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ABSTRACT

Teaching large language models (LLMs) to critique and refine their outputs is
crucial for building systems that can iteratively improve, yet it is fundamentally
limited by the ability to provide accurate judgments and actionable suggestions.
In this work, we study LLM critics for code generation and propose CTRL, a
framework for Critic Training via Reinforcement Learning, which trains a critic
model to generate feedback that maximizes correction performance for a fixed
generator model without human supervision. Our results demonstrate that critics
trained with CTRL significantly enhance pass rates and mitigate compounding
errors across both base and stronger generator models. Furthermore, we show
that these critic models act as accurate generative reward models and enable test-
time scaling through iterative critique-revision, achieving up to 106.1% relative
improvements across challenging code generation benchmarks1.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have sparked interest in their potential for
self-improvement through iterative feedback mechanisms (Pan et al., 2023). Methods like Reflexion
(Shinn et al., 2024) and Self-Refine (Madaan et al., 2024) demonstrate that LLMs can, in principle,
critique their own outputs and generate refined responses. This self-improvement paradigm offers a
promising direction toward more autonomous AI systems that can learn from their mistakes.
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Figure 1: Performance scaling of our CTRL critic (fine-
tuned on Qwen2.5-Coder-32B-Ins, henceforth Qwen2.5-
Coder) compared to other critics across different gen-
erators on CodeContests. CTRL demonstrates strong
critiquing capabilities not only when paired with its base
model but also with a stronger generator (GPT-4o, right).
Shaded regions indicate standard error across 5 seeds.

However, the effectiveness of such self-
improvement mechanisms remains challenging
in practice. Huang et al. (2023) demonstrate
that without appropriate external feedback, such
self-improvement loops may lead to perfor-
mance degradation. To address this, existing ap-
proaches primarily rely on reward models (Sun
et al., 2023; Yuan et al., 2024) or automated
verification tools (Gou et al., 2023; Chen et al.,
2023). However, these mechanisms often fail
to provide actionable guidance — reward mod-
els compress complex evaluation criteria into
simplified numerical signals (Gao et al., 2023;
Pan et al., 2024), while verification tools gen-
erate low-level execution traces that do not di-
rectly translate to high-level fixes (Zhong et al.,
2024). Even in domains like code generation (Li
et al., 2022; Sun et al., 2024) where such feed-
back mechanisms are readily available, previous
work (Zheng et al., 2024) as well as our experi-
ment (Figure 4) reveal that such feedback alone struggles to drive meaningful improvements. At the
heart of this issue lies the feedback bottleneck: feedback needs to both accurately discriminate the
correctness of solutions and provide informative yet actionable suggestions for improvement.

*Equal contribution.
1Project page: https://critic-rl.github.io/
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There is an infinite 2D plane.
You are given a positive integer k. You are also given a 2D array queries, which contains the following queries:

queries[i] = [x, y]: Build an obstacle at coordinate (x, y) in the plane. It is guaranteed that there is no obstacle at this 
coordinate when this query is made.

After each query, you need to find the distance of the k^th nearest obstacle from the origin.
Return an integer array results where results[i] denotes the k^th nearest obstacle after query i, or results[i] == 1 if there 
are less than k obstacles.
Note that initially there are no obstacles anywhere.
The distance of an obstacle at coordinate (x, y) from the origin is given by |x|  |y|.

HUMAN
def resultsArray(self, queries: List[List[int]], k: 
int) → List[int]:
    min_heap = []
    results = []

    for x, y in queries:
        distance = abs(x) + abs(y)
        heapq.heappush(min_heap, distance)

        if len(min_heap) >= k:
            results.append(min_heap[k-1])
        else:
            results.append(-1)

    return results

ASSISTANT

def resultsArray(self, queries: List[List[int]], k: 
int) → List[int]:
    max_heap = []
    results = []

    for x, y in queries:
        distance = abs(x) + abs(y)

        if len(max_heap) < k:
            heapq.heappush(max_heap, -distance)
        elif distance < -max_heap[0]:
            heapq.heappop(max_heap)
            heapq.heappush(max_heap, -distance)

        if len(max_heap) == k:
            results.append(-max_heap[0])
        else:
            results.append(-1)

    return results

ASSISTANT
Analysis:
The provided solution attempts to use a min-heap to keep track of the distances of obstacles from the origin. However, it 
incorrectly assumes that accessing `min_heap[k-1]` will give the k-th smallest element directly. This is not the case 
because heaps do not maintain sorted order beyond the root element; they only ensure that the smallest element is 
always at the root. Therefore, attempting to access elements by index does not yield the correct k-th smallest value.

Furthermore, the approach does not efficiently handle the requirement to always return the k-th nearest obstacle after 
each query, especially considering the large constraints where the number of queries can be up to \2 \times 10^5\).

Improvement suggestions:
To address these issues, consider maintaining a balanced data structure that allows efficient insertion and retrieval of the 
k-th smallest element. A balanced binary search tree or a more advanced structure like a skip list could potentially work, 
but these might be complex to implement within the given constraints.

Alternatively, focus on using a heap-based strategy more effectively. One possible approach involves maintaining a 
max-heap of size k to store the k smallest distances encountered so far. When a new obstacle is added, calculate its 
distance and compare it with the largest element in the heap (the root of the max-heap). If the new distance is smaller, 
replace the largest element with the new distance. This ensures that the heap always contains the k smallest distances, 
and the root of the heap will be the k-th smallest distance.

Overall judgment: Incorrect

CRITIC

···

Figure 2: Illustration of the critique-correction process for a coding problem. Top: An initial solution is proposed
by the task-performing using a min-heap approach. Bottom: The critic identifies flaws in the implementation
(incorrect heap access and inefficient query handling) and suggests specific improvements, leading to a corrected
max-heap solution. This example is taken from critiques of CTRL on LiveCodeBench, which demonstrates how
structured feedback from the critic can guide meaningful improvements in code generation.

To address these challenges, we propose CTRL (Critic Training via Reinforcement Learning), a
framework that decouples the critic model from the task-performing model (e.g., GPT-4o) and focus
on developing a specialized critic that can effectively drive the task-performing model toward optimal
solution generation through iterative critique-revisions (Figure 2). This decomposition naturally
introduces a well-defined proxy task for training the critic model: while directly evaluating the quality
of generated critiques remains challenging, the effectiveness of a critic can be measured by its ability
to drive the task-performing model toward correct outputs. Though such indirect optimization signals
lead to a large space of possible critiques and therefore high variance during training, we address this
through a two-stage pipeline: first synthesizing high-quality critiques using execution feedback for
supervised finetuning, then optimizing the critic through Group Relative Policy Optimization (GRPO;
Shao et al. 2024).

