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ABSTRACT

Pathfinding makes up an important sub-component of a broad range of complex
tasks in AI, such as robot path planning, transport routing, and game playing. While
classical algorithms can efficiently compute shortest paths, neural networks could
be better suited to adapting these sub-routines to more complex and intractable tasks.
As a step toward developing such networks, we hand-code and learn models for
Breadth-First Search (BFS), i.e. shortest path finding, using the unified architectural
framework of Neural Cellular Automata, which are iterative neural networks with
equal-size inputs and outputs. Similarly, we present a neural implementation of
Depth-First Search (DFS), and outline how it can be combined with neural BFS
to produce an NCA for computing diameter of a graph. We experiment with
architectural modifications inspired by these hand-coded NCAs, training networks
from scratch to solve the diameter problem on grid mazes while exhibiting strong
generalization ability. Finally, we introduce a scheme in which data points are
mutated adversarially during training. We find that adversarially evolving mazes
leads to increased generalization on out-of-distribution examples, while at the same
time generating data-sets with significantly more complex solutions for reasoning
tasks.1

1 INTRODUCTION

Pathfinding is a crucial sub-routine in many important applications. On a 2D grid, the shortest path
problem is useful for robot path planning (Wang et al. [2011]) or in transportation routing (Fu et al.
[2006]). Long paths (and quantities such as the diameter) are relevant for estimating photovoltaic
properties of procedurally-generated microstructures for solar panels (Stenzel et al. [2016], Lee et al.
[2021]), or the complexity of grid-based video game levels (Earle et al. [2021]).

Classical algorithms to solve pathfinding and related problems include the Bellman-Ford algo-
rithm (Bellman [1958] Ford Jr [1956]) for finding the shortest path from a single source node to other
nodes, Breadth-First Search (BFS) (Moore [1959], Merrill et al. [2012]), which models the connected
nodes using a Dijkstra map (Dijkstra et al. [1959]), and Depth-First Search (DFS) (Tarjan [1972]),
which explores the connections from each node sequentially.

Neural networks are increasingly being used for solving complex problems in the aforementioned
applications involving pathfinding subroutines. Therefore, modeling classical pathfinding algorithms
in “neurally plausible” ways could be advantageous for holistically solving these more complex
problems. This approach has been explored before: for the shortest path problem, Kulvicius et al.
[2021] construct hand-crafted neural networks to implement an efficient, distributed version of BFS.

On the other hand, we also know that the performance and generalization of neural networks depend
heavily on their structure. Xu et al. [2019] posit the theory of algorithmic alignment, which is a
measure of a network architecture’s appropriateness for a reasoning task. If the network structure
aligns with an algorithm for solving the target reasoning task, the network’s sample complexity is
lower. For example, the structure of the Bellman-Ford algorithm for shortest path finding aligns with
Graph Neural Networks (GNNs) more than Multi-Layer Perceptrons (MLPs), and indeed GNNs are
shown to generalize well on this task. More specifically, Definition 3.4 of Xu et al. [2019] asserts that
networks are aligned when sub-modules of the network have a natural mapping onto sub-functions of
the reasoning algorithm (e.g. when it is sufficient for each network submodule to learn the operation
inside a for-loop in the target algorithm, instead of the for-loop itself).

1Code is available at https://anonymous.4open.science/r/pathfinding-nca-FEAD
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Figure 1: Learned pathfinding behavior. a) An example maze with the shortest path, where blue,
green, dark blue, and black respectively represent source, target, path, and wall tiles. b) A learned
model computes the shortest path on an out-of-distribution example. It first activates all traversable
tiles, then strengthens activations between source and target, while gradually pruning away the rest.

Problem formulation. We focus on pathfinding in grid-based mazes with obstacles and empty tiles.
While navigating the maze, one can move up, down, right, and left onto empty tiles. We consider two
pathfinding problems: finding (i) the shortest path between fixed source and target (Fig. 1a), and (ii)
the diameter, which is the longest shortest path between any pair of nodes.

An optimal method for the shortest path problem involves BFS, while an optimal method for the
diameter problem includes BFS and DFS (Holzer and Wattenhofer [2012]). We follow the above line
of work by implementing target algorithms as neural networks, and using them to propose architectural
modifications to learning networks. We conceptualize architectural alignment as adjustments to
network sub-modules that facilitate their ability to learn sub-functions of the target algorithm, when
the mapping between sub-modules/functions is fixed.

