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ABSTRACT

Real-world robots localize objects from natural-language instructions while
scenes around them keep changing. Yet most of the existing 3D visual ground-
ing (3DVG) method still assumes a reconstructed and up-to-date point cloud, an
assumption that forces costly re-scans and hinders deployment. We argue that
3DVG should be formulated as an active, memory-driven problem, and we intro-
duce ChangingGrounding, the first benchmark that explicitly measures how well
an agent can exploit past observations, explore only where needed, and still de-
liver precise 3D boxes in changing scenes. To set a strong reference point, we also
propose Mem-ChangingGrounder, a zero-shot method for this task that marries
cross-modal retrieval with lightweight multi-view fusion: it identifies the object
type implied by the query, retrieves relevant memories to guide actions, then ex-
plores the target efficiently in the scene, falls back when previous operations are
invalid, performs multi-view scanning of the target, and projects the fused evi-
dence from multi-view scans to get accurate object bounding boxes. We evalu-
ate different baselines on ChangingGrounding, and our Mem-ChangingGrounder
achieves the highest localization accuracy while greatly reducing exploration cost.
We hope this benchmark and method catalyze a shift toward practical, memory-
centric 3DVG research for real-world applications.

1 INTRODUCTION

3D Visual Grounding (3DVG) is a critical technology that enables precise localization of target ob-
jects in 3D scenes through natural language instructions, with broad applications in service robotics
(Gonzalez-Aguirre et al., 2021), computer-aided room design (Sipe & Casasent, 2003; Ganin et al.,
2021), and human-machine interaction (Aggarwal, 2004; Li et al., 2020). Current methodologies
and benchmarks (Achlioptas et al., 2020; Chen et al., 2020) predominantly operate under static scene
assumptions, where pre-reconstructed full scene point clouds (Qi et al., 2017) and textual queries
(Radford et al., 2021) are fed into end-to-end models to predict 3D bounding boxes (Jain et al., 2022;
Wu et al., 2023; Luo et al., 2022; Shi et al., 2024; Guo et al., 2025) as shown in Figure 1.

However, these approaches face significant limitations when deployed in real-world robotic sys-
tems: practical environments are inherently dynamic (e.g., furniture rearrangement, object occlu-
sion/replacement), so robots have to rescan the entire scenes to reconstruct complete point clouds
every time, which is very costly(Schönberger & Frahm, 2016); otherwise, the robots don’t even
know whether and where the scenes have changed. In contrast, humans searching in changing envi-
ronments quickly draw on memories of past scenes to pinpoint likely target areas and can complete
object localization through only a few new observations. Inspired by this insight, we contend that a
new memory-based paradigm for real-world 3D visual grounding is needed.

To the best of our knowledge, no existing work has explored 3D visual grounding in changing scenes
by using memory from past observations. In this paper, we formally define this task and introduce
a novel benchmark, the ChangingGrounding benchmark, as follows (shown in Figure 1): given the
memory of the previous scene, the unexplored current scene, and a query describing the target object
in the current scene, the robot needs to predict the target’s 3D bounding box in the current scene.
The key motivation of the task and the benchmark is to measure how a 3D visual grounding system
accurately and efficiently finds the target object by leveraging the memory of past observations and
exploring the current scene. So we evaluate task performance using two key metrics: the accuracy

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Previous Setting

Full Search Pointcloud Reconstruction End-to-End Model TargetRobot Evaluation

ChangingGrounding

Accuracy

Cost

Not found. The lamp has moved. 
Then turn round?

AccuracyAction 
Cost

Motion 
Cost

Evaluation

...

Memory Database

Previous Scene

Query: Lamp on the table.

Memory Retrieval

I remember the lamp 
was here before.

Current Scene Exploration

......

Go look at the place of memory first.
Not found.  Turn right next?

Found lamp matching the query! 
Task Finished! Stop running.

Query: The cushion closest to the office chair.

Figure 1: Comparison between the previous setting of 3DVG and the ChangingGrounding task.

of the predicted 3D bounding box and the cost for scene exploration. A better system achieves
higher accuracy while keeping the lower cost. To support the task, we construct our novel dataset
and benchmark, based on the 3RScan dataset (Wald et al., 2019), supported by a novel exploration
and rendering pipeline to simulate how real-world robots perform 3D visual grounding.

In addition to our benchmark and dataset, we propose a novel framework called Mem-
ChangingGrounder to address this new task. As current end-to-end approaches are not designed
for memory access and scene agent exploration, our method is based on a zero-shot agent-based
approach (Xu et al., 2024a). Specifically, Mem-ChangingGrounder first classifies user queries, then
retrieves relevant memories to guide its action policy, and then explores for the target images in the
scene based on this policy, next ensures fallback localization if no valid target images are found, and
finally performs scanning of the target and predicts 3D localization through multi-view projection.

We introduce three additional baseline methods and compare them with our proposed Mem-
ChangingGrounder on the ChangingGrounding benchmark. The three baselines simulate different
grounding policies: (i) Wandering Grounding: aimless exploration, (ii) Central Rotation Grounding:
simple rotation, and (iii) Memory-Only Grounding: memory-only with no exploration. Experimen-
tal results show that Mem-ChangingGrounder achieves the highest grounding accuracy among other
baseline methods while maintaining a relatively low exploration cost, demonstrating a superior bal-
ance between accuracy and efficiency, and the effectiveness of our proposed policy.

2 RELATED WORK

3D Visual Grounding Benchmarks and Methods. 3D visual grounding aims to locate target
objects from natural language queries. Early work focused on matching objects with shape descrip-
tions (Achlioptas et al., 2019; Prabhudesai et al., 2020). ScanRefer (Chen et al., 2020) and ReferIt3D
(Achlioptas et al., 2020) extended this to scene-level benchmarks using ScanNet (Dai et al., 2017).
ScanRefer predicts full 3D bounding boxes, while ReferIt3D identifies the correct object from given
candidates. Later datasets expanded the setting: Multi3DRefer (Zhang et al., 2023) supports ground-
ing multiple objects, and ScanReason (Zhu et al., 2024a) uses complex human instructions. These
benchmarks are closer to real needs but ignore temporal changes in scenes. Methods for 3D visual
grounding include supervised and zero-shot approaches. Supervised models (Guo et al., 2025; Qian
et al., 2024; Wu et al., 2023; Jain et al., 2022; Luo et al., 2022; Shi et al., 2024) rely on annotated
datasets, combining a detection branch for 3D objects and a language branch for text encoding. They
achieve strong results but are limited by scarce annotations. Zero-shot methods use LLMs (Touvron
et al., 2023; Devlin et al., 2018; Brown et al., 2020; OpenAI, 2023a) and VLMs (OpenAI, 2023b;
Chen et al., 2024; Liu et al., 2023; Xu et al., 2024b) to overcome this issue. Some reformulate
grounding as a text problem or use LLM-generated scripts (Yang et al., 2024; Yuan et al., 2024;
Fang et al., 2024). VLM-Grounder (Xu et al., 2024a) grounds objects through images instead of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Dataset Generation Pipeline

Changing

Previous Scene Current Scene

(1)Horizontal Proximity: Choose the table that is far from the sofa.
(2)Vertical Proximity: Choose the picture frame that is above the sofa.
(3)Between: The sofa chair that is between the sofa and the side table.
(4)Support: Select the table that is on the top of the rug.
                                          : Anchor Object         : Target Object

Memory Images

Dataset =  Memory Information and Spatial Relation Descriptions

Figure 2: ChangingGrounding Dataset generation pipeline.

point clouds, and SeeGround (Li et al., 2025) selects viewpoints to render scenes for VLM input.
These advances improve scalability, but none address grounding in dynamic scenes. Since VLM-
Grounder does not require full point cloud input, it provides a practical basis for changing-scene
grounding, and we extend our method from this framework.

3D Perception in Changing Scenes. Early work (Fehr et al., 2017) built a small dynamic-scene
dataset for 3D reconstruction, but it lacked annotations. InteriorNet (Li et al., 2018) later provided
a large synthetic dataset with object and lighting changes. 3RScan (Wald et al., 2019) pioneered the
creation of a large-scale real-world indoor RGB-D dataset, encompassing scans of the same indoor
environment at different time points, and introduced the task of 3D object instance relocalization,
which involves relocating object instances within changing indoor scenes. Many studies followed,
such as camera relocalization in changing indoor environments (Wald et al., 2020), changing detec-
tion (Adam et al., 2022), changing environment reconstruction (Zhu et al., 2024b), and changing
prediction (Looper et al., 2022). Besides, Hypo3D (Mao et al., 2025) conducts a 3D VQA bench-
mark to evaluate models’ ability in changing scenes based on 3RScan. Notably, our work represents
the first exploration of 3D visual grounding tasks in changing environments. The 3RScan dataset
provides scene scans at different time steps, as well as the coordinate system transformations be-
tween scenes and the correspondences of objects. We construct our novel 3D visual grounding
dataset based on these annotations.

3 CHANGINGGROUNDING

In this section, we first formulate the ChangingGrounding task, then establish the evaluation metrics,
and finally detail the dataset collection pipeline along with a statistical analysis.

3.1 TASK FORMULATION

Consider a robot that observed a room yesterday and acquired its scene information. When revisiting
the room today, objects may have been rearranged. The robot must locate a target object described
by a user query. A naive solution is to explore the whole room and then apply standard 3DVG
methods, but this is inefficient. Inspired by human memory, we propose enabling robots to use past
observations for more efficient and accurate grounding.

The task is defined as ⟨Sp, Sc,Mp, Dc⟩ → B. B is the predicted 3D bounding box of the target. Mp

is the memory of the previous scene, including RGB-D images and poses. It is specifically defined
as: Mp = ({Ip}, {Pp}), where {Ip} is the set of RGB-D images from the previous scene, and {Pp}
is the corresponding set of camera poses. Sp is a unified representation for all information that can
be derived or extended from Mp ( RGB-D + pose data ), such as reconstructed 3D point clouds. A
method may freely choose whether to use Sp or not: Sp = fscene(Mp). Dc is a text description of
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Table 1: Comparison of datasets. VG: Visual Grounding. CVG: Changing Visual Grounding

Dataset Task Prompts Size Build on Dynamic Support
Nr3D (Achlioptas et al., 2020) VG 42K Static dataset No
Sr3D (Achlioptas et al., 2020) VG 84K Static dataset No
ScanRefer (Chen et al., 2020) VG 52K Static dataset No
ViGiL3D (Wang et al., 2025a) VG 0.35K Static dataset No
Multi3DRefer (Zhang et al., 2023) VG 62K Static dataset No
ScanReason (Zhu et al., 2024a) VG 10K Static dataset No
ChangingGrounding (ours) CVG 267K Changing dataset Yes

the target object. Sc is the current scene with unknown changes:

Sc =

{
Real scene, if agent deployed in a real environment,

Mesh / point-cloud, otherwise.

The agent needs to ground the target object in Sc using Mp and Dc ( Sp optional). In the concrete
execution process, the agent needs to select actions by conditioning on the language query, the
previous-scene memory, and the observations accumulated so far. Formally, at step t the agent
chooses at = π(Dc,Mp, o1:t), and executing at moves the agent to a new pose poset+1. At this
pose, the agent obtains a new observation

ot+1 =

{
CameraCapture(Sc, poset+1), in real-world deployment,

Render(Sc, poset+1), when operating on mesh/point-cloud data.

