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ABSTRACT

Neural networks can fail when the data contains spurious correlations, i.e. associa-
tions in the training data that fail to generalize to new distributions. To understand
this phenomenon, often referred to as subpopulation shift or shortcut learning,
researchers have proposed numerous group-annotated spurious correlations bench-
marks upon which to evaluate mitigation methods. However, we observe that these
benchmarks exhibit substantial disagreement, with the best methods on one bench-
mark performing poorly on another. We explore this disagreement, and examine
benchmark validity by defining three desiderata that a benchmark should satisfy
in order to meaningfully evaluate methods. Our results have implications for both
benchmarks and mitigations: we find that certain group-annotated benchmarks are
not meaningful measures of method performance, and that several methods are not
sufficiently robust for widespread use. We present a simple recipe for practitioners
to choose methods using the most similar benchmark to their given problem.

1 INTRODUCTION

A striking failure mode of deep learning-based models is their susceptibility to spurious correlations,
whereby models learn to use patterns that only hold in certain subsets of the data (Nagarajan et al.,
2020; Geirhos et al., 2020). Researchers have produced numerous group-annotated benchmarks
for evaluating and comparing methods for mitigating spurious correlations, ultimately informing
decisions as to which method is best. In order to draw robust conclusions about which method to use,
one would hope that different benchmarks produce similar results. However, in Figure 1 we observe
this not to be the case: benchmarks often disagree, and methods that perform well on one benchmark
perform poorly on others.
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Figure 1: Spurious correlations benchmarks disagree. (a) Correlation between worst-group
accuracies on different benchmarks reported by Yang et al. (2023). (b) Waterbirds and NICO++
produce disagreeing ranks, such that the best method on Waterbirds (DFR) is the second worst on
NICO++. Higher rank indicates stronger performance.
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Faced with multiple benchmarks, standard machine learning practice is to average over contradictory
results. Averaging, however, neglects that different benchmarks may measure different things, only
some of which correspond to the desired quality. This presents a barrier to mitigating spurious
correlations in practice. When confronted by a new dataset where a group attribute correlates with
the target, which benchmark should one trust when deciding which method to apply?

In this work, we expose benchmark disagreement and analyze the validity of common group-annotated
spurious correlations benchmarks. To do so, we suggest a set of properties that a spurious correlations
benchmark should satisfy, and introduce a model-dependent statistic that quantifies the benchmark’s
task difficulty due to correlation between group attribute and target label. Using the established idea
of convergent validity (Jacobs & Wallach, 2021), we expect that two valid benchmarks testing similar
things—exhibiting similar task difficulty due to spurious correlation—should rank methods similarly.

Our results reveal that certain group-annotated benchmarks are not valid tools for evaluating
mitigation method performance. Moreover, of all the methods evaluated here, only a small handful
are robust to different tasks, while many exhibit strong performance only under specific conditions.
Finally, we provide an approach to translating between benchmark results and real-world datasets,
using our model-dependent statistic to understand which benchmark is most relevant.

1.1 BACKGROUND AND RELATED WORK

Models trained with empirical risk minimization (ERM; Vapnik, 1999, Ch. 1) tend to learn spurious
correlations (Nagarajan et al., 2020), resulting in many real-world failures (Geirhos et al., 2020). For
example, chest x-ray classifiers latch onto physical features of the scanner that fail to generalize to
new hospitals (Zech et al., 2018). In hate speech detection, models use dialect differences rather than
learning the desired task, resulting in a disproportionate false-positive rate (Sap et al., 2019). These
spurious correlations often result in models which amplify bias (Zhao et al., 2017; Wang et al., 2019).

Many researchers have sought to understand why models rely on spurious correlations. Sagawa
et al. (2020b) suggest that overparameterized models’ bias against memorization leads them to
rely on spurious correlations for minority samples. Given their well-known inductive bias towards
simplicity (Kalimeris et al., 2019; Valle-Perez et al., 2018; Bell & Sagun, 2023), models use spurious
correlations if they are simpler to learn than the intended function (Shah et al., 2020; Hall et al., 2022;
Yang et al., 2024), where simplicity may be determined by model capacity (Sreekumar & Boddeti,
2023). Key factors determining the deleterious effect of a spurious correlation include the separability
of the spurious features (Wang & Wang, 2024), correlation between the attribute and target (Yang
et al., 2024; Deng et al., 2023), the relative signal-to-noise ratios of the core and spurious features
(Yang et al., 2024), the number of spurious features Lin et al. (2023), and the relative size of the
groups (Deng et al., 2023). Our effort to quantify task difficulty due to spurious correlation builds on
these ideas of model-specific complexity, accounting for both correlation strength and learnability.

Yang et al. (2023) introduce SubpopBench and evaluate 22 mitigation methods over benchmarks
exhibiting different types of subpopulation shift, including attribute and class imbalance and missing
data. Our work builds on SubpopBench due to its comprehensive set of methods and benchmarks,
though we narrow our focus to only spurious correlations. Several other benchmarking efforts exist,
including those for evaluating spurious correlations mitigation (Joshi et al., 2023; Lynch et al., 2023),
and other forms of subpopulation shift (Koh et al., 2021; Santurkar et al., 2020; Liu et al., 2023).
More broadly, Gulrajani & Lopez-Paz (2020) introduce the DomainBed library for benchmarking
performance in various domain generalization scenarios. Interestingly, both Gulrajani & Lopez-Paz
and Joshi et al. find that with sufficient hyperparameter tuning ERM can be surprisingly robust,
motivating our consideration of ERM failure as a necessary benchmark property.

Unlike previous work concerned with benchmarking existing mitigations methods, our aim is instead
to investigate the validity of the benchmarks themselves. Our approaches are complementary: while
new benchmarks and systematic evaluations are essential, so too are meta-analyses that help us make
sense of conflicting results. Practically, we envisage our analysis supporting practical decisions around
which benchmarks to rely upon, for example by filtering the benchmarks included in SubpopBench,
or choosing between newer benchmark variants (e.g., Joshi et al., 2023; Lynch et al., 2023).
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Figure 2: (a) Standard deviation (SD) of test accuracies over groups for an ERM-trained model. (b)
SD of worst-group test accuracies over methods. (c) SD of ERM accuracies over groups vs. SD of
worst-group test accuracies over methods. Certain benchmarks, e.g. ImageNetBG, do not produce
a “worst group”, and result in tightly-clustered method performance.

1.2 OUTLINE AND CONTRIBUTIONS

We begin in §2 with the simple observation that published results on spurious correlations benchmarks
often disagree. This motivates our investigation of what benchmarks are measuring, and whether
some benchmarks are more valid than others.

