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ABSTRACT

Classifier-Free Guidance (CFG) improves diffusion sampling by encouraging con-
ditional generations while discouraging unconditional ones. Existing preference
alignment methods, however, focus only on positive preference pairs, limiting
their ability to actively suppress undesirable outputs. Diffusion Negative Prefer-
ence Optimization (Diff-NPO) approaches this limitation by introducing a sep-
arate negative model trained with inverted labels, allowing it to capture signals
for suppressing undesirable generations. However, this design comes with two
key drawbacks. First, maintaining two distinct models throughout training and
inference substantially increases computational cost, making the approach less
practical. Second, at inference time, Diff-NPO relies on weight merging between
the positive and negative models, a process that dilutes the learned negative align-
ment and undermines its effectiveness. To overcome these issues, we introduce
Diff-SNPO, a single-network framework that jointly learns from both positive
and negative preferences. Our method employs a bounded preference objective to
prevent winner-likelihood collapse, ensuring stable optimization. Diff-SNPO de-
livers strong alignment performance with significantly lower computational over-
head, showing that explicit negative preference modeling can be simple, stable,
and efficient within a unified diffusion framework. Code will be released.

1 INTRODUCTION

Diffusion models (Ho et al., 2020) have become the backbone of modern visual content generation,
achieving remarkable fidelity in synthesizing images, videos, and multimodal content (Rombach
et al., 2022; Ho et al., 2022; Ruan et al., 2023). However, models trained on vast, uncurated web-
scale datasets often inherit biases and fail to align with human notions of quality, aesthetics, or
safety. Consequently, fine-tuning models with human feedback through preference alignment has
become a critical step for bridging the gap between a model’s raw capabilities and user intent (Black
et al., 2024; Wallace et al., 2024; Li et al., 2024).

At the heart of high-quality diffusion sampling lies Classifier-Free Guidance (CFG) (Ho & Sali-
mans, 2021), a technique that enhances sample quality by amplifying the contrast between condi-
tional and unconditional (or negatively conditioned) likelihoods. This mechanism guides generation
toward prompt-aligned outputs by explicitly pushing samples away from the lower-quality uncon-
ditional distribution. However, a challenge arises with many preference optimization methods, such
as Diffusion Direct Preference Optimization (Diff-DPO). These methods often apply the same opti-
mization objective to both the conditional and unconditional branches. This uniform reinforcement
of preferred attributes, while shifting the overall distribution in the desired direction, fails to heighten
the critical contrast that CFG relies on. Consequently, the model’s ability to generate outputs aligned
with user intent remains limited.

Diffusion Negative Preference Optimization (Diff-NPO) (Wang et al., 2025) was introduced to ad-
dress this limitation. It enhances the CFG contrast by training two separate models: a standard
“positive” model on preference data and a “negative” model on inverted preferences. When sam-
pling, the negative model replaces the unconditional branch, explicitly steering generation away
from undesirable attributes. While effective in principle, this dual-model approach suffers from two
critical flaws. First, it doubles the training and inference costs, a prohibitive burden for large-scale
models. Second, to enable effective sampling, the separately trained weights must be merged, which
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Loss: DPO based Objective

(Prompt, 𝒙+≻ 𝒙−) (∅, 𝒙− ≻ 𝒙+)

Loss: Bounded DPO based Objective

Preference Dataset 

Prompt (𝒄): film still portrait of 
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on pixiv fanbox

Diffusion Models 

(𝜽
+
)

Diffusion Models 

(𝜽−)
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≻

Preferred Image 𝒙+ Non-Preferred Image 𝒙−

Figure 1: Illustration of Diff-SNPO. Winning and losing samples are denoted by x+ and x−,
respectively. Unlike Diff-NPO, which trains two separate models for positive and negative prefer-
ences, Diff-SNPO integrates both into a single model. To ensure stable optimization in this unified
setting, we introduce a Bounded DPO-based diffusion objective.

improves generation quality but weakens alignment. This merging introduces a distribution shift that
attenuates the negative signal, reducing the model’s ability to steer away from dispreferred outputs.

In this work, we ask: Can we achieve the benefits of explicit negative modeling without the costs
and compromises of a dual-model architecture? We introduce Diffusion Simple Negative Prefer-
ence Optimization (Diffusion-SNPO), a framework that integrates positive and negative preference
signals into a single, unified network. Our approach leverages the inherent dual-branch structure of
CFG-enabled models, training the conditional branch on positive preferences and the unconditional
branch on negative (inverted) preferences. This design eliminates the need for separate models and
weight merging, preserving a strong, explicit contrast between preferred and dispreferred distribu-
tions within one efficient architecture.

However, we find that naively applying this strategy results in an unintended side effect: the gener-
ated images become progressively blurrier as training continues. We attribute this to the likelihood
decrease observed in the DPO algorithm (Rafailov et al., 2024; Pal et al., 2024; Cho et al., 2025),
which, when coupled with conflicting gradients from flipped preferences between the conditional
and unconditional branches, causes instability. As a result, the model converges to a suboptimal so-
lution, with blurring becoming more pronounced as the likelihood of winning samples decreases. To
address this, we adapt Bounded DPO (Cho et al., 2025), a preference optimization method designed
to increase the likelihood of winning samples during training, to Diffusion Models. This adaptation
stabilizes training by preventing the loss from being dominated by low-likelihood “losing” samples,
thereby boosting the likelihood of winning samples throughout preference optimization.