Finally, the agent needs to integrate all information gathered throughout the process to determine
the location of the target object. Because the task requires both efficient and precise grounding, we
will evaluate this task by two key metrics: accuracy and exploration cost. For research simplicity,
we also set several task assumptions as follows.

Zero-cost Memory Access. The memory information Mp for the previous scene Sp is stored in the
robot’s database and can be accessed at any time without incurring additional cost.

Standardized Scene Coordinate System. Each 3D scene has a standardized coordinate system Ts.
For different temporal scene states of the same physical space, their standardized coordinate systems
are aligned to one global coordinate system.

Robot’s Initial Pose. We adopt the OpenCV right-handed camera coordinate convention and apply
it to all poses. For convenience, we assume that in each scene, the robot is initially positioned at
the origin of Ts and its initial orientation is obtained by transforming Ts so that the axes satisfy the
OpenCV convention

Exploration. For the new scene Sc, the robot needs to explore to obtain relevant information about
the scene. Therefore, the acquisition of information about Sc will involve certain costs. The cost
includes action cost Ca and motion cost Cm (details in Section 3.2).

New Observations. We assume the robot is equipped with an RGB-D camera, and it can move
to achieve new positions and orientations (new poses). At the new pose, the robot can obtain a
new observation. To fulfill this assumption, we developed a rendering module. The rendering
module takes the mesh file of a scene and the desired new pose as inputs and outputs the RGB-
D image observed from the new pose within the scene (an RGB-D image formulated as (I,D) =
Rendering(Mesh, Pose)).

3.2 EVALUATION METRICS

The evaluation uses two metrics: localization accuracy and exploration cost. Localization accuracy
follows standard 3DVG evaluation and is measured by the ratio of samples whose predicted 3D
bounding box overlaps the ground-truth box above a threshold (e.g., Acc@0.25).
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The exploration cost includes action cost Ca and motion cost Cm. Ca counts the number of actions
taken until the target is localized. Each action means the robot moves to a new pose and captures
a new observation. Action cost alone may be insufficient, since a single action can involve a large
movement. We therefore also measure motion cost.

Motion cost considers both translation and rotation. To compare them on the same scale, we con-
vert to time using nominal speeds: translation v = 0.5m/s, rotation ω = 1 rad/s. Given poses
{(t1, R1), . . . , (tn, Rn)}, with n = Ca, the costs are: Ctrans = 1

v

∑n−1
i=1 ∥ti+1 − ti∥, Crot =

1
ω

∑n−1
i=1 arccos

(Tr(R⊤
i Ri+1)−1

2

)
, Cm = Ctrans + Crot.

It’s noted that when calculating Ctrans, we only consider cost on the horizontal plane. The rotation
term uses the well-known trace formula θ = arccos

(
(Tr(R⊤) − 1)/2

)
, which gives the rotation

angle θ of a rotation matrix. By summing these angles and dividing by the nominal rotational speed
ω, we obtain the rotation time.

3.3 DATASET AND BENCHMARK CONSTRUCTION

We constructed the ChangingGrounding dataset to support the proposed task. It contains: (1) spatial
relation descriptions of target objects as user queries; (2) original RGB-D images of each scene with
camera poses as memory information; (3) a mesh file for generating new observations. We base our
dataset on 3RScan, which has 1,482 snapshots from 478 indoor environments, providing transfor-
mations between scans for alignment, dense instance-level annotations, and object correspondences
across scans. These properties allow us to align scenes, re-render them, and construct cases where
objects are moved.

The dataset is built in two steps. As shown in Figure 2, first, we generate spatial relation descriptions
following ReferIt3D (Achlioptas et al., 2020). Second, we process 3RScan data to obtain re-rendered
images and store them as memory information.

Spatial Relation Descriptions. We use the template 〈Target Category〉〈Spatial Relation〉〈Anchor
Category〉, such as “the chair farthest from the cabinet.” The anchor category differs from the target.
We select 209 fine-grained categories from 3RScan, including those appearing in at least four scenes
and those marked as rigid-move. A target is valid if it belongs to these categories and has at most six
distractors of the same class. Anchor categories include these 209 classes plus 24 others. ReferIt3D
defines five spatial relations (Horizontal Proximity, Vertical Proximity, Between, Allocentric, and
Support), but we exclude Allocentric since 3RScan lacks front-orientation annotations. The detailed
rationale for category filtering and the construction feasibility are provided in Appendix G. The set
of spatial relation descriptions is provided in the supplementary material.

3RScan Processing. We align scans of the same scene to a global coordinate system. The initial
scan is taken as the reference, and we calculate its coordinate system first. Then, transformations
between the reference and other scans are applied to align all other scans to the coordinate system.
For re-rendering, we adopt the ScanNet (Dai et al., 2017) camera model (1296 × 968 resolution
with intrinsics (1169.6, 1167.1, 646.3, 489.9)) and use our rendering module to standardize RGB-D
images as memory frames.

Statistics. We compared the ChangingGrounding dataset with existing datasets in Table 1. Our
ChangingGrounding is the largest and the only one built on changing environments. It introduces
the new task of changing visual grounding, along with its formulation, baselines, and evaluation
protocol. More details and some visual examples are presented in Appendix G and O.8.

4 MEM-CHANGINGGROUNDER (MCG)

In this section, we introduce Mem-ChangingGrounder (MCG), a zero-shot framework for 3D visual
grounding in changing scenes. MCG takes a query Dc in the current scene Sc and predicts the
3D bounding box of the target object Ot, using memory Mp of the previous scene represented as
RGB-D images {Ip} and camera poses {pp}. As shown in Figure 3, MCG has two action policies
within four core modules: Query Classification, Memory Retrieval and Grounding, Fallback, and
Multi-view Projection. The workflow is to first classify the query and select the path for retrieval
and grounding. MCG then explores the current scene with action policies to locate the target. If this
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Figure 3: Workflow of Mem-ChangingGrounder (MCG). The upper part shows the overall pipeline:
MCG classifies queries, retrieves memory, uses OSS and SRAS to search, applies fallback when
needed, and predicts the 3D bounding box through multi-view projection. The lower part shows
details of OSS, SRAS, and Multi-view Projection.

fails, the fallback module estimates the target. Finally, multi-view information is fused for accurate
grounding. Because MCG builds on the VLM-Grounder (Xu et al., 2024a) framework, we will first
introduce this framework (Section 4.1) and then present MCG’s four key modules.

4.1 PRELIMINARY OF VLM-GROUNDER

VLM-Grounder is a zero-shot 3D visual grounding method that localizes target objects using 2D im-
ages and natural language. The pipeline is: from the current scene image sequence {Ic}, all images
containing the target category are detected to form {Ic}det; then a VLM (OpenAI, 2025a) analyzes
the query and stitched {Ic}det to find the target image; next, an open-vocabulary detector (Liu et al.,
2024) proposes objects in the image, and the VLM selects the correct one; finally, a multi-view
projection module fuses multiple viewpoints to estimate the 3D bounding box.

4.2 ACTION POLICY

Before presenting the core modules of MCG, we briefly describe two action policies frequently
employed in MCG to explore the new scene and find the target object, which are the Omnidirectional
Scene Scanner (OSS) and the Spatial Relation Aware Scanner (SRAS). We give the basic explanation
here, while the complete derivation is in Appendix H.

Omnidirectional Scene Scanner. The OSS module is a set of robot agent actions when it needs to
locate an anchor object or a target object. As shown in the bottom leftmost figure of Figure 3, from
a given pose, the agent performs a 360° scan by rotating around the gravity axis, ensuring a full
exploration of the surroundings. The collected Images from all poses are then collected, indexed,
dynamically stitched, and then sent to the VLM, which selects the one that best matches the query.

Spatial Relation Aware Scanner. The SRAS module defines agent actions when the agent needs
to find the target after locating the anchor. It generates observations from the anchor pose using the
spatial relation between anchor and target, and applies VLM (OpenAI, 2025a) to identify the target
image. As shown in Figure 3, given anchor pose pa and query Dc, the agent first uses VLM to
infer the relative position of target Ot to anchor Oa. Based on this relation, the agent adjusts pa,
collects images, stitches them, and inputs them with Dc into VLM to predict the target. New poses
are generated for different spatial relation categories.
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4.3 DETAILS OF MCG

Query Classification. From a memory perspective, user queries are either verifiable or unverifiable.
For unverifiable queries, even if the target and anchor stay still, a target found in memory may not
match in the current scene. For example, “the chair farthest from the table” may point to a different
chair when a new one appears farther away in the current scene. Thus, the memory target no longer
fits the query. In contrast, if the target and anchor stay static, and the target found in the memory
will always match the query in the current scene, this kind of query is verifiable. For example, “the
vase on the table” is verifiable. MCG uses the VLM to judge whether a query is verifiable.

Memory Retrieval and Grounding. As shown in Figure 3, this module is designed to obtain an
initial estimate of the target grounding result by combining memory retrieval and exploration. This
module locates the target image in the current scene Sc by integrating memoryMp, user queriesDc,
and exploration of Sc. In short, this module will first try to use the memory Mp to locate an anchor
object, and then explore the target object based on the spatial relationship between the anchor and
the target. This process is carried out with the assistance of the two action policies, SRAS and OSS
modules, which give action according to current observations and the spatial relations. Depending
on the type of query, the specific grounding procedures differ. This module is carefully designed
with a not simple, yet effective logic. We provide detailed explanations in Appendix J.

Fallback. The Fallback module will be activated to find an alternative target image if the Memory
Retrieval and Grounding module fails to ground an initial estimate of the target object and return
the corresponding target image. Specifically, the agent will first retrieve from memory the clearest
image that contains an object of the target class. It will then start from the pose of the image and use
OSS to perform a 360° search for images containing the target object as an alternative result for the
Memory Retrieval and Grounding module.

Multi-view Projection. After memory-guided retrieval or fallback identifies the target image, the
agent uses VLM (OpenAI, 2025a) to predict its 2D bounding box. The image and box are then fed to
SAM (Kirillov et al., 2023) to obtain a mask, which is projected into 3D using depth and intrinsics
to form a reference point cloud. Since this single-view cloud is incomplete, the module refines
grounding through multi-view target-centered scanning. As shown in Figure 3, the agent circles the
center of the reference cloud, collects multi-view observations, selects a 2d bounding box, projects
them into 3D, clusters the clouds, and outputs a refined 3D bounding box. The complete calculation
procedure is provided in Appendix K.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETTINGS

Dataset. Following VLM-Grounder (Xu et al., 2024a) and LLM-Grounder (Yang et al., 2024), we
randomly extract 250 validation samples for evaluation. Each sample can be categorized during
evaluation based on its user query, falling into one of two types: “Unique” (only one instance of the
target class in the scene) or “Multiple” (with distractors of the same class in the scene). The detailed
sampling procedure is provided in Appendix O.1.