In §3, we introduce three desiderata—ERM Failure, Discriminative Power, and Convergent Validity—
that capture key properties that a spurious correlations benchmark should satisfy in order to be a
meaningful test of mitigation performance. Our test for Convergent Validity will call for some way
of understanding precisely what a benchmark is actually measuring. To address this, in §3.4.1 we
propose a model-dependent statistic that measures the difficulty of a task due to spurious correlation.

In §4 we analyze the validity of eight benchmarks and the robustness of 22 mitigation methods.
Finally, in §5 we present a recipe for mapping between benchmarks and real-world datasets, and
evaluate our approach on geographically-diverse image classification. We conclude with the broader
implications of our work in §6.

2 NOT ALL BENCHMARKS AGREE

We define a benchmark as a pair of a task dataset (e.g. an image classification task) and an evaluation
metric for ranking methods (e.g. worst-group test accuracy). A spurious correlations benchmark is
designed to measure how well methods can mitigate the effects of spurious correlations. These are
typically designed so that conventional training yields poor performance on certain subsets of the
data, referred to as groups. If a benchmark’s function is to allow us to conclude which methods are
best, we would ideally like different benchmarks to agree with one another.

To our surprise, we find that they do not. Figure 1a shows the (dis)agreement, as measured by
Pearson’s r, in worst-group test accuracies over benchmarks reported by Yang et al. (2023) (see
Appendix A). Two popular benchmarks, Waterbirds and CelebA, produce only mildly-correlated
results, while results on Waterbirds and NICO++ are negatively correlated. This has a practical
outcome: Figure 1b shows that the best performing method on Waterbirds is the second-worst
on NICO++. This disagreement is not due to benchmark saturation, as Waterbirds and NICO++
worst-group test accuracies have different means (x̄ = 78.4 and 37.8 respectively) but similarly large
standard deviations (s = 6.2 and 5.8). We report similar findings on WILDS (Koh et al., 2021)
(Appendix A). This poses a challenge for the practitioner looking to mitigate spurious correlations:
faced with inconsistent benchmarks, which method to use?

We propose a simple methodology to aid this problem by studying why benchmarks disagree, and
evaluate whether some benchmarks are more valid measures of mitigation performance than others.
To do so, we define three desiderata that valid spurious correlations benchmarks should respect.
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Figure 3: Task difficulty due to spurious correlation, as measured by Bayes Factor K, on modified
benchmarks. Increasing the label-attribute correlation (a, b) and foreground noise (e) increases K,
while increasing background noise (c) or applying a solid gray background (c, orange point) decreases
K, except in the case where there is no correlation (d). Attribute noise degrades the efficacy of K (f).

3 NOT ALL BENCHMARKS ARE VALID

For a benchmark to be a meaningful test of the ability to mitigate spurious correlations, we suggest it
should satisfy three desiderata: ERM Failure, Discriminative Power, and Convergent Validity.

ERM Failure (§3.2). Spurious correlations mitigation methods are intended to prevent models from
learning patterns that might perform well on average, but cause failures for certain groups. Thus,
any benchmark intended to evaluate these methods should induce this problem when training with
conventional empirical risk minimization (ERM), which by definition optimizes to minimize error
averaged over all samples. To satisfy ERM Failure, a benchmark should produce between-group
performance disparities for models trained with ERM.

Discriminative Power (§3.3). All benchmarks are intended for evaluation and comparison, and to
support reasoning about which methods are best. In order to serve this purpose, a benchmark must
discriminate between methods and assign different scores to each. These scores, in the spurious
correlations setting, are typically worst-group test accuracies (Sagawa et al., 2020a). To satisfy
Discriminative Power, a benchmark should produce different worst-group test accuracies for
different methods.

Convergent Validity (§3.4). Even if a benchmark satisfies both ERM Failure and Discriminative
Power, it still needs to rank methods in a meaningful way. In other words, we want our benchmark
to exhibit construct validity (Jacobs & Wallach, 2021; Blodgett et al., 2021), i.e. it should allow us
to truly measure the extent to which methods mitigate spurious correlations. Establishing construct
validity of a benchmark is challenging without a ground truth, though one approach is to consider
how the benchmark performs in relation to other benchmarks (that are themselves valid according to
our first two desiderata). To satisfy Convergent Validity, a benchmark should agree with other
similar benchmarks, and disagree with those that are dissimilar.

3.1 EVALUATION SETUP AND BENCHMARKS

We evaluate the validity of eight benchmarks included in SubpopBench: Waterbirds (Sagawa et al.,
2020a), CelebA (Liu et al., 2015), ImageNetBG (a.k.a. IN-9L Original; Xiao et al., 2021), MetaShift
(Indoor/Outdoor Cat vs. Dog; Liang & Zou, 2022), NICO++ (Zhang et al., 2023), CheXpert (Irvin
et al., 2019), CivilComments (Borkan et al., 2019), and MultiNLI (Williams et al., 2018).

In addition, we develop two new benchmarks to sanity check our approach. Citybirds is a clone
of Waterbirds where confounding backgrounds are replaced with urban or rural scenes, such that
Waterbirds and Citybirds should be equally valid. Animals vs. Plants (AvP) is a binary image
classification task of animals and plants from Asia and Europe. Geography is difficult to infer relative
to class membership,1 so AvP has no practical spurious correlation. Finally, as a real-world test case
in §5, we additionally evaluate on Dollar Street (Gaviria Rojas et al., 2022), a multiclass classification
task over household objects, where groups are geographic regions. See Appendix D for full details.

We follow Yang et al.’s methodology (see Appendix C), report worst-group test accuracies, and
perform model selection according to worst-group validation accuracies.

1A linear classifier over pretrained representations failed to achieve better than chance performance on region
identification, versus strong performance on the task. See Appendix D.
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Figure 4: Benchmark agreement (Pearson’s r) as a function of difference in task difficulty due to
spurious correlation, as measured by Bayes Factor K. Each panel shows the agreement in worst-group
test accuracies on the named dataset vs. all other datasets. Only benchmarks valid according to
ERM group variability and method variability are included. Valid benchmarks should agree more
strongly with those that exhibit a similar K, thus exhibiting a negative correlation. Black solid
line fit with OLS linear regression.

3.2 EVALUATING ERM FAILURE

We test for ERM Failure by evaluating the variability of per-group test accuracies of ERM-trained
models. High variability indicates that certain groups have worse performance than others, whereas
low variability indicates that there is no real “worst group”, thus not satisfying the ERM Failure
desideratum.

Figure 2a shows the standard deviation (SD) of per-group mean test accuracies for an ERM-trained
model. Immediately, we notice that ImageNetBG exhibits very low between-group variability and
thus does not satisfy ERM Failure.

