
OPT2025: 17th Annual Workshop on Optimization for Machine Learning

The Hebbian Forward-Forward Algorithm

Andrii Krutsylo ANDRII.KRUTSYLO@GMAIL.COM

Abstract
We introduce Hebbian Forward-Forward (HebbFF), a gradient-free alternative to the Forward-
Forward (FF) algorithm. HebbFF replaces the local gradient computations in FF with classical
Hebbian plasticity, which is modulated by a gating rule based on the ”goodness” introduced in FF.
This change eliminates the need for gradient calculations, reducing computational overhead and
memory usage. On the MNIST and FashionMNIST datasets, HebbFF achieves the same level of ac-
curacy as FF while training substantially faster and using less VRAM. Although HebbFF achieves
lower predictive performance compared to backpropagation, it offers more resource-efficient train-
ing. Therefore, HebbFF establishes a stronger baseline than FF for exploring scalable, gradient-free
learning in deep networks.

1. Introduction

Training deep neural networks usually depends on backpropagation, a process that updates network
weights by recursively computing error gradients through each layer. Despite its success, backprop-
agation faces practical limitations, driving the exploration of alternative learning paradigms that
avoid explicit gradient computations.

Replacing backpropagation would enable learning in settings where it is ineffective or impracti-
cal, such as with hardware containing unknown or variable analog nonlinearities, architectures with
non-differentiable components, systems that must learn continuously without storing activations,
and environments where energy costs or architectural constraints make forward-only training far
more practical than full gradient propagation.

The Forward-Forward (FF) algorithm [6] provides one such biologically inspired alternative.
Unlike backpropagation, the FF algorithm avoids global gradient propagation. It accomplishes this
by independently training each layer using local gradients computed from two forward passes per
training step. However, FF still requires local gradient computations, which are memory- and time-
demanding.

Building upon these concepts, we introduce Hebbian Forward-Forward (HebbFF), which elim-
inates the need for gradients by replacing them with the classic Hebbian update [5]. HebbFF com-
putes weight updates as the sum of the outer products of the normalized pre-synaptic inputs and
post-synaptic activations. These updates are further simplified as the difference between the aggre-
gated positive and negative sample updates, scaled by a learning rate.

Unlike FF, which still relies on local gradients, HebbFF is entirely gradient-free. HebbFF de-
livers the same predictive accuracy as FF, but it trains faster and uses substantially less memory.
Therefore, HebbFF is not merely an alternative to FF; it is a significant improvement, setting a new
standard for exploring scalable, biologically inspired, gradient-free learning rules.

© A. Krutsylo.



THE HEBBIAN FORWARD-FORWARD ALGORITHM

Our findings highlight that integrating simple, biologically inspired mechanisms into modern
architectures can provide a powerful, computationally efficient alternative to gradient-based train-
ing methods. This approach is particularly well-suited for dynamic environments where resource
efficiency is essential.

All code and experiments are available at https://github.com/DentonJC/hebbff.

2. Previous Work

2.1. Hebbian Learning

According to Hebbian learning [5], synaptic strength increases when pre- and post-synaptic neurons
co-activate, which is typically formalized as ∆w = ηxy. Although this rule is simple and biolog-
ically grounded, it suffers from instability due to unbounded weight growth. Extensions address
this issue. Oja’s rule [10] normalizes weights and aligns with principal component learning; the
covariance rule [11] subtracts mean activities to handle c orrelated inputs; the BCM rule [1] intro-
duces a dynamic threshold for potentiation and depression; and anti-Hebbian learning [4] supports
inhibition and decorrelation.

Recent work adapts Hebbian mechanisms to deep learning. Hebbian-descent [8] stabilizes
learning by centering activities and avoiding derivatives. HardWTA [9] integrates competition,
inhibition, and BCM dynamics into convolutional models, achieving performance comparable to
backpropagation. Neuron-centric Hebbian Learning (NcHL) [3] shifts from synapse-specific to
neuron-specific updates, reducing parameters from O(W ) to O(N) while remaining effective in
reinforcement learning tasks.