Through extensive evaluations on diverse benchmarks including CodeContests (Li et al., 2022),
LiveCodeBench (Jain et al., 2024), MBPP+ (Liu et al., 2024a), and JudgeBench (Tan et al., 2024),
we demonstrate that training with CTRL significantly outperforms both self-critique approaches and
methods using stronger critic models. Notably, we observe remarkable generalization capabilities
of the decoupled critic LLM across different problem domains and model scales. Our experiments
demonstrate that relatively weaker critic models can effectively guide stronger task-performing
models such as GPT-4o (Table 1), exhibiting a similar phenomenon to weak-to-strong generalization
(Christiano et al., 2018; Burns et al., 2023), where weaker models can be trained to effectively
supervise more capable ones.

Furthermore, CTRL enables efficient test-time scaling (Figure 1). By providing targeted and actionable
feedback, our critic significantly reduces the number of revision iterations needed, leading to both
lower token consumption and higher success rates. Our empirical analysis (Figure 6) demonstrates
that this efficiency stems from reduced error compounding—the critic effectively identifies and
corrects mistakes early, guiding the model toward more direct solution paths without compromising
solution quality.

Our work makes four key contributions: (1) We propose CTRL, a novel framework that decouples
critic LLMs from task-performing models and trains them through two-stage GRPO to guide code
improvement. (2) Through extensive evaluation on programming benchmarks, we demonstrate that
CTRL significantly outperforms both self-critique methods and approaches using stronger critic
models. (3) We establish that relatively weaker critic models can effectively guide stronger task-
performing models, demonstrating a promising weak-to-strong generalization phenomenon in LLM
guidance. (4) We show that a trained critic enables test-time scaling through iterative critique-
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revisions, achieving up to 106.1% and 23.5% relative Pass@1 improvements on the challenging
CodeContests benchmark when paired with its base model and a stronger model, respectively.

2 PRELIMINARIES AND MOTIVATION

The success of iterative improvement methods critically depends on their ability to leverage feedback
to improve solutions. Formally, let x be an input problem and y be a candidate solution, with
R(y) being the evaluation function that returns 1 if y is correct and 0 otherwise. Starting with an
initial proposal distribution y0 ∼ π(· | x), the iterative process generates subsequent solutions by
incorporating feedback f(· | x, yi) and produce the next solution yi+1.

In this context, the effectiveness of such feedback mechanisms relies on two key capabilities: (1)
discrimination - the ability to evaluate and rank solutions, and (2) critiquing - the ability to provide
actionable feedback for improvement. While discrimination has been extensively studied (Gao et al.,
2023), we focus on the critiquing ability and propose to characterize it through the transition dynamics
of a Markov chain (Meyn & Tweedie, 2012) governing the correctness of the iteratively refined
solutions {R(yi)}i:

P (R(y0) = 1) = pinit, P (R(yi+1) = 1 | R(yi) = 1) = pcc, P (R(yi+1) = 1 | R(yi) = 0) = pcw,

where pcc represents the critiquing ability to avoid turning correct solutions into wrong ones, and pcw
captures the helpfulness of the feedback in improving the solution.

Varying Critiquing Ability. To understand the importance of the critiquing ability, we conduct
simulations across different levels of critiquing strength while leveraging discrimination to aggregate
the final solutions. We consider pinit = 0.1 and three scenarios: (1) No critiquing (pcw = pcc), a
special case representing methods that independently sample from the base distribution, or equiva-
lently best-of-n sampling (Sessa et al., 2024); (2) Weak critiquing (pcc = 0.7, pcw = 0.15); and (3)
Strong critiquing (pcc = 0.9, pcw = 0.3). For each scenario, we first generate n solutions based on
the specified transition dynamics, then apply the discrimination ability to select the best promising
solution, and plot the final correctness probability against the number of attempts n. We present more
details in Appendix C.1.
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Figure 3: Simulation results showing success probability
(pcorrect) as a function of the number of attempts, com-
paring different levels of critiquing and discrimination
ability.

Observations & Takeaways. As shown in
Figure 3, our analysis reveals several key find-
ings: (1) Strong critiquing abilities significantly
improve success rates compared to no critiquing,
with performance gains visible even with weak
critiquing, aligning with recent empirical find-
ings (Huang et al., 2023). (2) Strong critiquing
ability can compensate for weaker discrimina-
tion — a system with weak discrimination but
strong critiquing feedback can outperform one
with stronger discrimination but no critiquing
ability. (3) The benefits of critiquing compound
with more iterations, while approaches with
no critiquing plateau quickly. These findings
highlight that effective iterative improvement
requires careful attention to both discrimination
and critiquing abilities. While perfect abilities
are not necessary, systematically improving these capabilities — particularly the ability to generate
actionable critiques — is crucial for realizing the full potential of iterative refinement approaches.

3 METHOD

With analysis presented in Section 2, our goal is to teach LLMs the ability of critiquing without
human supervision. We propose CTRL, a two-stage training approach: (1) synthesizing high-quality
critiques by reasoning about execution feedback, then (2) refining the critic through reinforcement
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learning. Once trained, the critic model can be used at test time, paired with any generator models, to
iteratively refine solutions. A complete overview of the pipeline is provided in Appendix A, with
critique samples in Appendix E.

3.1 PROBLEM STATEMENT

We focus on code generation as our primary domain as it provides clear objective metrics through test
cases, following previous work McAleese et al. (2024). Given a programming problem x (specified
in natural language) and a solution y (code implementation), our goal is to enable iterative refinement
of solutions, which centers on two key components: (1) a generator model π(y | x) that proposes
solutions, and (2) a critic model Qθ(c|x, y) that provides textural feedback c for improvement.

Assumptions. Let D = {(xi, Ti)}Ni=1 be our training dataset, where each problem xi is paired with
unit tests Ti. We have access to a sandbox environment that executes code against test cases, which
serves as the evaluation function R(y) that returns 1 if y passes all tests, 0 otherwise. Notably, the
sandbox does not assist critique generation at test time. While not required, we treat the generator
model as a black-box, allowing our approach to build upon existing strong generators without access
to their parameters.