3.3 EVALUATING DISCRIMINATIVE POWER

To evaluate Discriminative Power, we test whether benchmarks assign different scores to different
methods, by measuring the SD over method worst-group test accuracies for each dataset. Low SD
indicates that all methods perform similarly, so the benchmark cannot discriminate between them,
therefore not satisfying Discriminative Power.2

2A limitation of our approach is that low Discriminative Power could also be the result of all methods
exhibiting similarly poor performance, such that the benchmark is valid but all methods are insufficiently
powerful. Given the inclusion of ERM in the set of methods, and assuming ERM Failure is satisfied, we don’t
imagine this to be of practical concern.
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Figure 5: (a) Benchmark agreement (Pearson’s r) as a function of by difference in task difficulty due
to spurious correlation (K). I.e., the (negative) slope of each line in Figure 4. (b) R2 of each line. (c)
Task difficulty due to spurious correlation, K. Valid benchmarks should most agree with other
benchmarks with similar K, so a large coefficient indicates a more valid benchmark.

Figure 2b shows the SD over methods in SubpopBench. ImageNetBG results in tightly-clustered
worst-group accuracies, not satisfying Discriminative Power. We also observe a strong positive
correlation between ERM accuracy variability across groups and worst-group test accuracy variability
across methods (Figure 2c). We hypothesize that benchmarks could exist that satisfy ERM Failure
but not Discriminative Power, but we do not observe them here.

3.4 EVALUATING CONVERGENT VALIDITY

We suggest that the defining characteristic of a spurious correlations benchmark is the task difficulty
due to spurious correlation. Thus, to test Convergent Validity we check if two benchmarks with similar
task difficulty produce similar results. Specifically, we measure how inter-benchmark agreement
changes as a function of the difference in task difficulty due to spurious correlation. Datasets that
exhibit convergent validity should show a strong correlation, where increasing distance increases
disagreement.

3.4.1 INTRODUCING K : TASK DIFFICULTY DUE TO SPURIOUS CORRELATION

Before we can evaluate Convergent Validity, we must first take a brief detour to understand what
benchmarks actually measure. We argue that three factors should determine how a spurious correla-
tions benchmark behaves:

1. The strength of the association, i.e. how often targets and attributes co-occur in the data;
2. The difficulty of learning the correlated attribute, i.e. how easily can a model predict the

attribute; and
3. The difficulty of learning the intended target, i.e. how easily the model can predict the class

label.

A common measure of spurious correlation is mutual information (MI) between groups and targets
(Yang et al., 2023). However, MI only accounts for factor 1, and is not sensitive to factors 2 and 3,
which are necessarily model-dependent.3 See Appendix B for empirical evidence of this problem.
To account for all three factors, we propose using the Bayes Factor as a model-dependent statistic
that quantifies the task difficulty due to spurious correlations. The Bayes Factor evaluates the relative
model performance of a model that can leverage the spurious correlation to solve the task, and a
model that is penalized for doing so.

3Consider a grayscale-only model trained on Coloured MNIST. While there may be a spurious correlation
between target and attribute, the model cannot exploit it (Arjovsky et al., 2019).
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Table 1: Measures of validity, ERM Failure, Discriminative Power, and Convergent Validity, along-
side best performing method and resulting worst-group test accuracies, for nine benchmarks from
SubpopBench and our two additions. Only certain benchmarks satisfy all three desiderata.

Benchmark K ERM Fail. Disc. Power Conv. Validity Method WG test acc.

MultiNLI -0.15 10.81 10.89 -0.04 GroupDRO 75.58
AvP 0.22 6.47 2.96 -0.01 GroupDRO 91.75
ImageNetBG -0.01 0.65 2.16 0.03 CRT 78.22
Metashift 0.18 9.84 2.95 0.15 ReSample 80.00
CMNIST 0.80 35.68 22.45 0.24 LISA 71.09
CivilComments 1.00 19.40 8.06 0.30 GroupDRO 72.53
NICO++ -0.47 11.14 7.00 0.31 Focal 37.78
CheXpert 1.35 31.52 22.94 0.33 CBLoss 75.08
CelebA 2.39 23.61 13.90 0.34 DFR 87.78
Citybirds 1.32 15.57 11.01 0.41 ReWeight 90.50
Waterbirds 1.32 12.65 5.31 0.41 LISA 86.98

We use the Bayes Factor to compare how well the original and penalized models explain the data,
defining the task difficulty due to spurious correlation of a benchmark as

K = log
P (Y WG

test |XWG
test ,MRW )

P (Y WG
test |XWG

test ,MERM )
,

where the numerator is the likelihood of the worst test group (Y WG
test , X

WG
test ), according to the model

penalized for using the spurious correlation, MRW , and the denominator is according to the model
that uses the spurious correlation, MERM . MERM is the benchmark’s base model trained using
ERM, whereas MRW is the same base model trained with a reweighted loss function, where each
sample’s weight is inversely proportional to its group size. We choose reweighting for its simplicity
and minimal assumptions. In Appendix F we present almost identical results using an implementation
of K with GroupDRO, additionally finding K is highly robust to hyperparameter tuning for both
MERM and MRW . We use ResNet-50 (He et al., 2016) as a base model for vision benchmarks, and
BERT for language (Devlin et al., 2019).

One can interpret K as measuring how much better the reweighted model explains the test set, versus
the ERM model. High K indicates that the task is made more difficult by the spurious correlation,
and a low K indicates that the spurious correlation is not a dominant factor.

3.4.2 SANITY CHECKING K

To ensure that K functions correctly, we test it using artificially manipulated datasets. We produce
versions of CelebA and Waterbirds with increasingly correlated attributes and targets (“confounder
strength”), and versions of Waterbirds with various amounts of background noise, foreground noise
and attribute noise (see Appendix E). Figure 3 shows that, as intended, K increases with confounder
strength on both Waterbirds and CelebA (Figures 3a and 3b). On Waterbirds, K decreases as
background noise increases (reducing the utility of the spurious correlation), as long as a correlation
exists (Figures 3c and 3d). Conversely, K increases as foreground noise increases (increasing the
utility of the spurious correlation; Figure 3f). We also see that Citybirds has a K equal to that of
Waterbirds, and AvP has low K reflecting the limited utility of the spuriously correlated geographic
information (Figure 5c). Our experiments support K as a measure of task difficulty due to spurious
correlation, though we note that K depends on both the availability and quality of attribute annotations
(Figure 3f).4

3.4.3 MEASURING CONVERGENT VALIDITY WITH K

Figure 5c shows the value of K for our sample of benchmark datasets. Certain benchmarks, e.g.
CelebA, have very high K, indicating that task difficulty is dominated by the spurious correlations
in the data. Other datasets, such as Dollar Street and NICO++, exhibit low K, suggesting spurious
correlation is not a principal factor in task difficulty.