These approaches show that Hebbian rules, when modified for stability and efficiency, can scale
to modern architectures and serve as competitive, biologically inspired alternatives to gradient-based
training.

2.2. Local and Biologically-Plausible Learning Rules

Several alternatives to backpropagation aim to preserve the representational power of deep networks
while using only local information. Direct Feedback Alignment (DFA) [7] bypasses the weight
transport problem with fixed random feedback, enabling each layer to minimize local errors without
symmetric weights. Predictive coding networks [13] frame learning as iterative prediction error
minimization, with Hebbian-like updates that approximate backprop.

2.3. The Forward-Forward Algorithm

The Forward-Forward (FF) algorithm [6] replaces forward-backward passes with two forward passes:
one on positive (real) data and one on negative (synthetic or corrupted) data. Each layer is trained
independently using a local goodness measure, typically the sum of squared activations. The ob-
jective is to increase goodness for positive inputs and decrease it for negative ones. Classification
is performed by attaching each possible label to the input and selecting the label with highest cu-
mulative goodness across layers. FF avoids backward error signals and supports non-differentiable
components, though at some cost in efficiency and generalization relative to backpropagation.

2

https://github.com/DentonJC/hebbff


THE HEBBIAN FORWARD-FORWARD ALGORITHM

3. Method

We introduce the Hebbian Forward-Forward (HebbFF) algorithm, a gradient-free learning method
derived from the Forward-Forward (FF) framework. HebbFF integrates classical Hebbian plasticity
with the FF paradigm while retaining the central idea of separate forward passes for positive and
negative samples, each optimizing a local layer-wise objective based on squared activations.

Our implementation departs from the original FF protocol in three main respects. First, all lay-
ers are updated concurrently within each epoch: data are passed sequentially through the network,
and every layer performs a single update using the same batch of positive and negative samples. In
contrast, the original FF trains layers greedily, one at a time, with each layer trained to convergence
before the next is introduced. Second, we employ mini-batch updates rather than full-batch up-
dates. This improves memory efficiency and compatibility with modern accelerators but introduces
stochasticity that can slow convergence. Third, instead of restricting label information to the input
layer, we concatenate a scaled one-hot label vector to the activations at every layer. This design
ensures that label information remains explicitly accessible throughout the hierarchy, providing a
more persistent supervisory signal and altering the distribution of goodness values compared to the
standard FF formulation. The model, training, and evaluation procedures are identical for FF and
HebbFF. The only difference is the function that updates the layers using the pure or Hebbian-based
FF algorithm.

We adopt the most basic FF, this variant is known to exhibit limitations such as sensitivity
to static thresholds and loss function design. However, recent improvements such as the Trifecta
framework [2] and the Symmetric Forward-Forward Algorithm [12] mitigate these issues while
remaining compatible with HebbFF.

The defining feature of HebbFF is the elimination of gradient computations. Whereas FF cal-
culates gradients from local loss functions, HebbFF applies Hebbian updates directly. Training
proceeds as follows:

1. Label Appending: For each input batch, construct positive samples with true labels and neg-
ative samples with randomly chosen incorrect labels. Concatenate the one-hot label vector to
the activations at every layer during both passes.

2. Sequential Layer-wise Training:

(a) Activation Computation: For each layer, compute post-synaptic activations a separately
for positive and negative samples using rectified linear units (ReLU).

(b) Goodness Scores: For each sample, calculate a scalar goodness measure as the mean
squared activation:

g =
1

n

n∑
k=1

a2k, (1)

where n is the number of neurons in the layer.

(c) Threshold-based Gating: Assign weighting factors using a sigmoid function σ relative
to a tunable threshold θ:

wpos = σ(θ − gpos), wneg = σ(gneg − θ). (2)

3



THE HEBBIAN FORWARD-FORWARD ALGORITHM

Updates are down-weights or up-weights samples when positive samples have low good-
ness or negative samples have high goodness, ensuring that poorly represented examples
drive learning.

