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ABSTRACT

Classifier-Free Guidance (CFG) improves diffusion sampling by encouraging con-
ditional generations while discouraging unconditional ones. Existing preference
alignment methods, however, focus only on positive preference pairs, limiting
their ability to actively suppress undesirable outputs. Diffusion Negative Prefer-
ence Optimization (Diff-NPO) approaches this limitation by introducing a sep-
arate negative model trained with inverted labels, allowing it to capture signals
for suppressing undesirable generations. However, this design comes with two
key drawbacks. First, maintaining two distinct models throughout training and
inference substantially increases computational cost, making the approach less
practical. Second, at inference time, Diff-NPO relies on weight merging between
the positive and negative models, a process that dilutes the learned negative align-
ment and undermines its effectiveness. To overcome these issues, we introduce
Diff-SNPO, a single-network framework that jointly learns from both positive
and negative preferences. Our method employs a bounded preference objective to
prevent winner-likelihood collapse, ensuring stable optimization. Diff-SNPO de-
livers strong alignment performance with significantly lower computational over-
head, showing that explicit negative preference modeling can be simple, stable,
and efficient within a unified diffusion framework. Code will be released.

1 INTRODUCTION

Diffusion models (Ho et al., 2020) have become the backbone of modern visual content generation,
achieving remarkable fidelity in synthesizing images, videos, and multimodal content (Rombach
et al., [2022; [Ho et al., 2022; [Ruan et al., 2023). However, models trained on vast, uncurated web-
scale datasets often inherit biases and fail to align with human notions of quality, aesthetics, or
safety. Consequently, fine-tuning models with human feedback through preference alignment has
become a critical step for bridging the gap between a model’s raw capabilities and user intent (Black
et al.,[2024; Wallace et al.| 2024; |Li et al., 2024).

At the heart of high-quality diffusion sampling lies Classifier-Free Guidance (CFG) (Ho & Sali-
mans}, 2021), a technique that enhances sample quality by amplifying the contrast between condi-
tional and unconditional (or negatively conditioned) likelihoods. This mechanism guides generation
toward prompt-aligned outputs by explicitly pushing samples away from the lower-quality uncon-
ditional distribution. However, a challenge arises with many preference optimization methods, such
as Diffusion Direct Preference Optimization (Diff-DPO). These methods often apply the same opti-
mization objective to both the conditional and unconditional branches. This uniform reinforcement
of preferred attributes, while shifting the overall distribution in the desired direction, fails to heighten
the critical contrast that CFG relies on. Consequently, the model’s ability to generate outputs aligned
with user intent remains limited.

To further strengthen the contrastive effect of CFG, recent methods (Fu et al.} 2025; [Wang et al.,
2025)) have incorporated negative preference alignment into the training process. In particular,
CHATS (Fu et al 2025) and Diff-NPO (Wang et al) [2025) train two separate models: a “posi-
tive” model on standard preference data and a “negative” model on inverted preferences. This setup
allows the system to explicitly learn from dispreferred samples and steer generation away from un-
desirable attributes, resulting in improved human preference alignment. Despite their effectiveness,
a key limitation of both approaches lies in their reliance on distinct sets of parameter for the two
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Table 1: Comparison of methods by alignment type, model setup, and use of merging strategy.

Method | Negative Alignment | Dual Model | Merging Strategy

DPO X X X
NPO v 4 v
CHATS 4 v 4
SNPO v X X

models, which often leads to misaligned outputs and complicates guided sampling (Wang et al.,
2025). Diff-NPO addresses this by merging the weights of the two models, whereas CHATS per-
turbs conditional embeddings to blend their signals. These differences are summarized in Table[T] In
this work, we focus on Diff-NPO, since its sampling procedure more closely follows standard CFG.
Building on this foundation, we highlight two central limitations in its design. First, training and
sampling from two independent models inherently doubles both computational and memory costs,
creating a significant scalability challenge. Second, merging weights that were optimized separately
introduces a distribution mismatch that weakens the contribution of the negative model. This re-
duces the method’s ability to suppress dispreferred outputs and ultimately limits the gains expected
from negative alignment.

In this work, we ask: Can we achieve the benefits of explicit negative modeling without the costs
and compromises of a dual-model architecture? We introduce Diffusion Simple Negative Prefer-
ence Optimization (Diffusion-SNPO), a framework that integrates positive and negative preference
signals into a single, unified network. Our approach leverages the inherent dual-branch structure of
CFG-enabled models, training the conditional branch on positive preferences and the unconditional
branch on negative (inverted) preferences. This design eliminates the need for separate models and
weight merging, preserving a strong, explicit contrast between preferred and dispreferred distribu-
tions within one efficient architecture.

However, we find that naively applying this strategy results in an unintended side effect: the gener-
ated images become progressively blurrier as training continues. We attribute this to the likelihood
decrease observed in the DPO algorithm (Rafailov et al |2024b; [Pal et al.| 2024} |Cho et al.| |[2025),
which, when coupled with conflicting gradients from flipped preferences between the conditional
and unconditional branches, causes instability. As a result, the model converges to a suboptimal so-
lution, with blurring becoming more pronounced as the likelihood of winning samples decreases. To
address this, we adapt Bounded DPO (Cho et al., [2025)), a preference optimization method designed
to increase the likelihood of winning samples during training, to Diffusion Models. This adaptation
stabilizes training by preventing the loss from being dominated by low-likelihood “losing” samples,
thereby boosting the likelihood of winning samples throughout preference optimization.

In detail, our contributions can be summarized as follows:

* We identify the challenges of dual-model negative preference optimization (NPO), namely its high
computational cost and the performance trade-offs inherent in its two separate model design.

* We demonstrate that simply applying opposing preferences on different branches within a single
model leads to poor interactions with DPO-based algorithms, resulting in blurry images as training
progresses.