Objective. While directly measuring the helpfulness of critiques remain challenging, we can define
a proxy task that evaluates whether the critique leads to improved solutions. Given an initial solution
y′ ∼ π(· | x), the critic analyzes it and produces textual feedback c. The generator then uses this
feedback to revise the solution, producing an improved output y. Let z = (x, y′) represent the
problem-solution pair. Our objective is to train the critic model Qθ to maximize the expected solution
quality:

J (θ) = Ez∼D×π,y∼πθ(·|z)[R(y)], (1)

where πθ(y | z) =
∑

c Qθ(c | z)π(y | z, c) denotes the improved solution distribution through
marginalization over possible critiques. Notably, although Equation (1) defines a single-turn critique-
revision task, we observe that the trained model generalizes to multi-turn revisions (Section 4.2).

Defining the Critique Space. We structure the critique space into three components (Figure 2):
(1) an analysis of the solution’s strengths and weaknesses, (2) actionable improvement suggestions,
and (3) a final judgment of correctness (correct/incorrect). During inference, these components
enable iterative critique-revision, where the process stops once the judgment indicates the solution is
correct. This design balances discrimination and critiquing, both essential for iterative refinement, as
discussed in Section 2.

3.2 STAGE I: EXECUTION-GUIDED CRITIQUE SYNTHESIS

Although conceptually straightforward, learning effective critiques is challenging due to the large
critique space, where only a small fraction leads to successful revisions. Our experiments with
Qwen2.5-Coder Hui et al. (2024) (Figure 4 show that models struggle to generate informative
critiques for self-improvement, aligning with previous findings Huang et al. (2023). Self-critique
without additional feedback yields minimal gains (7.88% → 8.36%) and rarely converts incorrect
solutions to correct ones, highlighting the limited ability of models to correct their own mistakes.

Reasoning over Execution. While the initial critiquing ability is limited, previous work Ni et al.
(2024) has shown that LLMs can effectively reason over execution feedback. Figure 4 demonstrates
that when LLMs reason over execution feedback to generate critiques (Self-critique w/ Execution
Feedback), they achieve substantial improvements, as compared to directly using raw execution
feedback for revisions (11.76% vs. 8.97%). This suggests that while directly using raw execution
feedback is inefficient, we can leverage the model’s reasoning ability over execution feedback to help
generate more accurate and informative critiques.

Critique Synthesis. Building on the above insight, we develop a critique synthesis approach
that leverages execution feedback to train models in generating effective critiques. Our approach
samples high-quality synthesized critiques from a hinted distribution Qθ(c | z, h), where hints h are
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constructed by analyzing initial solutions y′ through sandbox execution. We map different execution
outcomes to specific hint templates as shown in Table 3: (1) for passing solutions, we encourage
concise positive feedback; (2) for completely failing solutions, we suggest restarting from scratch;
and (3) for partially failing solutions, we provide the exact error message and test case details to help
pinpoint the issue.

Supervised Finetuning. Similar to context distillation Snell et al. (2022); Guan et al. (2024),
we exclude these hints and conduct supervised finetuning to encourage the model to internalize
the critiquing strategies. We observe leveraging execution feedback for supervised finetuning is
beneficial mainly in two aspects: (1) it helps learn the format; (2) while it marginally improves the
critique-revision performance due to the high frequency of instructing correct solutions to wrong
(Figure 4), it substantially boosts discrimination by providing ground-truth correctness (Figure 5).

3.3 STAGE II: REINFORCED CRITIQUE GENERATION

Figure 4: Critique-revision performance (Pass@1, %)
on CodeContests. We fix the generator model to be
Qwen2.5-Coder, and compare zer-shot performance
with critique-revision performance using different feed-
back mechanisms. ×k represents conducting iterative
critique-revision k times. †using unit tests for genera-
tion.

Pass@1 ∆↑ ∆↓

Zero-shot 7.88 0.00 0.00
Execution Feedback (EF)† 8.97 2.42 1.33
Self-critique w/ EF† 11.76 3.88 0.00

Self-critique 8.36 2.30 1.82
Critique w/ CTRLSFT 8.36 3.52 3.03
Critique w/ CTRL 11.76 4.73 0.85
Critique×2 w/ CTRL 14.18 7.27 0.97
Critique×3 w/ CTRL 15.15 8.12 0.85

Figure 5: Discrimination performance (F1 score, %) on
CodeContests.

Passed Failed Macro

Qwen2.5-Coder 88.21 34.16 61.19
CTRLSFT 95.54 41.26 68.55
CTRL 93.19 45.02 69.10

While our critique synthesis approach with pre-
defined templates provides a strong foundation,
it may not capture all nuanced feedback scenar-
ios required for complex programming tasks. To
overcome this limitation, we formulate critique
generation as a reinforcement learning problem,
allowing the critic to adaptively learn feedback
strategies through direct optimization of solution
improvement.

Our goal is to maximize the performance in
Equation (1). To optimize Qθ, one natural ap-
proach is using policy gradient methods Sutton
et al. (1999):

∇θEy∼πθ
[R(y)]

=∇θEy∼
∑

c Qθ(c|z)π(y|z,c)[R(y)]

=∇θ

∑
y

R(y)
∑
c

Qθ(c|z)π(y|z, c)

=
∑
y

R(y)
∑
c

∇θQθ(c|z)π(y|z, c)

The double summation over both solution space
y and feedback space c introduces high variance
in gradient estimates:

Var(∇θ) = E[(∇θ − E[∇θ])
2] ∝ |Y| · |C|.

where |Y| and |C| are the sizes of solution and critique spaces respectively. In this scenario, using value
networks to predict credit assignment remains challenging, as we observe significant instability when
using Proximal Policy Optimization (PPO; Schulman et al. 2017) — the learned networks produce
noisy estimates of critique quality. We present detailed experimental observations in Appendix D.

Variance Reduction. To combat these variance issues, we adopt Group Relative Policy Optimiza-
tion (GRPO; Shao et al. 2024) that avoids using value networks for learning credit assignment and
reduces variance through group-based relative advantages. Specifically, for each problem-solution pair
z = (x, y′), we sample a group of critiques {c1, c2, ..., cG} from Qθ(·|z) and compute advantages:

Ai =
R(yi)− µG

σG
,

where yi ∼ π(·|z, ci) is the improved solution generated using critique ci, and µG and σG are the
mean and standard deviation of rewards within the group. This approach normalizes rewards across
different problem types and naturally focuses training on problems where critique quality can make a
meaningful difference, as problems that are too easy or too hard produce zero relative advantages.
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Table 1: Performance comparison across different generators and benchmarks. We evaluate different configura-
tions, with critique-revision representing an iterative process where a critic model provides feedback to guide
solution improvement. Pass@1 shows the success rate, while ∆↑ and ∆↓ indicate the percentage of wrong
solutions being correctly revised and correct solutions being revised to wrong solutions, respectively. Results are
averaged over 5 random seeds.