In detail, our contributions can be summarized as follows:

• We identify the challenges of dual-model negative preference optimization (NPO), namely its high
computational cost and the performance trade-offs inherent in its two separate model design.

• We demonstrate that simply applying opposing preferences on different branches within a single
model leads to poor interactions with DPO-based algorithms, resulting in blurry images as training
progresses.

• We introduce Diff-SNPO, a single-model negative preference optimization method for Diffusion
Models. By adapting the BDPO algorithm and deriving an upper bound, our approach effectively
eliminates the blurring effect caused by DPO in a negative preference optimization setting.
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• We conduct extensive evaluations on the Pick-a-Pic v2 benchmark with both SD1.5 and SDXL,
showing that Diff-SNPO delivers strong performance across multiple alignment metrics, while
being more efficient in both training and inference.

2 RELATED WORK

2.1 PREFERENCE OPTIMIZATION

Preference optimization aims to align generative models with human judgments. One common strat-
egy is to train a reward model that scores prompt–image pairs based on semantic or aesthetic quality,
and then fine-tune the diffusion model to maximize these scores (Xu et al., 2023; Clark et al., 2024).
Another direction draws on policy optimization, which frames denoising as a sequential decision
process: DDPO (Black et al., 2024) applies reinforcement learning across the sampling steps, while
DPOK (Fan et al., 2023) introduces a KL-regularized reward objective. More recently, methods that
bypass explicit reward modeling by learning directly from curated positives or pairwise preferences
have attracted growing interest (Wallace et al., 2024; Lu et al., 2025; Hong et al., 2025). While
these approaches simplify training, they typically handle negative feedback only implicitly, by train-
ing models to favor preferred outputs in relative comparisons. This indirect treatment leaves little
control over explicitly suppressing undesirable generations. In contrast, explicitly modeling dispre-
ferred outcomes offers a more direct form of control: it steers generation away from undesirable
regions of the distribution, reducing artifacts and improving alignment.

2.2 NEGATIVE PREFERENCE OPTIMIZATION

In response to the limitations of standard preference optimization algorithms, recent work has ex-
plored dual-model strategies that explicitly separate positive and negative preferences. Diff-NPO
(Wang et al., 2025) trains a negative model on inverted preferences and substitutes it for the un-
conditional branch during inference, which improves alignment but introduces a mismatch between
training and inference due to weight interpolation. CHATS (Fu et al., 2025) addresses this issue
by jointly training positive and negative models within a contrastive objective, achieving stronger
alignment but at the cost of increased computation and memory from maintaining two networks.
These challenges highlight the need for approaches that unify positive and negative preference mod-
eling within a single framework. Our method, DIFF-SNPO, takes this direction by integrating both
signals into a shared training objective, reducing overhead while better balancing alignment across
positive and negative preferences.

3 PRELIMINARIES

3.1 DIFFUSION MODELS

Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) consist of a forward noising
process and a learned reverse denoising process. The forward process gradually perturbs clean data
x0 with Gaussian noise according to a variance schedule {βt}Tt=1:

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1), q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
. (1)

To invert this process, a neural network ϵθ parameterizes the reverse transitions by predicting the
injected noise:

pθ(xt−1 | xt) = N
(
xt−1;

1√
αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
, σ2

t I
)
, (2)

where αt = 1− βt, ᾱt =
∏t

s=1 αs, and σ2
t denotes the variance.

Model training minimizes a variational bound, which simplifies to a weighted noise-prediction loss:

LDDPM = Ex0,ϵ,t

[
ω(t) ∥ϵ− ϵθ(xt, t)∥2

]
, (3)

with ϵ ∼ N (0, I) and t ∼ U{1, . . . , T}. The weighting function ω(t) controls the relative con-
tribution of different timesteps, reflecting the varying difficulty of denoising across the diffusion
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trajectory. This objective provides a simple and stable training criterion that underpins most modern
diffusion-based generative models.

3.2 DIFFUSION DIRECT PREFERENCE OPTIMIZATION

Preference alignment is often formalized using the Bradley–Terry (BT) model (Kendall & Smith,
1940). Building on this idea, Direct Preference Optimization (DPO) (Rafailov et al., 2023) sidesteps
the need to fit an explicit reward model by defining an implicit reward through likelihood ratios
between the policy πθ and a reference policy πref:

LDPO(θ) = −E(xw
0 ,xl

0,c)∼D

[
log σ

(
β
(
log

πθ(x
w
0 | c)

πref(xw
0 | c)

− log
πθ(x

l
0 | c)

πref(xl
0 | c)

))]
. (4)

Here, β > 0 is a temperature parameter that controls the strength of the preference signal, and
σ(·) denotes the sigmoid function. Extending this objective to diffusion models requires assigning
preferences over entire trajectories x0:T . In this context, Diff-DPO (Wallace et al., 2024) derives an
upper bound on the exact Diff-DPO objective:

LDiff-DPO(θ; y) = −E(xw
0 ,xl

0,c)∼D, t∼U [1,T ]

[
log σ

(
yTω(t)β(∆w

t (c)−∆l
t(c))

)]
, (5)

with

∆w
t (c) =

∥∥ϵw − ϵθ(x
w
t , t, c)

∥∥2
2
−
∥∥ϵw − ϵref(x

w
t , t, c)

∥∥2
2
, (6)

∆l
t(c) =

∥∥ϵl − ϵθ(x
l
t, t, c)

∥∥2
2
−
∥∥ϵl − ϵref(x

l
t, t, c)

∥∥2
2
, (7)

Here, xw
t and xl

t are noisy states obtained by applying the forward diffusion process to the clean
samples xw

0 , x
l
0 with corresponding noise terms ϵw, ϵl ∼ N (0, I). The label y ∈ {+1,−1} encodes

the preference direction and ω(t) is a time-dependent weighting function.

3.3 DIFFUSION NEGATIVE PREFERENCE OPTIMIZATION

Diffusion Negative Preference Optimization (Diff-NPO) (Wang et al., 2025) extends standard pref-
erence learning by explicitly modeling undesirable behavior. It does so by training on an inverted
preference dataset, where the roles of winners and losers are swapped. This yields a negatively
aligned model, θ−, which learns to assign higher likelihood to dispreferred samples. During sam-
pling, Diff-NPO replaces the standard unconditional branch in classifier-free guidance with this
negative model, leading to the following guidance formulation:

ϵNPO(xt, c) = ϵθ+(xt, c) + ω [ϵθ+(xt, c)− ϵθ−(xt,∅)] , (8)

where ϵθ+ is the positively aligned model trained on standard preference data, and ω is a guidance
strength hyperparameter.

In practice, however, the positive and negative models that are trained independently often exhibit
poor correlation, which undermines the effectiveness of ϵθ− as a meaningful contrastive signal dur-
ing sampling. To mitigate this, Diff-NPO applies a weight-merging procedure that combines the
reference model θref, the positive model θ+, and the negative model θ−:

θ̂− = θref + α(θ+ − θref) + β(θ− − θref), (9)

where α and β are interpolation coefficients. In practice, the merged parameters θ̂− replace ϵθ−

in the guidance formulation of Eq. 9, yielding improved generation quality. However, this benefit
comes at the cost of higher training overhead and weakened negative alignment.

4 METHOD

4.1 LIMITATIONS OF NEGATIVE PREFERENCE OPTIMIZATION

Dual-model approaches to Negative Preference Optimization (NPO) (Wang et al., 2025) offer direct
way to model positive and negative preferences, training separate models—θ+ and θ−—for each.

4
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However, this design introduces significant practical overhead. Maintaining two networks doubles
memory and compute requirements, increases training time. These costs quickly escalate with large
diffusion backbones, making dual-model setups difficult to scale in practice.

At inference time, using the two models separately preserves the intended contrast between positive
and negative preferences. However, this approach often compromises sample quality, especially
when generating from the negatively aligned model θ−. To mitigate this, Diff-NPO introduces a
merged parameter formulation, θ̂−, which interpolates between θ+, θ−, and the reference backbone
θref as shown in Eq. 9. This interpolation enhances generation quality and increases agreement
between the two models’ predictions (Wang et al., 2025), but it also biases the merged model toward
θ+, reducing the influence of θ−. As illustrated in Figure 2, this trade-off between fidelity and
alignment exposes a deeper limitation of the dual-model paradigm: its reliance on separate networks
and post-hoc merging undermines the very preference contrast that NPO is designed to enforce. To
overcome these issues, we explore single-model formulations that unify both positive and negative
preference signals within a shared architecture—offering a more robust and scalable solution, which
we introduce in the next section.

4.2 ISSUES WITH NAIVE DIFF-SNPO

Figure 2: Negative implicit classifica-
tion accuracy (left) and HPSv2 score
(right) on SD1.5. Weight merging leads
to a substantial drop in implicit accuracy
while increasing the reward score, high-
lighting a trade-off between the two.

Standard diffusion models inherently support both con-
ditional and unconditional branches within a single net-
work—a design popularized by Classifier-Free Guid-
ance (Ho & Salimans, 2021). This built-in dual-branch
structure presents a natural alternative to the dual-model
Diff-NPO setup: rather than maintaining two separate
networks, one can leverage the existing architecture by
updating the conditional branch with preferred samples
and the unconditional (or negatively conditioned) branch
with dispreferred ones. This approach preserves the con-
trast between preference signals while avoiding the re-
dundancy and overhead of training and managing sepa-
rate models.