* We introduce Diff-SNPO, a single-model negative preference optimization method for Diffusion
Models. By adapting the BDPO algorithm and deriving an upper bound, our approach effectively
eliminates the blurring effect caused by DPO in a negative preference optimization setting.

¢ We conduct extensive evaluations on the Pick-a-Pic v2 benchmark with both SD1.5 and SDXL,
showing that Diff-SNPOQO delivers strong performance across multiple alignment metrics, while
being more efficient in both training and inference.

2 RELATED WORK

2.1 PREFERENCE OPTIMIZATION

Preference optimization aims to align generative models with human judgments. One common strat-
egy is to train a reward model that scores prompt—image pairs based on semantic or aesthetic quality,
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and then fine-tune the diffusion model to maximize these scores (Xu et al.,2023; [Clark et al., [2024).
Another direction draws on policy optimization, which frames denoising as a sequential decision
process: DDPO (Black et al.,|2024) applies reinforcement learning across the sampling steps, while
DPOK (Fan et al.|[2023) introduces a KL-regularized reward objective. More recently, methods that
bypass explicit reward modeling by learning directly from curated positives or pairwise preferences
have attracted growing interest (Wallace et al.l 2024; |Lu et al.| 2025; Hong et al., 2025). While
these approaches simplify training, they typically handle negative feedback only implicitly, by train-
ing models to favor preferred outputs in relative comparisons. This indirect treatment leaves little
control over explicitly suppressing undesirable generations. In contrast, explicitly modeling dispre-
ferred outcomes offers a more direct form of control: it steers generation away from undesirable
regions of the distribution, reducing artifacts and improving alignment.

2.2 NEGATIVE PREFERENCE OPTIMIZATION

In response to the limitations of standard preference optimization algorithms, recent work has ex-
plored dual-model strategies that explicitly separate positive and negative preferences. Diff-NPO
(Wang et all 2025)) trains a negative model on inverted preferences and substitutes it for the un-
conditional branch during inference, which improves alignment but introduces a mismatch between
training and inference due to weight interpolation. CHATS (Fu et al., [2025) addresses this issue
by jointly training positive and negative models within a contrastive objective, achieving stronger
alignment but at the cost of increased computation and memory from maintaining two networks.
These challenges highlight the need for approaches that unify positive and negative preference mod-
eling within a single framework. Our method, DIFF-SNPO, takes this direction by integrating both
signals into a shared training objective, reducing overhead while better balancing alignment across
positive and negative preferences.

3 PRELIMINARIES

3.1 DIFFUSION MODELS

Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., [2020) consist of a forward noising
process and a learned reverse denoising process. The forward process gradually perturbs clean data
xo with Gaussian noise according to a variance schedule {3;}7_;:

T
Q($1:T | xo) = HQ(th | It—1)7 Q(l‘t | l‘t—l) = N<l"t; Vv1i- Bt l’t—hﬁtf) . (D
t=1

To invert this process, a neural network ey parameterizes the reverse transitions by predicting the
injected noise:

1 : 2
po(i—1 | ) :N(thl; \/T—t(xt - \/157:75” 60(%»15))70,5 I) ) 2)
where oy = 1 — B4, &y = HZ:l ag, and af denotes the variance.
Model training minimizes a variational bound, which simplifies to a weighted noise-prediction loss:

Loppm = Egg et [w(t) lle — e (s, t)”z] ) (3)

with e ~ N(0,1) and ¢ ~ U{1,...,T}. The weighting function w(t) controls the relative con-
tribution of different timesteps, reflecting the varying difficulty of denoising across the diffusion
trajectory. This objective provides a simple and stable training criterion that underpins most modern
diffusion-based generative models.

3.2 CLASSIFIER-FREE GUIDANCE

Classifier-Free Guidance (CFG) (Ho & Salimans| [2021) modifies the conditional sampling distribu-
tion to strengthen (or weaken) the influence of conditioning information ¢ while remaining anchored
to the unconditional model. At timestep ¢, the effective distribution is defined as

pe(th))“
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Po(we | €) ox pa(wt)(



Under review as a conference paper at ICLR 2026

where w = 1 recovers the standard conditional model, w > 1 amplifies the effect of the condition,
and 0 < w < 1 dampens it.

In diffusion sampling, the model evolves states using the score function sp(xy,t,c) =
V. log pg(z; | c). Relating equation[d]to the score yields

So(we,t,c) = sg(@y, ) + w(se(we, t, ) — so(xy,1)), )

where sg(x¢,t) and sg (24, t, ¢) denote the unconditional and conditional scores, respectively. Thus,
CFG moves along the direction that separates the conditional and unconditional scores, with w
controlling how far we step in that direction.

Under the DDPM parameterization (2020) z; = /& o + /1 — @y €, the score and the

noise prediction are linked by

1
so(ze,t,-) = _\/17—76@ eg(xe,t,-). ©)

Substituting equation [6]into equation 5] gives the guided noise estimator
g@('xh ta C) = 69(It7 t) + W(Eg(xt, t7 C) - EQ(It, t)) . (7)

In essence, CFG modifies the denoiser by amplifying the difference between the conditional and
unconditional predictions, with w controlling how strongly the generation is steered toward the con-
ditional distribution. The unconditional prediction €g (¢, ) serves as a reference point, and the
correction term €y (xy, t, c) — €g(x¢,t) shifts the generation trajectory away from regions favored
by the unconditional model but inconsistent with the conditioning signal c¢. This allows CFG to
suppress undesirable or generic outputs that the unconditional model might produce on its own, en-
couraging samples that better reflect the intended conditioning. As a result, CFG offers a principled
and tunable mechanism to improve text-image alignment.