Baselines and Implementation. We evaluate three additional baselines, covering two scenarios:
(i) using only exploration without memory. (ii) using only memory without exploration. The three
baselines are organized as follows: 1). Wandering Grounding: the original VLM-Grounder(Xu
et al., 2024a) approach utilizing all images and poses of scene Sc from 3RScan; 2). Central Rotation
Grounding: the VLM-Grounder utilizing images captured through a similar methodology of OSS at
the initial pose of Sc; 3). Memory-Only Grounding: the VLM-Grounder utilizing images only from
the memory Mp in scene Sp. For experiments, we use GPT-4.1-2025-04-14 (OpenAI, 2025a) as the
VLM, with tests in both high-resolution and low-resolution image modes. We set Temperature =
0.1, Top-P = 0.3, max stitched images L = 6, and ensemble images N = 7. The retry limit is set to
M = 3 for baselines, but removed in MCG since it employs a different fallback. The 2D detectors
include SAM-Huge (Kirillov et al., 2023) and GroundingDINO (Liu et al., 2024).

Evaluation Metrics. Accuracy is measured by Acc@0.25 and Acc@0.5, the percentage of samples
where the IoU between prediction and ground truth exceeds 0.25 or 0.50. Cost is measured by Ca
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Table 2: Accuracy and exploration cost of three baselines and Mem-ChangingGrounder (ours) on
the ChangingGrounding benchmark under high- and low-resolution settings. The two resolution
settings are separated by a middle line. Higher accuracy and lower cost indicate better performance.
Best accuracy and lowest cost are bolded. Cost is measured in 1K seconds one unit.

Overall Unique Multiple Cost ↓

Method Model Res @0.25 @0.50 @0.25 @0.50 @0.25 @0.50 Ca Ctrans Crot Cm

Wandering Grounding GPT-4.1 low 24.80 10.80 30.67 10.67 16.00 11.00 44.23 8.73 8.78 17.51

Central Rotation Grounding GPT-4.1 low 16.80 6.00 19.33 9.33 13.00 1.00 18.00 0.00 1.70 1.70

Memory-Only Grounding GPT-4.1 low 20.80 10.00 22.67 10.67 18.00 9.00 0.00 0.00 0.00 0.00

Mem-ChangingGrounder (ours) GPT-4.1 low 29.20 14.80 30.00 15.33 28.00 14.00 8.53 5.73 3.98 9.70

Wandering Grounding GPT-4.1 high 32.40 12.80 38.67 16.00 23.00 8.00 44.23 8.73 8.78 17.51

Central Rotation Grounding GPT-4.1 high 17.20 6.80 18.00 8.00 16.00 5.00 18.00 0.00 1.70 1.70

Memory-Only Grounding GPT-4.1 high 26.00 12.40 26.67 11.33 25.00 14.00 0.00 0.00 0.00 0.00

Mem-ChangingGrounder (ours) GPT-4.1 high 36.80 18.00 42.67 19.33 28.00 16.00 8.47 5.84 3.92 9.76

Table 3: Memory strategy.

Memory Acc. Ca Cm

w/o. 35.2 31.94 18.60
w. 36.8 8.47 9.76

Table 4: Fallback.

Fallback Acc. Ca Cm

w/o. 36.4 8.21 9.53
w. 36.8 8.47 9.76

Table 5: Multi-view projection.

Strategy Acc. Ca Cm

Baseline 22.4 4.81 2.95
+Multi-scan 28.0 8.52 9.72
+filter 36.8 8.47 9.76

and Cm (defined in Section 3.2). Details how Ca and Cm are computed for each baseline methods
and MCG are in Appendix M.

5.2 MAIN RESULTS

As shown in Table 2, our Mem-ChangingGrounder (MCG) achieves the best accuracy in both low-
and high-resolution settings (29.2% and 36.8%), outperforming all baselines. That clear margin un-
derlines the superiority and robustness of our solution for grounding performance across a spectrum
of visual qualities. At the same time, our method maintains modest action cost Ca and motion cost
Cm, which demonstrates a carefully engineered compromise between effectiveness and efficiency.
This is because MCG consults memory before moving and then performs short, targeted actions,
avoiding long exploratory loops.

Wandering Grounding (WG): In comparison, the WG method achieves the second-highest accu-
racy at both resolutions, but its Ca is about five times larger and its Cm is also much higher. The
reason is its wide roaming: the robot repeatedly sweeps across the environment. This traversal lets
the agent collect more scene information and improve accuracy, but also forces long travel and many
actions, which cause a heavy cost.

Central Rotation Grounding (CRG): The CRG method keeps the robot at the scene center and
performs one full rotation, which removes translation and reduces actions, making the cost very low.
However, this single and constrained viewpoint misses occluded objects, height-shifted objects, or
complex spatial layouts, so important visual information is lost. As a result, its grounding accuracy
is the lowest among all methods.

Memory-Only Grounding (MOG): The MOG method also has a low cost since it relies only on
stored panoramic memories, with one final adjustment after estimating the target. If the memories
are complete and the scene unchanged, accuracy can be high. But if the environment changes or
the memory has gaps, the lack of verification and correction quickly reduces accuracy, placing this
method far behind ours.
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Table 6: VLMs capacity.

Method Acc. Ca Cm

GPT-4o 31.6 8.34 8.47
GPT-4.1. 36.8 9.52 9.76

Table 7: Render vs real.

Method Acc. Ca Cm

w. 28 1.74 2.05
w/o. 24 1.62 1.94

Table 8: 3DVG comparision.

Method Acc. Ca Cm Inf(s) T(s)

3D-Vista 33.2 18.00 2.39 0.05 12.73
MCG 36.8 8.47 9.76 113.2 152.24

Table 9: Module success rates (%). Sub-module accuracies of MRGS and MS are separated by bars.

Total QAS QCS MRGS MS MRGS VP VCI MS OD SRI MP
36 100 100 56 64 56 70 80 64 89 96 75

Table 10: Inference time (s) of different modules.

Total View Preselection VLM Predict Images Detection Predictor Project Points
113.2 11.3 11.7 0.2 0.7

Table 11: Different Prompts.

Prompts Acc. Ca Cm

v origin 42 1.60 2.05
v less 40 1.61 2.02
v fix layout 36 1.20 1.45

Table 12: Different VLMs.

Model Acc. Ca Cm

gpt 42 1.60 2.05
gemini 38 1.60 1.83
claude 24 1.68 2.17

Table 13: Different uncertainty.

Temp. & Top p Acc. Ca Cm

0.1, 0.3 (origin) 42 1.60 2.05
0.5, 1.0 44 1.74 2.10
0.7, 1.0 42 1.62 2.02

Overall, our method reaches the highest accuracy while keeping Ca and Cm low, proving that
memory-augmented strategies balance efficiency and precision in changing scenes. Memory-Only
Grounding and Central Rotation Grounding cut costs but lose accuracy by avoiding exploration or
using oversimplified strategies. Wandering Grounding explores more but ignores memory, so it
needs many actions and long travel, leading to higher costs and lower accuracy than ours.

5.3 ABLATION STUDIES

We validated several design choices in MCG. For the memory strategy, we compared with a
memory-free setting where the system follows Wandering Grounding’s pose sequence without mem-
ory. As shown in Table 3, both achieve similar accuracy, but the memory-free approach consumes
far more costs, confirming the efficiency of memory use. For fallback, we tested the method without
this strategy. As shown in Table 4, though accuracy and cost are similar with or without fallback,
adding fallback ensures completeness and coverage of edge cases. For multi-view projection, we
performed a two-step ablation: first, adding center rotation for multi-view acquisition, then adding
outlier removal. As shown in Table 5, each step improved accuracy; although center rotation in-
creases cost, it benefits the localization accuracy. For application scenarios where an accurate 3D
bounding box is not necessary, the cost of MCG could be further reduced. Finally, for different
VLMs, we compared GPT-4o (OpenAI, 2024) and GPT-4.1 (OpenAI, 2025a). As shown in Table 6,
costs are similar, but GPT-4.1 yields higher accuracy, indicating that better VLM directly results in
better performance. Also, we compare rendered versus real memory images and find that render-
ing doesn’t have a significant negative impact on grounding accuracy, as shown in Table 7. More
detailed analysis of the rendered-versus-real experiment is in Appendix O.2.

5.4 DISCUSSION ABOUT CRITICAL LIMITATIONS OF 3D VISUAL GROUNDING METHODS

Although existing 3D visual grounding methods may rescan the entire scene each time to perform
our changing grounding task, the approach is still impractical. In dynamic environments,scenes
change frequently, it is unrealistic to perform a full rescan every time an object is moved. Worse
yet, the system often does not know whether, when, or where the scene has changed, making it
difficult to decide whether a new scan is necessary before grounding. This reliance on complete

9
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and repeated reconstruction is inefficient and infeasible in practical applications. Nevertheless, for
a more complete comparison, we adapted the 3D-Vista (Zhu et al., 2023) model to the memory-
based setting; it is pre-trained on 3RScan and has learned the SR3D text distribution. It should be
noted that 3D-Vista requires ground-truth bounding boxes, which makes its performance higher than
realistic. We also use a simplified way to calculate cost, which makes the cost lower than it is. As
shown in Table 8, our method still outperforms it regarding accuracy and cost.

We also provide a time comparison between the 3D-Vista method and MCG. Besides inference time,
we include a comparison of the total processing time. This is because traditional 3D methods take
point clouds as input, and under our setting, the time from acquiring images to reconstructing the
point cloud must also be considered. For 3D-Vista, the total time consists of three parts: the time to
acquire RGB-D images (this part of the time is given by the average exploration cost Cm), the 3D
reconstruction time (we approximate the cost using the time an advanced 3D reconstruction method
( e.g., VGGT (Wang et al., 2025b) ) takes to process 100 images) , and the inference time. For MCG,
we need to account for the average exploration cost Cm and its inference time.

We acknowledge that the inference speed still has significant room for improvement, as this is a
research project. As shown in Table 17, most of the time in our pipeline is spent on VLM inference.
With the rapid progress of VLM technology, we expect that high-speed large models will soon be
available on edge devices. For example, the FastVLM project introduced by Apple (Vasu et al.,
2025) achieves an 85× faster TTFT compared with LLaVA-OneVision at 1152×1152 resolution.
This progress opens promising opportunities for greatly reducing the overall runtime of our method.

5.5 DISCUSSION REGARDING VLMS

To further investigate how VLMs affect the experimental results, we examine three categories of
VLM-related factors: different VLM prompt designs, different underlying VLMs, and different
levels of VLM uncertainty. As shown in Table 11, Table 12 and Table 13, simplified prompts
and higher-temperature settings showed minimal impact, while fixed-layout prompting and certain
VLMs (e.g., claude (Anthropic, 2025)) led to more noticeable degradation. Detailed analyses are
provided in Appendix O.4.