4We consider 100% attribute noise equivalent to attribute information not being available.
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Figure 6: (a) Box plot of worst-group test accuracies for each method over all datasets. White line
median; box IQR; whiskers range. (b) Median and IQR of worst-group test accuracies for each
method. Only certain methods consistently yield high worst-group accuracies.

Recall in §3.4 we said that benchmarks exhibiting Convergent Validity must agree with other
benchmarks that measure the same thing. More precisely, if we use K to describe what a benchmark
measures, valid benchmarks should agree most strongly with other datasets with a similar task
K. In other words, between-benchmark disagreement should increase as two datasets have more
different values of K. Figure 4 shows the the agreement (Pearson’s r) in worst-group test accuracies
achieved over methods between pairs of benchmarks, as a function of the distance in K between
the benchmarks. A strong negative slope indicates that the more benchmarks differ, the more they
disagree, whereas a horizontal slope indicates that agreement is not a function of K difference, i.e.
not satisfying convergent validity. Figure 5a shows the (negative) slope of the agreement function for
each benchmark. MultiNLI, AvP and ImageNetBG have low Convergent Validity.

Summary. ImageNetBG satisfies none of our three desiderata, whereas MultiNLI and AvP satisfy
ERM Failure and Discriminative Power but not Convergent Validity. See Table 1.

4 NOT ALL METHODS ARE ROBUST
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Figure 7: Proportion of worst-
group test accuracy variance ex-
plained (R2) by K for each method
over all datasets. Benchmark K
explains a large proportion of vari-
ance for stable methods.

The function of a benchmark is to evaluate method efficacy to
support reasoning about which method to use. Having discarded
certain benchmarks as invalid measures, we now ask whether
some methods are more robust than others. As a step towards
making practical recommendations in real-world contexts, we
ask whether certain methods are more robust to benchmarks
with different K.

Figure 6a shows the distribution of worst-group test accuracies
over benchmarks for each method, while Figure 6b shows the
median worst-group test accuracy and the inter-quartile range
(IQR).5 Methods in the lower-right corner of Figure 6b, such as
CRT, ReWeight, ReSample and GroupDRO, exhibit both high
performance and low variability over benchmarks.

Next, we ask to what extent method variability is a function
of the benchmark’s task difficulty due to spurious correlation.
Figure 7 shows how much a benchmark’s K explains the vari-
ance in worst-group test accuracies (see Appendix G). Many
of the methods with low IQRs have a large proportion of their

5We use median and IQR as many methods exhibit non-normal performance distributions over benchmarks.
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Table 2: Results of selecting a method according to worst-group test accuracy averaged over all
benchmarks ("All Benchmarks"), averaged over valid benchmarks ("Valid Benchmarks"), and on
the closest valid benchmark according to K (“Closest Benchmark”). Using the closest benchmark
(col. 8) results in the best performance for 5 out of 8 test datasets7. Alternatively, averaging over
valid benchmarks (col. 5) instead of all benchmarks (col. 3) improves performance on 6 out of 9 test
datasets. On Dollar Street, using the closest benchmark improves on standard practice.

All Benchmarks Valid Benchmarks Closest Benchmark

Test Dataset Method Acc. Method Acc. Closest benchmark Method Acc.

CelebA GroupDRO 87.22 ReSample 85.37 CheXpert CBLoss 87.41
CheXpert GroupDRO 71.82 ReSample 74.21 Citybirds ReWeight 73.95
Citybirds GroupDRO 89.46 ReSample 88.16 Waterbirds LISA 88.52
CivilComments GroupDRO 72.53 ReSample 72.50 - - -
CMNIST GroupDRO 70.83 ReSample 70.99 Waterbirds LISA 71.09
Metashift GroupDRO 75.90 ReSample 80.00 CMNIST LISA 72.31
NICO++ GroupDRO 33.33 ReSample 35.56 Metashift ReSample 35.56
Waterbirds GroupDRO 84.79 ReSample 85.57 Citybirds ReWeight 86.68

DollarStreet GroupDRO 58.65 ReSample 58.81 NICO++ Focal 59.25

variance explained by the benchmark’s K, suggesting that while variability may be reduced, they
remain sensitive to benchmark specifics.

Summary. While practitioners must consider the specific nature of their dataset, certain methods, e.g.
CRT, ReWeight, ReSample and GroupDRO, achieve consistently high worst-group test accuracies.

5 PRACTICAL RECOMMENDATIONS

When competing benchmarks suggest different methods, practitioners are left with a crucial question:
what should I use for my specific dataset? Building upon our investigation of benchmark validity, we
take a first step towards bridging the gap between real-world problems and common benchmarks.

A typical strategy is to take the method with the best performance averaged over all benchmarks. We
evaluate two improvements over this conventional practice. First, we suggest only averaging over
benchmarks deemed valid according to our three desiderata. Second, we suggest choosing the most
similar benchmark to our given problem. Concretely, given some arbitrary dataset (which we refer as
a “test dataset”6) we recommend that practitioners first calculate its K, and select the benchmark
with the closest K. We hypothesize that the best performing methods on the closest benchmark will
be most appropriate for the test dataset.

We test our approach using a Leave-One-Out analysis, where for each of eight test datasets we
select the next closest benchmark, and evaluate the closest benchmark’s best performing method on
our test dataset (“Closest Benchmark”). We compare worst-group test accuracies for this method
against the best method according to the all-benchmark average (“All Benchmarks”), and the valid-
benchmark average (“Valid Benchmarks”). We perform an additional evaluation using Dollar Street,
a dataset of geographically-diverse household images. Previous work has identified significantly
worse performance of contemporary vision models for non-Western regions (de Vries et al., 2019;
Richards et al., 2023). We extend SubpopBench to include a 42-class object classification task using
Dollar Street, where group information is geographic region. See Appendix D for further details.

Table 2 shows the results of our two approaches. Averaging over benchmarks results in a single
“best” method. Over all benchmarks, this method is GroupDRO; over valid benchmarks only this
is ReSample. For six of nine test datasets, ReSample outperforms GroupDRO, confirming that
filtering benchmarks before averaging is helpful. For five of eight test datasets,7 selecting a method
according to the closest benchmark would produce superior worst-group test accuracies, supporting
our hypothesis that selecting based on similarity improves performance.

6We describe these as test datasets, rather than benchmarks, to emphasize we are evaluating our approach as
if we were a practitioner, faced with some new test dataset.