(d) Hebbian Updates: Update weights using a Hebbian rule that contrasts positive and neg-
ative contributions:

∆W = η

∑
i∈pos

wpos,iaix
T
i −

∑
j∈neg

wneg,jajx
T
j

 , (3)

where η is the learning rate, a are post-synaptic activations, and x are normalized inputs.
Updates to biases are done in the same way:

∆b = η

∑
i∈pos

wpos,iai −
∑
j∈neg

wneg,jaj

 . (4)

A small weight decay term may optionally be applied to prevent unbounded parameter
growth.

The sigmoid-based gating in HebbFF is directly adapted from the Forward-Forward objective.
It assigns weights to updates based on whether positive samples achieve high goodness or negative
samples achieve low goodness. This mechanism implements the FF training goal of maximizing
positive goodness and minimizing negative goodness rather than acting as a stabilizer for Hebbian
plasticity. Instead, stability in HebbFF arises from the subtraction between positive and negative
contributions. Further stabilization could be achieved by incorporating classical Hebbian exten-
sions, such as Oja’s rule or the BCM rule. These extensions are explicitly designed to constrain
weight growth and balance potentiation and depression.

4. Experiments

Experiments are conducted on MNIST and FashionMNIST datasets, with all input images flattened
and normalized. We use a randomly selected 20% validation set from the training data for hyperpa-
rameters selection. The batch size for training is set to 128. Hyperparameters, such as learning rate
and threshold values, are tuned, with learning rates explored in the range [10−6, 1.0] and thresholds
between [10−6, 10], identical for all layers. The weight decay is set to zero for all experiments. The
SGD optimizer is employed for backpropagation training. We are using two versions of MLP. The
deeper MLP consists of layers with 784, 2048, 1024, 512, 256, and 10 units, where 784 corresponds
to the flattened input dimension and 10 to the output classes. The wider MLP has layers with 784,
2000, 2000, and 10 units, following the same activation conventions as the deeper model.

As shown in Table 1, deeper and wider MLPs trained with backpropagation consistently achieve
the highest accuracies, reaching approximately 97–98% on MNIST and 88% on FashionMNIST. In
contrast, both the original Forward-Forward and HebbFF methods yield substantially lower perfor-
mance, with accuracies of around 89–90% on MNIST and 81% on FashionMNIST. The accuracy
differences between FF and HebbFF are small, typically within one standard deviation.

Table 2 shows that backpropagation is the fastest method, requiring between 108–173 seconds
depending on architecture and dataset. In contrast, the FF and HebbFF methods are substantially

4



THE HEBBIAN FORWARD-FORWARD ALGORITHM

Model Dataset Backprop FF HebbFF

Deep FMNIST 88.03 ± 0.61 80.79 ± 0.64 80.65 ± 0.46
Deep MNIST 97.62 ± 0.24 89.79 ± 0.43 90.03 ± 0.27
Wide FMNIST 88.09 ± 0.64 81.20 ± 0.34 80.87 ± 0.32
Wide MNIST 97.79 ± 0.21 89.41 ± 0.34 89.16 ± 0.51

Table 1: Test accuracy (mean ± standard deviation) for different methods on MNIST and Fashion-
MNIST.

Model Dataset Backprop FF HebbFF

Deep FMNIST 166s, 117.9MB 570s, 123.3MB 427s, 71.5MB
Deep MNIST 108s, 117.9MB 462s, 123.3MB 369s, 71.5MB
Wide FMNIST 173s, 150.4MB 905s, 164.5MB 626s, 106.2MB
Wide MNIST 125s, 150.4MB 659s, 164.5MB 331s, 106.2MB

Table 2: The average training time (in seconds) and peak VRAM usage (in MB) for different meth-
ods on MNIST and FashionMNIST.

slower, with FF taking the longest time overall (462–905 seconds) and HebbFF performing in be-
tween (331–626 seconds). Memory usage follows the opposite trend: HebbFF consistently con-
sumes the least VRAM (71–106 MB), while FF and backpropagation require more, with the wider
architecture pushing peak usage above 160 MB.