CodeContests LiveCodeBench MBPP+ Average
Pass@1 ∆↑ ∆↓ Pass@1 ∆↑ ∆↓ Pass@1 ∆↑ ∆↓ Pass@1

Qwen2.5-Coder as Generator
Zero-shot 7.88 0.00 0.00 30.54 0.00 0.00 77.83 0.00 0.00 38.75
Single-turn Critique-revision
Critique w/ Qwen2.5-Coder 8.36 2.30 1.82 32.14 2.50 0.89 77.83 3.49 3.49 39.45
Critique w/ GPT-4o 10.67 4.85 2.06 32.32 2.32 0.54 77.46 3.81 4.18 40.15
Critique w/ CTRL 11.76 4.73 0.85 33.21 3.39 0.71 78.84 2.43 1.43 41.27
Multi-turn Critique-revision
Critique×5 w/ Qwen2.5-Coder 9.21 3.76 2.42 29.64 2.14 3.04 76.03 3.81 5.61 38.30
Critique×5 w/ GPT-4o 12.48 7.03 2.42 32.86 4.82 2.50 74.60 4.34 7.57 39.98
Critique×5 w/ CTRL 16.24 9.21 0.85 33.39 3.75 0.89 78.68 3.23 2.38 42.77

GPT-4o as Generator
Zero-shot 20.61 0.00 0.00 32.32 0.00 0.00 77.67 0.00 0.00 43.53
Single-turn Critique-revision
Critique w/ Qwen2.5-Coder 20.24 3.52 3.88 35.36 3.93 0.89 76.67 0.85 1.85 44.09
Critique w/ GPT-4o 20.97 2.30 1.94 34.82 2.68 0.18 77.41 1.01 1.27 44.40
Critique w/ CTRL 23.03 4.97 2.55 33.39 2.14 1.07 77.83 0.53 0.37 44.75
Multi-turn Critique-revision
Critique×5 w/ Qwen2.5-Coder 19.52 5.21 6.30 35.54 5.36 2.14 76.08 1.53 3.12 43.71
Critique×5 w/ GPT-4o 20.61 3.39 3.39 35.18 3.21 0.36 76.61 2.06 3.12 44.13
Critique×5 w/ CTRL 25.45 7.88 3.03 34.11 3.21 1.43 77.94 0.79 0.53 45.83

The final training objective is:

J (θ) = E z∼D
{ci}Gi=1∼Qθold

(·|z)

[ 1

G

G∑
i=1

(
min

( Qθ(ci|z)
Qθold(ci|z)

Ai, clipε

( Qθ(ci|z)
Qθold(ci|z)

)
Ai

))
− βDKL(Qθ∥Qref)

]
,

where clipε represents clipping the value to [1 − ε, 1 + ε] and DKL(Qθ∥Qref) = Qref(ci|z)
Qθ(ci|z) −

log Qref(ci|z)
Qθ(ci|z) − 1 denotes the KL regularization term that alleviates over-optimization.

4 EXPERIMENTS

We conduct extensive experiments to evaluate our method’s effectiveness across multiple benchmarks.
Our evaluation focuses on two key aspects: (1) the accuracy of the critic in identifying solution
correctness, and (2) the quality improvement achieved through critique-guided revisions.

4.1 SETUP

Training Data. We use TACO (Li et al., 2023), a dataset containing 26,443 programming problems
collected from competitive programming platforms like CodeForces and LeetCode. Each problem
includes a natural language description and multiple test cases. Due to noise in the original dataset
(malformed test cases and contaminated problems), we filter the dataset to 18,820 problems for
training, with details presented in Appendix C.3.

Models. We base our critic model on the open-source Qwen2.5-Coder-Ins (Hui et al., 2024) model.
During training, we fix the generator model to be Qwen2.5-Coder-Ins itself. For evaluation, we
assess the trained critic’s performance by pairing it with various generator models for initial solution
generation and subsequent revision, comparing against other LLM critics such as GPT-4o.

Benchmarks. We evaluate our approach on three programming benchmarks and one general-
domain benchmark: (1) CodeContests (Li et al., 2022), a collection of challenging competitive
programming problems; (2) LiveCodeBench (24.08-24.11) (Jain et al., 2024), a curated set of recent
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programming challenges designed to minimize data contamination; (3) MBPP+ (Liu et al., 2024a), an
extension of the MBPP benchmark (Austin et al., 2021) focused on fundamental programming tasks;
and (4) JudgeBench (Tan et al., 2024), where we evaluate the model’s effectiveness as a generative
reward model for comparing solution pairs.

Metrics. To evaluate critiquing ability, we use three metrics: Pass@1 measures the success rate
of the final solutions, ∆↑ represents the fraction of initially incorrect solutions that become correct
after revision, and ∆↓ represents the fraction of initially correct solutions that become incorrect
after revision. For discrimination ability, we employ F1 score when evaluating single solutions, and
accuracy when comparing paired solutions in Judgebench, as the latter involves binary decisions
between two alternatives.

Execution Sandbox. We employ SandboxFusion (Liu et al., 2024b) as our execution environment,
which provides a unified interface for evaluating solutions across training data and benchmarks
through both function-based and standard input-output formats.

4.2 EVALUATING CRITICS FOR ITERATIVE CRITIQUE-REVISIONS

To evaluate the effectiveness of CTRL, we present a comprehensive analysis of critique-revision
strategies with different feedback mechanisms on CodeContests in Figure 4. The discrimination
performance of critics is shown in Figure 5, while results across different benchmarks and generators
are presented in Table 1.

RL Significantly Boosts Critiquing Ability. Table 4 shows that our RL-trained critic significantly
outperforms baseline approaches, achieving a 11.76% pass@1 rate compared to 7.88% with zero-shot
generation. This substantial improvement builds upon a much reduced regression rate ∆↓ than its
SFT counterpart (0.85% vs. 3.03%).

