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Abstract

Federated learning is a decentralized collabora-
tive training paradigm preserving stakeholders’
data ownership while improving performance and
generalization. However, statistical heterogene-
ity among client datasets degrades system perfor-
mance. To address this issue, we propose Adap-
tive Normalization-free Feature Recalibration
(ANFR), the first architecture-level approach to
combat heterogeneous data in FL. ANFR lever-
ages weight standardization to avoid mismatched
client statistics and inconsistent averaging, ensur-
ing robustness under heterogeneity, and channel
attention to produce learnable scaling factors for
feature maps, suppressing inconsistencies across
clients due to heterogeneity. We demonstrate that
this improves class selectivity and channel atten-
tion weight distribution, while working with any
aggregation method, supporting both global and
personalized FL, and adding minimal overhead.
ANFR offers a novel and versatile approach to
the challenge of statistical heterogeneity. Exten-
sive experiments show ANFR consistently out-
performs established baselines across various ag-
gregation methods, datasets, and heterogeneity
conditions.

1. Introduction

Federated learning (FL) (McMahan et al., 2017) is a de-
centralized training paradigm enabling clients to jointly
develop a model without sharing private data. By preserv-
ing data privacy and ownership, FL holds promise for ap-
plications in healthcare, finance, and mobile devices. A
fundamental challenge in FL is statistically heterogeneous,
i.e. non-independent and identically distributed (non-IID)
client datasets, as they can degrade the performance of the
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global model and hinder convergence (Li et al., 2020b; Hsu
et al., 2019). Addressing this is critical for FL’s success in
real-world scenarios. Most prior research focuses on aggre-
gation methods to compensate for this issue, overlooking
how model architecture affects performance under hetero-
geneity. More specifically, Batch Normalization (BN) (Ioffe
& Szegedy, 2015) hinders performance in heterogeneous
FL due to mismatched client-specific statistics and incon-
sistent parameter averaging (Wang et al., 2023; Guerraoui
et al., 2024). In response, using other feature normalization
methods like Group Normalization (GN) (Wu & He, 2018)
and Layer Normalization (LN) (Ba et al., 2016) has been
frequent in FL research (Hsieh et al., 2020; Reddi et al.,
2021; Wang et al., 2021; Du et al., 2022). These alternatives
slow convergence and reduce performance compared to BN
(Chen & Chao, 2021; Tenison et al., 2023; Zhong et al.,
2024). Previous works have not designed models specifi-
cally tailored to combat heterogeneity, leaving a research

gap.

‘We address this gap in the image domain by proposing Adap-
tive Normalization-Free Feature Recalibration (ANFR), an
architecture-level approach designed to enhance robustness
in FL under data heterogeneity. ANFR combines weight
standardization (Qiao et al., 2020) with channel attention
(Hu et al., 2018) to directly tackle the challenges posed by
non-IID data. Weight standardization normalizes convolu-
tional layer weights instead of activations, avoiding reliance
on mini-batch statistics, which is problematic in FL. This
reduces susceptibility to mismatched statistics and incon-
sistent averaging. Channel attention generates learnable
scaling factors for feature maps, suppressing features that
are inconsistent across clients due to heterogeneity, and
emphasizing consistent ones. By integrating channel at-
tention with weight-standardized models, ANFR enhances
the model’s ability to focus on shared, informative features
across clients. This synergy boosts performance beyond the
individual contributions of these components, enhancing
class selectivity, and optimizing channel attention weight
distribution. ANFR works with any aggregation method and
is effective in both global and personalized FL settings, with
minimal computational overhead. Furthermore, when train-
ing with differential privacy, ANFR achieves an appealing
balance between privacy and utility, enabling strong privacy
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guarantees without sacrificing performance.

We validate the effectiveness of ANFR through extensive
experiments on a diverse set of datasets and tasks, including
medical imaging and natural image classification, multi-
class classification, and cross-device scenarios, under var-
ious types of data heterogeneity. The results show that
ANFR consistently outperforms established baselines across
different aggregation methods, datasets, and heterogeneity
conditions. By focusing on architectural components, our
approach complements advances in aggregation strategies
and addresses a crucial gap in FL research. The proposed
model offers a robust and flexible solution to the challenge
of statistical heterogeneity, contributing to the advancement
of federated learning by improving performance, stability,
and privacy-preserving capabilities.

2. Related Work

Since McMahan et al. (2017) introduced FL, most research
has focused on developing aggregation algorithms to ad-
dress challenges like data heterogeneity. In global FL
(GFL), methods such as proximal regularization (Li et al.,
2020a) and cross-client variance reduction (Karimireddy
et al., 2020) aim to reduce client drift. Techniques like
discouraging dimensional collapse through correlation ma-
trix norm regularization (Shi et al., 2023), adopting relaxed
adversarial training (Zhu et al., 2023), and performing am-
plitude normalization in frequency space (Jiang et al., 2022)
have also been proposed. Other recent ideas are constructing
global pseudo-data to de-bias local classifiers and features
(Guo et al., 2023), introducing concept drift-aware adaptive
optimization (Panchal et al., 2023), and hyperbolic graph
manifold regularizers (An et al., 2023). In personalized
FL (pFL), personalizing layers of the model can mitigate
heterogeneity. The simplest approach shares all model pa-
rameters except the classification head (Arivazhagan et al.,
2019). More advanced methods replace lower layers and
mix higher ones (Zhang et al., 2023) or adjust mixing ra-
tios based on convergence rate approximations (Jiang et al.,
2024). While these algorithmic approaches have advanced
both GFL and pFL, they often overlook the impact of the
underlying architecture on performance.

We address this gap by exploring how model components
can enhance FL performance. This is orthogonal to algo-
rithmic advancements, representing a crucially underdevel-
oped area. Previously, Qu et al. (2022) found using vision
transformers instead of convolutional networks increased
performance. Studies by Pieri et al. (2023) and Siomos
et al. (2024) evaluated different architectures and aggrega-
tion methods, showing that changing the architecture, rather
than the aggregation method, can be more beneficial. These
works did not design models specifically tailored to combat

heterogeneity. In contrast, our method integrates architec-
tural components that enhance robustness across diverse
client distributions into the model, directly addressing data
heterogeneity.

The normalization layer has been a focal point of component
examination as Batch Normalization (BN) (Ioffe & Szegedy,
2015) has been shown both theoretically (Li et al., 2021;
Wang et al., 2023) and empirically (Hsieh et al., 2020; Du
et al., 2022; Guerraoui et al., 2024) to negatively impact
performance in heterogeneous FL. Mismatched local dis-
tributions lead to averaged batch statistics and parameters
that fail to accurately represent any source distribution. The
primary approaches addressing this issue are modifying the
aggregation rule for the BN layer or replacing it entirely.
Some methods keep BN parameters local (Li et al., 2021;
Andreux et al., 2020) or stop sharing them after a certain
round (Zhong et al., 2024). Others replace batch-specific
statistics with shared running statistics when normalizing
batch inputs to match local statistical parameters (Guerraoui
et al., 2024) or leverage layer-wise aggregation to also match
associated gradients (Wang et al., 2023). These methods
rely on decently sized batches to accurately approximate
statistics and are incompatible with differential privacy. To
replace BN, Group Normalization (GN) (Wu & He, 2018)
has been frequently used (Hsieh et al., 2020; Reddi et al.,
2021; Wang et al., 2021) since it does not rely on mini-batch
statistics. However, tuning the number of groups in GN
is required to maximize effectiveness and Du et al. (2022)
showed that Layer Normalization (LN) (Ba et al., 2016)
performs better than GN in some settings. Separate studies
have shown both GN and LN offer inconsistent benefits
over BN, depending on the characteristics and heterogeneity
of the dataset (Tenison et al., 2023; Chen & Chao, 2021;
Zhong et al., 2024).