5.6 SUCCESS RATE AND INFERENCE TIME

We randomly sampled 50 examples from the test samples and checked the success rate of important
stages of our pipeline. The following defines the criteria for whether a step is successful. (1) Query
Analysis Stage (QAS): correctly extracts both the target category and any additional constraints.(
This accuracy component is related to the preprocessing of the test data, which is similar to VLM-
Grounder (Xu et al., 2024a) ). (2) Query Classification Stage (QCS): assigns the query to the proper
categories. (3) Memory Retrieval and Grounding Stage (MRGS): picks a view that contains the
target object. (4) Multi-view Stage (MS): The 3D IoU between the predicted box and the ground-
truth box is ≥ 0.25. Specifically, the success rate in the MRGS depends on 2 other modules: (a)
View Pre-selection (VP) and (b) VLM Choose Image (VCI). The MS depends on 3 other modules:
(a) OV Detection (OD); (b) Select Reference Instance (SRI); (c) Multi-view Projection (MP). These
modules’ detailed explanations are in Appendix O.6. As shown in Table 9, the largest sources of
error stem from the MRGS and the MS. Detailed failure cases and descriptions are provided in
Appendix O.7 and Appendix N. Also, we report the inference time of different modules in Table 10,
with more analysis in Appendix O.6.

6 CONCLUSION

In this work, we reformulate 3D visual grounding as an active, memory-driven task and intro-
duce ChangingGrounding, the first benchmark for changing scenes with cost accounting. We also
propose a novel and strong baseline named Mem-ChangingGrounder for this new task. Mem-
ChangingGrounder demonstrates that leveraging memory and efficient exploration can raise local-
ization accuracy while cutting down grounding costs. We believe our dataset, task, and baselines
will motivate and serve as a starting point for future research on 3D visual grounding in changing
scenes. More details (e.g., use of LLMs, open problems, etc.) are in the appendix.
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A APPENDIX OVERVIEW AND ORGANIZATION

This appendix provides supplementary details to support and extend the main paper. The organiza-
tion of the appendix is as follows:

1. Use of LLMs ( Section B ): This section states the use of Large Language Models (LLMs).

2. Ethics Statement ( Section C ): This section provides ethics statements.

3. Reproducibility Statement ( Section D ): This section provides reproducibility state-
ments.

4. Broader Impact ( Section E ) The broader societal implications of our work are discussed.

5. Benchmark Statement ( Section F ): This section describes the release status and usage
policy of the ChangingGrounding Benchmark (CGB).

6. More Details for Data Construction ( Section G ): This section describes more details
for the data construction process of CGB.

7. Action Policy ( Section H ): This section shows a more detailed description of action poli-
cies, the Omnidirectional Scene Scanner (OSS), and the Spatial Relation Aware Scanner
(SRAS)

8. Query Classification ( Section I ): This section presents additional details of the Query
Classification module.

9. Memory Retrieval and Grounding( Section J): This section presents a more detailed
explanation of two different algorithmic paths based on the query classification results.

10. Multi-view Projection ( Section K ): This section introduces more details for the Multi-
view Projection module. This module obtains multi-view point clouds and then filters them
to get more accurate 3D bounding boxes.

11. VLM Prompts ( Section L ): We provide the full list of vision-language prompts used
in MCG, covering all modules including memory retrieval, spatial relation parsing, multi-
view comparison and selection, and fallback strategies. These prompts form a modular,
interpretable interface for multi-stage reasoning.

12. Cost Calculation for Methods ( Section M ): This section details how action costs and
motion costs are computed for each method. The evaluation aligns with the cost metrics
defined in the main text, and a note explains that all costs are reported in units of 1,000
seconds (e.g., 9k = 9000s).

13. Open Problems ( Section N ): We outline the current limitations of the CGB benchmark
and the MCG method, including the lack of allocentric relations, the impact of rendering
noise, and the dependency on external 2D models. Future improvements are discussed.

14. More Results ( Section O ): Additional results are presented to assess the robustness of
MCG, including detailed sampling procedure, a comparison between using rendered vs.
real images in memory, human accuracy, a detailed discussion regarding VLMs, and a set
of failure cases analyzing the limitations of VLM, SRAS, SAM, and the projection pipeline.
A complete example is shown to illustrate how MCG grounds a target object in a changing
scene.

B USE OF LLMS

We used large language models (OpenAI’s ChatGPT (OpenAI, 2024)) solely to aid in the polish-
ing of English writing. The models were employed to improve clarity, grammar, and style in the
manuscript text. No part of the research design, data analysis, model implementation, or results
interpretation was generated or influenced by LLMs. All scientific contributions, ideas, and experi-
mental results are entirely the work of the authors.
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C ETHICS STATEMENT

This work focuses on the design and evaluation of a benchmark. It does not involve human subjects,
sensitive personal data, or private information. All datasets used are publicly available. We adhere
to academic integrity standards.

D REPRODUCIBILITY STATEMENT

To lower the research threshold and enable independent fairness audits, we will fully open-source
our benchmark generation process, data preprocessing methods, and evaluation scripts. All data are
drawn from public or simulated scenes and contain no personally identifiable information.

E BROADER IMPACT

This study introduces a new task for changing scene 3D visual grounding, releasing the open bench-
mark CGB and a strong reference method, MCG. This technology can significantly enhance the
efficiency of logistics and service robots in dynamic environments, advancing smart manufacturing
and supply-chain management. However, rapid automation may temporarily displace low-skill jobs,
requiring joint reskilling programs to equip workers with digital skills.

F BENCHMARK STATEMENT

We will publicly release the proposed CGB benchmark and its accompanying dataset on the Hug-
gingface platform, making it freely accessible to the research community. The dataset will be regu-
larly updated and maintained to ensure its accuracy and relevance. It is important to note that, at this
stage, all available data in the CGB benchmark is used exclusively for testing purposes. We hope
this benchmark will encourage further research into 3D visual localization in dynamically chang-
ing environments. All files within the CGB benchmark are strictly intended for non-commercial
research purposes and must not be used in any context that could potentially cause harm to society.

Also, to support reproducibility, we provide benchmark testing examples for the proposed MCG
method on the GitHub platform, along with detailed environment specifications and a complete
execution pipeline to facilitate efficient replication and verification of experimental results.

G MORE DETAILS FOR DATA CONSTRUCTION

Detail Explanation for Building Spatial Relation Descriptions. When selecting target and anchor
categories, we followed several principles from the ReferIt3D benchmark to ensure both robustness
and task relevance.

For target categories, we excluded classes appearing in fewer than four scenes to reduce long-
tail bias from infrequent categories. In addition, we included objects that undergo changes across
scenes, so the final 209 target categories are the union of objects appearing in at least four scenes
and those objects exhibiting changes. This dual criterion for target category selection can reduce
long-tail effects and ensure the task remains relevant to dynamic scenes.

To further maintain annotation reliability, for each individual scene, we applied the constraint that
a target object must have no more than six distractors of the same category in the scene. This
was motivated by ReferIt3D annotator feedback showing that error rates rise significantly when
distractors exceed six. Importantly, this constraint applies per scene: a category may be excluded as
a target in one scene but remain valid in another if the distractor number is within the limit.

For anchor categories, we followed a similar strategy, using the 209 target categories plus 24
additional large or frequent objects (e.g., fireplaces, televisions). This design improves diversity
while also improving reliability, since such larger anchors are easier to describe in spatial relations.
We also enforce at most one anchor object in complex scenes, because our descriptions use spatial
templates (Target–Relation–Anchor) rather than detailed attributes; with multiple anchors, it would
be unclear which instance is referenced. Overall, this filtering strategy balances statistical robustness
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with task specificity, yielding a diverse set of over 200,000 prompts while ensuring clear and reliable
grounding cases.

Statistic. The dataset contains 266,916 referential descriptions that uniquely locate targets through
spatial relations. As shown in Figure 4, the word cloud highlights frequent terms such as common
furniture, along with many less frequent items. We also merge the original 528 object categories in
3RScan into 225 broader ones for tractability, with the help of ChatGPT-o1 (OpenAI, 2025b).

Figure 4: A word cloud generated from spatial-relation descriptions, visually highlighting the fre-
quency of occurring terms.

H ACTION POLICY

Omnidirectional Scene Scanner. The OSS module is a set of robot agent actions when it needs
to locate an anchor object or a target object. From a given pose, the agent will perform a full
360° scan and use the VLM to identify the observation that best matches the given query. As
shown in the leftmost figure at the bottom of Figure 3, the agent starts from an initial pose p and
a user query, then generates twenty poses by rotating p around the gravity axis (ψ) in steps of
18◦ × i for i = 0, 1, . . . , 19. These actions ensure a comprehensive exploration of the surroundings.
Subsequently, the agent tilts each pose downward by 20◦ around the horizontal (ϕ) axis to avoid
missing objects that lie slightly below the original level. Next, the agent obtains images at each
pose, annotates sequential IDs, and dynamically stitches them. Finally, the agent will input the
stitched result to VLM to predict the correct image containing the anchor object or target object
based on user queries.

pi = p ·Rψ(18
◦ × i) ·Rϕ(−20◦), i = 0, 1, . . . , 19 (1)

Spatial Relation Aware Scanner. The SRAS module is a set of robot agent actions when the anchor
object has already been located, and its next step is to search for the target object. It is designed to
obtain a series of observations starting from the anchor object pose based on the spatial relationship
between the anchor and the target object, and then use VLM (OpenAI, 2025a) to predict which of
these observations contain the desired target object. As shown in the second image at the bottom
of Figure 3, given the anchor image pose pa and the user query Dc, the agent will first use VLM
to analyze the positional relationship between the target object Ot and the anchor object Oa based
on the query. Leveraging this positional relationship, the agent then adjusts pa to generate a series
of new poses. Next, the agent obtains images at these new poses, assigns them unique IDs, and
dynamically stitches them together. Finally, the agent inputs stitched images and Dc into the VLM
to predict the target image.

New poses are generated based on different categories of spatial relationships listed below:

• Horizontal and Between - The agent applies the same omnidirectional scanning strategy as
the OSS module to process pa to acquire a set of new poses. Then the agent images at these
poses and uses VLM to evaluate which image indeed contains the Ot matching the Dc.
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• Support and Vertical - If VLM analysis shows that Ot is below Oa, the agent will generate
a series of new poses by rotating pose pa downward around its local horizontal (ϕ) axis in
20° increments. Besides tilting directly downward, in order to cover a wider exploration
area, the agent will also first rotate pa a little left and right around its gravity axis (ψ), and
then rotate downward to generate more poses. Next, the agent obtains observation images
at these poses and uses VLM to evaluate which image indeed contains the Ot matching the
Dc. If Ot is above Oa, the process is similar to that of the ”below” relationship, except that
the rotation is upwards.

Now on, we’ll use the X, Y, and Z axes to explain more details of the pose generation methods based
on different spatial relationships. This will help readers follow the accompanying code more easily.
Additionally, to simplify later rotation and translation steps, we first adjust the camera pose of the
anchor-object image consistently: the Y-axis points downward, and the X-axis points to the right.

Up. The camera is first shifted backward along its Z-axis to broaden the view. Next, we rotate the
pose around its local Y-axis by −90◦, −45◦, 0◦, 45◦, and 90◦. For each of these turns, we add an
extra tilt around the local X-axis by 0◦, 18◦, 36◦, and 54◦. This nested sweep yields 5×4 = 20 new
poses, providing a more comprehensive upward field of view.