Specifically, we showcase the architectural alignment of Neural Cellular Automata (NCAs) (Mord-
vintsev et al. [2020])—consisting of a single convolutional layer that is repeatedly applied to an
input to iteratively produce an output of the same size—for pathfinding problems on grid-based
mazes. NCAs are a natural choice for grid-based domains; like GNNs, they involve strictly local
computation and are thus well-suited to similar problems. By the theoretical framework of Xu et al.
[2019] (Definition 3.4), the lesser sample complexity of GNNs for pathfinding should apply equally
to NCAs.

A summary of our contributions is as follows:

• We develop hand-coded NCAs for the shortest path finding problem (Sec. 3.1), which
implement Dijkstra map generation (Sec. 2.1) and path extraction (Sec. 2.2). The latter is
also necessary to extract the shortest path from the Dijkstra map generated by Kulvicius
et al. [2021]. We thus demonstrate that NCAs can complete all the necessary sub-tasks for
the shortest path problem.

• We provide an NCA implementation of DFS (Sec. 2.3), an essential component in the
optimal, parallelized diameter-computing algorithm introduced by Holzer and Wattenhofer
[2012], and outline how BFS- and DFS-NCAs can be combined to solve the diameter
problem (Sec. 3.2).

• We suggest that NCA architectures can be further manipulated to align with the structure of
hand-coded solutions for the problem in order to improve their performance, and we support
our handcoding-inspired architectural modifications (Sec. 4) with experiments in Sec. 5.

Beyond motivating architectural alignment, these differentiable hand-coded models could act as fixed
submodules or initialization schemes for larger hybrid architectures, potentially leading to more
accurate and reliable learned solutions to more complex problems involving pathfinding.

It is worth noting that NCAs have been generalized to graphs by Grattarola et al. [2021] as Graph-
NCAs, which can be seen to have at least the same representational capacity as convolutional NCAs
on grids, while at the same time being applicable to arbitrary graphs. The GNNs trained on grid-maze
domains in Tables 1, 10, and 11, are effectively Graph-NCAs. Using the message passing layer of,
e.g., Graph Attention Networks (GATs, Veličković et al. [2018], studied in Table 11), Graph-NCAs
can compute anisotropic filters, which are crucial for solving the diameter problem. Future work could
investigate the performance of pathfinding-related problems on general graphs using Graph-NCAs.
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2 HAND-CODED NETWORKS

We consider two problems: finding theshortest path and diameter. In Sec 2.1, we use NCAs to
implement the generation of the Dijkstra activation map since it is the core component in finding the
shortest path. In Sec 2.2 we implement path extraction using an NCA so that the shortest path can be
extracted from the Dijkstra map using NCAs.

The optimal algorithm to find the diameter (Holzer and Wattenhofer [2012]) includes DFS, Dijkstra
map generation, and path extraction. For the shortest path problem, we provide neural implementa-
tions of Dijkstra map generation and path-extraction, and in Sec 2.3 we present a hand-coded DFS
NCA. We outline a neural implementation of the diameter algorithm using our hand-coded neural
networks in Alg. 1, which we describe in Sec. 3.2.

We design our experiments in Sec 5 according to the modifications suggested by our hand-coded
implementations, discussed in Sec 4. A detailed description of the hand-coded parameters and
forward pass is left for Appendix A.2.

2.1 DIJKSTRA MAP GENERATION

We present our hand-coded NCAs to replicate the Dijkstra activation sub-process of BFS. Our
approach is similar to Kulvicius et al. [2021], though we do not use max-pooling (relying only on
ReLU activations), and we implement bi-directional BFS. We denote the model by Dijkstra(u) for
the source node u, and present the full implementation details in A.2.1.

Our model maintains the following key channels: floods (floodt) to denote if there is any possible
path from the source (target) to the current node, and age to count the number of iterations for which
any flood has been active at that tile. The idea is to flood any empty (i.e. non-wall) tile once an
adjacent tile is flooded. Flood activations are binary-valued to represent if the flood has reached
this tile from source/target; therefore, the activation is step function, which can be implemented
using ReLUs. The age activation is integer-valued, starting at 0, and is incremented whenever the
corresponding tile is flooded; therefore, a ReLU is the activation of this channel. Our model is
bi-directional because the flood activations propagate from both source and target. We use the age
channel to reconstruct the optimal path in our shortest path extraction NCA after floods and floodt
are connected.