7We exclude CivilComments as it lacks appropriate comparison benchmarks. Recall that we found MultiNLI
to be invalid, and that K is model-specific, such one can’t compare across a ResNet-based and a BERT-based K.
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On Dollar Street, selecting a method by averaging over valid benchmarks improves over indiscriminate
averaging, and selecting a method using the closest benchmark improves performance further. We
highlight that in Figure 5c we see a low K for Dollar Street, which suggests that it is not a dataset
dominated by spurious correlations, and other factors may contribute (Gustafson et al., 2023).

Summary. Practitioners should only average over valid benchmarks when determining which method
is best. Choosing methods according to the closest benchmark may improve performance.

6 DISCUSSION

Benchmark validity. Our work joins a wider discussion evaluation practice validity, such as that of
Jacobs & Wallach (2021) who argue that machine learning researchers can “collapse the distinctions
between constructs and their operationalizations” (p. 384). Blodgett et al. (2021) find that many
NLP fairness benchmarks are not meaningful measurement tools, while Subramonian et al. (2023)
consider how differing task conceptualizations lead to benchmark disagreement. Denton et al. (2021)
examine the implicit assumptions behind ImageNet, in particular the way its creators operationalize a
particular conception of vision. Benchmarks considered here may encode notions of spuriousness
whose appropriateness is context-sensitive.

Practical applicability. When simplifying real-world problems into benchmarks, we sometimes
lose sight of our original intent (Selbst et al., 2019). Our results call for consideration of whether
solving a benchmark corresponds to solving a real problem. For example, we observe that Dollar
Street has a low task difficulty due to spurious correlation (Figure 5c). Thus, if our motive were to
reduce computer vision’s Western bias (Richards et al., 2023), one could ask whether developing
methods optimized for spurious correlations is a helpful endeavor.

Broader concerns. Beyond validity, we might also ask about benchmark acceptability. One
benchmark, CelebA (Liu et al., 2015), involves an association between hair color and a binary
“gender” attribute (according to an external annotator), reinforcing views about gender that could be
harmful to non-binary and gender nonconforming people (Keyes, 2018; Denton et al., 2020). It is our
firm view that CelebA should not be used for benchmarking.

Limitations. One limitation of our work is that both the ERM Failure and Discriminative Power
desiderata depend on well-defined group attributes. Similarly, while Convergent Validity can in prin-
cipal be applied to any benchmark, our use of K also requires group information for the reweighted
model. More broadly, our evaluation only only considers benchmarks with well-defined group
attributes, which may neglect realistic scenarios where distribution shifts are unknown. Exploration
of spurious correlations benchmarks without attributes remains an exciting area for research.

The need for attribute information is also suggestive of a more subtle limitation. It is important to draw
a distinction between satisfying a desideratum itself, and passing our test as currently implemented.
For example, our test for Discriminative Power relies on standard deviation, which can be influenced
by the presence of outliers. Whichever statistic used, reasoning about validity necessitates carefully
assessing multiple streams of evidence, such as considering Discriminative Power in combination
with other desiderata.

Our explicitly model-centric approach accounts for the relative utility of a spurious correlation to
a specific model: as we note earlier, a color-based group feature is of no use to a grayscale-CNN
(Arjovsky et al., 2019). Accordingly, our benchmark evaluation is conditional upon on the specific
model architectures we used for testing mitigations methods, ResNet-50 and BERT base (chosen for
their continued popularity in spurious correlations research). As the research community continues
to develop new model architectures, we expect continued re-evaluation of the utility of current
benchmarks (particularly with respect to ERM Failure) is likely to be necessary.

Closing remark. Benchmarks form an essential component of the way machine learning evaluates
methods and draws conclusions. In the domain of spurious correlations, our analysis suggests that
not all of our benchmarks yield equally meaningful results. We hope to have shown that benchmark
choice matters: it leads to different conclusions; different recommendations; and ultimately better or
worse deployed models.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization,
2019.

Samuel James Bell and Levent Sagun. Simplicity bias leads to amplified performance disparities. In
Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, FAccT
’23, pp. 355–369. Association for Computing Machinery, 2023. doi:10.1145/3593013.3594003.

Su Lin Blodgett, Gilsinia Lopez, Alexandra Olteanu, Robert Sim, and Hanna Wallach. Stereotyping
Norwegian salmon: An inventory of pitfalls in fairness benchmark datasets. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1004–1015.
Association for Computational Linguistics, 2021. doi:10.18653/v1/2021.acl-long.81.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced metrics
for measuring unintended bias with real data for text classification. In Companion Proceedings
of The 2019 World Wide Web Conference, WWW ’19, pp. 491–500. Association for Computing
Machinery, 2019. doi:10.1145/3308560.3317593.

Terrance de Vries, Ishan Misra, Changhan Wang, and Laurens van der Maaten. Does object recogni-
tion work for everyone? In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 52–59, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255, 2009. doi:10.1109/CVPR.2009.5206848.

Yihe Deng, Yu Yang, Baharan Mirzasoleiman, and Quanquan Gu. Robust Learn-
ing with Progressive Data Expansion Against Spurious Correlation. Advances in
Neural Information Processing Systems, 36:1390–1402, December 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/hash/
0506ad3d1bcc8398a920db9340f27fe4-Abstract-Conference.html.

Remi Denton, Ben Hutchinson, Margaret Mitchell, Timnit Gebru, and Andrew Zaldivar. Image
counterfactual sensitivity analysis for detecting unintended bias, 2020.

Remi Denton, Alex Hanna, Razvan Amironesei, Andrew Smart, and Hilary Nicole. On the ge-
nealogy of machine learning datasets: A critical history of ImageNet. Big Data & Society, 8(2):
20539517211035955, 2021. doi:10.1177/20539517211035955.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational
Linguistics, 2019. doi:10.18653/v1/N19-1423.

Abhimanyu Dubey, Vignesh Ramanathan, Alex Pentland, and Dhruv Mahajan. Adaptive methods
for real-world domain generalization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 14340–14349, 2021.

William Gaviria Rojas, Sudnya Diamos, Keertan Kini, David Kanter, Vijay Janapa Reddi, and Cody
Coleman. The Dollar Street dataset: Images representing the geographic and socioeconomic
diversity of the world. In Advances in Neural Information Processing Systems, volume 35, pp.
12979–12990. Curran Associates, Inc., 2022.

Robert Geirhos, Jörn Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665–673, 2020. doi:10.1038/s42256-020-00257-z.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=lQdXeXDoWtI.