Down. The “down” case follows a process highly similar to the “up” case, with the key difference
being the direction of rotation around the local X-axis (which controls the up-down viewing direc-
tion). The camera is first shifted backward along its Z-axis to broaden the view. Next, we rotate the
pose around its local Y-axis by −90◦, −45◦, 0◦, 45◦, and 90◦. For each of these turns, we add an
extra tilt around the local X-axis by 0◦, −18◦, −36◦, and −54◦. This nested sweep yields 5×4 = 20
new poses, providing a more comprehensive downward field of view.

Horizontal and Between. For simplicity, we use the same procedure to generate new poses for
both “horizontal” and “between” relations (Note that for the “between” relation, the initial anchor-
object image only needs to include one of the two anchor objects involved in that relation). First, the
camera moves backward along its local Z-axis to widen the view; next, it moves closer to the room’s
center to cover more of the scene; then, it rotates around its local Y-axis in 18° increments from
0° to 342°, creating 20 evenly spaced horizontal angles; after each Y-rotation, the camera tilts 25°
downward around its local X-axis to avoid missing lower parts of the scene. This sweep produces
20 viewpoints that give a broad, slightly downward-looking perspective of the environment.

I QUERY CLASSIFICATION

As stated in the main text Section 4.3, queries with “between” relation should be categorized as
verifiable queries. The “between” relation is complex because it involves two anchor objects. If we
followed the verifiable workflow, we would need to confirm both anchors and the target object’s final
position, and then we may need to build another suitable memory-retrieval and grounding algorithm
based on the confirmation results. This is too complex for our current scope. For simplicity, we just
mark queries with the “between” relation as unverifiable and only use the first anchor object. The
remaining steps use the same procedure as the queries with a ”horizontal” relation.

J MEMORY RETRIEVAL AND GROUNDING

Here are in-depth explanations of 2 algorithmic paths for different kinds of queries.

• - Unverifiable Queries – As mentioned in the Query Classification module, for unverifiable
queries, the agent cannot ensure that the target object, which is directly grounded in mem-
ory, still matches the query in the current scene. Therefore, the agent prioritizes finding the
anchor object from memory. The agent first follows the VLM-Grounder (Xu et al., 2024a)
approach to preprocess images from memory: a 2D open-vocabulary detector (Liu et al.,
2024) filters all images in Mp to generate a preprocessed image sequence {Ip}det contain-
ing anchor class objects, which are then dynamically stitched with ID annotations. After
that, the agent uses VLM to predict an image Iap which shows the anchor object clearly
from {Ip}det. The agent obtains the pose pa where the image Iap was taken, then it will go
to the same pose in the current scene Sc to get a new observation Iac . If the anchor object
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stays still in Iac , the agent will use the spatial relationship of the query Dc to find the target.
Specifically, the agent inputs Dc and the pose pa into the SRAS module for final target
localization in Sc. If the anchor object doesn’t stay still, the agent will go to the center of
Sc and directly search around to find the target. Specifically, the agent initiates OSS at the
center of Sc to directly locate the target.

• - Verifiable Queries – Different from unverifiable queries, for verifiable queries, the agent
prioritizes directly grounding the target object matching the Dc from memory. After a
similar pre-process pipeline as verifiable queries, the agent obtains stitched images {Ip}det
that contain the anchor class objects or target class objects. Then it uses VLM (OpenAI,
2025a) to select from {Ip}det a target image Itp containing target object satisfying the Dc

and an anchor image Iap containing anchor object. Next, by moving to the same camera
poses pt and pa of Itp and Iap in the current scene Sc, the agent obtains the corresponding
new observations Itc and Iac . Following that, the agent verifies the status of images Itc and
Iac . If the target object in Itc and the anchor object in Iac both stay still, the agent directly
outputs Itc as a result. If the target object doesn’t stay still but the anchor object stays still,
the agent will use the spatial relationship of Dc to find the target starting from the anchor
pose pa. Specifically, the agent will invoke SRAS and input Dc and anchor image pose
pa for localization. If the anchor object moves, the agent will first try to locate it in Sc,
and then use the relationship to find the target. This is because, for this type of query,
once the anchor is found, the target can usually be located through a series of clear actions.
Specifically, the agent will move to the center of Sc and use OSS for the anchor position.
It should be noted that the rotational search via OSS can terminate early: as soon as the
VLM spots the anchor object, the scan stops. Once the anchor is located, the agent finally
invokes SRAS to track the target.

K MULTI-VIEW PROJECTION

Inspired by VLM-Grounder, our multi-scan projection also merges point clouds from several views
to build the final cloud. But unlike VLM-Grounder, which uses PATs (Ni et al., 2023) to get ap-
propriate views, we gather views by scanning around the target object. The entire pipeline can be
divided into three stages: (1) obtaining a reference point cloud for the target object, (2) performing
surround-view scanning around the reference point cloud’s center to collect multi-view point clouds,
and (3) removing outliers from the aggregated point cloud set. In the main text, we have already
clearly described the overall pipeline of the Multi-view Projection module. Here, we first outline the
more complete process and then provide the notable details for stages 1 and 2.

After memory-guided retrieval or fallback identifies the target image, the agent will use VLM (Ope-
nAI, 2025a) to predict the 2D bounding box of the target object detected in the image. It then feeds
the image with this box to SAM (Kirillov et al., 2023) to obtain a segmentation mask, projects the
mask into 3D space using depth and intrinsics, and derives a reference point cloud. However, this
reference point cloud is not complete. It is derived from a projection of the target object from a
single viewpoint, which may not capture all parts of the object and thus results in an incomplete
point cloud. To compensate for incomplete single-view point clouds, we introduce this module to
refine the grounding result with a multi-view, target-centered scanning strategy. In this module, the
agent circles the center of the reference 3D point cloud to get multi-view observations and projects
these observations into 3D point clouds. Finally, the agent clusters and filters these point clouds and
outputs a more accurate 3D bounding box.

Specifically, from the reference point cloud, the agent extracts the 3D bounding box and computes
the box’s center c and the diagonal length lbox. The agent uses these values to define an observation
sphere. The center of this observation sphere is c, and the radius of this sphere is calculated as
r = max(lbox/2, 1.5m). The agent then generates sixteen poses and obtains their corresponding
observations on a 30°-tilted ring around the sphere. Subsequently, the agent uses VLM to select the
four observations that most clearly and completely capture the target object. For each frame, the
agent will select a single valid mask for the target object: it runs an open-vocabulary detector [3]
to locate the object’s candidate 2D bounding boxes; segments those boxes with SAM to produce
candidate masks; projects the masks into the 3D point cloud; finally keeps the one mask whose
corresponding point cloud centroid is closest to reference point cloud center c. All valid masks are
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then projected to 3D point clouds. Finally, to filter the outliers, the agent sorts these clouds by the
volume of their bounding boxes and discards any cloud whose volume is substantially larger than
that of the next smaller one. The remaining clouds are then fused with the reference cloud to produce
the refined point cloud.

Getting the Reference Point Cloud. To get the reference point cloud, we need to obtain the tar-
get object’s 2D bounding box and use the SAM model to get its mask in the image. Next, we can
project this mask into 3D space to obtain the object’s reference point cloud using the camera pa-
rameters and depth data. Therefore, first, the agent feeds the image containing the target object into
GroundingDINO and removes any 2D boxes that are too large, since some boxes cover the whole
image. (as GroundingDINO may occasionally return boxes covering the entire image). After that,
it marks the centers of the remaining boxes on the image. Then it passes the image, the user query,
and additional contextual cues (e.g., ”the object is located in the bottom-right corner”) into the VLM
to identify the most semantically relevant 2D bounding box corresponding to the target object. The
agent uses this box and its center as a positive point for SAM to create a segmentation mask. Finally,
the mask is projected into a 3D point cloud using the camera parameters and the depth image, with
the same denoising process strategy as VLM-Grounder during projection.

Surround-view Scanning. The agent scans around the reference point cloud’s center to capture
many new views. For each view, it runs GroundingDINO to find 2D boxes. It projects each box into
3D and measures the Euclidean distance between that box’s point-cloud center and the reference
center. The box with the shortest distance is kept as the target object in that view. The agent repeats
this for all views and gathers the resulting point clouds. It should be noted that we also apply an
initial denoising step during candidate box selection in this stage, except for the outlier removal
strategy based on bounding box size sorting described in the main text. The initial denoising step is
explained below.

Among the bboxes, we select the one whose center is closest to that of the reference point cloud.
However, due to the limitations of the 2D object detector and SAM, this nearest candidate may not
always correspond to the true target object. To address this, we first input the reference image into
a vision-language model (VLM) to assess whether the target object is particularly large or partially
outside the camera view. If so, no additional filtering is applied. Otherwise, we enforce a spatial
constraint requiring that the center of the selected candidate point cloud lies within 0.25 meters of
the reference center; this helps prevent the inclusion of significant noise points unrelated to the target
object.

L VLM PROMPTS

For the baseline methods, we use the same prompts as those employed in VLM-Grounder. For the
MCG method, we introduce several additional prompts, including those designed for the memory
retrieval image module, prompts used to compare whether the target object has moved between
images, prompts used in SRAS, and prompts applied in the multi-scan projection process. We will
explain each of them in the following sections.

The memory retrieval prompt for unverifiable queries selects the top 3 images that clearly cap-
ture the anchor object from a video sequence when no reliable grounding information is available.
In contrast, the memory retrieval prompt for verifiable queries performs a two-stage reasoning
process: it first searches for images that satisfy the query constraints and falls back to identify-
ing the target object if constraints are unmet. The oss prompt for unverifiable queries focuses
on selecting the single image that most clearly and completely depicts the target object from a
360-degree scan, while the oss prompt for verifiable queries incorporates a three-step reasoning
strategy, identifying the earliest image containing the anchor and then limiting the search space
for target localization accordingly. The relation parsing prompt is used to infer the spatial re-
lation (e.g., up, down, near, far, between) between the target and anchor objects from the query.
The sras choose target prompt performs target selection under a 360-degree rotation by evalu-
ating multiple views and returning the most confident match. The compare prompt determines
whether two images captured from the same pose show the target object at the same position, sup-
porting consistency checks. The fallback prompt implements a robust two-step procedure: locating
a query-matching image if available, or falling back to the clearest image showing the object class.
The get good view prompt is used to retrieve up to four images that provide the best views of a ref-
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erence object based on a reference image with a bounding box. Finally, the bboxchoose prompt re-
fines object selection by identifying the most probable target object among multiple candidate boxes,
integrating query content and spatial descriptions. Together, these prompts provide a structured, in-
terpretable, and modular interface for vision-language agents to perform complex multi-view spatial
reasoning and object grounding tasks. The textbflimit prompt guides the VLM to assess whether the
target object is overly large or partially occluded, serving as a prior for filtering unreliable candidate
point clouds. Table 14 shows their detailed contents.