2.2 SHORTEST PATH EXTRACTION

The Dijkstra activation map includes all tiles reached by either source or target floods, but one needs
to identify the shortest path itself. The path can be reconstructed starting from the point(s) at which
the two floods meet. (Note that there may be more than one possible shortest path and our model will
simultaneously extract all possible shortest paths to the path channel, though ties could be broken
using a similar directional queuing mechanism as will be described in our implementation of DFS.)

The flood variables floods and floodt will meet in the middle of the shortest path, so when floods ⇥
floodt becomes a positive number, the path channel will be active and path extraction will begin.
There are four different channels, pathi,j , with (i, j) 2 {(1, 2), (1, 0), (0, 1), (2, 1)}, to detect the
presence of path activation at adjacent tiles to the right, left, top, and bottom, respectively.

To determine if a tile u should be included in the path being extracted, we must check that one of its
neighbors, v, is already included in the path, and that u was flooded directly prior to v during the
Dijkstra activation. Therefore, assuming v is the (i, j)th neighbor of u, then pathi,j is active when
the age of u, ageu, is equal to agev + 1 and pathv = 1. We use a sawtooth to determine when these
conditions are met at pathi,j . Finally, we determine path channel of a given tile by summing over
its pathi,j channels and passing through the step function. We denote this model by PathExtract(·)
with the input of Dijkstra map generated by Dijkstra(u) for the source node u.

2.3 DEPTH-FIRST SEARCH

While BFS operates in parallel, DFS must run sequentially. Therefore, it will use a stack, with last-in,
first-out order, to store nodes that are on the unexplored “frontier,” and return a node from the stack
when the currently explored route reaches a dead end.
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In order to flood the search tree one tile at a time, we prioritize neighbors based on their relative
position. In our implementation, the priority decreases in the order of moving down, right, up, and
left. We represent the sequential flood in the route channel, which is binary-valued. Similar to the
path extraction model, we keep the directional routes in different channels as denoted in routei,j
with (i, j) 2 {(1, 2), (2, 1), (3, 2), (2, 3)}, representing down, right, up and left moves and the main
sequential route in route.

In this model, the first activation of the route is due to the source channel, and then any center tile’s
route is activated when it’s the priority node of the neighbor with an active route. Therefore, the
kernel size will change to 5 ⇥ 5, so the nodes can consider their neighbors’ neighbors in order to
determine whether they have priority in receiving an adjacent activation. The activation for route(i,j)
is given by a ReLU, and we calculate route by summing over route(i,j) channels with the step
activation, which is similar to directional paths, path(i, j).

We’ve shown that the route builds the DFS search tree. Here, we need to make sure that we stack
our possible branches to continue from a different route when the current sequential route is stuck.
Therefore, we define a binary-valued pebble channel to follow the current route, and we can use the
existence of pebble to determine whether we need to pop the last-in tile from the stack. In order
to represent the stack model, we declare three different channels: stack, which is binary-valued to
denote if the tile is in the stack, stack direction chan, which is 2 {0.2, 0.4, 0.6, 0.8} to keep the
priority for the tiles that are added to the stack, and stack rank chan, which is integer-valued to count
the iteration time to keep them in the general order.

We note that the pebble channel is calculated by routet � routet�1 where t is the current timestep.
We define a since channel to represent the number of timesteps that have passed since pebble was
active on the adjacent tile (which is added to the stack).

The activation of the stack happens when max-pooling the pebble channel over the entire maze
returns 0, which means that route is stuck. This activates the min-pooling over the entire maze
of stack rank + stack direction (excluding tiles where this sums to 0). Min-pooling is used to
determine the tile that was most recently added to the stack. This tile’s stack activation is changed
to 0, clearing the way for route activation. (If the same tile is added to the stack twice, we use
a sawtooth to identify if any tile has stack chan = 2, in which case we use skip connections to
overwrite previous stack rank and direction activations.)

We emphasize that the DFS scheme outlined here can be implemented using convolutional weights,
skip connections, max-pooling, and ReLU activations, and is thus differentiable. We denote the
operation of this hand-coded neural network by DFS(u) for a starting node u.