CTRL Enables Test-time Scaling. As shown in Table 4, our approach enables test-time scaling
through iterative critique-revisions. Notably, despite training exclusively on single-turn critiquing
tasks, CTRL generalizes to multi-turn settings. By increasing the number of iterations from one to
three (Critique×3 w/ CTRL), we further improve the Pass@1 rate from 11.76% to 15.15% while
maintaining a low regression rate ∆↓ of 0.85%. This demonstrates that our critic provides consistently
reliable feedback across multiple revision iterations, unlike baseline approaches that accumulate
errors, as discussed below.
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Figure 6: Compounding error analysis. Regression rate
measures the frequency of correct initial solutions being
revised into incorrect ones. Shaded regions indicate
standard error over 5 seeds.

CTRL Mitigates Compounding Errors. Fig-
ure 6 further illustrates this stability advantage
- while both Qwen2.5-Coder and GPT-4o show
increasing error compounding rates over itera-
tions, CTRL maintains a significantly lower rate,
enabling reliable multi-round improvements.

CTRL Generalizes to Different Generators
and Tasks. While we train the critic model
with Qwen2.5-Coder as the generator, as shown
in Table 1, our approach generalizes well across
different programming tasks. Notably, a weak
critic model trained against itself can assist
stronger model (GPT-4o), providing evidence
for scalable oversight (Christiano et al., 2018;
Kenton et al., 2024).

Performance Scaling with Problem Difficulty. As shown in Figure 7, our critique-revision
approach demonstrates increasingly substantial relative gains as both iteration and problem difficulty
increases, revealing that CTRL is particularly effective for complex tasks, where iterative refinement
through targeted critique and revision yields the most significant benefits compared to zero-shot
generation.
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4.3 EVALUATING CRITICS AS GENERATIVE REWARD MODELS

One advantage of unifying textural feedback is to balance discrimination and critiquing abilities. To
assess our critics’ discrimination capabilities, we evaluate them on JudgeBench (Tan et al., 2024), a
comprehensive benchmark containing 350 GPT-4o completions across categories spanning general
knowledge, reasoning, mathematics, and coding. This setup presents a challenging out-of-distribution
test in two aspects: (1) our critics must evaluate outputs from a more capable model than their training
distribution, and (2) they need to generalize to broader domains beyond coding tasks. This evaluation
scenario is particularly interesting as it examines whether relatively weaker models can be effectively
trained to judge outputs from more powerful models.

As shown in Figure 8, CTRL critic achieves competitive performance compared to stronger models
such as Claude-3.5-Sonnet. Notably, while our critic is specifically trained on programming tasks,
it maintains comparable overall accuracy (64.3%) while demonstrating superior performance on
coding-specific evaluations. This suggests that our CTRL enables effective discrimination capabilities
that generalize beyond the training domain.

4.4 ANALYSIS

To better understand how CTRL boosts iterative refinement, we further conduct analyses on the
similarity between original and revised solutions, execution time changes, and critique characteristics.
Our findings reveal several key patterns in how different critique methods influence the process of
critique-revision.

Figure 9: Relative improvement (%) on CodeContests
when comparing critique-revision (using critics condi-
tioned on execution feedback) against zero-shot genera-
tion, across different generator-critic size combinations.
Results are from inference-only experiments before any
finetuning.

Generator Critic Avg.7B 14B 32B

7B -33.33 22.22 -11.11 -7.41
14B -9.09 -9.09 9.09 -3.03
32B 0.00 30.00 50.00 26.67

Avg. -14.14 14.38 15.99

The Effect of Generator Ability. As a pre-
liminary analysis before finetuning experiments,
we examine how model sizes affect critique-
revision performance using Qwen2.5-Coder-Ins
models (7B, 14B, and 32B) in an inference-
only setting, comparing zero-shot generation
against critique-revision with critiques gener-
ated by another critic model conditioned on ex-
ecution feedback. Figure 9 reveals that critic
capability significantly influences improvement
potential—while smaller critics (7B) often lead
to performance degradation, larger critics (32B)
consistently yield better outcomes, achieving up
to 50% improvement when paired with similarly-
sized generators. The results also highlight the
importance of critic-generator size relationships, as critics less capable than their generators typically
degrade performance. These findings motivate us to focus our subsequent finetuning experiments
with CTRL on 32B models to maximize the benefits of critique-revision.

CTRL Prevents Similar Revisions. We analyze how different critique methods influence solution
revisions by measuring code similarity scores between original and revised solutions, as described in
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Appendix C.4. As shown in Figure 10, self-critique tends to make conservative modifications with
higher similarity scores (mean 0.482), while our CTRL method proposes more substantial changes
(mean 0.313). This suggests CTRL is more willing to recommend major structural revisions when
needed, rather than just local optimizations, which may explain its superior performance in improving
solution quality.
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Figure 10: Comparison of solution similarities between
original and revised code guided by CTRL on Code-
Contests. Left: Distribution of similarity scores for
self-critique and our CTRL method. Right: Box plot
showing the statistical distribution of similarity scores.
Lower scores indicate more substantial revisions.

CTRL Trade-offs between Accuracy and Effi-
ciency. While our critique-revision approach
improves solution accuracy on LiveCodeBench,
we observe a notable increase in timeout rates.
Solutions guided by CTRL exhibit a timeout rate
of 16.61%, higher than both zero-shot (10.54%)
and GPT-4o critic (8.93%). However, even with
more timeouts, CTRL still achieves better over-
all Pass@1 accuracy. This suggests that our
approach tends to generate more comprehensive
solutions — while these may take longer to ex-
ecute, the solution quality is guaranteed.

5 RELATED WORK

LLM Critics. Several approaches have been
proposed to train LLMs as critics for various
purposes, including generative reward models (Ankner et al., 2024; Xiong et al., 2024) and scalable
oversight (Saunders et al., 2022; Kenton et al., 2024). These approaches either learn from human
feedback (Wang et al., 2023; McAleese et al., 2024) or much more capable models’ outputs (Xi et al.,
2024), with recent work exploring reinforcement learning to improve feedback generation (Akyürek
et al., 2023; Yao et al., 2023). Our approach differs in three key aspects: (1) leveraging execution
feedback and model reasoning to synthesize high-quality critiques, (2) introducing variance reduction
techniques to stabilize training, and (3) requiring only single-round critique-revision interactions.

Figure 11: Timeout rate and Pass@1 (%) on Live-
CodeBench. While CTRL approach achieves higher pass
rates, it tends to generate more comprehensive solutions
that take longer to execute.