This highlights a clear trade-off, where backpropagation is time-efficient but more memory-
intensive than HebbFF, while FF is both slower and heavier in memory use.

The results highlight a clear trade-off between accuracy, runtime, and memory. Backpropa-
gation remains best for accuracy and speed, but HebbFF dominates FF on the Pareto frontier of
resource efficiency. HebbFF matches FF in accuracy yet requires up to 50% less training time
and 35–40% less memory, making it a computationally efficient gradient-free method. From a
systems perspective, this efficiency makes HebbFF a stronger practical baseline for environments
constrained by VRAM or runtime budgets.

5. Conclusion

We presented Hebbian Forward-Forward (HebbFF), a fully gradient-free learning algorithm that
integrates Hebbian plasticity into the Forward-Forward framework. Our experiments demonstrate
that HebbFF achieves accuracy on par with FF but trains faster and with significantly lower mem-
ory usage. This makes HebbFF a strict improvement over FF: it preserves predictive power while
providing clear computational and resource advantages. Although both HebbFF and FF lag behind
backpropagation in accuracy and training speed, HebbFF represents a more efficient foundation for
future work.

5



THE HEBBIAN FORWARD-FORWARD ALGORITHM

References

[1] Elie L Bienenstock, Leon N Cooper, and Paul W Munro. Theory for the development of
neuron selectivity: Orientation specificity and binocular interaction in visual cortex. Journal
of Neuroscience, 2(1):32–48, 1982.

[2] Thomas Dooms, Ing Jyh Tsang, and Jose Oramas. The trifecta: Three simple techniques
for training deeper forward-forward networks, 2023. URL https://arxiv.org/abs/
2311.18130.

[3] Andrea Ferigo, Elia Cunegatti, and Giovanni Iacca. Neuron-centric hebbian learning, 2024.
URL https://arxiv.org/abs/2403.12076.

[4] Péter Földiák. Forming sparse representations by local anti-hebbian learning. Biological
Cybernetics, 64(2):165–170, 1990.

[5] Donald O Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley, 1949.

[6] Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv
preprint arXiv:2212.13345, 2022.

[7] Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random
synaptic feedback weights support error backpropagation for deep learning. Nature Commu-
nications, 7:13276, 2016. doi: 10.1038/ncomms13276.

[8] Jan Melchior and Laurenz Wiskott. Hebbian-descent, 2019. URL https://arxiv.org/
abs/1905.10585.

[9] Julian Jimenez Nimmo and Esther Mondragon. Advancing the biological plausibility and
efficacy of hebbian convolutional neural networks, 2025. URL https://arxiv.org/
abs/2501.17266.

[10] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of Mathemat-
ical Biology, 15(3):267–273, 1982.

[11] Terrence J. Sejnowski. Storing covariance with nonlinearly interacting neurons. Journal of
Mathematical Biology, 4(4):303–321, 1977.

[12] Erik B. Terres-Escudero, Javier Del Ser, and Pablo Garcia Bringas. A contrastive sym-
metric forward-forward algorithm (sffa) for continual learning tasks, 2025. URL https:
//arxiv.org/abs/2409.07387.

[13] James C. R. Whittington and Rafal Bogacz. An approximation of the error backpropagation
algorithm in a predictive coding network with local hebbian synaptic plasticity. Neural Com-
putation, 29(5):1229–1262, 2017. doi: 10.1162/NECO\ a\ 00949.

6

https://arxiv.org/abs/2311.18130
https://arxiv.org/abs/2311.18130
https://arxiv.org/abs/2403.12076
https://arxiv.org/abs/1905.10585
https://arxiv.org/abs/1905.10585
https://arxiv.org/abs/2501.17266
https://arxiv.org/abs/2501.17266
https://arxiv.org/abs/2409.07387
https://arxiv.org/abs/2409.07387

	Introduction
	Previous Work
	Hebbian Learning
	Local and Biologically-Plausible Learning Rules
	The Forward-Forward Algorithm

	Method
	Experiments
	Conclusion