3.3 DIFFUSION DIRECT PREFERENCE OPTIMIZATION

Preference alignment is often formalized using the Bradley—Terry (BT) model (Kendall & Smith}
[1940). Building on this idea, Direct Preference Optimization (DPO) (Rafailov et al., 2023) sidesteps
the need to fit an explicit reward model by defining an implicit reward through likelihood ratios
between the policy 7y and a reference policy ms:

_ mo(zf | o) mo(ah | )
szx0>—ffE@gﬁgdwp[bgo(ﬂ(bgﬂkdxg|C)—wogﬁmdxé‘@))}. ®)

Here, 3 > 0 is a temperature parameter that controls the strength of the preference signal, and
o(+) denotes the sigmoid function. Extending this objective to diffusion models requires assigning
preferences over entire trajectories zo.7. In this context, Diff-DPO (Wallace et al.} [2024) derives an
upper bound on the exact Diff-DPO objective:

Loieoro(0;4) = ~Eiog at o, eupiir) 080 (WTWOBAL () = AL |, ©)

with
AY(c) = Hew — eg(xf,t,c)"z — Hew — eref(xq,;”,t,c)’ 2

99 (10)
Ale) = Hel — eg(xi,t,c)Hi - Hel — ert(zh, t,€) ;, (11)

Here, 2 and x! are noisy states obtained by applying the forward diffusion process to the clean
samples z¥, ¥} with corresponding noise terms €, €/ ~ N(0, I). The label y € {+1, —1} encodes
the preference direction and w(t) is a time-dependent weighting function.

3.4 DIFFUSION NEGATIVE PREFERENCE OPTIMIZATION

Diffusion Negative Preference Optimization (Diff-NPO) 2025) extends standard pref-
erence learning by explicitly modeling undesirable behavior. It does so by training on an inverted
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preference dataset, where the roles of winners and losers are swapped. This yields a negatively
aligned model, 6, which learns to assign higher likelihood to dispreferred samples. During sam-
pling, Diff-NPO replaces the standard unconditional branch in classifier-free guidance with this
negative model, leading to the following guidance formulation:

enpo (T, ¢) = €g+ (24, ¢) + w [eg+ (x4, ) — €9 (24, D)), (12)

where €y+ is the positively aligned model trained on standard preference data, and w is a guidance
strength hyperparameter.

In practice, however, the positive and negative models that are trained independently often exhibit
poor correlation, which undermines the effectiveness of €,- as a meaningful contrastive signal dur-
ing sampling. To mitigate this, Diff-NPO applies a weight-merging procedure that combines the
reference model .., the positive model 8T, and the negative model 6~ :

é_ = Orer + Oé(9+ - Href) + ﬁ(e_ - eref)a (13)

where « and § are interpolation coefficients. In practice, the merged parameters 6- replace €g- in
the guidance formulation of Eq. yielding improved generation quality. However, this benefit
comes at the cost of higher training overhead and weakened negative alignment.

4 METHOD

4.1 LIMITATIONS OF NEGATIVE PREFERENCE OPTIMIZATION

Dual-model approaches to Negative Preference Optimization (NPO) (Wang et al.,2025])) offer direct
way to model positive and negative preferences, training separate models—0* and §~—for each.
However, this design introduces significant practical overhead. Maintaining two networks doubles
memory and compute requirements, increases training time. These costs quickly escalate with large
diffusion backbones, making dual-model setups difficult to scale in practice.

At inference time, using the two models separately preserves the intended contrast between positive
and negative preferences. However, this approach often compromises sample quality, especially
when generating from the negatively aligned model §~. To mitigate this, Diff-NPO introduces a

merged parameter formulation, 9‘, which interpolates between T, §~, and the reference backbone
Ot as shown in Eq. [13] This interpolation enhances generation quality and increases agreement
between the two models’ predictions (Wang et al.,2025)), but it also biases the merged model toward
67, reducing the influence of ~. As illustrated in Figure [1] this trade-off between fidelity and
alignment exposes a deeper limitation of the dual-model paradigm: its reliance on separate networks
and post-hoc merging undermines the very preference contrast that NPO is designed to enforce. To
overcome these issues, we explore single-model formulations that unify both positive and negative
preference signals within a shared architecture—offering a more robust and scalable solution, which
we introduce in the next section.

4.2 ISSUES WITH NAIVE DIFE-SNPO

Standard diffusion models inherently support both con- 7.5 | PO wloweigh merge I w0 wlo weigt merge
ditional and unconditional branches within a single net- o3

work—a design popularized by Classifier-Free Guid-

ance (Ho & Salimans, [2021). This built-in dual-branch
structure presents a natural alternative to the dual-model
Diff-NPO setup: rather than maintaining two separate
networks, one can leverage the existing architecture by
updating the conditional branch with preferred samples
and the unconditional (or negatively conditioned) branch
with dispreferred ones. This approach preserves the con-
trast between preference signals while avoiding the re-
dundancy and overhead of training and managing sepa-
rate models.

Implicit Classification Accuracy (%)

Figure 1: Negative implicit accuracy
(left) and HPSv2 (right) on SDI1.5.
Weight merging lowers implicit accu-
Specifically, let Y € {+1,—1} be a branch label with racy while increasing reward, revealing
Pr(Y = +1) =1 — pand Pr(Y = —1) = p, where a trade-off.
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Naive Diff-SNPO Diff-SNPO

Iteration Iteration
> -

Figure 3: Generated samples across training iterations. Naive-SNPO produces progressively
blurred outputs during training, while Diff-SNPO remains stable and yields increasingly preference-
aligned images without blurring artifacts.

p € [0,1] is the CFG dropout probability. The effective
conditioning is
{Y) = {c, Y = +1 (conditional branch)
&, Y =—1 (unconditional/null branch),

where c denotes the conditioning input (e.g., a text prompt) and & indicates null conditioning, as in
CFG. A Naive Diff-SNPO objective can thus be constructed by adapting the Diff-DPO objective in

Eq.[9

Lxavevitrsnro () = = Eguy ), o,y g oY Tw(t) B (AF (V) = Al )))], (14

0

While Naive Diff-SNPO provides a simple and intuitive way to incorporate flipped preferences
within a single network, it exhibits substantial degradation in generation quality over training. As
shown in Fig. [3] this naive objective produces increasingly blurry outputs, with reduced contrast
and diminished high-frequency detail. We attribute this behavior to a known property of the DPO
objective: improvements in pairwise margin often come from decreasing the likelihood of both
candidates—penalizing the loser more strongly—rather than consistently increasing the likelihood
of the winner (Pal et al, 2024} [Rafailov et al.,[2024b} [Cho et al.l [2025). This trend is reflected in our
results as well, as illustrated in Fig.