We circumvent these issues by applying weight standardiza-
tion (Qiao et al., 2020) to normalize the weights of the model
instead of the activations. Inspired by Brock et al. (2021a),
who showed that such Normalization-Free (NF) models can
train stably and perform on par with BN in centralized learn-
ing, we explore this concept in FL. Previously, Zhuang &
Lyu (2024) proposed an aggregation method specific to NF
models for multi-domain FL with small batch sizes. Simi-
larly, Siomos et al. (2024) showed that NF-ResNets improve
upon vanilla ResNets under different initialization schemes
and aggregation methods, while Kang et al. (2024) proposed
a personalized aggregation scheme that replaces each BN
layer with weight normalization (Salimans & Kingma, 2016)
followed by a learnable combination of BN and GN. Ad-
ditionally, our method adaptively recalibrates the resulting
feature maps using channel attention modules, such as the
Squeeze-and-Excitation block (Hu et al., 2018). By doing
so, the model can focus more on relevant features across
clients, effectively addressing data heterogeneity. Zheng
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et al. (2022) previously explored channel attention for pFL,
proposing a modified channel attention block that is kept
personal to each client. Unlike previous methods limited to
specific aggregation strategies or settings, our approach can
complement any heterogeneity-focused aggregation method,
is effective even with large batch sizes, and supports various
attention modules. Appendix C summarizes the differences
between ANFR and related work. By integrating weight
standardization with channel attention, ANFR provides a
robust and flexible solution to data heterogeneity in FL, over-
coming limitations of activation normalization techniques
and complementing aggregation methods.

3. Adaptive Normalization-Free Feature
Recalibration

3.1. Background and Notation

We consider a FL setting with C' clients, each owning a
dataset of image-label pairs D; = {(xx,yx)} and optimiz-
ing a local objective £;(0) = E(,,)~p, [[(z,y; )], where I
is a loss function and 6 the model parameters. Heterogeneity
among D, can degrade the global model performance and
slow convergence (Kairouz et al., 2021). In this study, we
modify the backbone model to address this. As they are
the most widely used family, and they perform better or on
par with others (Pieri et al., 2023; Siomos et al., 2024), we
focus specifically on convolutional neural networks (CNNs).
Let X € RBXCnxEXW renresent a batch of B image samples
with Cj, channels and dimensions HxW . For a convolu-
tional layer with weights W and a kernel size of 1, the
outputs are given by:

A=XxW = ZcCi“lVV:,c X:,c,:,: (1)

with the dimensions of A being [B, Coy, H, W] and those
of W, [Cou, Cin] In typical CNNSs, the activations are then
normalized:

A= %(Ai — i) + 3, where:

1 1
i = @ Z A, 0'1‘2 = @ Z(Ak—lh‘)Q

keS; keS;

(@)

where 3,4 € RCuw are learnable parameters, i =
(in,ic,im,iw) is an indexing vector and S; is the set of
pixels over which p;, o; are computed. BN computes statis-
tics along the (B, H, W) axes, LN along (C, H,W), and
GN along (C, H,W) separately for each of G groups of
channels. Channel attention (CA) mechanisms, like the
Squeeze-and-Excitation (SE) block (Hu et al., 2018), recali-
brate feature responses by modeling inter-channel relation-
ships. The channel descriptor Z € RP*Co is obtained via
Global Average Pooling (GAP):

Z=HW)'SEV A e 3)

Client2  Client 1

Figure 1. Illustrating how Channel Attention can boost Cr and
suppress Cn r. Left: The two clients have heterogeneous datasets.
Middle: An edge detector is robust to this feature shift; the activa-
tions are consistent for both clients. Right: A blue detector is not
robust and its activations cause conflicting gradients.

This descriptor is then non-linearly transformed to cap-

ture dependencies between channels; in SE blocks this

. . . COH
is done via the learnable weights W; € R~ *Co

W, € ROux ™ \where r is a dimensionality reduction
ratio: S = o (Wi (W1 Z)), where § € REXCo o is
the sigmoid function and § the ReLU function. yielding
per-channel scaling factors S thich are applied to the nor-

malized activations A = S ® A.

wand

3.2. Effect of normalization on Channel Attention

In the presence of data heterogeneity, CA can suppress fea-
tures sensitive to client-specific variations and emphasize
consistent ones. In earlier layers, A consists of responses
to filters detecting low-level features like colors and edges,
while in later layers it contains class-specific features (Zeiler
& Fergus, 2014). For the sake of explaining how CA im-
pacts heterogeneous FL, we virtually partition filters into
two distinct groups: those eliciting consistent features (Cr)
and inconsistent ones (C ). Figure 1 illustrates an exam-
ple. Both clients have images of airplanes and cars; Client
1’s images have predominantly blue backgrounds, while
Client 2’s images have different backgrounds. Under this
feature shift, edge-detecting filters produce consistent re-
sponses across both clients, thus belonging to Cr, whereas
filters sensitive to specific colors like blue activate differ-
ently across clients, forming Cyr. While both activation
types are informative locally, inconsistent activations from
Cnr cause conflicting gradients during FL training. This
motivates our use of CA in this context: during training,
CA can assign higher weights to A¢,, and lower weights to
Ac, , without prior knowledge of which features belong to
each set. The resulting adaptive recalibration aligns feature
representations across clients, reducing gradient divergence
and improving global model performance.

While CA mitigates the locality of convolution by accessing
the entire input via pooling (Hu et al., 2018), if the nor-
malization of A is ill-suited to heterogeneous FL, the input
to (3) becomes distorted, leading to sub-optimal channel
weights:

4 W G Ly
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Activation normalization techniques suffer from this issue.
BN is known to be problematic in heterogeneous settings
for two reasons: mismatched client-specific statistical pa-
rameters lead to gradient divergence—separate from that
caused by heterogeneity—between global and local models
(Wang et al., 2023); and biased running statistics are used
at inference (Guerraoui et al., 2024). Both contribute to
well-established performance degradation (Li et al., 2021;
Du et al., 2022). Since u; and o; depend on batch-specific
statistics, Z”N varies across clients due to local distribu-
tion differences, leading to inconsistent channel descriptors,
which in turn results in non-ideal channel weights. Aside
from data heterogeneity, BN needs sufficient batch sizes
to estimate statistics accurately, and is incompatible with
differential privacy; these are limiting factors in resource-
constrained and private FL scenarios. GN and LN also have
drawbacks: GN normalizes within fixed channel groups,
which may not align with the natural grouping of features,
limiting its effectiveness under heterogeneity. LN assumes
similar contributions from all channels (Ba et al., 2016),
which is generally untrue for CNNs, and clashes with our
goal of reducing the influence of A¢,, . Crucially, both nor-
malize across channels to produce p;, o;. This introduces
additional channel inter-dependencies in (4), thus interfering
with extracting representative channel descriptors.