Specifically, let Y ∈ {+1,−1} be a branch label with
Pr(Y = +1) = 1 − p and Pr(Y = −1) = p, where
p ∈ [0, 1] is the CFG dropout probability. The effective
conditioning is

c̃(Y ) =

{
c, Y = +1 (conditional branch)
∅, Y = −1 (unconditional/null branch),

where c denotes the conditioning input (e.g., a text prompt) and ∅ indicates null conditioning, as in
CFG. A Naive Diff-SNPO objective can thus be constructed by adapting the Diff-DPO objective in
Eq. 5:

LNaive Diff-SNPO(θ) = −E(xw
0 ,xl

0)∼D, t, Y

[
log σ

(
Y T ω(t)β

(
∆w

t (c̃(Y ))−∆l
t(c̃(Y ))

))]
, (10)

While Naive Diff-SNPO offers a simple and intuitive way to model flipped preferences within a
single network, it suffers from significant degradation in generation quality over training. As il-
lustrated in Fig. 3, this naive objective yields progressively blurrier generations over training, with
reduced contrast and attenuated high-frequency detail. We attribute this effect to a well-documented
property of the DPO objective: improvements in the pairwise margin often result in a reduction in
likelihood for both candidates, penalizing the loser more heavily, rather than a reliable increase in
the likelihood of the winner (Pal et al., 2024; Rafailov et al., 2024; Cho et al., 2025).

To quantify this effect on preferred samples, we track the win-sample likelihood ratio against a fixed
reference model, given by:

πθ(x
w)

πref(xw)
≈ Exw

0 ,t

[
e∆

w
t (c)

]
.

Under Naive Diff-SNPO, we observe a consistent decrease in the relative win probability of pre-
ferred samples over the course of training (Fig. 3), indicating that the model suppresses likelihoods

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Avatar of a beatiful brazilian woman with dark brown hair and a little 
sad almond eyes.

Diff-SNPO

Naïve Diff-SNPO

Iteration

Iteration

Figure 3: Win probability ratio (left) and generated samples across training iterations (right).
Naive-SNPO exhibits a steady decline in win probability ratio, resulting in progressively blurred
outputs, whereas Diff-SNPO preserves stability and yields increasingly preference-aligned images.

across both branches rather than reinforcing the preferred ones. This undesirable trend, combined
with the structure of the optimization signals, leads to a characteristic blurring effect. Specifically,
Naive Diff-SNPO applies symmetric but opposing updates to the conditional and unconditional
branches—encouraging one to increase the likelihood of a sample while the other decreases it. Since
both branches share model parameters, these conflicting gradients interfere with each other, and the
model resolves this conflict by averaging them. In generative settings, this averaging dampens con-
trast and degrades fine detail, resulting in blurry outputs. To overcome this limitation, we seek to
break the destructive symmetry in the update rule. In the next section, we introduce an asymmet-
ric preference optimization approach that biases learning toward increasing win probability, thereby
mitigating gradient interference and addressing the blurring effect.

4.3 DIFF-SNPO

Recently, Cho et al. (2025) introduced Bounded DPO (BDPO) to address a key shortcoming of
standard DPO. As the model reduces the probability assigned to the losing sample, the corresponding
lose sample log-likelihood term, log πθ(yl | x), in the objective grows disproportionately large,
causing the loss to become dominated by the loser. This skews the gradient signal and can even
drive updates that decrease the likelihood of the preferred (winning) output, despite the preference
label.

To mitigate this issue, BDPO replaces the losing term with a mixture distribution that includes a
non-vanishing contribution from the reference policy:

πmix(y | x) = λπθ(y | x) + (1− λ)πref(y | x), λ ∈ (0, 1),

which leads to the modified objective

LBDPO(πθ;πref) = −E(xw
0 ,xl

0,c)∼D

[
log σ

(
β
[
log

πθ(x
w
0 |c)

πref(xw
0 |c) − log

πmix(x
l
0|c)

πref(xl
0|c)

])]
. (11)

This modification bounds the contribution of the loser term and prevents it from overwhelming
the loss, thereby preserving the intended effect of preference optimization: promoting the winning
sample. In addition, BDPO retains the same global minimizers as DPO while enforcing a lower
bound on the winning likelihood, offering stronger stability guarantees throughout training (Cho
et al., 2025).

To adapt BDPO to diffusion models, similar to Diff-DPO, we define the trajectory-level reward

rθ(c,x0) = Ex1:T∼pθ(·|x0,c)

[
R(c,x0:T )

]
. (12)

The corresponding Diffusion BDPO objective is

LDiff-BDPO(θ) = −E(xw
0:T ,xl

0:T ,c)∼D

[
log σ

(
β
[
log

pθ(x
w
0:T |c)

pref(xw
0:T |c) − log

πmix(x
l
0:T |c)

pref(xl
0:T |c)

])]
. (13)
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Following Diff-DPO, we upper-bound this objective via its ELBO and then apply Jensen’s inequality
to obtain the result below (see Appendix A.2 for the full derivation):

LDiff-BDPO-UB(θ) = −E(xw
0 ,xl

0,c)∼D, t∼U [1,T ]

[
log σ

(
− β (m(xw

t , c)−mmix(x
l
t, c))

)]
. (14)

Here the per-step terms are:

dθ(xt, ϵ, t, c) = T ω(t) ∥ϵ− ϵθ(xt, t, c)∥22 , dref(xt, ϵ, t, c) = T ω(t) ∥ϵ− ϵref(xt, t, c)∥22 , (15)
m(xt, c) = dθ(xt, ϵ, t, c)− dref(xt, ϵ, t, c), (16)

mmix(xt, c) = − log
(
λ e−dθ(xt,ϵ,t,c) + (1− λ) e−dref(xt,ϵ,t,c)

)
− dref(xt, ϵ, t, c). (17)

where LDiff-BDPO-UB denotes the upper bound approximation of Diff-BDPO.