To quantify this effect on preferred samples, we w0z |

track the win-sample likelihood ratio against a fixed ., |

reference model, given by: _—
w

7T0 (‘T ) ~ Eww t |:6A;U (C)i| . gmoo%-

Trer(2) o .

Win Probabi

99.9% 1

Under Naive Diff-SNPO, we observe a consistent
decrease in the relative win probability of preferred ol
samples over the course of training (Fig. 3), indicat- T e TP

ing that the model suppresses likelihoods across both

branches rather than reinforcing the preferred ones. Figure 2:  Win probability ratio over
This undesirable trend, combined with the structure training.  Naive-SNPO’s win probability
of the optimization signals, leads to a characteristic ~decreases during training, whereas Diff-
blurring effect. Specifically, Naive Diff-SNPO ap- SNPO’s improves steadily.

plies symmetric but opposing updates to the conditional and unconditional branches—encouraging
one to increase the likelihood of a sample while the other decreases it. Since both branches share
model parameters, these conflicting gradients interfere with each other, and the model resolves this
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conflict by averaging them. In generative settings, this averaging dampens contrast and degrades
fine detail, resulting in blurry outputs. To overcome this limitation, we seek to break the destructive
symmetry in the update rule. In the next section, we introduce an asymmetric preference optimiza-
tion approach that biases learning toward increasing win probability, thereby mitigating gradient
interference and addressing the blurring effect.

4.3 DIFF-SNPO

Recently, (Cho et al| (2025) introduced Bounded DPO (BDPO) to address a key shortcoming of
standard DPO. As the model reduces the probability assigned to the losing sample, the corresponding
lose sample log-likelihood term, log 7y (y; | x), in the objective grows disproportionately large,
causing the loss to become dominated by the loser. This skews the gradient signal and can even

drive updates that decrease the likelihood of the preferred (winning) output, despite the preference
label.

To mitigate this issue, BDPO replaces the losing term with a mixture distribution that includes a
non-vanishing contribution from the reference policy:

7Tmix(y ‘X):)‘ﬂe(y|X)+(1_)‘)7Tr8f(Y|X)’ A€ (0,1),
which leads to the modified objective

mwo(xy |c Tmix (T4 | €
Leppo(Tg; Tref) = — ]E(Iau’mz &)~D [log U(/J’[log sz((z%u“c)) — log @y )])} . (15)

0 7Tref("cg) ‘C)

This modification bounds the contribution of the loser term and prevents it from overwhelming
the loss, thereby preserving the intended effect of preference optimization: promoting the winning
sample. In addition, BDPO retains the same global minimizers as DPO while enforcing a lower
bound on the winning likelihood, offering stronger stability guarantees throughout training (Cho
et al.,[2025).

To adapt BDPO to diffusion models, similar to Diff-DPO, we define the trajectory-level reward

To (Cu XO) = EXLTNPQ("XQ,C) [R(C, XO:T)} . (16)

The corresponding Diffusion BDPO objective is
, _ po(xg.ple) Tnix (4,71 )
Lpieoro(0) = =B i oyop {log 0(5 {108; Pt (X Tc) log pref(xfiTTlc) } )} ENY))
Following Diff-DPO, we upper-bound this objective via its ELBO and then apply Jensen’s inequality
to obtain the result below (see Appendix [A.2]for the full derivation):

Loirsopoun(8) = — Eiug o oy, inauprir) [log o = B(m(ay',c) = mua(ah o)) (18)
Here the per-step terms are:

do(s,€,t,¢) = Tw(t) le — eo(xe,t,0)|3,  dret(e, 68, ¢) = Tw(t) |le — (i, t, )3, (19)

m(xt,c) = d9($t767t70) - dref(xt7€,t,C), (20)

mmix<33t70) - 10g<)\ e—de(xt,e,t,c) + (1 _ )\) e—dref(acp,e,t,c)) _ dref(l‘t,e,t,c)- (21)

where Lpigr.ppo.up denotes the upper bound approximation of Diff-BDPO.

Building on this, we define our final Diff-SNPO objective, which applies our introduced Diff-BDPO-
UB objective into a single model negative preference optimization framework:

Lsnpo(0) = — E(xw xt c)mD, trp(t), ¥ [log U( B (m(E(Y),é(Y)) — mmx(E(Y), E(Y)))ﬂ .
(22)
where £%/!(Y') is given as:
By = z®/', if Y = +1 (conditional branch)
R W if Y = —1 (unconditional/null branch).

As shown in Fig. [3] Diff-SNPO avoids the decline in winner likelihood observed with Naive Diff-
SNPO: the estimated log-likelihood of winning samples steadily improves throughout training. In
line with this, Fig. [3|further shows that Diff-SNPO prevents the progressive low-contrast “blurring”
artifact characteristic of the naive training objective, effectively addressing its key shortcoming.

(23)
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Table 2: Comparison of Diff-SNPO with baseline methods on SD1.5 and SDXL backbones
using Pick-a-Pic v2. All values are reported as mean + 95% confidence interval over 4 random
seeds. Diff-SNPO consistently achieves the highest scores across most human preference metrics,
reflecting improved alignment and visual quality. For clarity, the best-performing method in each

metric is shown in bold, and the second-best is underlined.