3.3. Adaptive Normalization-Free Feature Recalibration

To address these problems, we propose applying CA after
normalizing the convolutional weights instead of the activa-
tions using Scaled Weight Standardization (SWS) from NF
models (Brock et al., 2021a), which adds learnable affine
parameters to weight standardization (Qiao et al., 2020):

Ey ’yeffvc(!ul
Weoien = pu (Wegren = Heow) )
Cout
1 Cin 9 1 Cin B
/LCout = C § WCOUHC O.com = C (WCouuC_/J“Cout)
m mn

1

Q
—
Q
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Here, Yer = ¢ - v/+/|Cin| incorporates a learnable scale
parameter g and a fixed scalar v depending on the networks’
non-linearity. We replace the normalized activation A with
A = X« I/)[\/ + 3. From (5) we observe that SWS does not
introduce a mean shift (E[A’] = E[A] = 0), and preserves
variance (Var(A’) = Var(A)) for the appropriate choice
of ~, allowing stable training. By replacing normal convo-
lutions with the ones described by (5), and following the
signal propagation steps described in Brock et al. (2021a),
we can train stable CNNs without activation normalization.
We term this combination of weight standardization and
channel attention Adaptive Normalization-Free feature Re-
calibration (ANFR). The input to (3) when using ANFR

is:

HW Ci,
ZANFR _ Yeft Z ZW X
= ocHW s,eN: e h,w
haw c=1
Ay HW Ci
o S
Le,h,w + /8 (6)
ocHW haw c=1

Comparing (4) and (6), we note several advantages of ANFR.
First, o and p are computed from convolutional weights,
not the activations. Since weights are initialized identically
and synchronized during FL, these weight-derived statistics
are consistent across clients. Moreover, the second term
of (6) now captures statistics of the input before convolu-
tion, providing an additional calibration point for CA and
bypassing the effect of Cyr. By applying CA after SWS,
we ensure channel descriptors are not distorted by batch-
dependent statistics or cross-channel dependencies intro-
duced by activation normalization. This allows CA to adjust
channel responses effectively, improving the model’s capac-
ity to learn stable feature representations that are consistent
across clients with diverse data distributions. Therefore, the
combination of SWS and CA overcomes the drawbacks of
traditional normalization methods in federated learning, pro-
viding a novel and effective solution for improving model
performance in the presence of data variability. Lastly, we
note ANFR operates at the model level and inherits the the-
oretical convergence guarantees of the aggregation method
it is used with.

3.4. Mechanistic Interpretability Analysis

Next, we conduct a mechanistic interpretability analysis
comparing the effects of BN and SWS on class selectiv-
ity and attention weight variability to further substantiate
the effectiveness of integrating CA with SWS. We examine
how well the ANFR model discriminates between classes
before! and after training on the heterogeneous ‘split-3’
partitioning of CIFAR-10 from Qu et al. (2022). This eval-
uation helps understand how our method improves class
discriminability under data heterogeneity. We isolate the
effect of different components by comparing ANFR (us-
ing SWS with CA), BN-ResNet (using BN), NF-ResNet
(using SWS without CA), and SE-ResNet (using CA with
BN). Class selectivity is quantified by the class selectivity
index (CSI) (Morcos et al., 2018), defined for each neuron
as CSI = (Mmax_Mfmax)/(ﬂmax'i‘lifmax), where fimax is the
class-conditional activation that elicits the highest response
and p1_max 1S the mean activation for all other classes. A right-
skewed CSI distribution indicates higher class selectivity,
crucial for effective classification under heterogeneous data.
Lastly, we examine the distribution of attention weights,
like done in Wang et al. (2020), for models using CA, to

' All networks are pre-trained on ImageNet.
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Figure 2. Left: CSI distributions before FL training, queried after the last CA module. Both normalizations (BN and SWS) show similar
behavior, and CA has a minor impact. Right: after FL training, CA increases class selectivity, especially in conjunction with SWS in

ANFR.
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Figure 3. Top: Weights of the last CA module for SE-ResNet-50. Bottom: Same for ANFR-50. Left: Before FL training, CA provides
a diverse signal varying across classes and channel indices to both models. Right: After FL training, the CA module in SE-ResNet
degenerates to an identity. In ANFR, CA shows increased variability as it works to combat heterogeneity.

understand its contribution to class discrimination. Fig-
ure 2 shows CSI distributions for the last layer before the
classifier, where class specificity is maximized in CNNss.
Before FL training, incorporating CA in SE-ResNet slightly
increases class selectivity compared to BN-ResNet. Com-
bining CA with SWS in ANFR shows negligible change
in class selectivity compared to NF-ResNet, indicating CA’
minimal impact at this stage. However, after training on
heterogeneous data, we observe a notable shift: BN reduces
class selectivity (compared to before training), evidenced
by left-skewed distributions for BN-ResNet and SE-ResNet.
Adding CA increases class selectivity for both normaliza-
tion methods, but due to receiving inconsistently normalized
inputs (4) cannot fully mitigate BN’s negative effect. The
ANFR model, however, shows a significant increase in class
selectivity compared to NF-ResNet, with strong class se-
lectivity (CSI>0.75) units nearly doubling from ~11% to
~21%. This improvement manifests only after FL training,
indicating that combining CA and SWS in ANFR enhances
the model’s ability to specialize and discriminate classes
under data heterogeneity.

In Figure 3 we use the variability of attention weights across
channels and classes as an indicator of adaptation: high vari-
ability suggests CA is actively re-weighing features to adapt
to different class characteristics. Before FL training (left
panel), both SE and ANFR models display high variability,
as, when heterogeneity is not a factor, CA provides a di-
verse and informative signal for both activation and weight
normalization. After FL training (right panel), the attention
mechanism of SE-ResNet turns into an identity operator,
with attention weights converging to 1 across all channels
and classes, meaning SE-ResNet fails to preserve the dis-
criminative power of CA under heterogeneity. In contrast,
ANFR maintains high variability in CA weights across chan-
nels and classes. This sustained variability implies that CA
remains active and continues to provide class-discriminative
signals when combined with weight standardization.

These insights support our design choices. BN’s adverse
effects in heterogeneous FL are highlighted by diminished
class selectivity and inactive CA in SE-ResNet, while ANFR
maintains and improves class selectivity, demonstrating that
integrating CA with weight standardization effectively coun-
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Table 1. Performance comparison across all architectures under different global FL aggregation methods and different datasets. Best in
bold, second best underlined. ANFR consistently outperforms the baselines, often by a wide margin.

ARCHITECTURE
DATASET METHOD
BN-RESNET GN-RESNET SE-RESNET NF-RESNET ANFR (OURS)
FEDAVG 66.01+£0.73  65.09+£0.42 65.29+1.32 72.49£0.60 74.78+0.16
FED-ISIC2019 FEDPROX 66.49+0.41 66.51£1.21 66.29+0.63 71.28+2.14 75.61+0.71
FEDADAM 65.8840.67 64.60+£0.39 65.18£1.90 69.96£0.14 73.02+0.93
SCAFFOLD 65.41+0.72  68.84+0.46 68.99+0.18 73.30£0.50 76.52+0.60
FEDAVG 82.80£0.13  83.404+0.25 82.144+0.18 83.4040.11 83.49+0.14
FEDCHEST FEDPROX 82.14+0.10  82.04+0.08 81.50+0.26 81.26+0.58 82.14+0.10
FEDADAM 83.02+0.11  82.11+0.10 82.72+0.16  83.10+0.09 83.33+0.07
SCAFFOLD 83.52+0.14  83.95£0.05 83.50£0.08 84.06+0.02 84.26+0.10
FEDAVG 91.71+£0.74  96.60+0.11  94.07+£0.04 96.72+0.05 97.421+0.01
CIFAR-10 FEDPROX 95.03+£0.04 96.05+0.04 94.60+0.07 96.82+0.04 96.334+0.09
FEDADAM 91.23+0.29  95.80+0.24 94.09+0.17 95.54£0.10 96.93+0.06
SCAFFOLD 92.51£0.99 96.78+£0.01 94.30£0.03 96.84+0.01 97.38+0.03

ters data heterogeneity. The enhanced class selectivity in
ANFR correlates with improved downstream performance
in heterogeneous FL settings, as we show in Section 4. Addi-
tional details and extended CSI and attention weight results
from other layers are presented in Appendix E.