3 PATHFINDING BY HAND-CODED NEURAL NETWORKS

3.1 COMPUTING THE SHORTEST PATH

Our goal is to compute the shortest path in the given maze when there is a defined source u. Thus,
we first generate a Dijkstra map by the function call of Dijkstra(u), then, we extract the path from
this Dijkstra map by calling PathExtract over this Dijkstra map. We can thus denote the shortest
path finding routine conducted by our handcoded neural networks as PathExtract(Dijkstra(u)). In
practice, the networks’ convolutional weights are concatenated, then the non-linearities and other
computations specific to each routine are applied to the result in sequence.

3.2 COMPUTING THE DIAMETER

In order to calculate the diameter, one could naively calculate the shortest path between all pairs
of nodes and extract the largest path among them in O(n3) time. An asymptotically near-optimal
method for calculating the diameter has been proposed by Holzer and Wattenhofer [2012], and
includes BFS and DFS as subroutines and runs in O(n). This algorithm relies on a parallelisable
message-passing scheme.

In Alg. 1, we propose a neural implementation of the diameter algorithm. We assume that all nodes
are connected in the graph. (Otherwise, the diameter routine would need to be called on an arbitrary
node from each connected component.)
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The algorithm starts with the DFS call on an initial randomly chosen node. While DFS is running,
we make a call to the Dijkstra map generation routine, Dijkstra(u), whenever pebble is active at u.

To prevent the collision of the flooding frontiers from parallel Dijkstra routines, we must wait a
certain number of timesteps before each new call. The pebble activation “moves” between timesteps
in two ways: either directly between two adjacent tiles, or by jumping across tiles to the last on
the stack because no adjacent tiles were visitable. In the first case, the waiting time is one, so that
the new call to Dijkstra starts after the first step of the previous call. In the latter case, it needs to
backtrack to the next node from the stack, so the waiting time should be equal to backtracking time
+1. This ensures that each new flood is “inside” the previous one so there is no collision

Each cell u in the grid stores its age as path_max when Dijkstra(u) returns, since in our Dijkstra
implementation, the source has the largest age. When the DFS routine is completed, each path_max
corresponds to the longest shortest path in which the given tile is an endpoint. We calculate the
diameter by taking the largest path_max, then extract the corresponding shortest path.

Algorithm 1: Diameter
1 i = 0, prior = null, waiting_time = 0, Choose a node v, start DFS(v)
2 while DFS runs do

3 if u
pebble == 1 then

4 if prior ! = null then waiting_time =
��priorsince � u

since
��

56 prior = u, Wait waiting_time, Dijkstra(u)
7 if Dijkstra(v) ends then v

path_max = v
age

,8

9 PathExtract(Dijkstra(argmax(path_max)))

4 ARCHITECTURAL MODIFICATIONS

We focus on three sub-tasks via their hand-coded NCA implementations: Dijkstra map generation,
path extraction, and DFS. For the shortest path problem, Dijkstra map generation and path extraction
are necessary steps. This implementation illustrates the algorithmic alignment of NCAs and also
suggests certain architectural modifications to increase their performance.

In our implementation of shortest path finding (Sec. 3.1), involving Dijkstra map generation and path
extraction, we share weights between convolutional layers (each of which can be considered as a
single iteration of the algorithm), where the spatial convolutional weights do not have any values in the
corners. Additionally, we add a skip connection at each layer, feeding in the same one-hot encoding
of the original maze, so that the model can reason about the placement of walls (and in particular
avoid generating paths that move illegally through them) at each iteration of the algorithm. We also
implement shortest path finding so as to be bi-directional, i.e., flowing out simultaneously from source
and target nodes by increasing the number of channels. This halves the number of sequential steps
necessary to return the optimal path while adding a small constant number of additional channels.
Generally, we hypothesize that more channels could be leveraged—whether by human design or
learned models—to make the algorithm return in a fewer number of iterations, offloading sequential
operations (distinct convolutional layers) to parallelized ones (additional activations and weights to
be processed in parallel).

model train test
— 16x16 16x16 32x32

n. params accuracies accuracies pct. complete accuracies
model n. layers n. hid chan