Timeout Rate (↓) Pass@1 (↑)

Zero-shot 10.54 30.54
Critique w/ GPT-4o 8.93 32.32
Critique w/ CTRL 16.61 33.21

Scaling Test-Time Compute. Recent work
has explored various approaches to improve
model performance at test time without fine-
tuning (Snell et al., 2024). While existing ap-
proaches focus on techniques like repeated sam-
pling with proper selection mechanisms (Brown
et al., 2024) and more sophisticated modular
frameworks with existing models (Saad-Falcon
et al., 2024), we instead investigate test-time
scaling through a decoupled critic model trained
to provides targeted feedback to guide solution
improvements. Notably, while Saad-Falcon et al. (2024) demonstrates that strong models can serve
as effective critics, their approach struggles with code generation tasks. Additional discussion on
related work is provided in Appendix B.

6 CONCLUSION

We present CTRL, a reinforcement learning framework for training critic LLMs to provide effective
feedback for iterative refinement. Our trained critic demonstrates significant improvements over
baselines across multiple benchmarks and enables efficient test-time scaling through iterative critique-
revisions — notably, even when guiding stronger generators. While this work focuses on improving
pass rates, future directions include optimizing for efficiency and safety, and extending our training
pipeline towards multi-turn critique revision. We hope this work inspires further research into scalable
LLM self-improvement through reinforcement learning.
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A PIPELINE

As shown in Figure 12, our pipeline consists of two main training stages. (1) The SFT training stage
first generates initial solutions that are validated through execution feedback, followed by critique
generation where the generator learns to provide critiques based on execution feedback. These
components are then used to train the final critic model through supervised finetuning. (2) The RL
training stage leverages the critic’s feedback to guide the generator in producing improved solutions,
which are validated in a sandbox environment.

RL TRAINING

Prompt SolutionGenerator Sandbox Exec 
Feedback

SFT TRAINING

Prompt Solution Exec 
Feedback Generator Critique

Prompt Solution Critique

Prompt Solution Critic Critique

Generator New Solution Sandbox Pass?

RL Trainer

LLM

Prompt Unit Tests

Sandbox

Generator

Critic

DATA & ROLES : Context Distillation
Step 1 Initial Solution Generation

Step 3 Supervised Finetuning

Step 2 Critique Generation

Critic
SFT

Figure 12: Overview of our two-stage training pipeline CTRL.

B SUPPLEMENTARY DISCUSSION OF RELATED WORK

Self-Improvement of LLMs. Recent work has explored various approaches for LLMs to im-
prove their outputs autonomously, including self-critique (Madaan et al., 2024; Shinn et al., 2024),
debates (Irving et al., 2018; Michael et al., 2023; Khan et al., 2024), and training models to self-
correct (Welleck et al., 2022; Kumar et al., 2024). However, Huang et al. (2023) demonstrates
that without appropriate external feedback, such self-improvement loops may lead to performance
degradation. Our work addresses these challenges by learning specialized models that can provide
effective feedback for improvement.

Generative Reward Models. Table 2 categorizes prior methods into reward models, generative re-
ward models, and critic models. Reward models like BT RM (Bradley & Terry, 1952) and SynRM (Ye
et al., 2024) focus on discrimination by outputting scalar rewards r but lack refinement or critique
supervision. Generative reward models, such as CLoud (Ankner et al., 2024) and Critic-RM (Yu
et al., 2024), enhance discrimination by producing both rewards r and critiques c, but their critiques
primarily serve as a by-product for rewards rather than actionable refinement suggestions. Critic mod-
els, including UltraCM (Cui et al., 2023), Shepherd (Wang et al., 2023), and CriticGPT (McAleese
et al., 2024), focus on generating critiques but rely heavily on human-annotated critique data, which
limits scalability. In contrast, CTRL unifies discrimination and refinement by generating actionable
critiques without direct supervision, leveraging execution feedback and reinforcement learning to
enable scalable, iterative improvement.

C IMPLEMENTATION DETAILS

C.1 SIMULATION

In our simulation (Section 2), we model the iterative refinement process using a Markov chain with
parameters pinit, pcc, and pcw to represent the initial correctness, the probability of maintaining
correctness, and the probability of turning incorrect solutions correct, respectively. Critiquing ability
is controlled by varying pcc and pcw (e.g., strong critiquing: pcc = 0.9, pcw = 0.3; weak critiquing:
pcc = 0.7, pcw = 0.15), while discrimination ability is adjusted via true positive rate (TPR) and
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Table 2: Comparison of reward models, generative reward models, and critic models.

Methods Input Output Discrimination Refinement Critique Supervision

BT RM (Bradley & Terry, 1952) x, y r ✓ ✗ ✗
SynRM (Ye et al., 2024) x, y, c r ✓ ✗ ✓
UltraCM (Cui et al., 2023) x, y c ✗ ✓ ✓
Shepherd (Wang et al., 2023) x, y c ✗ ✓ ✓
CriticGPT (McAleese et al., 2024) x, y c ✗ ✓ ✓
CLoud (Ankner et al., 2024) x, y c, r ✓ ✗ ✓
Critic-RM (Yu et al., 2024) x, y c, r ✓ ✗ ✗
CTRL (Ours) x, y c ✓ ✓ ✗

false positive rate (FPR) (e.g., strong discrimination: TPR = 0.7, FPR = 0.2; weak discrimination:
TPR = 0.6, FPR = 0.3). For each setting, we simulate n refinement steps using Python, generating
solutions based on refinement probabilities, applying a classifier to predict correctness, and selecting
the best solution from predicted correct ones. The results are computed over 50,000 iterations and
plotted to analyze the impact of critiquing and discrimination on final success rates. Specifically,
the two processes — only using discrimination and using both discrimination and critiquing — are
illustrated in Figure 13 to provide a clearer understanding of our simulation setup.

x

y1

y2

y3

yn

y

...

x y0 c0 y1 · · ·yn y

w/o Critiquing w/ Critiquing

Figure 13: Graphical models for refinement processes: (left) only using discrimination (best-of-n sampling) and
(right) using both discrimination and critiquing (sequential critique-revision).

C.2 PROMPT TEMPLATES

Critique-revision. The generator model π(y | x) is implemented as a simple zero-shot generation
process, where the model generates a solution y directly from the problem statement x without
additional context or feedback. The critic model Qθ(c | x, y), as described in the main paper,
generates textual feedback c using a structured prompt that incorporates the problem x, the solution
y, and explicit instructions to provide actionable and formatted suggestions. The improved solution
distribution π(y | x, y′, c) is implemented as a two-turn process: in the first turn, the generator model
drafts the initial solution y′ conditioned on the problem x as the user message; in the second turn, the
critique c is presented as the user message, and the model revises the solution, conditioned on x, y′,
and c.