4. Experiments
4.1. Experimental Settings

Datasets. We evaluate our approach on five classification
datasets, including Fed-ISIC2019 (Ogier du Terrail et al.,
2022) containing dermoscopy images from 6 centers with
8 classes where label distribution skew and heavy quan-
tity skew is present; FedChest, a novel chest X-Ray multi-
label dataset with 4 clients and 8 labels with label distribu-
tion skew and covariate shift; a partitioning of CIFAR-10
(Krizhevsky et al., 2009) which simulates heavy label distri-
bution skew across 5 clients using the Kolmogorov-Smirnov
(KS) “split-2” as presented in Qu et al. (2022); CelebA (Liu
et al., 2015) from the LEAF suite (Caldas et al., 2018), a
binary classification task in a cross-device setting with a
large number of clients, covariate shift and high quantity
skew; and FedPathology, a colorectal cancer pathology slide
dataset with 9 classes derived from Kather et al. (2019),
featuring challenging concept drift as the images, which we
do not color-normalize, were produced using two different
staining protocols. FedChest contains images from PadCh-
est (Bustos et al., 2020), CXR-14 (Wang et al., 2017) and
CheXpert (Irvin et al., 2019), which present one or more of
8 common disease labels. For FedPathology, used for DP
training in Section 4.3, Dirichlet distribution sampling (Hsu
etal., 2019) with «=0.5 is used to simulate a moderate label
distribution skew and partition the data to 3 clients. Each
task covers a different aspect of the multi-faceted problem
of data heterogeneity in FL, including different domains and

sources of heterogeneity, to provide a robust test bed. More
details are presented in Appendix A.1, including instructions
to replicate FedChest in D.1.

Compared models. We compare ANFR with a typical
ResNet (utilizing BN), a ResNet where BN is replaced by
GN, a SE-ResNet (Hu et al., 2018), and a NF-ResNet. This
selection isolates the effects of our architectural changes
compared to using BN, using its popular substitution GN,
and using weight standardization and CA separately. We
choose a depth of 50 layers for all models to balance per-
formance with computational expense. All models used in
Section 4 are pre-trained on ImageNet (Russakovsky et al.,
2015) using t imm (Wightman, 2019), but additional exper-
iments with randomly initialized models are presented in
Appendix B.3. ANFR follows the structure of NF-ResNet,
with the addition of CA blocks in the same position as
SE-ResNet. Except for Section 4.4, we employ Squeeze-
and-Excitation (Hu et al., 2018) as the attention mechanism.
Additional model and computational overhead details are
provided in Appendix A.3.

Evaluated methods. We use 4 global FL. (GFL) and 2 per-
sonalized FL (pFL) aggregation methods as axes of compar-
ison for the models, each representing a different approach
to model aggregation: the seminal FedAvg (McMahan et al.,
2017) algorithm, FedProx (Li et al., 2020a), which adds
a proximal loss term to mitigate drift between local and
global weights, SCAFFOLD (Karimireddy et al., 2020),
which corrects client drift by using control variates to steer
local updates towards the global model, FedAdam (Reddi
et al., 2021), which decouples server-side and client-side
optimization and employs the Adam optimizer (Kingma &
Ba, 2017) at the server for model aggregation, FedBN (Li
et al., 2021) which accommodates data heterogeneity by
allowing clients to maintain their personal batch statistics,
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and by construction is only applicable to models with BN
layers, and FedPer (Arivazhagan et al., 2019) which person-
alizes the FL process by keeping the weights of the classifier
head private to each client. We note our proposal is an ar-
chitectural one which is aggregation method-agnostic, thus
we selected these widely known aggregation methods to
represent a spectrum of strategies, from standard averaging
to methods addressing client drift and personalization. This
provides a robust comparison concentrated on the model
architectures.

Table 2. pFL comparison on Fed-ISIC2019 and FedChest using
FedPer and FedBN where applicable (FedBN numbers in paren-
theses). ANFR remains the top performer.

ARCHITECTURE  FED-ISIC2019 FEDCHEST

BN-RESNET 82.36+0.80 (82.82+0.06)  83.39+0.10 (83.38+0.12)
GN-RESNET 80.66+0.47 83.734+0.10

SE-RESNET 81.224+0.77 (81.84+0.28)  83.36+0.14 (83.33£0.14)
NF-RESNET 84.20£0.43 83.70+0.14

ANFR (OURS) 84.94+0.46 83.80+0.14

Evaluation metrics. For Fed-ISIC2019, we report the aver-
age balanced accuracy due to heavy class-imbalance as in
(Ogier du Terrail et al., 2022). For FedChest, a multi-label
classification task with imbalanced classes, we report the
mean AUROC on the held-out test in this section and more
metrics in Appendix D.2. We report the average accuracy
for the other 3 datasets. In pFL settings, the objective is
providing good in-federation models so we report the aver-
age metrics of the best local models, as suggested in (Zhang
et al., 2023).

Implementation Details. We select hyper-parameters for
each dataset by tuning the BN-ResNet (using the ranges
detailed in Appendix A.2) and then use the same parameters
for all models. This means the results in Section 4.2 are a
conservative floor of the improvements that can be achieved,
and in Appendix B.4 we show tuning for ANFR can further
increase improvements. In Fed-ISIC2019 clients use Adam
with a learning rate of 5e-4 and a batch size of 64 to train
for 80 rounds of 200 steps. This setup is distinct from
the one used in (Ogier du Terrail et al., 2022) resulting in
performance improvements for all models. In Appendix
B.2 we provide additional results using the original settings.
In FedChest clients use Adam with a learning rate of Se-4
and a batch size of 128 to train for 20 rounds of 200 steps.
For DP-training in FedPathology, we set the probability of
information leakage § to 0.1/|D;|, as is common, the noise
multiplier to 1.1, the gradient max norm to 1.0, and train
for 25 rounds, which is the point where the models have
expended a privacy budget of e=1. For CelebA and CIFAR-
10 we follow the settings of Qu et al. (2022); Pieri et al.
(2023) which were tuned by the authors. All experiments
are run in a simulated FL environment with NVFLARE
(Roth et al., 2022) and PyTorch (Paszke et al., 2019), using

2 NVIDIA A100 GPUs for training. We report the mean
and standard deviation across 3 seeds.

4.2. Performance Analysis and Comparison

GFL scenario. Average results for all datasets, models, and
GFL aggregation methods are presented in Table 1. First,
we observe that GN does not consistently outperform the
vanilla ResNet, supporting our pursuit of a more reliable
alternative. For instance, GN is outperformed by BN in
half of the tested aggregation methods on Fed-ISIC2019
and FedChest. Second, the sub-optimality of CA operating
on BN-normalized features is evident, as the SE model fre-
quently performs worse than BN-ResNet, notably across all
aggregation methods on FedChest. NF-ResNet shows strong
performance across all tasks and methods, confirming the
potential of replacing activation normalization with weight
standardization in FL. However, our proposed ANFR model
consistently outperforms NF-ResNet, often by a consider-
able margin. For example, on Fed-ISIC2019 with SCAF-
FOLD, ANFR surpasses NF-ResNet’s mean balanced accu-
racy by more than 3%. For the FedChest dataset, we employ
a large batch size of 128 to maximize the probability that
all classes are represented in each batch, following best
practices for multi-label, class-imbalanced datasets. This is
further analyzed in a batch size ablation in Appendix D.3.
ANFR emerges as the top-performing model across aggre-
gation methods and our results indicate that integrating CA
with SWS networks provides significant performance gains,
suggesting that channel attention is a crucial component in
designing effective FL. models.