Model \ Method HPSv2 Pick Score  Aesthetic Score Image Reward
Baseline 26.24£0.14 20.64£0.09 5.2849+0.12 0.1221 +£0.08
Dift-DPO (Wallace et al.| [2024) | 26.55+0.04 21.01£0.04  5.3823+0.01 0.2968 £0.07

SD1.5 | Diff-NPO (Wang et al.;[2025) 26.92£0.05 21.46+£0.04 5.5381+0.04 0.3786 +0.09
CHATS (Fu et al.[[2025) 27.20+£0.16 21.05£0.06  5.6845+0.07 0.2995 £0.07
Diff-BDPO (Ours) 26.64£0.16 21.15£0.10  5.4457+0.10 0.3165£0.11
Diff-SNPO (Ours) 27.23+0.07 22.24+0.03  5.6258 £0.04 0.6936 + 0.07
Baseline 27.43£0.07 22.13+£0.06  5.885040.01 0.7605 £+ 0.05
Dift-DPO (Wallace et al.|[2024) | 28.09+0.03 22.59+£0.02  5.8884+0.01 0.9841 +0.07

SDXL Diff-NPO (Wang et al.|[2025) 28.30£0.08 22.67£0.05  5.9449 +0.02 0.9847 +0.01
CHATS (Fu et al.|[2025) 2825+£0.10 2234+£0.08  5.8785+0.03 1.0543 +0.03
Diff-BDPO (Ours) 28.13£0.04 2236+£0.10 5.8037+0.07 0.9946 £+ 0.05
Dift-SNPO (Ours) 28.33+0.08 22.69+0.06 5.8129+£0.06 1.0100 £ 0.06

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Models. We fine-tune both Stable Diffusion v1.5 (SD1.5) (Rombach et al.| 2022
and Stable Diffusion XL (SDXL) (Podell et al.| [2024) using our proposed Diffusion SNPO objective
in Eq. For training, we utilize the Pick-a-Pic v2 (Kirstain et al., |2023)) corpus, a large-scale
human preference dataset comprising 851,293 image pairs across 58,960 unique prompts.

Training Details. Models are initialized from the publicly available SD1.5 (Rombach et al.| [2022)
(CreativeML Open RAIL-M license) and SDXL (Podell et al., [2024) (MIT license) checkpoints.
Training is conducted using the AdamW (Loshchilov & Hutter,|2019) optimizer with a learning rate
of 2.048 x 10~8. We use a batch size of 512 and train for 3,000 steps on SD1.5, and a larger batch
size of 2,048 for 625 steps on SDXL. All experiments are run on 8 X NVIDIA A6000 GPUs using
distributed data parallelism. Total training time is approximately 12 hours for SD1.5 and 68 hours
for SDXL. The regularization coefficient is set to 5 = 2000 for SD1.5 and S = 5000 for SDXL.
Unless stated otherwise, Diff-SNPO is trained with an interpolation parameter of A = 0.9.

Baselines. We compare Diff-SNPO against both negative preference optimization methods and
standard alignment baselines. Specifically, we evaluate Diff-NPO (Wang et al.| 2025)), CHATS (Fu
et al., [2025)), and Diff-DPO (Wallace et al., [2024)), along with the original pretrained models for
SD1.5 (Rombach et al.l [2022) and SDXL (Podell et al., [2024).

Evaluation Protocol. All models are evaluated using the DDIM (Song et al., [2021)) sampler with
50 inference steps and a classifier-free guidance scale of 7.5. For Diff-NPO and CHATS, we adopt
the hyperparameters specified in their released code, as these methods modify the sampling pipeline.
Performance is assessed using five widely adopted reward models: PickScore (Kirstain et al.,|[2023),
HPSv2 (Wu et al.l 2023), ImageReward (Xu et al.| [2023)), and Aesthetics Score (Schuhmannl [2023).
To account for stochasticity, we report average results across four random seeds, with each model
generating 2,000 images using prompts from the Pick-a-Pic v2 test set.

5.2 QUANTITATIVE RESULTS

Table 2] presents quantitative comparisons of Diff-SNPO against established baselines on SD1.5 and
SDXL backbones.

On SDL1.5, Diff-SNPO consistently outperforms prior methods across most human preference met-
rics. Notably, it achieves 27.23 on HPSv2 and 22.24 on PickScore, marking a substantial improve-
ment over both Diff-DPO and the more stable Diff-BDPO. This indicates that the gains stem not just
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Figure 4: Ablation over A on SD 1.5 for both HPSv2 and Aesthetic score.

from BDPO’s stabilization, but from negative preference optimization itself. While CHATS attains a
slightly higher Aesthetic Score, it lags behind on all other metrics, suggesting that its more visually
pleasing outputs come at the cost of semantic alignment. Diff-SNPO also surpasses its dual-model
counterpart, Diff-NPO, across all metrics while using only half the computation. We attribute this to
its single-model design, which preserves negative preference alignment better than Diff-NPO, where
accuracy drops notably after model merging.

On SDXL, Diff-SNPO delivers strong and competitive results, with HPSv2 and ImageReward scores
of 28.33 and 1.01, comparable to state-of-the-art methods. Its Aesthetic Score (5.81) is slightly
below DPO (5.89), and the large advantage it shows over Diff-NPO on SD1.5 becomes smaller on
SDXL. This stems from Diff-SNPO’s bias toward optimizing “preferred” samples in the dataset.
Although these samples are favored over their losing counterparts, they have been shown to be less
aesthetically pleasing than the already strong outputs of the base SDXL model. As a result, focusing
on them may slightly reduce aesthetic quality and limit gains on stronger backbones. Similar trends
appear with CHATS and Diff-BDPO, suggesting the limitation comes from the dataset rather than
the alignment method itself. Even so, Diff-SNPO retains important practical benefits: it requires
only half the computation of Diff-NPO and, with its single-model architecture, also enables faster
sampling—making it both efficient and scalable.