Execution-guided Critique Generation. To generate high-quality critiques (Section 3.2), we
leverage execution feedback from a sandbox environment that evaluates the initial solution y′ against
the test cases T for the problem x. The execution results are mapped to predefined hint templates,
which guide the critique generation process. The critic model is prompted with a structured template
incorporating the problem x, the solution y′, and the corresponding hint h, enabling it to produce
actionable and context-aware feedback. To prevent hallucination, critiques that explicitly reference
the hints are filtered out. This ensures that the generated critiques are grounded in observable failures
while effectively supporting solution refinement.
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Prompt Template for Critique Generation

You are tasked with analyzing an answer to a problem and providing constructive
↪→ feedback. Do NOT provide direct solutions.

Problem description:
<problem>
{problem}
</problem>

Answer:
<answer>
{answer}
</answer>

Structure your response using the following format (without <format> tags):
<format>
Analysis:
{{Analysis}}

Improvement suggestions:
{{Suggestions}}

Overall judgment: {{Correct/Incorrect}}
</format>

Prompt Template for Execution-guided Critique Generation

You are tasked with analyzing an answer to a problem and providing constructive
↪→ feedback. Do NOT provide direct solutions.

Please carefully reason about the hint to guide the user.

**Important: Do NOT mention ’the hint’ in your feedback.**

Problem description:
<problem>
{problem}
</problem>

Answer:
<answer>
{solution}
</answer>

Hint:
<hint>
{hint}
</hint>

Structure your response using the following format (without <format> tags):
<format>
Analysis:
{{Analysis}}

Improvement suggestions:
{{Suggestions}}

Overall judgment: {{Correct/Incorrect}}
</format>

C.3 TRAINING

Data Curation. Our data curation process starts with the TACO dataset (Li et al., 2023) and
handles both function-based and input-output-based programming problems. We filter out malformed
problems by removing those containing image tags and unusual HTML spans. For unit tests,
we process them differently based on their type: function-based tests are converted to assertion
statements, while input-output tests are standardized into a sandbox format with stdin-stdout pairs.
We exclude problematic unit tests such as those with malformed string inputs (containing assignments
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Table 3: Mapping between execution results and hint templates used for critique synthesis.

Execution Result Hint

Success (100%) The draft solution is correct. A concise
and positive feedback is recommended.

Failure (0%) The draft solution is entirely wrong.
A concise feedback requesting a fresh
restart is recommended.

Partial Success

Input:
{input}

Expected Output:
{expected output}

Actual Output:
{actual output}

Runtime Error

The code block:
“‘python
{code block}
”’
raised {error}.

or unexpected list operations) or invalid function calls. To avoid contamination, we further exclude
47 problems that overlap with our evaluation benchmarks. The final dataset is deduplicated based on
problem descriptions, resulting in 18,820 problems.

Supervised Finetuning. We leverage the synthesized critiques to perform supervised finetuning
(SFT) on the model, enabling it to generate improved solutions. For each problem, we sample one
initial solution and one corresponding synthesized critique, and train the model on these problem-
solution-critique pairs. The training process follows the hyperparameters outlined in Table 4.

RL Training. We use VeRL (Sheng et al., 2024) as the codebase to optimize the model’s generation
quality. During RL training, we sample 4 initial solutions for each problem and train the critic
model on all corresponding problem-solution pairs. This approach helps mitigate overfitting by
exposing the critic to a diverse set of solutions for each problem. The RL training process follows the
hyperparameters outlined in Table 5.

Table 4: SFT Hyperparameters.

Parameter Value

Learning Rate 2 × 10-5

Learning Rate Schedule Cosine
Training Batch Size 256
Maximum Token Length 2,048
Training Epochs 1
Mixed Precision Format bfloat16

Table 5: RL Hyperparameters.

Parameter Value

Training Batch Size 1,024
Mini-Batch Size 256
Group Size 8
Learning Rate 1 × 10-5

KL Coefficient 0.001
Maximum Prompt Length 1,536
Maximum Response Length 768
Temperature 1.0
Training Epochs 2

C.4 EVALUATION.

Inference. During inference, we use a temperature of 0.7 for generating both initial solutions and
critiques, while revised solutions are generated using greedy decoding. The maximum number of
tokens generated is set to 1,024 for all stages.

17



Published as a conference paper at ICLR 2025

Reward Calculation. To calculate rewards for our JudgeBench evaluation (Section 4.3), we use a
critic model to assess the quality of solutions. Specifically, we generate multiple critiques for each
solution and aggregate the results through majority voting. For each solution pair, the critic model
compares the frequency of being labeled as “Correct” to determine which solution is better. As shown
in Figure 14(a), we find that the accuracy of this majority voting strategy improves as the number of
votes increases.

Code Similarity Calculation. To measure code similarity while accounting for semantically
equivalent code with different variable names, we follow Zheng et al. (2024) and implement a
two-step comparison approach. We first normalize the code by parsing it into an Abstract Syntax Tree
(AST), systematically renaming variables to canonical forms, and converting back to consistently
formatted text. We then compute a similarity ratio using Python’s difflib.SequenceMatcher,
which represents the proportion of matching characters in the optimal alignment of the two normalized
code sequences. This approach yields a score between 0 and 1, allowing us to identify structurally
similar solutions regardless of variable naming choices.
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(a) The effect of the number of votes on the accu-
racy of majority voting in reward calculation. As the
number of votes increases, the accuracy improves
significantly, demonstrating the scalability and ro-
bustness of the majority voting approach.

(b) Training curve of the value network in PPO,
showing the mean predicted value over training steps.

Figure 14: (a) Majority voting accuracy improvement with increasing votes. (b) Training curve of the value
network.

D THE CREDIT ASSIGNMENT ISSUE FOR CRITIC TRAINING

Our initial attempts to train critics using Proximal Policy Optimization (Schulman et al., 2017) for RL
training revealed challenges in credit assignment for critique generation, as evidenced by the unstable
value predictions shown in Figure 14(b). This difficulty arises because the quality of a critique is
inherently holistic — it depends on multiple interdependent aspects like accuracy, completeness, and
constructiveness — making it hard for the value network to learn which parts of the generated critique
contributed to the final reward. These observations motivated our switch to GRPO, which circumvents
the value prediction problem by using Monte Carlo sampling to directly estimate advantages, leading
to more reliable credit assignment without the need for a potentially unstable value network.