Building on this, we define our final Diff-SNPO objective, which applies our introduced Diff-BDPO-
UB objective into a single model negative preference optimization framework:

LSNPO(θ) = −E(xw,xl,c)∼D, t∼p(t), Y

[
log σ

(
β
(
m(x̃w(Y ), c̃(Y ))−mmix(x̃

l(Y ), c̃(Y ))
))]

.

(18)

where x̃w/l(Y ) is given as:

x̃w/l(Y ) =

{
xw/l, if Y = +1 (conditional branch)
xl/w, if Y = −1 (unconditional/null branch).

As shown in Fig. 3, Diff-SNPO avoids the decline in winner likelihood observed with Naive Diff-
SNPO: the estimated log-likelihood of winning samples steadily improves throughout training. In
line with this, Fig. 3 further shows that Diff-SNPO prevents the progressive low-contrast “blurring”
artifact characteristic of the naive training objective, effectively addressing its key shortcoming.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Models. We fine-tune both Stable Diffusion v1.5 (SD1.5) (Rombach et al., 2022)
and Stable Diffusion XL (SDXL) (Podell et al., 2024) using our proposed Diffusion SNPO objective
in Eq. 18. For training, we utilize the Pick-a-Pic v2 (Kirstain et al., 2023) corpus, a large-scale
human preference dataset comprising 851,293 image pairs across 58,960 unique prompts.

Training Details. Models are initialized from the publicly available SD1.5 (Rombach et al., 2022)
(CreativeML Open RAIL-M license) and SDXL (Podell et al., 2024) (MIT license) checkpoints.
Training is conducted using the AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate
of 2.048× 10−8. We use a batch size of 512 and train for 3,000 steps on SD1.5, and a larger batch
size of 2,048 for 625 steps on SDXL. All experiments are run on 8×NVIDIA A6000 GPUs using
distributed data parallelism. Total training time is approximately 12 hours for SD1.5 and 68 hours
for SDXL. The regularization coefficient is set to β = 2000 for SD1.5 and β = 5000 for SDXL.
Unless stated otherwise, Diff-SNPO is trained with an interpolation parameter of λ = 0.9.

Baselines. We compare Diff-SNPO against both negative preference optimization methods and
standard alignment baselines. Specifically, we evaluate Diff-NPO (Wang et al., 2025), CHATS (Fu
et al., 2025), and Diff-DPO (Wallace et al., 2024), along with the original pretrained models for
SD1.5 (Rombach et al., 2022) and SDXL (Podell et al., 2024).

Evaluation Protocol. All models are evaluated using the DDIM (Song et al., 2021) sampler with
50 inference steps and a classifier-free guidance scale of 7.5. For Diff-NPO and CHATS, we adopt
the hyperparameters specified in their released code, as these methods modify the sampling pipeline.
Performance is assessed using five widely adopted reward models: PickScore (Kirstain et al., 2023),
HPSv2 (Wu et al., 2023), ImageReward (Xu et al., 2023), and Aesthetics Score (Schuhmann, 2023).
To account for stochasticity, we report average results across four random seeds, with each model
generating 2,000 images using prompts from the Pick-a-Pic v2 test set.
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Table 1: Comparison of Diff-SNPO with baseline methods on SD1.5 and SDXL backbones
using Pick-a-Pic v2. Diff-SNPO consistently achieves the highest scores across most human pref-
erence metrics, reflecting improved alignment and visual quality. For clarity, the best-performing
method in each metric is shown in bold, and the second-best is underlined.

Model Method HPSv2 Pick Score Aesthetic Score Image Reward

SD1.5

Baseline 26.24 20.64 5.2849 0.1221
Diff-DPO (Wallace et al., 2024) 26.55 21.01 5.3823 0.2968
Diff-NPO (Wang et al., 2025) 26.92 21.46 5.5381 0.3786
CHATS (Fu et al., 2025) 27.20 21.05 5.6845 0.2995
Diff-BDPO (Ours) 26.64 21.15 5.4457 0.3165
Diff-SNPO (Ours) 27.23 22.24 5.6258 0.6936

SDXL

Baseline 27.43 22.13 5.8850 0.7605
Diff-DPO (Wallace et al., 2024) 28.09 22.59 5.8884 0.9841
Diff-NPO (Wang et al., 2025) 28.30 22.67 5.9449 0.9847
CHATS (Fu et al., 2025) 28.25 22.34 5.8785 1.0543
Diff-BDPO (Ours) 28.13 22.36 5.8037 0.9946
Diff-SNPO (Ours) 28.33 22.69 5.8129 1.0100

5.2 QUANTITATIVE RESULTS

Table 1 presents quantitative comparisons of Diff-SNPO against established baselines on SD1.5 and
SDXL backbones.