GCN 32
96 9,600 37.89 ± 34.59 37.95 ± 34.65 18.24 ± 16.65 25.01 ± 23.75

256 66,560 69.61 ± 38.92 69.36 ± 38.78 41.09 ± 22.97 43.92 ± 27.12

MLP 64
96 16,257,024 70.69 ± 3.29 13.91 ± 1.04 2.74 ± 0.20 0.00 ± 0.00

256 42,799,104 52.92 ± 6.63 12.82 ± 1.78 1.94 ± 0.17 0.00 ± 0.00

NCA 32
96 86,400 99.67± 0.28 96.79 ± 0.70 96.26 ± 0.47 84.75 ± 6.69

256 599,040 79.68 ± 44.54 78.33 ± 43.79 78.27 ± 43.76 74.24 ± 41.55

Table 1: Shortest path problem – model architecture : For each architecture, we choose the
minimal number of layers capable of achieving high generalization. NCAs with weight sharing
generalize best, while GCNs generalize better than MLPs.
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model train test
— 16x16 16x16 32x32

n. params accuracies accuracies pct. complete accuracies
model shared weights n. hid chan

NCA

False

32 663,552 99.73 ± 0.31 94.96 ± 0.88 94.37 ± 0.56 58.95 ± 40.94
48 1,437,696 59.90 ± 54.68 57.49 ± 52.49 57.26 ± 52.27 49.23 ± 44.96
96 5,529,600 99.74 ± 0.28 96.42 ± 1.09 96.90 ± 0.37 81.79 ± 4.36

128 9,732,096 79.91 ± 44.67 77.65 ± 43.41 77.55 ± 43.35 67.83 ± 38.01

True

32 10,368 58.09 ± 53.03 56.80 ± 51.86 56.54 ± 51.62 49.44 ± 45.16
48 22,464 98.68 ± 0.44 96.61 ± 0.33 96.92 ± 0.09 88.83 ± 1.78
96 86,400 78.68 ± 43.99 77.64 ± 43.41 78.05 ± 43.64 72.21 ± 40.42

128 152,064 39.57 ± 54.18 39.25 ± 53.75 39.38 ± 53.92 36.94 ± 50.58

Table 2: Shortest path problem – weight sharing: Sharing weights between layers can improve
generalization while reducing the number of learnable parameters.

model train test
— 16x16 16x16 32x32

n. params accuracy accuracy pct. complete accuracy
model cut corners n. hid chan

NCA

False

48 22,464 98.68 ± 0.44 96.61 ± 0.33 96.92 ± 0.09 88.83 ± 1.78
96 86,400 78.68 ± 43.99 77.64 ± 43.41 78.05 ± 43.64 72.21 ± 40.42
128 152,064 39.57 ± 54.18 39.25 ± 53.75 39.38 ± 53.92 36.94 ± 50.58

True

48 12,480 97.43 ± 0.88 95.81 ± 0.91 95.41 ± 1.17 81.47 ± 10.00
96 48,000 98.97 ± 0.32 97.61 ± 0.31 97.83 ± 0.50 90.25 ± 3.88
128 84,480 79.12 ± 44.23 78.34 ± 43.80 78.57 ± 43.92 75.49 ± 42.22

Table 3: Shortest path problem – cutting corners: Ignoring diagonal relationships between grid
cells allows for comparable performance with fewer parameters.

In Sec 5, we take inspiration from these observations and implementation tricks, investigating the
effect of analogously constraining or augmenting a learning model. In particular, we consider an
increased number of channels, weight sharing, and alternative convolutional kernel shape, and in
several cases observe increased performance on the shortest path problem.

The diameter algorithm includes all three subroutines (Sec. 3.2). During DFS, we increase the kernel
size from 3⇥ 3 to 5⇥ 5 to keep track of the edges’ priorities. Also, DFS relies on max-pooling as a
non-local subroutine, which suggests that it should be included in learned architectures to promote
generalization (Xu et al. [2020]). Therefore, in Sec 5, we investigate the effects of increasing kernel
size and adding max-pooling layers to the NCA network on the diameter problem.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

For NCAs, we follow the network architecture of Mordvintsev et al. [2021], who train an NCA to
imitate the style of texture images. 2 The NCA consists of one convolutional layer with a 3⇥ 3 kernel
and padding of 1, followed by a ReLU activation.

For the GCN architecture, we follow the NCA architecture closely, but use a graph convolutional layer
in place of a traditional convolutional one. To take full advantage of the graph neural architecture, we
represent each maze as a sub-grid including nodes and edges between traversable (non-wall) tiles.