E CTRL SAMPLES

In Tables 6, 8 and 10, we present sample critiques generated by CTRL for solutions provided by
Qwen2.5-Coder.
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Table 6: A sample problem from CodeContests (Li et al., 2022), with by the solution generated by Qwen2.5-
Coder and the critique provided by the CTRL critic.

Problem & Solution Critique

You had n positive integers a_1, a_2, ...,
a_n arranged in a circle. For each
pair of neighboring numbers (a_1 and
a_2, a_2 and a_3, ..., a_{n - 1} and
a_n, and a_n and a_1), you wrote down
: are the numbers in the pair equal
or not.

Unfortunately, you’ve lost a piece of
paper with the array a. Moreover, you
are afraid that even information
about equality of neighboring
elements may be inconsistent. So, you
are wondering: is there any array a
which is consistent with information
you have about equality or non-
equality of corresponding pairs?

def can_form_array(s):
n = len(s)
# We will try to assign values to the

array a
# Start with assigning 1 to the first

element
a = [1] * n

# Try to assign values based on the
given conditions

for i in range(n):
if s[i] == ’E’:

a[(i + 1) % n] = a[i]
else:

a[(i + 1) % n] = a[i] + 1

# Check if the last and first elements
are consistent with s[n-1]

if s[-1] == ’E’ and a[0] != a[-1]:
return "NO"

if s[-1] == ’N’ and a[0] == a[-1]:
return "NO"

return "YES"

def main():
import sys
input = sys.stdin.read().splitlines()
t = int(input[0])
results = []
for i in range(1, t + 1):

s = input[i]
results.append(can_form_array(s))

for result in results:
print(result)

if __name__ == "__main__":
main()

Analysis:
The provided solution attempts to

construct an array based on the
sequence of ’E’ and ’N’ but does not
correctly handle the circular nature
of the array and the constraints
imposed by these characters.
Specifically, the approach does not
ensure consistency across the entire
circular arrangement, particularly at
the boundary where the last element
connects back to the first.

The code assigns values to the array
elements based on whether the current
character is ’E’ or ’N’, but it does
not account for potential conflicts
that arise when the array wraps
around. This means that the final
check between the first and last
elements might fail due to
inconsistencies introduced earlier in
the array construction process.

Improvement suggestions:
1. Consider using a more systematic

approach to handle the circular
nature of the array. One possible
method is to use a graph traversal
algorithm, treating each position in
the array as a node and each ’E’ or ’
N’ as an edge with a label indicating
equality or inequality.

2. Use a union-find data structure to
manage equivalence classes of indices
that must hold the same value due to
’E’ connections.

3. Iterate through the string and apply
the rules: if ’E’, ensure the indices
are in the same set; if ’N’, ensure
they are in different sets.

4. After processing the string, verify
that no conflicts exist in the union-
find structure, particularly focusing
on the circular connection between
the first and last elements.

5. If no conflicts are found, it is
possible to construct an array that
satisfies the conditions; otherwise,
it is not.

Overall judgment: Incorrect
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Table 8: A sample problem from LiveCodeBench (Jain et al., 2024), with by the solution generated by Qwen2.5-
Coder and the critique provided by the CTRL critic.

Problem & Solution Critique

You are given a binary string s and an
integer k.

A binary string satisfies the k-constraint
if either of the following
conditions holds:

The number of 0’s in the string is at most
k.

The number of 1’s in the string is at most
k.

Return an integer denoting the number of
substrings of s that satisfy the k-
constraint.

class Solution:
def countKConstraintSubstrings(self, s

: str, k: int) -> int:
def count_substrings_with_max_char

(s, max_char, k):
left = 0
count = 0
current_count = 0
result = 0

for right in range(len(s)):
if s[right] == max_char:

current_count += 1

while current_count > k:
if s[left] == max_char

:
current_count -= 1

left += 1

result += right - left + 1

return result

count_0s =
count_substrings_with_max_char
(s, ’0’, k)

count_1s =
count_substrings_with_max_char
(s, ’1’, k)

return count_0s + count_1s

Analysis:
The provided solution attempts to solve

the problem by counting substrings
based on the maximum occurrence of
’0’ and ’1’ up to ‘k‘, but it does
not correctly account for all
possible substrings that satisfy the
k-constraint. The approach
incorrectly calculates the
intersection of substrings that
satisfy both conditions without
properly considering the overlap
between these substrings.
Additionally, the logic for counting
substrings is flawed as it does not
consider every possible substring of
‘s‘; instead, it focuses on
contiguous sequences of ’0’s and ’1’s
up to ‘k‘.

Improvement suggestions:
1. **Re-evaluate the Approach**: Instead

of focusing on contiguous sequences
of ’0’s and ’1’s, the solution should
consider every possible substring of
‘s‘ and check if it satisfies the k-
constraint.

2. **Iterate Over All Substrings**: Use
nested loops to iterate over all
possible substrings of ‘s‘. For each
substring, count the occurrences of
’0’ and ’1’ and check if either count
is less than or equal to ‘k‘.

3. **Count Valid Substrings**: Maintain a
counter to keep track of how many
substrings meet the k-constraint
criteria.

4. **Simplify the Logic**: Consider using
Python’s slicing capabilities to
easily extract and evaluate each
substring without unnecessary checks
for contiguous characters.

Overall judgment: Incorrect
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Table 10: A sample problem from MBPP+ (Liu et al., 2024a), with by the solution generated by Qwen2.5-Coder
and the critique provided by the CTRL critic.

Problem & Solution Critique

Write a python function to check whether
every odd index contains odd numbers
of a given list.

def odd_length_sum(arr):
n = len(arr)
res = 0

# Iterate through each element in the
array

for i in range(n):
# Calculate the number of

subarrays in which arr[i] is
present

count = ((i + 1) * (n - i) + 1) //
2

# If the count is odd, add the
element to the result

if count % 2 == 1:
res += arr[i]

return res

Analysis:
The provided solution checks if the parity

(odd/even nature) of the numbers at
odd indices matches the index itself.
This means it verifies that a number
at an odd index is odd, and a number
at an even index is even. However,
this does not correctly address the
problem at hand, which requires
checking whether every odd index
contains an odd number, not just
matching the parity of the index.

Improvement suggestions:
- Review the logic used in the function.

Instead of checking if the parity of
the number matches the parity of the
index, the function should directly
check if the number at each odd index
is odd.

- Consider using a more straightforward
loop or list comprehension to achieve
the desired result.

Overall judgment: Incorrect
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