On SD1.5, Diff-SNPO consistently outperforms prior methods across most human preference met-
rics. Notably, it achieves 27.23 on HPSv2 and 22.24 on PickScore, marking a substantial improve-
ment over both Diff-DPO and the more stable Diff-BDPO. This indicates that the gains stem not just
from BDPO’s stabilization, but from negative preference optimization itself. While CHATS attains a
slightly higher Aesthetic Score, it lags behind on all other metrics, suggesting that its more visually
pleasing outputs come at the cost of semantic alignment. Diff-SNPO also surpasses its dual-model
counterpart, Diff-NPO, across all metrics while using only half the computation. We attribute this to
its single-model design, which preserves negative preference alignment better than Diff-NPO, where
accuracy drops notably after model merging.

On SDXL, Diff-SNPO delivers strong and competitive results, with HPSv2 and ImageReward scores
of 28.33 and 1.01, comparable to state-of-the-art methods. Its Aesthetic Score (5.81) is slightly be-
low DPO (5.89), and the large advantage it shows over Diff-NPO on SD1.5 becomes smaller on
SDXL. This stems from Diff-SNPO’s bias toward optimizing “preferred” samples in the dataset.
Although these samples are favored over their losing counterparts, they have been shown to be less
aesthetically pleasing than the already strong outputs of the base SDXL model(). As a result, focus-
ing on them may slightly reduce aesthetic quality and limit gains on stronger backbones. Similar
trends appear with CHATS and Diff-BDPO, suggesting the limitation comes from the dataset rather
than the alignment method itself. Even so, Diff-SNPO retains important practical benefits: it re-
quires only half the computation of Diff-NPO and, with its single-model architecture, also enables
faster sampling—making it both efficient and scalable.

5.3 IMPACT OF THE MIXING PARAMETER λ ON DIFF-SNPO

Table 2: Effect of varying λ on Diff-SNPO
(SD1.5). Performance remains stable across dif-
ferent λ values, while Naive Diff-SNPO (λ = 1.0)
suffers a pronounced drop, reflecting the onset of
severe blurring artifacts.

λ HPSv2 ↑ Aesthetic ↑
0.1 27.17 5.5818
0.5 27.27 5.5893
0.9 27.23 5.6258
1.0 25.84 5.3169

Table 2 reports results on SD1.5, with all hy-
perparameters fixed as in the main experiments
except for the mixing parameter λ, show that
performance remains stable across different λ
values. In particular, λ = 0.9 as it consistently
delivers strong performance. In contrast, the
λ = 1.0 setting, which corresponds to Naive-
SNPO, shows a notable drop across both re-
ward metrics. As discussed in Section 4.2,
this decline results from blurring artifacts that
arise during training when the win likelihood
decreases during single model Negative Prefer-
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Table 3: Training cost comparison. Experiments were conducted on a single A6000 GPU with a
batch size of 8. Dual-model approaches require more memory and result in slower relative speed
The best result in each column is highlighted in bold.

Method Memory (GB) ↓ Time / Step (s) ↓ Relative Speed ↑
Diff-NPO 41.4 × 2 12.12 × 2 1.00×
CHATS 45.3 13.08 1.85×
Diff-SNPO (Ours) 41.4 12.12 2.00×

ence Optimization. These findings suggest that λ = 0.9 serves as a favorable operating point,
effectively balancing the stability benefits of BDPO with a reduced bias toward win probability.
This balance results in more robust training dynamics and improved empirical performance.

5.4 COMPARING NEGATIVE PREFERENCE ALIGNMENT ACROSS METHODS

Table 4: Negative preference implicit classifica-
tion accuracy Parentheses denote Diff-NPO without
weight merging. Diff-SNPO achieves higher negative
implicit accuracy than Diff-NPO improving its nega-
tive alignment.

Method Neg. Implicit Acc. (%)

Diff-DPO 31.86
Diff-BDPO 32.04
Diff-NPO 52.34 (63.80)
Diff-SNPO 57.45

From Table 4, we observe that both Diff-
DPO and Diff-BDPO achieve similar neg-
ative implicit accuracy in their uncondi-
tional branches, consistently falling below
50%. This outcome aligns with their train-
ing setup, as the unconditional branches
are optimized using positive preference
alignment, which limits their capacity to
capture negative preference signals. In
contrast to Diff-DPO and Diff-BDPO,
Diff-NPO exhibits a notable decline in
negative implicit accuracy after weight
merging, with a drop of over 10 %, falling
below Diff-SNPO and approximately 5% behind Diff-NPO. These findings suggest that Diff-SNPO
offers a more effective approach for preserving negative alignment in the unconditional branch.