Table 14: VLM prompts

memory retrieval prompt for unverifiable queries
You are an intelligent assistant proficient in analyzing images. Given a series of indoor room images
from a video, you need to analyze these images and select the best 3 images. Each image has an
ID in the upper left corner indicating its sequence in the video. Multiple images may be combined
and displayed together to save the place. The anchor object is {anchor class}. If there are some
images that are very similar, only select the clearest one to participate in the further selection pro-
cess. Select the best 3 images from the remaining images according to the following rule: Rule
1: Select those images from the remaining ones that can clearly display the anchor object until the
total number of selected images reaches 3. Please reply in json format, including ”reasoning” and
”selected image ids”:
{
”reasoning”: ”Your reasoning process”, // Your thinking process regarding the selection task
”selected image ids”: [”00045”, ”00002”, ”...”], // A list of the IDs of the best 3 images selected ac-
cording to the rules. Note that the returned IDs should be in the form of ”00045”, not ”00045.color”,
and do not add any suffix after the numbers.
”unique question”: 6 // This is an independent question. Regardless of any other factors, only look
for which image among all those provided captures the object {targetclass} most clearly. If none is
found, return -1.
}
Now start the task: There are {num view selections} images for you to select from.

memory retrieval prompt for verifiable queries
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Imagine that you are in a room and tasked with finding a specific object. You already know the query
content: {query}, the anchor object class: {anchorclass}, and the target object class: {targetclass}.
The provided images are obtained by extracting frames from a video. Your task is to analyze these
images to locate the target object described in the query.
You will receive multiple images, each with an ID marked in the upper left corner to indicate its
order in the video. Adjacent images have adjacent IDs. Note that, to save space, multiple images
may be combined and displayed together. You will also be given the query statement and a parsed
version specifying the target object class and conditions.
Your task is divided into two main steps:
Step 1: Based on the query and associated conditions, determine whether any of the provided images
contain the target object that satisfies the requirements. If found, return the corresponding image ID;
if not, return -1.
Step 2: If no matching image is found in Step 1, ignore the query content and examine all images
to see if any clearly capture an object of class {targetclass}. If such an image exists, return its ID;
otherwise, return -1.
Please note that the query statement and conditions may not be fully satisfied in a single image, and
they may also contain inaccuracies. Your goal is to find the object that most likely satisfies the query.
If multiple candidates exist, choose the one you are most confident about.
Your response should be a JSON object containing the following fields:

{
”reasoning”: ”Your reasoning process”, // Explain how you judged and located the target object. If
cross-image reasoning is used, specify which images were involved and how.
”find or not”: true, // Return true if a suitable image matching the query is found, otherwise return
false.
”target image id”: 4, // Return the image ID that best satisfies the query and conditions. If none
found, return -1.
”anchor image id”: 6, // Return the ID of the image where the anchor object is most clearly visible.
”extended description”: ”The target object is a red box located in the lower left corner of the image.”,
// Describe the target object in the selected image, focusing on color and position.
”unique question”: 6 // This is an independent question. Regardless of other factors, select the image
that most clearly captures an object of class {targetclass}. If none, return -1.
}

Now start the task:
There are {num view selections} images for your reference.
The following are the conditions for the target object: {condition}
oss prompt for unverifiable queries

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Imagine that you are in a room and tasked with finding a specific object. You already know the query
content: {query}, the anchor object class: {anchorclass}, and the target object class: {targetclass}.
The provided images are frames extracted from a video in which the camera performs a full 360-
degree rotation around a specific point. Your task is to analyze these images to locate the target
object described in the query.
You will receive multiple images, each with an ID marked in the upper left corner indicating its
sequence in the video. Adjacent images have adjacent IDs. To save space, multiple images may be
combined and displayed together. Additionally, you will be provided with the query statement and
its parsed version, which specify the target class and grounding conditions.
Your goal is to find the image that most clearly and completely captures the target object described
by the query. The conditions may not be fully accurate or verifiable from a single image, so the
correct object may not satisfy all of them. Try your best to identify the object that most likely meets
the conditions. If multiple candidates appear correct, choose the one you are most confident about.
While checking each image, consider different views throughout the 360-degree rotation. If you
find the target object in an image, also examine whether other images capture the same object more
clearly or completely, and return the best one. Your answer should be based on the image where the
target object is most clearly and completely visible.
Please reply in JSON format, structured as follows:

{
”reasoning”: ”Your reasoning process”, // Explain the process of how you identified and located the
target object. If reasoning across multiple images is used, explain which images were referenced
and how.
”target image id”: 1, // Replace with the actual image ID (only one) that most clearly captures the
target object.
”reference image ids”: [1, 2, ...], // A list of image IDs that also contain the target object and helped
in reasoning.
”extended description”: ”The target object is a red box. It has a black stripe in the middle.”, //
Describe the target object’s appearance based on the selected image. Color and features only; do
not include position.
”extended description withposition”: ”The target object is a red box located in the lower left corner
of the image.” // Describe the target object with both appearance and spatial position in the image.
}

Now start the task:
There are {num view selections} images for your reference.
Here is the condition for the target object: {condition}
oss prompt for verifiable queries
Imagine that you are in a room with the task of finding specific objects. You already know the
query content: {query}, the anchor object category: {anchorclass}, and the target object category:
{targetclass}. The provided images are extracted frames from a video that rotates around a certain
point. Each image is marked with an ID in the top-left corner to indicate its sequence in the video.
Adjacent images have adjacent IDs. For space efficiency, multiple images may be combined and
displayed together.
You will also receive a parsed version of the query, which clearly defines the target object category,
the anchor object category, and grounding conditions.
Your task consists of the following three steps:
Step 1: Based on the anchor object category, determine whether any of the provided images clearly
capture the anchor object. If no such image is found, return -1 directly.
Step 2: If Step 1 is successful, return the smallest image ID (denoted as min ID) among the images
that clearly capture the anchor object.
Step 3: Among the images with IDs from 0 to min ID, try to find an image that clearly captures the
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target object and satisfies the query content and conditions. If such an image is found, return its ID;
otherwise, return -1.
Note: The query statement and conditions may not be perfectly accurate or fully visible in a single
image. Try your best to locate the object that is most likely to match these conditions. If multiple
objects are plausible, select the one you are most confident about.
Here is an example: In Step 1, images 12, 13, 14, and 15 all clearly capture the anchor object, so
Step 2 yields min ID = 12. In Step 3, no image from ID 0 to 12 meets the query requirements, so
target image id = -1.
Please reply in JSON format as follows:

{
”reasoning”: ”Your reasoning process”, // Explain the reasoning process across all three steps. If
cross-image reasoning is involved, specify which images were used and how.
”anchor image id”: 12, // Return the smallest image ID that clearly captures the anchor object. If
none is found, return -1.
”target image id”: 4, // If anchor image id = -1, then return -1 directly. Otherwise, return the image
ID (≤ anchor image id) that best satisfies the query. If none found, return -1.
”extended description”: ”The target object is a red box located in the lower-left corner of the
image.”, // Describe the target object in the image with ID = target image id. If target image id =
-1, return None.
”unique question”: 6 // This is an independent question. Regardless of other factors, return the ID
of the image that most clearly captures an object of class {targetclass}. If none found, return -1.
}

Now start the task:
There are {num view selections} images for your reference.
Here are the conditions for the target object: {condition}
relation parsing prompt
You are an agent who is highly skilled at analyzing spatial relationships. You are given a query:
{query}, a target object: {classtarget1}, and an anchor object: {anchorclass}. Your task is to de-
termine the spatial relationship of the target object relative to the anchor object based on the query
content.
The possible spatial relationships are defined as follows:
- up: the target object is above the anchor object // the target object is lying on the anchor object //
the target object is on top of the anchor object.
- down: the target object is below the anchor object // the target object is supporting the anchor
object // the anchor object is on top of the target object.
- near: the target object is close to the anchor object.
- far: the target object is far from the anchor object.
- between: the target object is between multiple anchor objects.

Please reply in JSON format with one key, ”reasoning”, indicating the spatial relationship you
determine:

{
”reasoning”: ”up” // Return the spatial relationship type (up, down, near, far, or between) that best
describes the position of the target object relative to the anchor object.
}

Now start the task.

sras choose target prompt
Imagine you’re in a room tasked with finding a specific object. You already know the anchor object
class: {anchorclass}, the target object class: {targetclass}, and the query the target object should
match: {query}. The provided images are captured during a 360-degree rotation around the anchor
object.
You are given a sequence of indoor-scanning video frames and a query describing a target object in
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the scene. Your task is to analyze the images and locate the target object according to the query
content.
Each image is annotated with an ID in the top-left corner indicating its sequential position in the
video. Adjacent images have adjacent IDs. For space efficiency, multiple images may be combined
and displayed together. You are also provided with a parsed version of the query, which lists the
conditions that the target object should satisfy.
After filtering and comparison, your goal is to identify the image ID that contains the target object
most clearly based on the query and conditions. Note that these conditions may not be fully ob-
servable in a single image and might be imprecise. The correct object may not meet all conditions.
Try to find the object that most likely satisfies them. If multiple candidates seem plausible, choose
the one you are most confident about. If no object meets the query criteria, make your best guess.
Usually, the target object appears in several images—return the one where it is captured most clearly
and completely.
Please reply in JSON format with the following structure:

{
”reasoning”: ”Your reasoning process”, // Explain how you identified and located the target object.
If you used multiple images, describe which ones and how they contributed to your decision.
”target image id”: 1, // Replace with the actual image ID that most clearly shows the target object.
Only one ID should be provided.
”reference image ids”: [1, 2, ...], // A list of other image IDs that also helped confirm the target
object’s identity.
”extended description”: ”The target object is a red-colored box. It has a black stripe across the
middle.”, // Describe the target object’s color and notable features. No need to mention its position.
”extended description withposition”: ”The target object is a red-colored box located in the lower
left corner of the image.” // Describe both appearance and position of the object in the selected
image.
}

Now start the task:
There are {num view selections} images for your reference.
Here is the condition for the target object: {condition}
compare prompt
You are an intelligent assistant who is extremely proficient in examining images. You already know
the target object category: {target class}. Now I will provide you with two images. You need to
determine whether the target objects captured in these two images are in the exact same position.
Since these two images are taken from the same pose, you only need to check whether the target
objects are in the same position within the images.
For example, if the target object is a table and you can clearly see that the table is located in the
middle of both images, then the target objects captured in these two images are considered to be in
the same position.
Please reply in JSON format with two keys: ”reasoning” and ”images same or not”:

{
”reasoning”: ”Your reasons”, // Explain the basis for your judgment on whether the target objects
captured in these two images are in the same position.
”images same or not”: true // It should be true if you think the target objects captured in the two
images are in the same position. If you find that the positions of the target objects captured in the
two images are different, or if the target object is captured in the first image but not in the second,
then it should be false.
}
fallback prompt
Imagine you are in a room tasked with finding a specific object. You already know the query content:
{query}, and the target object category: {targetclass}. The images provided to you are frames
extracted from a video that rotates around a particular point. Each image is marked with an ID in
the top-left corner to indicate its sequence in the video, and adjacent images have consecutive IDs.
For space efficiency, multiple images may be combined and displayed together.
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Your task consists of two steps:
Step 1: Locate an image that contains the target object that satisfies the query statement and its
associated conditions. The image must clearly and completely capture the target object. If such an
image is found, return its ID and skip Step 2.
Step 2: If no image meets the query-based requirements, ignore the query and check all provided
images. Identify an image that clearly captures the object of category {targetclass}. If such an image
is found, return its ID. If none are found, return -1.
Please reply in JSON format with the following structure:

{
”reasoning”: ”Your reasoning process”, // Explain the reasoning behind both steps of your
decision-making process.
”match query id”: 12, // Return the image ID that satisfies Step 1. If no image matches the query,
return -1.
”object image id”: 4, // If Step 1 is successful, return -1 here. Otherwise, return the ID of the image
that clearly captures the object in Step 2. If not found, return -1.
”extended description”: ”The target object is a red box located in the lower-left corner of the
image.” // Provide a brief description of the target object as seen in the selected image. Focus on
visual features such as color and location within the image.
}

Now start the task:
There are {num view selections} images for your reference.

get good view prompt
You are an excellent image analysis expert. I will now provide you with several images, each marked
with an ID in the upper left corner. These images are captured by rotating around a target object
{target} that is framed with a green bounding box in the reference image. The reference image
is also provided, and it contains the target object {target} enclosed by a green box, with the word
”refer” shown in red in the upper left corner.
Your task is to determine which three (at most four) of the provided images capture the target ob-
ject from the reference image most clearly and completely. Please note that, for layout efficiency,
multiple images may be displayed together in a single composite image.
Your response should be in JSON format, containing the following fields:

{
”reasoning process”: ”Your reasoning process”, // Explain how you select the images that best
capture the target object framed in the reference image.
”image ids”: [2, 4, 5, 7] // Replace with the actual image IDs. Return up to four IDs corresponding
to the images that, in your opinion, capture the target object most clearly and completely.
}

Now start the task:
There are {num images} candidate images and one reference image for you to choose from.

bboxchoose prompt
Great! Here is the detailed version of the picture you’ve selected. There are
{num candidate bboxes} candidate objects shown in the picture. I have annotated an object ID
at the center of each object with white text on a black background. You already know the query
content: {query}, the anchor object: {anchorclass}, and the target object: {classtarget}. In addition,
you will be provided with an extended description: {description}, which includes the position of the
target object in the picture.
Your task consists of two main steps:
Step 1: The candidate objects shown in the picture are not necessarily all of the target class
{classtarget}. You must first determine which of them belongs to the class {classtarget}.
Step 2: Among the identified candidate objects of class {classtarget}, select the one that best matches
both the query content and the extended description (including position).
Please reply in JSON format with two fields:
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{
”reasoning”: ”Your reasoning processing”, // Describe your full reasoning process in three parts:
(1) how you identified candidate objects of the target class; (2) how you verified them against the
extended description; and (3) how you selected the final object ID.
”object id”: 0 // The object ID you select. Always provide one object ID from the picture that you
are most confident about, even if you think the correct object might not be present.
}

Now start the task: There are {num candidate bboxes} candidate objects in the image.

limit prompt
Great! Now you will perform an expert judgment on the visibility of a target object in the provided
image.
You already know the target object category: {targetclass}. You will be shown one image containing
this object class.
Your task consists of two main steps:
Step 1: Some object categories, such as beds, sofas, closets, cabinets, shelves, etc., are consid-
ered inherently large. If the target object belongs to this group of large categories, directly return
"limit": true without proceeding to the next step.
Step 2: If the target class is not considered large, examine the image and determine whether the
target object appears to be fully captured. If you believe the object is incomplete or partially outside
the frame, return "limit": true; otherwise, return "limit": false.
Please reply in JSON format with two fields:

{
”reasoning”: ”Your reasoning process”, // Describe your reasoning clearly: (1) whether the category
is considered large, and (2) if not, how you judged the completeness of the object in the image.
”limit”: false // Return true only if the object is large, or if it is not large but appears incomplete in
the image.
}

Now start the task: You are given one image and the target object category: {targetclass}.

M COST CALCULATION FOR METHODS

Before we officially begin, let us once again emphasize that all costs are reported in units of 1,000
seconds (e.g., 9k = 9000s). The results shown in tables ( Table 2, Table 3, Table 4, Table 5, Ta-
ble 6, Table 7, Table 8, Table 15) have all been processed with unit normalization.

For both the baseline methods and our proposed MCG approach, the robot’s initial camera pose
is assumed to be at the center of the room (see the main text for the formal definition of this key
assumption). For MCG, the full camera trajectory starts from the initial pose and follows a sequence
of new poses generated by the MCG pipeline. The cost of the entire trajectory is computed according
to the evaluation metrics defined in the main paper. For the WG and CRG baselines, all images are
pre-captured and sequentially indexed. We first identify the image whose pose is closest to the initial
camera pose and denote its index as n. The camera trajectory then starts from the initial pose and
proceeds through the poses of images with indices n, n + 1, n + 2, . . ., wrapping around from the
last index back to 1 as needed, and ending at index n − 1. The cost is computed based on the
same evaluation procedure. For the MOG baseline, which only utilizes memory images, the camera
trajectory consists of only two poses: the initial pose and the pose of the target image. Its cost is
similarly computed using the defined metrics.

N OPEN PROBLEMS

We present the ChangingGrounding benchmark (CGB) as the first benchmark for evaluating 3D
visual grounding in changing scenes and introduce the Mem-ChangingGrounder (MCG) as a strong
baseline method. Nevertheless, both still exhibit the following limitations.
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N.1 LIMITATIONS OF THE CGB BENCHMARK

At present, our CGB dataset models only the relative positional changes between the target and
its surroundings, without accounting for critical factors such as lighting variations, object appear-
ance attributes (e.g., color, material, deformation), or dynamic scene interactions. Moreover, its
repertoire of spatial relations lacks allocentric descriptions like “Object A is in front of Object B.”
These omissions narrow the benchmark’s breadth and depth when assessing an agent’s cross-scene
generalization and robustness. Future work can address these gaps by enriching multimodal annota-
tions, introducing additional dimensions of variation, and incorporating allocentric relations, thereby
expanding the dataset’s scale and diversity and enhancing CGB’s applicability and challenge in real-
world dynamic environments.

N.2 LIMITATIONS OF THE MCG METHOD

Limitations of VLM capability. MCG relies heavily on the underlying Vision–Language Model
(VLM) to locate target objects in image sequences according to the analysis requirements. As
demonstrated by the ablation studies above, the strength of the VLM has a decisive impact on
MCG’s final grounding accuracy. If the VLM is insufficiently capable—or if the visual informa-
tion in real-world scenes is unusually complex—MCG’s performance can deteriorate. Nevertheless,
because VLM technology is advancing rapidly, we can replace the current module with more pow-
erful models in the future to further enhance performance.

Noise from rendered images. During the experiments, MCG consistently feeds rendered RGB-D
images into the vision-language model (VLM) for inference or uses them for SAM-based segmen-
tation, projection, and related processes. However, the rendering process based on mesh files intro-
duces various types of noise, including artifacts in the RGB images and inaccuracies in the depth
maps. Moreover, there may be inherent differences in how VLMs process real versus rendered
images. These factors can negatively affect the grounding accuracy.

Noise introduced by 2D models. MCG depends on 2-D object detectors and segmentation net-
works to filter candidate images and perform the final projection. Although state-of-the-art models
such as GroundingDINO and SAM are highly capable, they still exhibit missed detections, false pos-
itives, imprecise bounding boxes, and segmentation errors. These imperfections propagate through
the pipeline and ultimately undermine the accuracy of the grounding results.

Future work Despite these limitations, we believe that our work on MCG and the CGB benchmark
provides a strong foundation for future research in the field of grounding tasks in changing scenes.
We hope that our contributions will inspire researchers to explore new methods and techniques to
address the challenges posed by dynamic scenes. Specifically, we encourage the community to
focus on the following open problems: (1) Improving VLM Robustness: Developing more robust
Vision–Language Models that can handle complex real-world visual information and reduce the
impact of noise; (2) Enhancing Multimodal Integration: Exploring ways to better integrate multi-
modal data (e.g., combining visual, linguistic, and spatial information) to improve grounding accu-
racy; (3) Expanding Benchmark Diversity: Contributing to the expansion of the CGB benchmark
by adding more diverse scenarios, including variations in lighting, object appearance, and dynamic
interactions; (4) Reducing Noise in Rendered Data: Investigating methods to minimize the noise
introduced during the rendering process and to bridge the gap between real and rendered images; (5)
Advancing 2D-to-3D Projection Techniques: Improving the accuracy and reliability of 2D object
detection and segmentation models to enhance the overall grounding performance. We hope that
our work will serve as a catalyst for further research in this exciting and challenging domain. By
addressing these open problems, we can collectively push the boundaries of 3D visual grounding in
changing environments and develop more effective and robust solutions.

O MORE RESULTS

O.1 TEST SAMPLES

For each sample, first, we select any reference scan as Sc and randomly select one rescan of Sc as Sp.
We then randomly pick an objectO with descriptionsDo in Sc as the target object and user query. It
is important to note that, in order to ensure that the test samples cover diverse types of descriptions,
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we selected a fixed number of instances from every relation type. Within the 250 samples, both the
anchor object and the target object may either remain static or undergo changes.

O.2 RENDERED VS. REAL IMAGES IN MEMORY

In previous experiments, both the memory and exploration images used by our system were re-
rendered images. We still don’t know how well VLMs work with these synthetic images. To check
this, we conduct a comparative experiment with two settings. In the w.rendering setting, both the
memory and exploration inputs are re-rendered images, consistent with the main experiment. In
the w/o.rendering setting, the exploration images remain rendered, while the memory images are
replaced with real photographs. Note that we don’t have real images captured with the unified
camera module described in the main text Section 3.3. To align our rendered images with the real
photos supplied by 3RScan, we render every image using the original camera model from 3RScan.

We randomly sample 50 instances from a pool of 250 and observe the final grounding results. As
shown in Table 15, experimental findings indicate that using rendered images in memory does not
significantly affect the overall grounding accuracy. Results show that the w.rendering setting ap-
pears to perform slightly worse than the w/o.rendering setting. That does not prove that rendering
is superior because there exists normal experimental variance. Moreover, the MCG pipeline still
requires many exploration images that must be rendered for VLM inference. Overall, these results
suggest that using rendered images in our experiments is a feasible approach.

Table 15: Comparison between using rendered and real images in memory.

Version Acc@0.25 A c M c

w. rendering 28 1.74 2.05

w/o. rendering 24 1.62 1.94

Table 16: Human result.

Method Acc. A c M c

Human 85.6 44.23 17.51

O.3 HUMAN ACCURACY

We additionally asked a human researcher to perform grounding on the same set of 250 test exam-
ples, following the same general procedure as in the WG setting. Unlike the MCG and baseline
models, whose accuracy is determined by the IoU-based matching criterion, human performance
is evaluated solely based on whether the correct target can be successfully identified. As shown
in Table 16, it is worth noting that human performance remains substantially higher than the MCG
and all baselines, indicating that the ChangingGrounding task still holds substantial room for further
research and improvement.

O.4 DETAILED DISCUSSION REGARDING VLMS

To investigate the primary ways this system shows brittleness in different ways of prompting the
underlying VLMs. We study two types of memory retrieval and grounding prompting modification,
language modification, and vision modification. For language modification, we remove the parts
requiring reasoning in the original prompt and simplify the detailed search instructions. For vision
modification, we change the image-stitching strategy in the original prompt from dynamic stitching
to a fixed 2×4 layout. In Table 11, v origin represents the original prompt, v less represents the
language modification, and v fix layout represents the vision modification. The results show that
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v less leads to only a slight decline in accuracy, whereas v fix layout causes a more noticeable per-
formance drop because, as the number of images increases, the fixed layout produces more stitched
images than dynamic stitching, making the grounding task more challenging for the VLM.