PFL scenario. Table 2 presents the results for pFL scenarios
on Fed-ISIC2019 and FedChest. In FedChest, where im-
ages are grayscale and we use a large batch size, FedBN and
FedPer are virtually equal: BN-ResNet achieves an AUROC
of 83.38% with FedBN and 83.39% with FedPer, indicating
that the estimated BN statistics closely match the true ones.
GN-ResNet attains 83.73% with FedPer, slightly outper-
forming BN-ResNet, but ANFR with FedPer is the most per-
formant option across both aggregation methods, yielding a
mean AUROC of 83.8%. Conversely, under the severe label
and quantity skew on Fed-ISIC2019, employing FedBN im-
proves performance over FedPer for models employing BN.
ANFR achieves the highest balanced accuracy of 84.94%
nonetheless. Notably, GN performs worse than BN on Fed-
ISIC2019, and the ineffectiveness of combining BN and CA
is further evidenced, as SE-ResNet is outperformed by BN-
ResNet in all scenarios. These findings demonstrate that
adopting ANFR enhances performance across both datasets,
leading to the best overall models. Unlike the trade-offs
observed with BN-FedBN and GN-FedPer combinations,
ANEFR consistently outperforms other architectures across
varying levels of data heterogeneity.
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Table 3. Performance Comparison in a cross-device setting, train-
ing with FedAvg on CelebA. The training setup follows Pieri et al.
(2023), where 10 clients participate at each round until all clients
have trained for 30 rounds. ANFR outperforms the baselines.

ARCHITECTURE AVERAGE ACCURACY

BN-RESNET 82.20+1.21
GN-RESNET 85.411+0.68
SE-RESNET 85.554+0.84
NF-RESNET 88.1740.30
ANFR (OURS) 88.91+0.28

Cross-device experiments on CelebA. Table 3 presents the
results of our models on the cross-device setting of CelebA,
which contains 200,288 samples across 9,343 clients. While
the binary classification task is relatively straightforward for
individual clients, it poses challenges at the server level due
to the vast number of clients and significant quantity and
class skews—some clients have only a few samples or labels
from a single class. We observe that ANFR outperforms
the baseline models, demonstrating its adaptability across
diverse FL scenarios.

4.3. Sample-level Differentially Private Training

In privacy-preserving scenarios involving differential pri-
vacy (DP), BN cannot be used as calculating mini-batch
statistics violates privacy-preservation so it is customarily
replaced by GN. We demonstrate the utility of ANFR in such
settings using the FedPathology setup described in Section
4.1. We train using DP-SGD with strict sample-level privacy
guarantees: following good practices, the probability of in-
formation leakage 4 is set to 0.1/|D;|, the noise multiplier
is set to 1.1 and the gradient max norm to 1. We employ a
privacy budget of =1, followed by training without privacy
constraints (€=00), to illustrate the privacy/utility trade-off
of each model. From the results presented in Table 4, we
observe that with an unrestricted privacy budget, GN and
ANFR perform comparably. However, when a strict budget
is enforced GN suffers a sharp performance decrease of
17%, as expected following previous research (Klause et al.,
2022), whereas ANFR’s average accuracy is reduced by only
3%. ANFR’s robustness under DP may be attributed to its
reliance on weight standardization, which has been shown to
benefit from additional regularization (Brock et al., 2021b;
Zhuang & Lyu, 2024) such as that provided by DP-SGD’s
gradient clipping and gradient noising. Our experiments
show DP training induces a regularization effect that dispro-
portionately benefits NF models like ANFR, an observation
also reported by De et al. (2022). These findings make
ANFR a promising candidate for furthering development
and adoption of DP training in FL, thereby enhancing the
privacy of source data contributors, such as patients.

Table 4. Accuracy on the validation set of FedPathology when
training with and without DP. Performance degrades severely for
GN, while ANFR retains good performance.

PRIVACY BUDGET £ =00 e=1
GN-RESNET 84.79+2.72 67.27+5.08
ANFR (OURS) 84.47+3.08 81.11+0.33

4.4. Attention Mechanism Comparison

Next, we investigate the impact of different attention mecha-
nisms on performance. We compare the SE module used in
previous sections with ECA (Wang et al., 2020), and CBAM
(Woo et al., 2018). ECA replaces SE’s fully-connected lay-
ers with a more efficient 1-D convolution to capture local
cross-channel interactions. CBAM combines channel and
spatial attention and utilizes both max and average pooling
to extract channel representations. From Table 5 we observe
that even the lowest-performing module on each dataset
outperforms all baseline models from Tables 1 and 3, prov-
ing the robustness of our approach. No single mechanism
consistently performs best, making further exploration of
attention modules an interesting avenue for future work.

Table 5. Comparing different channel attention modules after FL
training with FedAvg. No module is consistently the best.

CA MODULE SE ECA CBAM

CIFAR-10 97.42 +0.01 97.134+0.11 97.05 4+ 0.08
FED-ISIC2019 74.78 £0.16 75.07 =0.48 74.19 £ 0.68
FEDCHEST 83.49 £0.14 83.62+0.10 83.47+£0.15
CELEBA 88.91 £0.28 89.07 £0.43 89.31 £ 0.41

5. Conclusion

We introduce ANFR, the first architectural FL approach to
address the challenges of data heterogeneity at a design level
in FL. ANFR fills a gap by being the first method to simulta-
neously work in GFL, pFL, and private FL scenarios while
being compatible with any aggregation method and offering
a robust increase in performance. Extensive experiments
demonstrate the superior adaptability and performance of
ANFR, as it consistently surpasses the performance of base-
line architectures, regardless of the aggregation method
employed. Our results position ANFR as a compelling back-
bone model suitable for both global and personalized FL
scenarios where statistical heterogeneity and privacy guaran-
tees are important concerns. Our findings highlight the need
to look beyond aggregation methods as the core component
of federated performance and the critical role of architec-
tural innovations in reaching the next frontier in private and
collaborative settings.
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A. Additional Implementation Details
A.1. Datasets

Skin Lesion Classification on Fed-ISIC2019. Fed-ISIC2019 (Ogier du Terrail et al., 2022) contains 23,247 dermoscopy
images from 6 centers across 8 classes and is a subset of the ISIC 2019 challenge dataset. We follow the original pre-
processing, augmentation, loss, and evaluation metric of (Ogier du Terrail et al., 2022). This means the loss function is focal
loss weighted by the local class percentages at each client, and the reported metric is balanced accuracy, as counter-measures
against class imbalance. The augmentations used include random scaling, rotation, brightness changes, horizontal flips,
shearing, random cropping to 200 x 200 and Cutout (DeVries, 2017). We train for 80 rounds of 200 local steps with a batch
size of 64. The clients locally use Adam (Kingma & Ba, 2017), a learning rate of 5e-4, and a cyclical learning rate scheduler
(Smith, 2017). In terms of heterogeneity, Fed-ISIC2019 represents a difficult task due to class imbalance and heavy dataset
size imbalance, with the biggest client owning more than 50% of the data and the smallest client 3%.