5.3 IMPACT OF THE MIXING PARAMETERS A AND 3 ON DIFF-SNPO

In this section, we examine the impact of the B HPSv2 Aesthetic Score
parameters A and  on Diff-SNPO using SD 1000 2730 5.6682
1.5, while keeping all other hyperparameters 2000 27.23 56258
identical to those in the main experiments. 3000 27.23 55886

From Fig. E|, we observe that Diff-SNPO re- . .
mains stable as A varies, showing only minor Table 3: Effect of 3 on the Pick-a-Pic v2 dataset.
fluctuations across both reward metrics. This indicates that, within the tested range, the choice of
A has limited impact on performance. In contrast, the setting A = 1.0, corresponding to Naive-
SNPO, shows a pronounced drop in both reward metrics. As discussed in Section[4.2] this decline
stems from the blurring artifacts that emerge when the win likelihood decreases under single-model
Negative Preference Optimization, ultimately degrading image quality.

When varying 3, Table [3]shows that performance is similarly stable across different choices. There-
fore, we retain the [ values from the original Diff-DPO configuration, as they provide a reliable
default without introducing meaningful variability in performance.

5.4 COMPARING NEGATIVE PREFERENCE ALIGNMENT ACROSS METHODS

From Table 5] we observe that Diff-DPO and Diff-BDPO reach similar negative implicit accuracy
in their unconditional branches, both consistently below 50%. This behavior is expected because
their unconditional branches are trained only with positive preference alignment, which limits their
ability to learn negative preference signals. In contrast, Diff-NPO experiences a substantial drop
in negative implicit accuracy after weight merging, decreasing by more than 10%. Its post-merge
accuracy also falls below that of Diff-SNPO and lies several points behind its own pre-merged value.
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Table 4: Training cost comparison. Experiments were conducted on 8 x A6000 GPUs with a total
batch size of 512. Dual-model approaches require substantially more memory and incur slower
training throughput. The best result in each column is shown in bold.

Method \ Memory (GB) | Time/Step (s) ] Relative Speed 1
Diff-NPO 442 x 2 12.25 x 2 1.00x
CHATS 46.3 13.19 1.86x
Diff-SNPO (Ours) 44.2 12.25 2.00x

Table 5: Negative preference implicit classification accuracy and loss. Parentheses denote Diff-
NPO without weight merging. Diff-SNPO achieves higher negative implicit accuracy and lower
negative preference loss than Diff-NPO, improving its negative alignment.

Method | Neg. Implicit Acc. (%) | Neg. Pref. Loss

Dift-DPO 31.86 0.759
Diff-BDPO 32.04 0.805
Diff-NPO 52.34 (63.80) 0.703 (0.648)
Diff-SNPO 57.45 0.668

Although implicit accuracy is not a definitive measure of overall performance, and can be influenced
by reward-model artifacts (Rafailov et al.| [2024a; |Amini et al., [2024)), it is still useful for revealing
the sampling and training mismatch present in Diff-NPO. This mismatch is further reflected in the
negative preference alignment loss, which rises sharply after weight merging. Diff-SNPO does not
suffer from this problem: its single-model design preserves the negative alignment signal and avoids
the degradation observed in Diff-NPO. As a result, Diff-SNPO maintains more reliable negative
preference modeling and more effectively steers generation away from undesirable samples.

5.5 TRAINING COMPUTATIONAL COST

Beyond alignment performance, the practicality of a preference optimization algorithm also depends
on its computational efficiency. To assess this, we compare the training computational cost of dual-
model approaches (CHATS and Diff-NPO) against our single-model Diff-SNPO. As reported in
Table [} the single-model design of Diff-SNPO yields substantial efficiency gains in both memory
usage and training time. By eliminating the need to train two separate networks, Diff-SNPO reduces
memory consumption and achieves a 2x speedup in per-step training time relative to its dual-model
counterpart, Diff-NPO. A similar advantage is observed over CHATS: while both methods require
comparable memory, Diff-SNPO trains faster because it optimizes the conditional and unconditional
branches in parallel, whereas CHATS processes them sequentially. In summary, Diff-SNPO com-
bines lower memory overhead with faster training, establishing it as a more efficient and scalable
alternative for negative preference optimization. A detailed comparison of inference cost, which
further highlights the efficiency of our single-model approach, can be found in Appendix[A.7]

6 CONCLUSION

In conclusion, we propose Diff-SNPO, a single-model framework for Negative Preference Opti-
mization that achieves strong performance while simplifying the training pipeline. In contrast to
prior approaches that require two separate models, Diff-SNPO unifies conditional and unconditional
branches within a single architecture, thereby eliminating redundant computation and substantially
improving efficiency in both training and inference. Our experiments demonstrate that this stream-
lined design not only matches, but often exceeds the performance of existing methods, highlighting
its effectiveness in preserving negative preference alignment. Beyond raw performance, the reduced
computational footprint and faster sampling make Diff-SNPO a practical and scalable solution, low-
ering the barriers to applying preference optimization in real-world generative modeling tasks.
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A APPENDIX

A.1 THE USE OF LLMs

We used LLMs solely for light editing such as correcting grammatical errors and polishing some
words. They did not contribute to research ideation, experiments, analysis, or substantive writing.

