et al., 2024), introduced a diffusion-based strategy that significantly
enhances the accuracy of predicting multimeric complexes, including proteins, nucleic acids, and
small molecules. AlphaFold3’s ipTM metric has demonstrated signal for predicting PPI mutation
effects on a small, filtered test set (Lu et al., 2024) and can identify miniprotein binders (Bennett
et al., 2023). Unsupervised models like FAFormer (Huang et al., 2024), which outputs a contact map
given predicted monomer structures, are also useful for virtual screening. We compare against these
baselines in our study.

A.2 IMPACT OF STRUCTURE PREDICTION QUALITY ON SKEMPI PERFORMANCE

To assess the effect of structure prediction confidence on our ability to predict mutational impacts
using extracted energy scores, we stratified the SKEMPI dataset by ipTM. At four different thresholds,
we assess prediction performance across mutant groups whose wild-type complex has an ipTM score
greater than the threshold.

Table 3: Correlation metrics at different ipTM thresholds.
ipTM Threshold 0.0 0.5 0.8 0.9
# of Examples 7082 4101 2501 1216

ipTM: Overall Pearson 0.102 0.171 0.153 0.208
pTMEnergy: Overall Pearson 0.265 0.362 0.400 0.430
ipTM: Per-Structure Pearson 0.252 0.338 0.367 0.357
pTMEnergy: Per-Structure Pearson 0.230 0.348 0.406 0.404

We find that as the ipTM threshold increases, the performance of our pTMEnergy improves. The
overall Pearson correlation increases from 0.265 to 0.430 as the ipTM threshold rises from 0.0 to
0.9. This pattern also holds at the per-structure level. In contrast, the ipTM score itself has limited
predictive utility for ∆∆G values, with much lower correlations even at high thresholds. Our energy-
based method consistently outperforms raw ipTM in capturing the mutational effects, especially in
high-confidence structure regimes.

A.3 SKEMPI PERFORMANCE: SINGLE VS MULTIPLE MUTATIONS

We evaluate model performance on the SKEMPI dataset by comparing Spearman correlations for
complexes with single versus multiple mutations. The results are summarized in Figure 4. Overall,
we observe that pTMEnergy significantly improves performance for complexes containing both one
or many mutations, with a larger boost for multi-mutation examples.
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Figure 4: SKEMPI performance: single vs multiple mutations.

A.4 ENERGY MATRIX CAPTURES MUTATIONAL EFFECTS

Figure 5 visualizes the difference in predicted pairwise residue interaction energy between the mutant
and wild-type complex. The top row illustrates a deleterious mutation (∆∆G > 0), with the mutation
site highlighted in green. The pAEnergy and pTMenergy functions assign a high interaction energy
to the mutated position, reflecting the deleterious impact. Similarly, the bottom row depicts an
advantageous mutation (∆∆G < 0) where the pAEnergy and pTMEnergy functions correctly assign
lower predicted energy to the mutated position. We find that this trend holds consistently across the
SKEMPI dataset, indicating that this continuous energy-based representation aligns with biophysical
intuition, allowing for a more interpretable understanding of mutational effects.

Figure 5: Difference between mutant and wild-type in AlphaFold3-predicted pairwise residue energy.
Top row (PDB ID: 1ACB) illustrates a deleterious mutation while bottom row (PDB ID: 1B2U)
shows an advantageous mutation. Mutation site is highlighted in green.

A.5 MINIPROTEIN DATASET DETAILS

We perform our analysis on 10 targets from Cao et al. (2022), as selected by Bennett et al. (2023).
We subsample negative examples at a 10:1 negative-to-positive ratio.
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Table 4: Miniprotein dataset details.
Target Number of Positives
H3 50
TrkA 10
FGFR2 604
EGFR 15
PDGFR 284
InsulinR 259
Tie2 5
IL7Ra 22
VirB8 72
SARS-CoV2-RBD 18

A.6 MINIPROTEIN PERFORMANCE BY TARGET

For 8 out of 10 targets, pTMEnergy exhibits a higher Earth Mover’s Distance between the binder and
non-binder score distributions compared to ipTM. pTMEnergy, as a continuous energy-based metric,
leads to better separation and captures finer variations in interaction strength.

Figure 6: Distributions of ipTM and negative pTMEnergy for binders and non-binders across
various binding targets. The Earth Mover’s Distance (EMD) between binder and non-binder score
distributions is consistently higher for pTMEnergy.

10


	Introduction
	Related Work
	Methods: From confidence to energy
	Casting protein folding models as EBMs
	pAEnergy
	pTMEnergy


	Experiments
	Energy Predicts Protein-Protein Interaction Mutation Effects
	Energy Identifies Successful RNA Aptamers
	Energy Identifies Miniprotein Binders

	Conclusion
	Appendix
	Related Work
	Impact of Structure Prediction Quality on SKEMPI Performance
	SKEMPI Performance: Single vs Multiple Mutations
	Energy Matrix Captures Mutational Effects
	Miniprotein Dataset Details
	Miniprotein Performance by Target