CIFAR-10. Krizhevsky et al. (2009) consists of 50,000 training and 10,000 testing 32 x 32 images from 10 classes. We
follow the setup of Pieri et al. (2023), specifically the ‘split-2” partitioning where each client has access to four classes and
does not receive samples from the remaining six classes. This means we train for 100 rounds of 1 local epoch with a batch
size of 32. Clients use SGD with a learning rate of 0.03 and a cosine decay scheduler, in addition to gradient clipping to
1.0. During training the images are randomly cropped with the crop size ranging from 5% to 100% and are then resized to
224 x 224.

CelebA from LEAF. A partitioning of the original CelebA (Liu et al., 2015) dataset by the celebrity in the picture, this
dataset contains 200,288 samples across 9,343 clients. The task is binary classification (smiling vs not smiling). We follow
the setup presented in Pieri et al. (2023), training with 10 clients each round until all clients have trained for at least 30
rounds. The other settings are the same as those for CIFAR-10.

FedPathology Slide Classification Dataset. A colorectal cancer pathology slide dataset (Kather et al., 2019), consisting of
100k training images of Whole Slide Image (WSI) patches with labels split among 9 classes, is used to simulate a federation
of 3 clients. We mimic one of the most important challenges in the WSI field by not color-normalizing the images, which
come from two different labs with differences in staining protocols. The original 7k color-normalized validation set from
Kather et al. (2019) is kept as a common validation set. We follow common practice (Hsu et al., 2019) to simulate label
skew data heterogeneity by using a Dirichlet distribution with oo = 0.5 to partition the data. Since this artificial partitioning
is random, we make sure to use the same seeds across architectures and privacy settings to compare on exactly the same
partitioning instances. Our pipeline is built using Opacus (Yousefpour et al., 2022) and («, §)-Renyi Differential Privacy
(RDP) (Mironov, 2017). Following good practices, the probability of information leakage ¢ is set to 0.1/|D;| where | D;|
represents each client’s dataset size. The DP-specific hyper-parameters of the noise multiplier and gradient max norm are
set to 1.1 and 1, respectively. Data augmentation includes random horizontal and vertical flips, random color jittering,
and random pixel erasing. Clients use Adam with a learning rate of 5e-5, training for 500 local steps with a batch size of
64. Federated training is stopped after 25 rounds, which is the point where both architectures have expended, on average,
a privacy budget of ¢ = 1. Finally, we train without using DP under the same settings to form a clearer picture of the
privacy/utility trade-off of each model.

Chest X-Ray Multi-Label Classification on FedChest. Please refer to Appendix D.1.

A.2. Hyper-parameter Tuning

Hyper-parameters were optimized for the BN-ResNet and then the same parameters were used for all networks. The ranges
were as follows:

Local Steps: {100, 200, 500}

* Rounds: {20, 50, 75, 100}

* Batch size: {32, 64, 128}

* Gradient Clipping: {None, Norm Clipping to 1, Adaptive Gradient Clipping (Brock et al., 2021b)}

* Learning rate: {5e-5 — le-2}
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* Optimizer: {Adam, AdamW, SGD with momentum}

L]

Scheduler: {None, OneCycleLR, Cosine Annealing, Cosine Annealing with Warm-up}

* FedProx p: {le-3, le-2, le-, 2}

FedAdam Server learning rate: {5e-4, le-3, le-2, le-1}

Discussion. We found both FL aggregation methods that introduce hyper-parameters difficult to tune: FedProx (Li et al.,
2020a) made a negligible difference for small i values and decreased performance as we increased it; the server learning
rate in FedOpt has to be chosen carefully, as large (le-2, le-1) learning rates led to non-convergence and small ones to
disappointing performance. Gradient clipping helped ANFR but was detrimental to the vanilla ResNet. We found the use
of a scheduler to be very beneficial for performance, as well as making the optimizer and initial learning rate choice less
impactful. We store the intermediate learning rate at each client between rounds and resume the scheduler, and also follow
this for the momentum buffers of the adaptive optimizers.

A.3. Model Details and Computational Overhead

Table 6 presents pre-training details, parameter counts, multiply-accumulate counts (GMACs) and floating point operation
counts (FLOPs) and ImageNet (Russakovsky et al., 2015) validation set top-1 performance for all models. For models
which are pre-trained by us, links to the pre-trained weights will be made public after acceptance. Additionally, to gauge the
computational overhead of ANFR, and by extension its applicability in low-resource environments, we compare training
times for BN-ResNet-26 with those for ANFR-26 using ECA as the attention mechanism. The batch size is set to 32, and
we measure the average time per iteration of forward + backward pass across 100 iterations using PyTorch’s profiler. We do
this for two distinct scenarios: devices without a CUDA-enabled GPU (e.g., smartphones), and devices with CUDA-enabled
GPUs (e.g., edge devices such as Nvidia Jetson). The results in Table 7 show ANFR introduces marginal overhead (~10%
without CUDA, ~10% with CUDA) while providing a significant performance advantage, showcasing its practicality in
resource-constrained settings.

Table 6. Comparison of model details. Profiling results obtained using DeepSpeed’s (Rasley et al., 2020) model profiler, for a batch size
of 1 and an image size of 3 X224 x224. Training recipe refers to the recipes presented in Wightman et al. (2021). ImageNet-1K eval
performance obtained from timm (Wightman, 2019) results and our own training. (*): performance evaluated on 256x256 size.

MODEL PARAMETERS GMACS GFLOPs IN-1K PERFORMANCE TRAINING RECIPE
BN-RESNET-50 25.56 M 4.09 8.21 78.81 B
GN-RESNET-50 25.56 M 4.09 8.24 80.06 Al
SE-RESNET-50 28.09 M 4.09 8.22 80.26 B

NF-RESNET-50 25.56 M 4.09 8.32 80.22* B

ANFR-50 (SE) 28.09 M 4.09 8.32 80.4 B

ANFR-50 (ECA) 25.56 M 4.09 8.32 80.61 B

ANFR-50 (CBAM) 28.07M 4.1 8.33 80.37 B

Table 7. Computational demand comparison in a simulated low-resource setting.

SCENARIO WiITHOUT CUDA WITH CUDA
METRIC FORWARD BACKWARD TOTAL CPU TIME GPU TIME
BN-RESNET-26 297MS 672MS 969MS 12Ms 22MS
ANFR-26 (ECA) 353Mms T717MS 1s 70Ms  9Ms 26MS
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B. Additional Results

B.1. Qualitative Localization Performance Comparison

ResNet-50 GN-ResNet-50 SE-ResNet-50 NF-ResNet-50 ANFR-ResNet-50

s
Py

Atelectasis

Pneumonia

Figure 4. Comparison of the saliency maps generated by Grad-CAM++ from different architectures for a Pneumonia and an Atelectasis
image, overlaid with ground-truth bounding boxes. We note ANFR improves localization and reduces activations outside the area of
interest.

Finally, we assess the localization capability of each architecture after FL training with the best aggregation method on
FedChest, SCAFFOLD. We compare the bounding box annotations provided by Wang et al. (2017) with Grad-CAM++
(Chattopadhay et al., 2018) heatmaps generated for samples labeled Azelectasis or Pneumonia from the FedChest test set.
Figure 4 shows that ANFR’s heatmaps more closely align with the annotated bounding boxes. This improved localization
aids model interpretability, which is crucial in areas like medical imaging.