A.2 DERIVATION OF THE DIFFUSION-BDPO UPPER BOUND

We begin by recalling the Diffusion-BDPO objective:

p@(xg:T | C) — 1o pmix(xg]:T ‘ C):|):| (24)
pref(XKT | C) pref(xé:T | C) 7

Lpir-eppo(0) = = Eqxw  xt o) [log 0(5 {log
where the mixture distribution is defined as

Puin(X7 | €) = Apo(xbp | €) + (1= N prei(Xr | €), A€ (0,1). (25)

To obtain a computationally tractable form, we first decompose log pg(xo.7 | ¢) using the backward
process of diffusion models:

T
log po(xo.1 | ¢) = logpo(xr | ¢) +log [ [ po(xi—1 | x1,¢) (26)
t=1
T
= logpg(xr | ¢) + > logpo(xi—1 | Xy, ¢) 27
t=1
=C =) w(t)leo(zs,c.t) —€ll3, (28)
t=1

where C is a parameter-independent constant.

Next, consider the mixed log-probability:
IOngiX(Xf);T | C) = log (APH(XB;T | C) +(1-2X) pref(Xf);T | C))

=C+ log()\ eXi=1 108 o (X [xe,0) (1—X) i lngTEf(xlt—l‘xtvc)>_ (29)

For brevity, define

at = Inge(XfS—l | X, C)v by := Ingrcf(Xf&—l | Xt C)v t=1,...,T. (30)
Then equation 29 becomes
log puri(Xbr | €) = C +log (AeX=rmr 4 (1= 2) =i ). (31)
Applying the discrete n-factor Holder inequality yields
T 1/p:
)\62?:1 ar 4 (1 _ )\)ethzl by < H ()\e;mat + (1 _ )\)eptbt) , (32)
t=1

for exponents p1, ..., ppr > 1 with Zthl 1/ps = 1.
Taking logs and substituting back gives

T
1
logpmix(xé:T | c) <C+ Z — log ()\ep““ +(1- )\)ep‘bt). (33)
= Pt
Choosing p; = T for all ¢ (so that ), 1/p; = 1) produces the uniform bound

T
1
10g Prix(Xp.r | €) < C + T Zlog(A eTloapo(x,yfxec) 4 (1-2X) eTlogp*ef(xLllx"C)). (34)
t=1
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Table 6: Comparison of Diff-SNPO with baseline methods on SD1.5 and SDXL backbones
on HPDv2. All values are reported as mean + 95% confidence interval over 4 random seeds. Diff-
SNPO achieves the best scores across most human preference metrics, indicating superior alignment
and visual quality. For each metric, the top-performing method is bolded, while the second-best is

underlined.

Model | Method |  HPSv2 Pick Score  Aesthetic Score Image Reward
Baseline 26.524+0.10  20.8040.06 5.3406 £0.17 -0.05214+0.19
Diff-DPO (Wallace et al.}2024) | 26.85+£0.03 21.264+0.02 54716 £0.14 0.1620 £ 0.08

SD1.5 Diff-NPO (Wang et al.| 2025) 27.184+0.06  21.71 +£0.05 5.5842 +£0.07 0.2287 +£0.14

’ CHATS (Fu et al.,[2025) 27.68+0.07 21.45+£0.04 5.8605 £ 0.07 0.3699 £ 0.08
Diff-BDPO (Ours) 27.244+0.03 21.5740.03 5.5677 £0.06 0.3576 £0.02
Diff-SNPO (Ours) 27.85+0.06 22.86+0.03 5.7737£0.06 0.8093 + 0.08
Baseline 28.01+0.15 22.80£0.09 5.9887 £0.08 0.8781£0.11
Diff-DPO (Wallace et al.,[2024) | 28.554+0.09 23.124+0.01 6.0296 £ 0.05 1.0788 +0.09

SDXL Diff-NPO (Wang et al.| [2025) 28.874+0.03 23.29+£0.05 6.0816 £ 0.01 1.1305 £ 0.04
CHATS (Fu et al.; [2025) 28.824+0.07 22.85+0.01 5.9868 £0.03 1.1165+0.02
Diff-BDPO (Ours) 28.624+0.04 22.96+£0.10 5.9562 £ 0.09 1.0911 £0.10
Diff-SNPO (Ours) 28.89+0.09 23.34+0.03 5.9876 £0.03 1.1460 £ 0.04

Upper bound on the objective. Substituting equation [34] and equation 28] into equation 24} we
obtain

Lpitr-sppo(0) < = B x! . .c)~D [log U(Et~u[1,T] [— Bm(a, ¢) — mmix(, ¢)] )} (35)
<~ By af o, emtairr) 08 0{ = B (mla',c) = muis (2}, 0)) )|
= Lpitr.epro-us (), (by Jensen’s inequality). (36)

Here the per-step terms are defined as

do(s,6,t,¢) = Tw(t) |le — eo(ze,t,0)|3,  duei(e, 6,8, ¢) = Tw(t) |le — (e, ¢)3, (37)
(38)

(39)

m(xta C) = dG(Ih €, ta C) - dref(xtv €, t7 C)a

mmix(-%'t»c) - log()\ e—de(acf,,e,t,c) 4 (1 _ )\) e—dref($t7€7tac)) _ dref(%&, e t, C).

In summary, by decomposing the diffusion likelihood and applying Holder’s inequality, we obtain
a tractable upper bound on the original Diffusion-BDPO objective, expressed in terms of per-step
denoising errors equation [37}-equation 39

A.3 ADDITIONAL QUANTITATIVE RESULTS

Table [6] presents the results on the HPDv?2 test set, showing trends consistent with those observed
on the Pick-a-Pic benchmark. On the SD1.5 backbone, Diff-SNPO delivers a clear improvement,
raising HPSv2 to 22.86 and ImageReward to 0.81, underscoring its effectiveness in capturing hu-
man preferences. On the more advanced SDXL backbone, it continues to perform strongly, re-
maining competitive with the leading approach, Diff-NPO. Crucially, Diff-SNPO achieves this per-
formance with significantly lower computational cost and faster sampling, benefits enabled by its
single-network design. This efficiency advantage highlights its practicality, offering state-of-the-art
alignment quality while maintaining scalability and runtime efficiency.