11

https://doi.org/10.1145/3593013.3594003
https://doi.org/10.18653/v1/2021.acl-long.81
https://doi.org/10.1145/3308560.3317593
https://doi.org/10.1109/CVPR.2009.5206848
https://proceedings.neurips.cc/paper_files/paper/2023/hash/0506ad3d1bcc8398a920db9340f27fe4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/0506ad3d1bcc8398a920db9340f27fe4-Abstract-Conference.html
https://doi.org/10.1177/20539517211035955
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1038/s42256-020-00257-z
https://openreview.net/forum?id=lQdXeXDoWtI
https://openreview.net/forum?id=lQdXeXDoWtI


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Laura Gustafson, Megan Richards, Melissa Hall, Caner Hazirbas, Diane Bouchacourt, and Mark
Ibrahim. Exploring why object recognition performance degrades across income levels and ge-
ographies with factor annotations. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023.

Melissa Hall, Laurens van der Maaten, Laura Gustafson, Maxwell Jones, and Aaron Adcock. A
systematic study of bias amplification, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik
Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins, David A. Mong,
Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz, Bhavik N.
Patel, Matthew P. Lungren, and Andrew Y. Ng. CheXpert: a large chest radiograph dataset with
uncertainty labels and expert comparison. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Con-
ference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, 2019.
doi:10.1609/aaai.v33i01.3301590.

Abigail Z. Jacobs and Hanna Wallach. Measurement and fairness. In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, FAccT ’21, pp. 375–385. Association
for Computing Machinery, 2021. doi:10.1145/3442188.3445901.

Siddharth Joshi, Yu Yang, Yihao Xue, Wenhan Yang, and Baharan Mirzasoleiman. Towards mitigating
spurious correlations in the wild: A benchmark and a more realistic dataset, 2023.

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz Barak,
and Haofeng Zhang. SGD on neural networks learns functions of increasing complexity. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Os Keyes. The misgendering machines: Trans/HCI implications of automatic gender recognition.
Proc. ACM Hum.-Comput. Interact., 2(CSCW), 2018. doi:10.1145/3274357.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A
benchmark of in-the-wild distribution shifts. In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 5637–5664.
PMLR, 2021.

Weixin Liang and James Zou. MetaShift: A dataset of datasets for evaluating contextual distribution
shifts and training conflicts. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=MTex8qKavoS.

Yong Lin, Lu Tan, Yifan Hao, Ho Nam Wong, Hanze Dong, Weizhong Zhang, Yujiu Yang, and
Tong Zhang. Spurious Feature Diversification Improves Out-of-distribution Generalization. In
The Twelfth International Conference on Learning Representations, October 2023. URL https:
//openreview.net/forum?id=d6H4RBi7RH.

Jiashuo Liu, Tianyu Wang, Peng Cui, and Hongseok Namkoong. On the need for a language
describing distribution shifts: Illustrations on tabular datasets. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015.

Alejandro López-Cifuentes, Marcos Escudero-Viñolo, Jesús Bescós, and Álvaro García-
Martín. Semantic-aware scene recognition. Pattern Recognition, 102:107256, 2020.
doi:10.1016/j.patcog.2020.107256.

12

https://doi.org/10.1609/aaai.v33i01.3301590
https://doi.org/10.1145/3442188.3445901
https://doi.org/10.1145/3274357
https://openreview.net/forum?id=MTex8qKavoS
https://openreview.net/forum?id=d6H4RBi7RH
https://openreview.net/forum?id=d6H4RBi7RH
https://doi.org/10.1016/j.patcog.2020.107256


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aengus Lynch, Gbètondji J.-S. Dovonon, Jean Kaddour, and Ricardo Silva. Spawrious: A benchmark
for fine control of spurious correlation biases, 2023.

Vaishnavh Nagarajan, Anders Andreassen, and Behnam Neyshabur. Understanding the failure modes
of out-of-distribution generalization. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=fSTD6NFIW_b.

Megan Richards, Polina Kirichenko, Diane Bouchacourt, and Mark Ibrahim. Does progress on object
recognition benchmarks improve real-world generalization?, 2023.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–252,
2015. doi:10.1007/s11263-015-0816-y.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks. In International Conference on Learning Representations, 2020a. URL https:
//openreview.net/forum?id=ryxGuJrFvS.

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why
overparameterization exacerbates spurious correlations. In Proceedings of the 37th International
Conference on Machine Learning, pp. 8346–8356. PMLR, 2020b.

Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. BREEDS: Benchmarks for sub-
population shift. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=mQPBmvyAuk.

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A. Smith. The risk of racial
bias in hate speech detection. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 1668–1678, Florence, Italy, 2019. Association for Computational
Linguistics. doi:10.18653/v1/P19-1163.

Andrew D. Selbst, Danah Boyd, Sorelle A. Friedler, Suresh Venkatasubramanian, and Janet Vertesi.
Fairness and abstraction in sociotechnical systems. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, FAT* ’19, pp. 59–68. Association for Computing Machinery,
2019. doi:10.1145/3287560.3287598.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
pitfalls of simplicity bias in neural networks. In Advances in Neural Information Processing
Systems, volume 33, pp. 9573–9585. Curran Associates, Inc., 2020.

Gautam Sreekumar and Vishnu Naresh Boddeti. Spurious correlations and where to find them. In
ICML 2023 Workshop on Spurious Correlations, Invariance, and Stability. arXiv, 2023.

Arjun Subramonian, Xingdi Yuan, Hal Daumé III, and Su Lin Blodgett. It takes two to tango:
Navigating conceptualizations of NLP tasks and measurements of performance. In Findings
of the Association for Computational Linguistics: ACL 2023, pp. 3234–3279. Association for
Computational Linguistics, 2023. doi:10.18653/v1/2023.findings-acl.202.

Guillermo Valle-Perez, Chico Q. Camargo, and Ard A. Louis. Deep learning generalizes because the
parameter-function map is biased towards simple functions. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rye4g3AqFm.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer Science & Business Media,
1999.

Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente Ordonez. Balanced datasets are
not enough: Estimating and mitigating gender bias in deep image representations. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 5310–5319, 2019.

Yipei Wang and Xiaoqian Wang. On the Effect of Key Factors in Spurious Correlation: A theoretical
Perspective. In Proceedings of The 27th International Conference on Artificial Intelligence and
Statistics, pp. 3745–3753. PMLR, April 2024. URL https://proceedings.mlr.press/
v238/wang24j.html.

13

https://openreview.net/forum?id=fSTD6NFIW_b
https://doi.org/10.1007/s11263-015-0816-y
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=mQPBmvyAuk
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.1145/3287560.3287598
https://doi.org/10.18653/v1/2023.findings-acl.202
https://openreview.net/forum?id=rye4g3AqFm
https://proceedings.mlr.press/v238/wang24j.html
https://proceedings.mlr.press/v238/wang24j.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pp. 1112–1122. Association for Computational Linguistics, 2018.
doi:10.18653/v1/N18-1101.

Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal:
The role of image backgrounds in object recognition. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=gl3D-xY7wLq.

Yu Yang, Eric Gan, Gintare Karolina Dziugaite, and Baharan Mirzasoleiman. Identifying Spurious
Biases Early in Training through the Lens of Simplicity Bias. In Proceedings of The 27th
International Conference on Artificial Intelligence and Statistics, pp. 2953–2961. PMLR, April
2024. URL https://proceedings.mlr.press/v238/yang24c.html.

Yuzhe Yang, Haoran Zhang, Dina Katabi, and Marzyeh Ghassemi. Change is hard: A closer look at
subpopulation shift. In Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 39584–39622. PMLR, 2023.

John R. Zech, Marcus A. Badgeley, Manway Liu, Anthony B. Costa, Joseph J. Titano, and Eric Karl
Oermann. Variable generalization performance of a deep learning model to detect pneumo-
nia in chest radiographs: A cross-sectional study. PLOS Medicine, 15(11):e1002683, 2018.
doi:10.1371/journal.pmed.1002683.

Xingxuan Zhang, Yue He, Renzhe Xu, Han Yu, Zheyan Shen, and Peng Cui. NICO++: Towards
better benchmarking for domain generalization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 16036–16047, 2023.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai Wei Chang. Men also like
shopping: Reducing gender bias amplification using corpus-level constraints. EMNLP 2017 -
Conference on Empirical Methods in Natural Language Processing, Proceedings, pp. 2979–2989,
2017. doi:10.18653/v1/d17-1323.

14

https://doi.org/10.18653/v1/N18-1101
https://openreview.net/forum?id=gl3D-xY7wLq
https://proceedings.mlr.press/v238/yang24c.html
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.18653/v1/d17-1323


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A META-ANALYSIS OF PUBLISHED DATA

In Figure 1 we analyze previously-published results from the SubpopBench benchmarking library
(Yang et al., 2023). We report similar findings analyzing the previously published results from
the WILDS benchmarking library (Koh et al., 2021) in Figure 8. We take published worst-group
test accuracies, as reported in these two papers, and compute the correlation (Pearson’s r) between
benchmarks. For SubpopBench, we use the “Worst Acc.” columns from tables reported in Yang et al.
(2023, Appendix E.1). For WILDS, we use the results reported in Koh et al. (2021, table 2).
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Figure 8: Correlation (Pearson’s r) between worst-group accuracies across benchmarks in WILDS
Koh et al. (2021).

B MUTUAL INFORMATION

Mutual Information (MI) between attributes and target labels is a common metric for evaluating the
strength of a spurious correlation. Given a group-annotated dataset (X,Y,A) where X is the input
data, Y are the target labels and A are group annotations, mutual information I(Y ;A) is defined as

I(Y ;A) =
∑
y,a

P (y, a) log
P (y, a)

P (y)P (a)
. (1)

However, mutual information will fail to account for the relative difficulty of learning to predict the
target, or vice-versa learning to use the spurious correlation. As an illustrative example, consider a
version of Waterbirds (Sagawa et al., 2020a) where the background is 100% noise. Whatever the
mutual information between attributes and labels, this would not be a practically important spurious
correlation. Conversely, in a dataset where the image of the bird is 100% noise, the task would be so
difficult as to increase the reliance on the spurious correlation. We demonstrate this, showing the
effect of applying background and foreground noise in Figure 9. Motivating our choice of a model-
dependent statistic describing the task difficulty due to spurious correlation, mutual information is
unable to account for the effects of foreground and background noise.
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Figure 9: Mutual information I(Y ;A) for datasets with various synthetic modifications. By definition,
increasing label-attribute correlation increases mutual information (a, b), but cannot account for the
effect of background noise (c, d), foreground noise (e) or attribute noise (f). Model-independent,
data-only metrics are unable to capture the key factors driving task difficulty due to spurious
correlation.
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C SUBPOPBENCH EVALUATION DETAILS

To evaluate the validity of common benchmarks, we build upon the comprehensive benchmarking
library, SubpopBench, of Yang et al. (2023). The worst-group test accuracies we report follow the
exact methodology specified by Yang et al. (2023). Reported results are the worst-group test accuracy
on the test set. Group attributes are available at all times. Following Yang et al. (2023), we search 16
random hyperparameter configurations, and train 3 random seeds of the best performing configuration,
where the “best” is the model with the highest worst-group test accuracy on the validation set. Vision
benchmarks used a ResNet-50 model (He et al., 2016), pretrained on ImageNet-1k (Russakovsky
et al., 2015). Language benchmarks used a BERT base uncased model (Devlin et al., 2019). For full
details see Yang et al. (2023).

D BENCHMARKS

• Waterbirds (Sagawa et al., 2020a) is a binary image classification task of land-dwelling vs.
water-dwelling birds, where the spuriously correlated attribute is water and land background
scenes.

• CelebA (Liu et al., 2015) is a binary image classification task of blond vs. not-blond hair
color, where the spuriously correlated attribute is annotator-perceived binary gender. When
training on CelebA, the only output models are capable of is a blond vs. not-blond
binary judgment.

• ImageNet Backgrounds Challenge, ImageNetBG (a.k.a. IN-9L Original; Xiao et al., 2021)
is a multiclass image classification task, where images are selected from 9 coarse classes
of ImageNet (Deng et al., 2009). Xiao et al. intend that the background is correlated with
the classes, but there is no attribute information available in the SubpopBench formulation.
Following Yang et al. (2023), mitigation methods fall back to class labels in the absence of
attribute information.

• MetaShift (Indoor/Outdoor Cat vs. Dog; Liang & Zou, 2022) is a binary image classification
task where the spuriously correlated attribute is indoor or outdoor scenes.

• NICO++ (Zhang et al., 2023) is a multiclass image classification task over common objects,
plants and animals where the spuriously correlated attribute is one of (autumn, dim, grass,
outdoor, rock, water).

• CheXpert (Irvin et al., 2019) is a medical image classification task over chest x-rays, with a
binary classification into "finding" or "no finding". The spurious correlated attributes are
patient race and gender, following (Yang et al., 2023).

• CivilComments (Borkan et al., 2019) is a binary text classification task of internet comments
to be classified as toxic / not toxic. The spuriously correlated attribute is one of 9 group
identities that are the target of the toxicity.

• MultiNLI (Williams et al., 2018) is a natural language inference task, comprising sets of
sentences where sentences can either entail, contradict or be neutral with one another. The
spuriously correlated attribute is the presence of negation words.

• Dollar Street (Gaviria Rojas et al., 2022) is a geographically diverse collection of household
images, which in our work we frame as a multiclass object classification task, where
the attribute information is geographic region. Although the original Dollar Street more
classes, we filter them to only include classes that are present in every region, following
(Gaviria Rojas et al., 2022). When training on Dollar Street, models are only capable of
outputting one of 42 classes, none of which are related to people.