B.2. Results on Fed-ISIC2019 using FLamby hyper-parameters

The experimental setup we use for Fed-ISIC2019 in the main paper is an improved version of the example benchmark
presented in section 4.1 of Ogier du Terrail et al. (2022), so one might wonder how the compared models perform under the
original settings. To answer this we repeat Centralized, FedAvg, and SCAFFOLD training on Fed-ISIC2019 after aligning
our hyper-parameters with [11], meaning we reduce local steps to 100 without a scheduler, perform 9 federated rounds,
and use pre-computed class weights in the focal loss. Results are presented in Table 8, showing ANFR comprehensively
beats competing baselines, with an even wider performance gap compared to our original setting. The overall level of
performance, including the gap between centralized and FL training, aligns with the results presented in [11], as we expect.
Additionally, SE-ResNet performs better than ANFR in centralized training, but the opposite is true in FL training, further
validating our core claims in Section 3 that CA needs Weight Standardization to optimally adjust channel responses in
heterogeneous FL. Although these results further support our claims, we believe the optimized version of Fed-ISIC2019
training we provide in the main paper is more of use to the community.

Table 8. Results on Fed-ISIC2019 using the original hyper-parameters from FLamby. The gap between ANFR and the baselines is even
wider.

BN-RESNET GN-RESNET SE-RESNET NF-RESNET ANFR (OURS)

FEDAVG 59.5+0.75 55.26+£2.96 61.92£1.58 60.76+0.75 65.34+1.29
SCAFFOLD 57.614+2.78 57.62+2.95 67.34+0.42 57.35+0.73 71.07+1.27

CENTRAL 61.26+£2.92 57.09+1.85 73.00+1.09 61.28£1.53 72.03%+1.55

B.3. Results Using Randomly Initialized Models

Given the ubiquity and demonstrated utility of ImageNet pre-trained models in FL (Qu et al., 2022; Pieri et al., 2023; Siomos
et al., 2024), we use pre-trained models in the main paper. Nevertheless, we conduct additional experiments with FedAvg on
CIFAR-10, FedChest and Fed-ISIC2019, using randomly initialized models. Although the results below bolster our claims,
we avoided this setting initially as random weight initialization is not representative of the current standard settings adopted
by FL practitioners. The only changes made to accommodate the absence of pre-training are to change the optimizer to
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AdamW and the learning rate to 0.001 for CIFAR-10, and to double the number of local steps for Fed-ISIC2019. Our
results in Table 9 show the same trend, of a gap existing between FL and centralized training but being smaller when using
pre-trained models. In this setting, too, ANFR is the best performer.

Table 9. Results using randomly initialized models on CIFAR-10, Fed-ISIC2019 and FedChest.

DATASET CIFAR-10 FED-ISIC2019 FEDCHEST
MODEL FEDAVG CENTRAL FEDAVG FEDAVG CENTRAL
BN-RESNET 80.89 89.05 54.02 78.44 82.58
GN-RESNET 78.52 86.69 54.92 73.68 80.82
SE-RESNET 81.19 88.65 53.20 78.79 82.16
NF-RESNET 81.66 88.96 56.75 79.06 83.55
ANFR (OURrs) 83.20 89.58 57.71 79.41 83.67

B.4. Tuning in favor of ANFR in Fed-ISIC2019

As noted in Appendix A.2 which discusses tuning, our hyper-parameters are chosen after tuning the baseline BN-ResNet and
not ANFR, meaning the reported improvement in the Tables of the main paper is a conservative floor of the improvement
that can be achieved. To illustrate the real impact of our approach, we double the number of local steps in Fed-ISIC2019,
keeping all other settings constant. As seen in Table 10, the performance of ANFR increases by 1.56% compared to Table
1, while its improvement over the best baseline becomes twice as big. While this experimental setting favors ANFR, the
performance of BN-ResNet is now lower, so this is not the setting we report in the main paper. The same methodology has
been applied for all experimental settings. Despite optimizing for the baselines, ANFR still remains the best option, which
greatly bolsters how exciting our results are.

Table 10. Results on Fed-ISIC2019 when doubling the local steps (tuning in favor of ANFR as opposed to BN-ResNet). ANFR performs
better than the results in Table 1, but BN-ResNet worse, so this is not the setting used in the main paper.

BN-RESNET GN-RESNET SE-RESNET NF-RESNET ANFR
FEDAVG 64.52 66.16 67.55 71.76 76.34

B.5S. CIFAR-10 experiment without early-stopping

The results presented in Section 4.2 follow the experimental set-up of (Pieri et al., 2023), where the validation set is used a
form of early stopping in the following way: at every round the performance on the test set is only evaluated if the accuracy
on the validation set has increased. While this is a methodologically valid set-up, it is also interesting to see how the models
perform when no early-stopping is used. To compensate for this and avoid overfitting we disable gradient clipping and
increase the batch size to 64. The results are presented in Table 11, showing how ANFR continues to beat the baselines.

Table 11. Alternative CIFAR-10 setting where we do not use validation-based early stopping, but instead report final round test accuracy.
NaNs indicate training instability.

MODEL BN-RESNET SE-RESNET GN-RESNET NF-RESNET ANFR
FEDAVG 67.39 74.75 96.73 96.62 97.45
FEDPROX 86.3 94.23 95.98 NAN 96.63
FEDADAM 57.43 88.93 95.32 NAN 96.96
SCAFFOLD 61.37 78.99 96.57 96.84 97.49
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B.6. Performance Plots

To gauge convergence, it can be helpful to examine performance plots showing how accuracy progresses throughout
federated training. Below we provide four such plots, comparing all models when training from scratch on CIFAR-10 using
FedAvg and SCAFFOLD, comparing all models for the experiment in Table 10, and a Fed-ISIC run from the top performing
model in Table 1, ANFR with SCAFFOLD.

Figure 5. Top Left: Training from scratch on CIFAR-10 using FedAvg. Top Right: Training from scratch on CIFAR-10 using SCAFFOLD.
Bottom Left: Training from scratch on FedISIC using FedAvg. Bottom Right: Top performing model run, ANFR with SCAFFOLD on
FedISIC.
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C. Tabular Comparison with Related Work

Table 12 presents a tabular comparison of ANFR with related work.

D. FedChest construction and additional results

D.1. Construction and hyper-parameters

To create FedChest we use three large-scale chest X-Ray multi-label datasets: CXR14 (Wang et al., 2017), PadChest
(Bustos et al., 2020) and CheXpert (Irvin et al., 2019). To derive a common dataset format for all three, we need to take
several pre-processing steps:

1. We remove lateral views where present, keeping only AP/PA views.
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Table 12. Comparison of desirable attribute between our study and related work. O, @© , @ symbolize a condition is not met, inconsistently
met, and fully met, respectively. ANFR fills a gap by being the first method to simultaneously work in GFL,pFL, and private FL scenarios
while being compatible with any aggregation method and offering a robust increase in performance.

Scenario Aggregation Compatible Performance

Method GFL pfL Agnostic with DP Increase

FedBN
(Lietal., 2021) O ® O O 0

FixBN
(Zhong et al., 2024)

FBN
(Guerraoui et al., 2024)

ChannelFed
(Zheng et al., 2022)

FedWon
(Zhuang & Lyu, 2024)

GN & LN
(Wu & He, 2018) ® O
(Baetal., 2016)

ANFROus) | @ @] @ | @ |

® O|O|O
Ol @ @& | @
Ol 0] 0] 0
® O|O|O
e o o o

o
o
®

2. We discard samples which do not contain at least one of the common diseases, which are: Atelectasis, Cardiomegaly,
Consolidation, Edema, Effusion, No Finding, Pneumonia, and Pneumothorax.