5.5 TRAINING COMPUTATIONAL COST

Beyond alignment performance, the practicality of a preference optimization algorithm also depends
on its computational efficiency. To assess this, we compare the training computational cost of dual-
model approaches (CHATS and Diff-NPO) against our single-model Diff-SNPO. As reported in
Table 3, the single-model design of Diff-SNPO yields substantial efficiency gains in both memory
usage and training time. By eliminating the need to train two separate networks, Diff-SNPO reduces
memory consumption and achieves a 2× speedup in per-step training time relative to its dual-model
counterpart, Diff-NPO. A similar advantage is observed over CHATS: while both methods require
comparable memory, Diff-SNPO trains faster because it optimizes the conditional and unconditional
branches in parallel, whereas CHATS processes them sequentially. In summary, Diff-SNPO com-
bines lower memory overhead with faster training, establishing it as a more efficient and scalable
alternative for negative preference optimization. A detailed comparison of inference cost, which
further highlights the efficiency of our single-model approach, can be found in Appendix A.4.

6 CONCLUSION

In conclusion, we propose Diff-SNPO, a single-model framework for Negative Preference Opti-
mization that achieves strong performance while simplifying the training pipeline. In contrast to
prior approaches that require two separate models, Diff-SNPO unifies conditional and unconditional
branches within a single architecture, thereby eliminating redundant computation and substantially
improving efficiency in both training and inference. Our experiments demonstrate that this stream-
lined design not only matches, but often exceeds the performance of existing methods, highlighting
its effectiveness in preserving negative preference alignment. Beyond raw performance, the reduced
computational footprint and faster sampling make Diff-SNPO a practical and scalable solution, low-
ering the barriers to applying preference optimization in real-world generative modeling tasks.
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A APPENDIX

A.1 THE USE OF LLMS

We used LLMs solely for light editing such as correcting grammatical errors and polishing some
words. They did not contribute to research ideation, experiments, analysis, or substantive writing.

A.2 DERIVATION OF THE DIFFUSION-BDPO UPPER BOUND

We begin by recalling the Diffusion-BDPO objective:

LDiff-BDPO(θ) = −E(xw
0:T ,xl

0:T ,c)∼D

[
log σ

(
β
[
log

pθ(x
w
0:T | c)

pref(xw
0:T | c)

− log
pmix(x

l
0:T | c)

pref(xl
0:T | c)

])]
, (19)

where the mixture distribution is defined as
pmix

(
xl
0:T | c

)
= λ pθ

(
xl
0:T | c

)
+ (1− λ) pref

(
xl
0:T | c

)
, λ ∈ (0, 1). (20)

To obtain a computationally tractable form, we first decompose log pθ(x0:T | c) using the backward
process of diffusion models:

log pθ(x0:T | c) = log pθ(xT | c) + log

T∏
t=1

pθ(xt−1 | xt, c) (21)

= log pθ(xT | c) +
T∑

t=1

log pθ(xt−1 | xt, c) (22)

= C −
T∑

t=1

ω(t) ∥ϵθ(xt, c, t)− ϵ∥22 , (23)

where C is a parameter-independent constant.

Next, consider the mixed log-probability:

log pmix

(
xl
0:T | c

)
= log

(
λ pθ

(
xl
0:T | c

)
+ (1− λ) pref

(
xl
0:T | c

))
= C + log

(
λ e

∑T
t=1 log pθ(x

l
t−1|xt,c) + (1− λ) e

∑T
t=1 log pref (x

l
t−1|xt,c)

)
. (24)

For brevity, define

at := log pθ(x
l
t−1 | xt, c), bt := log pref(x

l
t−1 | xt, c), t = 1, . . . , T. (25)

Then equation 24 becomes

log pmix

(
xl
0:T | c

)
= C + log

(
λ e

∑T
t=1 at + (1− λ) e

∑T
t=1 bt

)
. (26)

Applying the discrete n-factor Hölder inequality yields

λe
∑T

t=1 at + (1− λ)e
∑T

t=1 bt ≤
T∏

t=1

(
λeptat + (1− λ)eptbt

)1/pt

, (27)

for exponents p1, . . . , pT ≥ 1 with
∑T

t=1 1/pt = 1.

Taking logs and substituting back gives

log pmix

(
xl
0:T | c

)
≤ C +

T∑
t=1

1

pt
log

(
λeptat + (1− λ)eptbt

)
. (28)

Choosing pt = T for all t (so that
∑

t 1/pt = 1) produces the uniform bound

log pmix

(
xl
0:T | c

)
≤ C +

1

T

T∑
t=1

log
(
λ eT log pθ(x

l
t−1|xt,c) + (1− λ) eT log pref (x

l
t−1|xt,c)

)
. (29)
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Table 5: Comparison of Diff-SNPO with baseline methods on SD1.5 and SDXL backbones
on HPDv2. Diff-SNPO achieves the best scores across most human preference metrics, indicating
superior alignment and visual quality. For each metric, the top-performing method is bolded, while
the second-best is underlined.