The MLP architecture comprises a series of dense layers followed by ReLU connections. First, the
input maze (or intermediary activation) is flattened, then passed via a fully connected encoding layer
to a smaller (256 node) activation, then back through another fully connected decoding layer to a
large activation, which is finally reshaped back into the size of the input.

We compute the shortest path between source and target nodes using BFS and represent the target
path as a binary array with the same width and height as the maze. Loss is computed as the mean
squared error between a predicted path array and the target path array. The model’s output is then
clipped to be between 0 and 1.

For the sake of evaluation, accuracy (inverse loss) is normalized against all-zero output, which would
achieve ⇡ 97% accuracy on the dataset. Accuracy can thus be negative when, e.g., a model predicts

2We exclude the RGB-specific pre-processing filters used in this work.
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a path comprising a majority of non-overlapping tiles relative to the true path. Finally, we record
whether, after rounding, the output perfectly matches the target path, i.e. the percentage of target
paths perfectly completed, or pct. complete in tables.

Each model is comprised of a repeated sequence of identically-structured blocks (comprising a
convolutional layer, a graph convolutional layer, or an encoder/decoder comprising two dense layers,
in the case of NCAs, GCNs, and MLPs, respectively), with or without weight-sharing between them.

Maze is represented as a 2D one-hot array with 4 or 2 channels for the shortest path or diameter,
respectively since there is no source and target in the diameter problem. We then concatenate a
zero-vector with the same width and height as the maze and a given number of hidden channels.
After the input passes through each layer of the model, it is returned as a continuous, multi-channel
2D array with a size equal to the input. We interpret an arbitrarily-chosen hidden channel as the
model’s predicted path output. After the last layer, we compute the mean-squared error loss of the 2D
predicted path output with the ground-truth optimal path.

We use mini-batches of size 64. To feed batches to the GCN, we treat the 64 sub-grids containing the
input mazes as disjoint components of a single graph. After each mini-batch, we use Adam (Kingma
and Ba [2014]) to update the weights of the model. We train for 50, 000 updates for 5 trials.

The dataset comprises 10000 randomly-generated 16⇥ 16 mazes, which are generated by randomly
placing empty, wall, source, and target tiles until the target is reachable by the source. The resulting
paths are relatively simple, their path length is ⇡ 9 tiles. We additionally test models on 32 ⇥ 32
mazes, which are generated as former and their mean path length ⇡ 13 tiles.

We demonstrate the results to demonstrate the comparison of model architectures, the effects of the
architectural modifications, and the importance of the data generation in the following subsections.
We refer the reader to Sec. A.4 in Appendix.

5.2 MODEL ARCHITECTURE

In Table 1, we demonstrate that NCAs outperform GCNs and MLPs, and generalize better than
them. This indicates that NCAs are well-aligned with pathfinding problems over grids. Also, GCNs
generalize substantially better than MLPs, which fits with past work that has demonstrated the
alignment of Graph Neural Networks with pathfinding tasks Xu et al. [2019].

The relatively poor performance of GCNs may seem at odds with past work by Xu et al. [2019]; Tang
et al. [2020]. However, we train on a smaller dataset with more complex mazes for a shorter amount
of time compared to earlier works. Also, the goal is to recover the optimal path itself as opposed to
merely its length so it’s a more complicated problem.

We note that our BFS implementation does not distinguish between a node’s neighbors at different
positions, and could thus be easily be adapted to use a GCN instead of an NCA. To learn this hand-
coding, NCAs would need to learn more structure than GCNs, which come with this spatial symmetry
built in. However, it is clear from Fig. 1 that our learned models are not directly performing our
handcoded implementation. In particular, they appear to propagate slowly-diminishing activations out
from the source and target nodes, progressively strengthening the value of nodes that connect source
and target while weakening others. To produce this behavior, it may be important to know which
neighbor provided the activation originally to prioritize neighbors on the receiving end. (Similarly,
our hand-coded DFS-NCA uses spatial distinctions between neighbors to prioritize the distribution of
activation among them.) But the GCN trained here is incapable of making these distinctions given
that it applies the same weights to each neighbor and aggregates the results.