D.1 CITYBIRDS

Citybirds is a new variant of Waterbirds where the confounding background scenes are urban or rural
environments. We generate Citybirds using the Waterbirds generation scripts of Sagawa et al. (2020a),
modifying the choice of background images. Background images are drawn from the Places365
dataset (López-Cifuentes et al., 2020), with urban backgrounds from the “street” and “downtown”
classes, and rural backgrounds from the “farm” and “field/cultivated” classes. The number of samples
per group is matched between Waterbirds and Citybirds.
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D.2 ANIMALS VS. PLANTS (AVP)

AvP is a new binary classification task over diverse images of animals and plants, drawn from two
geographic regions, Asia and Europe. The target label is animal or plant, and the group attribute is
Asia or Europe. We construct AvP by sampling images from the GeoYFCC dataset (Dubey et al.,
2021) of natural images, limiting our sample to only include classes that are within the hierarchy of
the “animal.n.01” and “plant.n.02” ImageNet hierarchy. We explicitly exclude all images containing
people. To identify region as either Asia or Europe, we map the country information provided by
GeoYFCC to continents using the pycountry_convert Python package. The number of samples per
group exactly matches Waterbirds. We validated that geographic information is harder to extract
than the animals vs. plants classification task by comparing two linear models, one to predict class
membership and another to predict geographic region, over representations extracted from a ResNet-
50 (He et al., 2016) pre-trained on ImageNet-1K (Russakovsky et al., 2015). As expected, geographic
performance was at chance level compared to much stronger performance for the target task.

See Figure 10 for the number of samples per group in each dataset.
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Figure 10: (a) Minimum group size per train dataset; (b) Maximum train group size; (c) Mean train
group size; (d) Total number of train samples. (e–h) As above but for test set.

E K VALIDATION BENCHMARKS

We implement a number of synthetic modifications to existing benchmarks in order to sanity check
our measure K. To test for the effect of the amount of attribute–target correlation, we modify
Waterbirds and CelebA. For Waterbirds, use Sagawa et al. (2020a)’s generation scripts, varying the
“confounder strength” argument. For CelebA, we use subsampling to balance out the effect of the hair
color and gender correlation, while keeping the total number of samples constant.

We also test version of Waterbirds with various degrees of RGB Gaussian noise applied to the
background images and the foreground images, though we note that the outline of the bird (if
not its detail) is still visible even under high noise. Given that noise can easily be memorized by
contemporary neural networks, we also produce a version with a solid gray background, finding
equivalent results to the 100% noise background case. Finally, we test for the effect of attribute noise
by randomly flipping a proportion of the annotations, finding the K becomes less able to detect the
spurious correlation as attribute noise increases.
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F K IMPLEMENTATION DETAILS

To calculate K, we train two models, MERM and MRW . MERM is a base model (see Appendix C)
trained to minimize cross-entropy loss using Adam (Kingma & Ba, 2017) with learning rate 1e− 3
until validation loss convergence. MRW is trained in the same way, though using a reweighted loss
function, where the weight of each sample is proportional to the number of samples in each group.

Let N train be the number of samples in the training set, and N train
ai,yi

be the number of samples where
the attribute ai and target yi match the current sample xi, then the weight for sample xi is

wi =
N train

N train
ai,yi

. (2)

Given that our approach is to compare a model using the spurious correlation with one penalized
for doing so, it is possible to implement K with an alternative reference method. We evaluate the
robustness of our approach to choice of reference method by computing KGroupDRO as follows:

KGroupDRO = log
P (Y WG

test |XWG
test ,MGroupDRO)

P (Y WG
test |XWG

test ,MERM )
,

where MGroupDRO is a model trained exactly as above but using GroupDRO (Sagawa et al., 2020a)
instead of loss function reweighting. Figure 11 shows that KGroupDRO exhibits similar trends to
those of KRW reported in Figure 3. In Figure 12, over all benchmarks and synthetic modifications
considered in our paper, we see an almost perfect correlation between KRW and KGroupDRO. Our
results indicate that our measure of task difficulty due to spurious correlation is not senstive to choice
of reference method.

A natural consequence of a model-dependent metric is a degree of sensitivity to the optimization
procedure used when training the underlying model. For example, it is possible that K may vary
according to the hyperparameters chosen for training MERM and MRW . To evaluate this, we
recalculate K under different learning rates and batch sizes, for each of the benchmarks reported in
Table 2, and evaluate whether the resulting sets of K are consistent with K as originally reported.
We vary hyperparameters in lockstep between the two models, such that the learning rate for both
models is always equal, as is the batch size, resulting in a like-versus-like, rather than best-versus-best
comparison. Note that for the batch size experiments, we exclude NICO++ and Dollar Street due
to training instability resulting from unsuitable batch sizes. In Figure 13, we present the correlation
(Pearson’s r) of the resulting K versus the reference implementation, finding that regardless of
hyperparameter choice, K appears to produce a significantly highly positively correlated set of
K (r > 0.9; p ≤ 0.001). Thus, we conclude that K is practically robust in light of reasonable
hyperparameter optimization.
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Figure 11: Task difficulty due to spurious correlation, as measured by Bayes Factor K computed
using a gDRO reference rather than a reweighted loss reference, for datasets with various synthetic
modifications. Increasing the label-attribute correlation (a, b) and foreground noise (e) increases
K, while increasing background noise (c) or applying a solid gray background (c, orange point)
decreases K, except in the case where there is no correlation (d). Attribute noise degrades the efficacy
of K (f). Trends are consistent with Figure 3.
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Figure 12: Recomputing Bayes Factor K using a gDRO reference, rather than a reweighted loss
reference, does not meaningfully change K. K is robust to choice of reference model. (Pearson’s r
= 0.97, p < 1e− 6).
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Figure 13: Correlation (Pearson’s r) between K as reported in main text (orange bar) and variants K
calculated with different (a) learning rates and (b) batch sizes, over benchmarks reported in Table 2.
Training MERM and MRW with other learning rates or batch sizes produces a K that is consistently
significantly highly positively correlated (r > 0.9; p ≤ 0.001) with the original K across all settings
considered.

G EVALUATING METHOD SENSITIVITY

We test whether the variability in method performance is a function of varying K by fitting a linear
model using OLS to the worst-group test accuracies and the benchmark’s K. We evaluate sensitivity
in terms of the proportion of variance explained, using the linear model’s Coefficient of Determination,
R2. A higher R2 indicate that K explains more of the variance in method performance, indicating
greater sensitivity.
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