To investigate how different underlying LLM/VLMs affect the performance of Mem-
ChangingGround. We studied 3 types of VLMs, gpt ( GPT-4.1 (OpenAI, 2025a) ), gemini ( Gemini-
2.5-Flash (Comanici et al., 2025)) and claude ( Claude-Sonnet-4.5 (Anthropic, 2025) ). As shown
in Table 12, gpt exhibits the best overall performance and provides the most stable formatting con-
sistency, followed by gemini with slightly lower accuracy. claude shows a more significant perfor-
mance reduction, which we found is largely due to its difficulty in adhering to the required output
format, consequently affecting its final accuracy.

Finally, to investigate how VLMs uncertainty would influence the MCG results, we increased the
VLM’s temperature and top-p settings. As shown in Table 13, even under higher-temperature sam-
pling settings, the accuracy and constraint metrics remain close to the original configuration, in-
dicating that increasing output diversity and randomness does not substantially affect the overall
performance.

O.5 3D VISUAL GROUNDING METHODS IMPLEMENTATION

Prior 3D visual grounding methods are not readily adaptable to scenarios involving dynamic visual
grounding because they are not designed to leverage memory. These methods typically require
the latest point clouds of the current scene for each grounding instance, which is impractical for
real-world applications since rescanning the entire scene to obtain updated point clouds is highly
inefficient. Nevertheless, we attempt to adapt these methods to incorporate memory for our task
setting.

We designed a pipeline as follows: the model initially uses point clouds from memory (past scenes)
to locate the anchor object based on the query. Once the anchor object’s position is identified, the
model determines a neighboring region around the anchor object to obtain updated point clouds.
This approach eliminates the need for scanning the entire scene. The neighboring region is defined
as within a 2-meter radius of the anchor object’s position.

For cost calculations, we make an approximation based on the assumption that the agent starts from
the center of the room, moves to the previously predicted anchor object location, and performs a
full 360-degree rotation around the vertical axis to scan the region. It is important to note that this
assumption is also not always feasible in real-world scenarios. Specifically, a single 360-degree rota-
tion at one position often cannot capture all details, resulting in estimated costs that are significantly
lower than the actual costs.

We conducted experiments using the 3D-Vista (Zhu et al., 2023) model, as it is pre-trained on the
3RScan dataset. It should be noted that this model requires pre-detection of all 3D bounding boxes
prior to grounding. For our experiments, we utilized GT bounding boxes, which significantly en-
hance performance beyond realistic scenarios.

The final experimental results are presented in the Table 8. We create the pipeline as follows: the
agent first uses 3D-Vista to locate the anchor object based on the query in the point cloud of a
previous scene. After obtaining the position of the anchor object, the agent uses this position as the
center to crop a region within a 2-meter radius from the current scene’s point cloud. This region
is then provided as input to 3D-Vista for inference, under the same assumption that 3D-Vista has
access to the ground-truth bounding box contained within this region.

Please note that these experiments are intended solely for reference. We do not consider them to
have practical significance due to simplifying assumptions. Specifically, at Acc@0.25, our method
demonstrates superior accuracy and lower action costs. Additionally, since 3D-Vista performs a full
360-degree rotation during scanning (an impractical scenario), it exhibits nearly zero translation cost
and reduced rotation cost.

O.6 INFERENCE TIME

Success rate. Specifically, A step for modules in the MRGS is counted as successful under 2
following conditions: (a) View Pre-selection (VP): The pre-selected views from the SRAS or the

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

OSS contain the target object. (b) VLM Choose Image (VCI): The VLM predicts an image that
contains the target object. A step for modules in the MS is counted as successful under 3 conditions:
(a) OV Detection (OD): At least one detection box contains the target object. (b) Select Reference
Instance (SRI): The VLM selects the detection box containing the target object. (c) Multi-view
Projection (MP): The 3D IoU between the predicted box and the ground-truth box is ≥ 0.25. Their
success rate is in Table 9

Inference time. The table below shows the time consumption of modules in our framework.

Table 17: Inference time of different modules (unit: seconds)

Query Analysis View Preselection Detection Predictor
0.8 11.3 0.2

SAM Predictor Dynamic Stitching Project Points
0.5 9.7 0.7

VLM Select Box VLM Analysis (Spatial relations) VLM Analysis (Static)
11.4 1.0 5.4

VLM Predict Images VLM Choose Good Views Depth Denoising
11.7 11.5 0.7

VLM Decide Distance Limitation Total
4.9 113.2

We acknowledge that the inference speed has significant room for optimization, given that this is a
research project. For example, as shown in the Table 17, the majority of the time in our pipeline is
spent on VLM inference. However, with the rapid advancement of VLM technology, we expect that
high-speed large models will soon be deployable on edge devices such as the FastVLM project intro-
duced by Apple (Vasu et al., 2025). FastVLM reaches 85× faster TTFT when compared specifically
to LLaVa-OneVision operating at 1152×1152 resolution. This opens up promising opportunities for
significantly reducing the overall runtime of our method.

O.7 ERROR CASE ILLUSTRATION

In this section, we present concrete failure cases in the MCG framework.

Wrong images for VLMs final predicting First, owing to the VLM’s capacity, it may fail to identify
the anchor object in memory images at the beginning, causing errors in the whole grounding process.
Once the anchor is wrong, new views from SRAS or OSS often miss the target. Second, views from
SRAS and OSS may produce limited viewpoints that lack the correct object (anchor or target),
especially when the correct object is located low. Third, there exist a lot of unusable rendering
images, which often have large blank or missing regions. In all cases, they lead to a single situation
where the VLM can’t get any images containing the target object at all, which will cause failure for
the final VLM grounding steps. There are some examples shown in Figure 5 and Figure 6.

VLMs failure in grounding target images Relational queries involving horizontal spatial reason-
ing (e.g., “select the chair closest to the table”) impose higher demands on the inference capability
of vision-language models (VLMs). Such relationships require the model to make fine-grained com-
parisons based on relative spatial distances rather than absolute object properties. In cluttered scenes,
distractors with small distance gaps increase errors, making VLMs prone to wrong selections. An
example is shown in Figure 7.

Failure in SAM and projection During our experiments, we observed that SAM often produces
noisy masks by including pixels unrelated to the target, which we believe may stem from SAM’s
poor generalization to rendered images and the low quality of these images. This over-segmentation
reduces the accuracy of 3D projection and bounding box localization. In addition, since our ex-
periments are conducted on rendered images, missing or incomplete regions often affect precision.
Although we applied denoising on depth maps by removing abrupt pixels, residual noise remains a
challenge to accurate 3D localization. Examples are shown in Figure 8.
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Wrong VLM choise Ground truth

Figure 5: VLMs failure in memory retrieval, the anchor object is a box.

Wrong VLM choise Correct

Figure 6: Failure in SRAS, the user query is to find the cushion that is farthest from the pc.

Wrong VLM choice CorrectAnchor

Figure 7: VLMs fail to ground the target image: query “cabinet near the box.”

Wrong SAM result Rendering noise

Figure 8: Failure in SAM and projection.
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Memory images 
preselection

&
Dynamic stitching "query": "choose the toilet that is under the flush"

"target_class": "toilet"
"anchor_class": "flush"

memory_retrieval_prompt_for_verifiable_queries

{'reasoning': "The query asks for a toilet that is under the flush, with the anchor 
object being the flush. I first scanned the images for the presence of a toilet and a 
flush. The clearest images showing both the toilet and the flush are those in the 
range of IDs 006 to 076. In these images, the flush (the rectangular panel above the 
toilet) is visible directly above the toilet, which matches the condition 'under the 
flush.' Among these, image 006 provides a clear view of both the flush and the toilet, 
with the flush directly above the toilet, making it easy to confirm the spatial 
relationship. For the anchor object (flush), image 006 also provides a clear view, but 
image 081 shows the flush even more clearly, as it is more centered and less 
obstructed. For the unique question, the toilet is most clearly visible in image 073, 
where the entire bowl is unobstructed and well-lit.", 'find_or_not': True, 
'target_image_id': 6, 'anchor_image_id': 81, 'extended_description': 'The target 
object is a white toilet located in the lower right corner of the image, with the flush 
panel directly above it on the wall.', 'unique_question': 73}

Memory retrieve

"target_class": "flush"

{
"reasoning": "In both images, the flush (the rectangular button panel above the toilet) 
is located in the same position on the wall, just above the toilet seat and below the 
two round meters and a small round sign. The orientation and placement relative to 
the other objects (such as the mirror, sink, and wall outlet) are consistent between 
the two images. There is no noticeable shift or change in the position of the flush 
within the frame.",
"images_same_or_not": true
}

Stay static or not

compare_prompt

"target_class": "toilet"

{
"reasoning": "In both images, the toilet is located in the lower right corner of the 
image, adjacent to the bathtub and near the same set of objects (such as the toilet 
paper holder and cleaning supplies). The angle and position of the toilet relative to 
the other bathroom fixtures are consistent between the two images. The only 
noticeable difference is the toilet seat cover design, but the position of the toilet itself 
remains unchanged.",
"images_same_or_not": true
}

Stay static or not

compare_prompt

limit_prompt

Big stuff or occluded stuff

"target_class": "toilet"

{'reasoning': 'Step 1: The target object is a toilet, which is not considered a relatively 
large object like a bed, sofa, or cabinet, so proceed to Step 2. Step 2: In the provided 
image, only a portion of the toilet is visible, with the seat and part of the bowl shown, 
but the full structure (such as the tank, base, and full outline) is not completely 
captured. Therefore, the toilet is not photographed completely.', 'limit': True}

Figure 9: Case of the MCG grounding part-1.
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Full-circle

Refer point cloud center Full circle rescan New poses

get_good_view_prompt

"target_class": "toilet"

{
  "reasoning_process": "To determine which images best capture the target object 
shown in the reference image, I first compared each candidate image against the 
green-bounded object in the reference. I looked for views that contain the object 
fully within the frame, with minimal occlusion, good lighting, and a clear perspective 
that reveals the object's shape and structure. Images 1, 2, 4, and 5 were selected 
because they present the object in a well-centered and unobstructed manner, 
showing key visual details such as contour, texture, and orientation, while other 
images were either partially cropped, blurred, or blocked by other objects.",
  "image_ids": [1, 2, 4, 5]
}

Get good multi-views

Compute the minimum Euclidean 
distance

Reference Optimal candidates 

Filter

Final result 

Figure 10: Case of the MCG grounding part-2.

O.8 FULL DEMO

In this section, as shown in Figure 9 and Figure 10, we present a representative and structurally
concise example to intuitively illustrate how MCG effectively leverages memory information for
efficient and accurate target localization in dynamic environments. The example highlights the cen-
tral role played by the vision-language model (VLM) throughout the entire execution process. We
provide a detailed depiction of the VLM’s reasoning at each step, demonstrating how it progres-
sively converges on the target object through multi-round perception and decision-making, thereby
showcasing its capabilities in semantic understanding and spatial reasoning.
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