5.3 SHORTEST PATH

Following the modification suggested in Sec. 4, we investigate the performance after weight sharing

between layers, and ignoring the corner weights, (cutting corners). In Table 2, we see that weight-
sharing leads to the best performance while drastically decreasing the number of parameters. This
agrees with our knowledge of known pathfinding algorithms, which repeatedly apply the same
computations. Also, we demonstrate that increasing the number of hidden channels improves
performance to a certain extent. This is reflective of a general trend in deep learning in which
overparameterization leads to increased performance.
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model train test
— 16x16 16x16 32x32

n. params accuracies accuracies pct. complete accuracies
model max-pool n. hid chan

NCA

False
96 47,040 77.69 ± 43.43 66.48 ± 37.16 57.60 ± 32.21 -138.22 ± 204.08

128 83,200 78.05 ± 43.63 66.89 ± 37.40 58.38 ± 32.65 -9.86 ± 12.18

True
96 47,040 93.61 ± 0.41 85.74 ± 0.57 64.57 ± 2.07 56.50 ± 35.32

128 83,200 95.72 ± 0.45 86.54 ± 1.07 71.82 ± 1.67 56.31 ± 26.80

Table 4: Diameter problem – max-pooling (with weight sharing and 3 ⇥ 3 kernels): Adding
spatial and channel-wise max-pooling operations at each convolutional layer leads to increased
generalization to large (32⇥ 32) out-of-distribution mazes when computing the diameter of a maze,
which aligns with tasks involving the global aggregation of locally-computed information.

model train test
— 16x16 16x16 32x32

n. params accuracies accuracies pct. complete accuracies
model kernel size cut corners

NCA

3
False 149,760 77.41 ± 43.27 67.20 ± 37.57 58.32 ± 32.60 27.47 ± 52.59
True 83,200 95.72 ± 0.45 86.54 ± 1.07 71.82 ± 1.67 56.31 ± 26.80

5
False 416,000 96.62 ± 0.96 76.89 ± 0.93 60.15 ± 1.78 21.85 ± 14.69
True 216,320 96.30 ± 0.54 81.43 ± 0.45 68.72 ± 0.59 49.74 ± 2.58

Table 5: Diameter problem – kernel size/shape (with max-pooling and 128 channels): Smaller
kernel shapes generalize best on the diameter task.

In Table 3, we examine the effect of modifying the kernel to ignore corners in each 3⇥ 3 patch, i.e.
cutting corners. Across varying numbers of hidden channels, we observe comparable performance
with and without this modification, despite having reduced the number of parameters by 4/10. This
supports the intuition from our hand-coded BFS implementation and suggests that diagonal neighbors
provide little useful information when determining the next state of a given node when finding optimal
paths.

5.4 DIAMETER

In the diameter problem, we again analyze cutting corners and max-pooling, as well as the effect of
kernel size. In Table 4, we see that max-pooling has a significant effect on the models’ performance
and generalization on the diameter problem. Spatial max-pooling allows for the global aggregation
of information computed locally at disparate points on the map. In our hand-coded DFS-NCA,
max-pooling is used to pop frontier nodes from a stack so that we may traverse them in sequence. In
the neural diameter algorithm, it also corresponds to the argmax of the shortest paths that have been
found in different connected components of the grid.

Table 5 suggests that simply increasing kernel size in convolutional layers tends to degrade the
performance of NCAs on the diameter problem. This recalls the performance differences between
MLP and GNN/NCA architectures observed in Table 1, in that MLPs, which observe spatially larger
parts of the input maze at once are not robust to mazes outside of the training set. In one sense, this
would seem to go against the intuition suggested by our hand-coded DFS-NCA, which uses 5⇥ 5
kernels. But very little of these larger patches are actually used in our hand-coded weights, and the
potentially extraneous information they provide to a learning model may lead it to make spurious
correlations.

Accordingly, in Table 5 we also examine the effect of cutting corners for cells that go unused in our
handcoded DFS-NCA (refer to Table 2.3 for the weights). This increases the performance of 5⇥ 5
kernels despite resulting in fewer learnable parameters. Surprisingly, we also note that cutting the
corner cells in 3⇥ 3 kernels similarly improves performance, suggesting that the diameter task may
be feasible (or at least more learnable) when focusing on relationships between directly connected
nodes, and leaving non-local computations to, e.g. a small number of max-pooling operations.