Model Method HPSv2 Pick Score Aesthetic Score Image Reward

SD1.5

Baseline 26.52 20.80 5.3406 -0.0521
Diff-DPO (Wallace et al., 2024) 26.85 21.26 5.4716 0.1620
Diff-NPO (Wang et al., 2025) 27.18 21.71 5.5842 0.2287
CHATS (Fu et al., 2025) 27.68 21.45 5.8605 0.3699
Diff-BDPO (Ours) 27.24 21.57 5.5677 0.3576
Diff-SNPO (Ours) 27.85 22.86 5.7737 0.8093

SDXL

Baseline 28.01 22.80 5.9887 0.8781
Diff-DPO (Wallace et al., 2024) 28.55 23.12 6.0296 1.0788
Diff-NPO (Wang et al., 2025) 28.87 23.29 6.0816 1.1305
CHATS (Fu et al., 2025) 28.82 22.85 5.9868 1.1165
Diff-BDPO (Ours) 28.62 22.96 5.9562 1.0911
Diff-SNPO (Ours) 28.89 23.34 5.9876 1.1460

Upper bound on the objective. Substituting equation 29 and equation 23 into equation 19, we
obtain

LDiff-BDPO(θ) ≤ −E(xw
0:T ,x l

0:T ,c)∼D

[
log σ

(
Et∼U [1,T ]

[
− β m(xw

t , c)−mmix(x
l
t, c)

])]
(30)

≤ −E(xw
0 ,xl

0,c)∼D, t∼U [1,T ]

[
log σ

(
− β (m(xw

t , c)−mmix(x
l
t, c))

)]
= LDiff-BDPO-UB(θ), (by Jensen’s inequality). (31)

Here the per-step terms are defined as

dθ(xt, ϵ, t, c) = T ω(t) ∥ϵ− ϵθ(xt, t, c)∥22 , dref(xt, ϵ, t, c) = T ω(t) ∥ϵ− ϵref(xt, t, c)∥22 , (32)
m(xt, c) = dθ(xt, ϵ, t, c)− dref(xt, ϵ, t, c), (33)

mmix(xt, c) = − log
(
λ e−dθ(xt,ϵ,t,c) + (1− λ) e−dref(xt,ϵ,t,c)

)
− dref(xt, ϵ, t, c). (34)

In summary, by decomposing the diffusion likelihood and applying Hölder’s inequality, we obtain
a tractable upper bound on the original Diffusion-BDPO objective, expressed in terms of per-step
denoising errors equation 32–equation 34.

A.3 ADDITIONAL QUANTITATIVE RESULTS

Table 5 presents the results on the HPDv2 test set, showing trends consistent with those observed
on the Pick-a-Pic benchmark. On the SD1.5 backbone, Diff-SNPO delivers a clear improvement,
raising HPSv2 to 22.86 and ImageReward to 0.81, underscoring its effectiveness in capturing hu-
man preferences. On the more advanced SDXL backbone, it continues to perform strongly, re-
maining competitive with the leading approach, Diff-NPO. Crucially, Diff-SNPO achieves this per-
formance with significantly lower computational cost and faster sampling, benefits enabled by its
single-network design. This efficiency advantage highlights its practicality, offering state-of-the-art
alignment quality while maintaining scalability and runtime efficiency.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.4 INFERENCE COMPUTATIONAL COST

Table 6: Inference cost comparison.
Single-image inference cost with SD1.5 on
a single A6000 GPU.

Method↓ Throughput (img/s) ↑

CHATS 0.11
DiffNPO 0.27
Diff-SNPO (Ours) 0.48

Table 6 reports the inference throughput of Diff-
SNPO and other negative preference optimization
methods on SD1.5. The efficiency of the single-
model design is particularly evident at inference:
Diff-SNPO achieves the highest throughput among
all methods, processing more than twice as many im-
ages per second as the dual-model baselines.

By contrast, CHATS and Diff-NPO suffer from slower inference due to the need for two sequential
forward passes—one for each model—combined with additional passes required by their sampling
schemes. These results underscore Diff-SNPO’s ability to perform fast, parallel inference without
compromising alignment quality.

Overall, our findings demonstrate that Diff-SNPO effectively balances preference alignment with
computational efficiency. Its single-model design reduces training cost while delivering faster in-
ference, making it well-suited for large-scale training as well as real-time or resource-constrained
deployment scenarios.

A.5 QUALITATIVE RESULTS

Figure 4 and Figure 5 present additional image samples generated by Diff-SNPO and various pref-
erence alignment methods on SD 1.5 and SDXL using prompts from HPDv2 test set respectively.

SD1.5 Diff.-NPO CHATS Diff.-SNPO (Ours)

A cat in a tutu dancing to 

Swan Lake.

A jellyfish sleeping in a space 

station pod.

Spider-Man holding a ginger 

cat.

Prompt

A small dog looking at a 

white plate holding donuts.

Figure 4: Side-by-side comparison of images generated by related methods on HPDv2 using SD1.5.
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SDXL Diff.-NPO CHATS Diff.-SNPO (Ours)

A lemon wearing a suit 

and tie, full body portrait.

2B from NieR Automata 

eating a bagel.

Side-view blue-ice sneaker 

inspired by Spiderman 

created by Weta FX.

A spaceship in an empty 

landscape.

Prompt

Figure 5: Side-by-side comparison of images generated by related methods on HPDv2 using SDXL.
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