A.4 ABLATION STUDY ON DIFFERENT ODE SOLVERS

In this section, we conduct an ablation study to assess the performance of Diff-SNPO across different
ODE solvers. To this end, we evaluate four widely used solvers: DDIM (Song et al.l [2021]), Euler
Discrete (Karras et al.| [2022), UniPC (Zhao et al., [2023)), and DPM Solver (Lu et al.| 2022). The
results, presented in Table[7] show the performance of Diff-SNPO on the Pick-a-Pic v2 dataset with
SD1.5. From these results, we observe that the choice of solver has little impact on the performance
metrics. This outcome aligns with the theory behind Diffusion ODE solvers, where different solvers
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Table 7: Performance comparison of different samplers across various reward metrics.

Sampler | Hpsv2 T | Aesthetic Score 1
DDIM 27.23 5.6258
Euler Discrete 27.22 5.6460
UniPC 27.25 5.6468
Dpm Solver 27.25 5.6466

are alternative numerical methods for solving the same ODE system (Lu et all, 2022} [Karras et al
2022). Consequently, with a sufficiently large number of function evaluations (NFE), all solvers
converge to the same image, leading to negligible differences in performance.

A.5 SAFETY ALIGNMENT RESULTS

Table 8: Comparison of IP values before and after finetuning on a CoProv2 dataset.

SafetyDPO | IP |

Baseline 0.4308
Diff-DPO 0.5109
Diff-NPO 0.4203
Diff-SNPO 0.4719

After Finetuning on CoProv2

Diff-DPO 0.1713
Diff-NPO 0.1318
Diff-SNPO 0.1100

Table [§] presents the results of training and evaluating models on the CoProv2 for
SD 1.5. This dataset contains 23,690 pairs of safe and unsafe images, spanning across 7 categories
((Hate, Harassment, Violence, Self-Harm, Sexual, Shocking, Illegal). Evaluation was performed
using the Inappropriate Probability (IP) metric (Schramowski et al., [2023)), which quantifies the
model’s ability to generate safe content when prompted with unsafe prompts.

From Table [8] we observe that models trained on the Pick-a-Pic v2 dataset exhibit weaker safety
performance. Specifically, their IP scores increase relative to the baseline after finetuning, indicating
a decline in safety. This is primarily due to the nature of the Pick-a-Pic v2 dataset itself, which
contains some unsafe images within its “win” samples. As a result, models trained on this dataset
are inadvertently exposed to unsafe content, causing them to generate unsafe outputs.

In contrast, when explicitly trained with a safety-oriented dataset, the safety performance improves
significantly. In particular, Diff-SNPO outperforms Diff-DPO, achieving a safety score of 0.11,
which is slightly better than Diff-NPO’s score of 0.13. This demonstrates that using a safety-focused
dataset, in combination with Diff-SNPO, can lead to improved alignment with safety objectives.

A.6 ToTtAL TRAINING COMPUTE COMPARISONS

Table 0] shows the total GPU hours required by different baseline methods and Diff-SNPO for both
SD1.5 and SDXL using A6000 GPUs. The GPU hours for the baselines were calculated based on
the hyperparameters specified in the respective papers. From Table [9] it is clear that Diff-SNPO
outperforms its counterparts in computational efficiency, demonstrating its ability to achieve strong
performance with significantly lower resource requirements.
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Table 9: Total GPU hours for different methods on SD 1.5 and SDXL using A6000 GPUs..

Model | Method | Total GPU Hours

Diff-DPO 206
CHATS 237
SD LS| pigeNPO 2% 206
Diff-SNPO 79
Diff-DPO 1592
CHATS 2162
SDXL | pigr.NPO 2% 1592
Diff-SNPO 498

A.7 INFERENCE COMPUTATIONAL COST

Table 10: Inference cost comparison.

Table (10| reports the inference throughput of Diff- Single-image inference cost with SD1.5 on
SNPO and other negative preference optimization 4 single A6000 GPU.

methods on SD1.5. The efficiency of the single-

model design is particularly evident at inference: Method | Throughput (img/s) 1
Diff-SNPO achieves the highest throughput among CHATS o
all methods, processing more than twice as many im- DiffNPO 027
ages per second as the dual-model baselines. Diff-SNPO (Ours) 0.48

By contrast, CHATS and Diff-NPO suffer from slower inference due to the need for two sequential
forward passes—one for each model—combined with additional passes required by their sampling
schemes. These results underscore Diff-SNPQO’s ability to perform fast, parallel inference without
compromising alignment quality.

Overall, our findings demonstrate that Diff-SNPO effectively balances preference alignment with
computational efficiency. Its single-model design reduces training cost while delivering faster in-
ference, making it well-suited for large-scale training as well as real-time or resource-constrained
deployment scenarios.

A.8 QUALITATIVE RESULTS

Figure 5| and Figure [6] present additional image samples generated by Diff-SNPO and various pref-
erence alignment methods on SD 1.5 and SDXL using prompts from HPDvV2 test set respectively.
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Prompt SD1.5 Diff.-NPO CHATS Diff-SNPO (Ours)

A small dog looking at a
white plate holding donuts.

A jellyfish sleeping in a space
station pod.

A cat n a tutu dancing to
Swan Lake.

Spider-Man holding a givger
cat.

Figure 5: Side-by-side comparison of images generated by related methods on HPDv2 using SD1.5.

Prompt SDXL Diff.-NPO CHATS Diff.-SNPO (Ours)

A lemon wearing a suit |
and tie, full body portrait.

Side-view blue-ice sneaker
inspired by Spiderman
created by Weta FX.

2B from NiéR Automata
eating a bagel,

A spaceship in an empty
landscape.

Figure 6: Side-by-side comparison of images genk¥ated by related methods on HPDv2 using SDXL.
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