5.5 ADVERSARIAL DATA GENERATION

Recall that we randomly generate a maze dataset in previous experiments. We now apply an
evolutionary algorithm to incrementally alter the dataset during training. We evolve reasoning
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model – task train test
— 16x16 16x16 32x32

n. params sol. length pct. complete accuracies pct. complete accuracies

model

env

generation

n. hid

chan

NCA – Shortest

path finding

False
96 86,400 9.02 ± 0.00 78.53 ± 43.92 77.09 ± 43.10 76.84 ± 42.97 65.99 ± 37.70

128 152,064 9.02 ± 0.00 99.37 ± 0.24 97.44 ± 0.13 97.61 ± 0.20 90.06 ± 2.93

True
96 86,400 21.39 ± 6.99 74.06 ± 41.44 79.18 ± 44.26 79.21 ± 44.28 78.12 ± 43.67

128 152,064 23.75 ± 1.36 92.92 ± 3.79 98.88 ± 0.36 99.34 ± 0.11 97.17 ± 2.15

NCA – Diameter

False
96 84,672 24.09 ± 0.00 71.58 ± 40.13 66.15 ± 36.99 55.66 ± 31.15 -5.20 ± 41.28

128 149,760 24.09 ± 0.00 74.04 ± 41.39 67.20 ± 37.57 58.32 ± 32.60 27.47 ± 52.59

True
96 84,672 26.06 ± 1.11 33.94 ± 19.12 70.47 ± 39.40 52.90 ± 29.61 60.01 ± 33.55

128 149,760 27.43 ± 0.15 49.85 ± 4.07 90.02 ± 0.44 75.79 ± 1.57 30.02 ± 64.80

Table 6: Online adversarial data evolution (with 3⇥ 3 kernels, max-pooling, and weight-sharing):
Adversarial evolution of mazes increases models’ generalization ability, as well as the solution length
of training mazes.

problems to maximize learned models’ regret (here, their loss against the ground truth), in the
same way, Parker-Holder et al. [2022] evolve game levels. When the model’s loss falls below a
certain threshold, we randomly select a batch of data points for mutation, apply noise to the data
points (changing the state of some uniformly random set of tiles in the maze), and re-compute the
ground-truth solution.

We then evaluate the model’s performance on these new mazes (without collecting any gradient),
ranking them by their fitness (the loss they induce). We then replace any of the least fit data points
from the training set with new offspring mazes that are more fit. In Table 6, we see that adversarially
evolving new data points in this way leads to increased generalization on both tasks. Additionally, this
tends to increase the complexity of examples in the training set (by a factor of 2.5 on the pathfinding
task).

5.6 ADDITIONAL RESULTS AND COMPARISONS

NCAs tackle the shortest path problem with high accuracy on both training and test sets (Fig. 1).
GCNs often produce outputs that are reasonable at a high level, though they tend to be blurrier
(Fig. 2b). These models are slower to learn and do not appear to have converged in most of our
experiments. MLPs, when confronted with the shortest path problem, will often reproduce many of
the correct tiles, but leave clear gaps in the generated path (Fig. 2a). Instead of learning a localized,
convolution-type operation at each layer, the MLP may be behaving more like an auto-encoder (owing
to their repeated encoder/decoder block architecture), memorizing the label relative to the entire maze
and reproducing it with relatively high accuracy but without preserving local coherence.

NCAs fail to perfectly generalize the diameter problem. They sometimes select the wrong branch
toward the end of a largely correct path (Fig. 2e), which is a less crucial mistake. If there are two
equivalent diameters, the model will sometimes activate both sub-paths.

6 CONCLUSION

In this paper, we introduce neural implementations of the shortest path finding and diameter problems.
We posit that these hand-coded models can provide insight into learning more general models in more
complex pathfinding-related tasks. We validate our claims by showing that architectural modifications
inspired by hand-coded solutions lead to models that generalize better.

One limitation of our method is that it deals only with mazes defined on a grid. While our neural
BFS model could be readily adapted to arbitrary graphs (i.e. translated from an NCA to a GCN
architecture), our DFS implementation relies on the convolutional structure of NCAs. One could
imagine re-implementing the sequential queuing logic of our DFS-NCA in a Graph-NCA, by using
the message-passing layer of an anisotropic GNN such as a GAT. Such hand-coded solutions could
be key to understanding how to scale the strong generalization ability exhibited by learned NCAs on
complex grid mazes to similarly complex mazes on arbitrary graphs.

Future work may also benefit from these differential sub-modules directly, either using them to
augment a learning model or using them as an adaptable starting point to further improve existing
algorithms or fit them to a particular context.
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