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Abstract

A confluence of neuroscience and clinical studies suggests that disrupted structural
connectivity (SC) and functional connectivity (FC) in the brain is an early sign of neu-
rodegenerative diseases. However, current methods lack the neuroscience foundation to
understand how these altered coupling mechanisms contribute to cognitive decline. To ad-
dress this issue, we spotlight a neural oscillation model that characterizes the behavior of
neural oscillators coupled via nerve fibers throughout the brain. Tailored a physics-guided
graph neural network (GNN), which can predict self-organized functional fluctuations and
generate a novel biomarker for early detection of neurodegeneration through altered SC-
FC coupling. Our method outperforms conventional coupling methods, providing higher
accuracy and revealing the mechanistic role of coupling alterations in disease progression.
We evaluate the biomarker using the ADNI dataset for Alzheimer’s disease diagnosis.
Keywords: Brain structure-functional coupling, Imaging biomarkers, Alzheimer’s dis-
eases.

1. Introduction

The human brain is a complex system with spontaneous functional fluctuations (Bassett
and Sporns, 2017) that can be affected by both normal aging and neuropathology events.
Understanding the relationship between structural connectivity (SC) and functional con-
nectivity (FC) (Badhwar et al., 2017) is crucial for identifying effective interventions for
diseases such as Alzheimer’s (Cummings et al., 2007). Current research examines the sta-
tistical association between SC and FC using various approaches (Gu et al., 2021; Park et al.,
2008), but lacks a comprehensive understanding of the system-level coupling mechanisms
that underlie the emergence of brain functions. To address this, we propose a new approach
that leverages established biophysics models to uncover SC-FC coupling mechanisms and
generate biomarkers with greater neuroscience insight.

In this regard, we conceptualize the human brain as a complex system where each region
is associated with a neural population that exhibits frequency-specific oscillations. Inspired
by the success of the Kuramoto model (Kuramoto and Kuramoto, 1984) in modeling coupled
synchronization in complex systems, we describe the physical coupling of these oscillatory
units via nerve fibers observed in diffusion-weighted MRI images. The resulting phase
oscillation process on top of the SC topology generates self-organized fluctuation patterns
in the blood-oxygen-level-dependent (BOLD) signal (Fig. 1 top). We propose a novel graph
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neural network (GNN) to learn the dynamics of SC-FC coupling from human connectome
data and provide insight into the evolving relationship between SC and FC through phase
oscillations. Additionally, we propose to use learned system dynamics to yield new SC-
FC coupling biomarkers (Fig. 1 bottom). We evaluate these biomarkers using the ADNI
dataset (Petersen et al., 2010) and find promising results for recognizing early signs of
neurodegeneration, demonstrating potential for future network neuroscience studies.

Spontaneous brain activity Synchronization Structural connectivity

: ... BOLD Lo

9)\4 -t\s:gnals Oscillation 3.\ i@;a ‘2..3\'
b

’%{ s O VTV U T W
AR A f{ o
Time 22 L) \
Hilbert transform | -7
Phase Lo Ty .
the level of synchronization of the N oscillating signals

@'% ——>  Deep Kuramoto model SC-FC biomarker

J -7 g s 8
> Cor0) )
v(t—1) v(t) Y g

; RS
8@8 4]

il
\’"l"{‘h‘ﬂ w M; f“"““ Time ,
0 Pi : o o
Kuramoto order parameter = desynchronization synchronization

Figure 1: The spatio-temporal learning framework of our proposed deep Kuramoto model.

2. Method and Experiment

We model the human brain network G = (=, W) as a complex system with N brain regions
E = {¢&]i = 1,..., N} connected by neuronal fibers (i.e., SC) W = [w;;] € RY*N, where
the neural oscillation status of each region is determined by an intrinsic variable of brain
rhythm v;(t). The synchronized oscillations of multiple brain oscillators give rise to self-
organized patterns of functional fluctuations. To test this hypothesis, we propose a deep
model that reproduces the topology of the traditional FC matrix Q = [qij]ﬁyjzl e RNV*N
which is obtained from the BOLD signal z;(¢)(i = 1,...,N,t = 1,....,T) of N regions, by
using the phase information of neural oscillations. We use the proposed deep Kuramoto
model to constrain the synchronization of coupled oscillators.

Deep Kuramoto Model for SC-FC Coupling Mechanism. We first propose a gen-
eral formulation to model a nonlinear dynamical system as:

dv;
dtZ = f(vi, H(z;)) —|—Zw” c(v;,v5) (1)
JF#i

where the system dynamics is determined by the state variable of brain rhythm v; on each
node. Compared to the classic Kuramoto model (Breakspear et al., 2010), we estimate
the natural frequency w; through a non-linear function f(-), which depends on the current
state variable v; and the neural activity proxy x;. We use the Hilbert transform (7(-))
to extract the phase and amplitude information from BOLD signals (Chang and Glover,
2010; Mitra et al., 2015), which has been widely used in functional neuroimaging research.



SC-FC COUPLING

We formulate the frequency function as f(v;, p;), where p; = H(x;) represents the phase
information of time course x;. We then introduce a coupling physics function ¢(-,-) to
model the relationship between two state variables v; and v;, with their coupling strength
determined by the structural connectivity w;;. The overview of our deep Kuramoto model
is shown in Fig. 1. Our input consists of time-invariant coupling information from the SC
matrix (top-right) and time-evolving phase information at each node p;(t) (top-left). In
the blue box, our physics-guided deep Kuramoto model captures the dynamics of neural
oscillations in a spatio-temporal learning scenario. At each time point ¢, a fully-connected
network (FCN) and a GNN (Kipf and Welling, 2016) predict the first and second terms in
Eq. 1 for the current state v; at each node &;.

Novel SC-FC Coupling Biomarkers. The valuable bi-product of our deep Kuramoto
model of neural oscillation is a system-level explanation of how the neuro-system dynamics
is associated with phenotypes such as clinical outcomes. In doing so, we introduce the
Kuramoto order parameters ¢; to quantify the synchronization level at time ¢t as ¢ =
%real{zi]\il e} where real(-) denotes the real part of the complex number. In complex
system areas, ¢ is described as the synchronization level, aka. the metastability of the
system (Pluchino and Rapisarda, 2006), transiting from complete chaos (¢; = 0) and fully
synchronization (¢; = 1). In this context, we propose a novel SC-FC coupling biomarker
® = (¢4, Pty .-, Pt) (bottom right corner in Fig. 1) which records the evolution of system
metastability underlying the neural activity. SC-FC-META uses the ® to conduct the
downstream classification tasks, while SC-FC-Net is an end-to-end ®-training based deep
model. The experimental results are shown in Fig. 2, we mainly validate the neuroscience
insight (identify brains at risk of AD) based on new SC-FC coupling biomarkers and obtain
decent results. This approach holds great promise for other neuroimaging applications.
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Figure 2: (a) denotes the metastability transition count between CN and AD. (b) Snapshot
of node phase visualizations at the chaos and synchronization stages. (c¢) Global
dynamic (order parameter ¢) in coupling parameter space. (d) The classification
performance ( AD vs. CN) on a shadow approach (SVM, blue) and our SC-FC-
Net (green) by using our new learning-based SC-FC biomarker. Acc: accuracy,
Sen: sensitivity, Sep, specificity, F1: Fl-score. (e) The accuracies of diagnosing
AD on four methods (LTCNet (Hasani et al., 2021)), GCN (Kipf and Welling,
2016), RNN (Medsker and Jain, 2001).
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