3. We remove “duplicates” which, in this context, means samples from the same patient that have the same common
labels but different non-common labels.

4. We remove 5% from the edge of each image to avoid blown-out borders and artifacts.
5. We resize the images to 224x224 pixels.

6. We apply contrast-limited histogram equalization (CLAHE) to the images.

In addition to these common steps, some dataset-specific additional pre-processing steps are necessary, namely setting NaN
and ‘uncertain’ labels of CheXpert to 0 (not present), removing corrupted NA rows from CXR14, and removing corrupted
images from PadChest.

After pre-processing, CheXpert has twice as many samples as the other datasets, so we further split it into two clients,
cxp-young and cxp-old using the median age of the patient population (63 years), leading to a total of 4 clients with
train/val/test splits of (given in thousands): 23.7/15/10 for CXR14, 26/15/10 for PadChest, 29.7/15/7.5 for
cxp-old and 31/15/7.5 for cxp_young. The task is multi-label classification across the 8 common classes.

After tuning, clients perform 20 rounds of 200 local steps with a batch size of 128, the loss function is weighted Binary
Cross-Entropy (BCE), and the optimizer Adam with a learning rate of 5e-4, annealed over training. Data augmentation
includes random shifts along both axes, random scaling and rotation, Cutout, and random cropping.

D.2. Additional FedChest Metrics

Further to the results presented in the main text, since some of the diseases have an unbalanced label distribution, and to also
gauge model performance in deployment, we use the validation Receiver Operating Curve (ROC) to find the optimal class
thresholds for each client using Youden’s Index (Youden, 1950). Having fixed the thresholds to these values, at test-time we
measure the average accuracy and F1 score of each model and present the results in Table 13.
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Table 13. Classification results on the held-out test set of FedChest obtained by finding the optimal decision threshold on the validation set
and using it to binarize predictions. Top part refers to GFL while bottom refers to pFL.

Model BN-ResNet-50 GN-ResNet-50 SE-ResNet-50 NF-ResNet-50 ANFR
Metric Accuracy Fl1 Accuracy F1 Accuracy Fl1 Accuracy Fl Accuracy Fl1
FedAvg 74.92 42.83 75.78 4337 75.62 4285 75.76 43.28 75.80 43.50
FedProx 74.72 42.28 7341 41776 74.14 41.60 74.11 4147 74.16 41.85
FedAdam 74.57 42.60 74.00 4190 74.57 422 7492 42.84 75.28 43.18
SCAFFOLD  75.55 43.34  76.38 43.85 76.18 43.65 76.27 44.02 7641 44.07
FedPer 75.23 43.11 7554 43.59 7540 43.18 75.66 43.60 75.91 43.75
FedBN 75.62 4322 N/A N/A 7543 43.12 N/A N/A N/A N/A

D.3. Batch Size Ablation Study

The absence of a performance gap between BN-ResNet and ANFR on the FedChest dataset when using FedProx (Table 1)
motivates us to perform a study ablating the batch size to examine how inconsistent averaging, which is expected to happen
for small batch sizes, affects results. We compare BN-ResNet and ANFR, varying the batch size while keeping all other
experimental settings unchanged.

Table 14. Batch size ablation study on FedChest using FedProx. Smaller batch sizes more strongly affect BN-ResNet due to inconsistent
mini-batch statistics.

BATCH S1ZE 16 32 64 128 256
BN-RESNET 78.67+0.03 80.02+0.18 81.79+0.18 82.14+0.1 81.33+0.07
ANFR 79.20+0.09 80.57+0.03 81.71+0.16 82.14+0.1 82.19+0.07

Table 14 shows BN-ResNet’s performance degrades more than that of ANFR for small batch sizes (16 and 32). ANFR
offers significant advantages compared to BN-ResNet for small batch sizes due to the absence of BN. In the main paper
hyper-parameters are tuned based on BN-ResNet’s performance; as the best BN-ResNet result is achieved with a batch size
of 128, this is the one used. While using a large enough batch size can mitigate intra-client variance to a degree, we see that
increasing the batch size to 256 reduces BN-ResNet’s performance, indicating diminishing returns. This reinforces that
increasing batch size is ultimately not a viable solution for addressing BN’s limitations in non-IID FL, and new methods,
such as ANFR, are necessary to effectively combat statistical heterogeneity.

E. Extended CSI and Attention Weight Analysis
E.1. Setup details and performance

FL training is performed on the extremely heterogeneous ‘split-3° partitioning of CIFAR-10 from Qu et al. (2022), which
consists of 5 clients who each have samples only from 2 classes. The training parameters are the same as in Qu et al. (2022)
and Section 4.1. All the compared models are pre-trained on ImageNet and have a depth of 50 layers, which results in 16
attention blocks for each model that uses channel attention. To calculate the channel attention weights and class selectivity
index distributions, we use the entire test set of CIFAR-10, passing each class separately through the models to extract
class-conditional activations; this is done both before and after FL training.

For channel attention weights, this allows us to store the distributions of weights of each model for each class and channel
index. For the CSI, we query the nearest ReLU-activated feature maps before and after each channel attention block—or the
equivalent points for the models that do not use such blocks. In t imm (Wightman, 2019) terminology, we are referring to
the output of act 2 as before, and act 3 as after. Comparing before and after distributions for the same network, allows
us to isolate the effect of CA in the case of SE-ResNet and ANFR, and observe the baseline effect of moving through the
convolutional block on the CSI distribution in BN-ResNet and NF-ResNet. Finally, the histogram of CSI values for each
layer is used to draw an approximation of the continuous probability density function for the layer.
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E.2. CSI plots of all layers

From Figure 5, which shows the CSI plots for every layer in the models, we make several observations regarding the class
selectivity of each model.

SE-ResNet. Before FL training, CA reduces selectivity in all but the last block, in which it normalizes it. This is how
CA was designed to function in the centralized setting, aiding feature learning in the first layers and balancing specificity
and generalizability in the last layer (Hu et al., 2018). After FL training, the CSI distribution is much more left-skewed
in the final block, showcasing how BN, under FL data heterogeneity, prohibits the network’s last layers from specializing
compared to centralized training.

NF-ResNet. Before FL training we see that selectivity generally increases as we move towards the last layers. The CSI
distribution of each layer after FL training is very similar to the one before it, indicating that replacing BN with SWS
removes the limitation of the last layers to specialize.

ANFR. The distributions are generally similar to those of NF-ResNet except for some where CA reduces selectivity, adding
to the evidence that part of the role of CA in centralized training is aiding general future learning. After heterogeneous FL
training, ANFR inherits NF-ResNets robustness against heterogeneity, and by comparing the last layer of NF-ResNet and
ANFR, we note that ANFR overall becomes more specialized.

E.3. Channel attention plots of all layers
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Figure 6. Full CSI results before and after FL training for each layer, moving first across each column then to the next row. In earlier layers
CA reduces selectivity, helping the model learn robust features, while in the later ones selectivity is increased to adapt to heterogeneity.
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Figure 7. Channel attention weights for every CA module of SE-ResNet and ANFR (top and bottom row of each layer plot, respectively),
before and after FL training (left and right). Note the increased variability for ANFR, particularly in the last layer.
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