Under review as a conference paper at ICLR 2024

ADAPTIVE MEMORY MODULE FOR SEQUENTIAL
PLANNING AND REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient planning and reasoning in sequential decision-making tasks remains a
core challenge for machine learning models. These tasks often involve intricate
decision sequences leading to combinatorial complexity that hampers traditional
planning methods. Humans on the other hand leverage flexible planning strategies
and adapt their thinking time based on the complexity of the problem at hand to
efficiently solve complex reasoning problems. Inspired by this, we propose and
investigate an end-to-end memory-based adaptive learning algorithm to enhance
planning capabilities and resource allocation of Al agents. Our study borrows con-
cepts from adaptive computation and incorporates memory and reusability mech-
anisms into agents. This allows agents to meta-learn flexible reasoning strategies,
plan deeper, and efficiently adjust their computation to not only improve inference
time efficiency but also generalize to more complex problems. Finally, our study
of the adaptive memory module reveals patterns comparable to human decision-
making mechanisms such as increasing certainty, reconsideration and alternative
exploration. This work contributes to the evolving understanding of harnessing
adaptive computation to enhance machine learning models’ capabilities in com-
plex reasoning and sequential decision-making tasks.

1 INTRODUCTION

Planning and reasoning are integral to human decision-making and have yet to be adequately in-
corporated into Al models. These components are required in building highly capable general Al
agents that can assist in scientific discovery and push the frontiers of human knowledge. Further-
more, reasoning in sequential decision making domains is characterized by an interaction between
the past and the future, where information and decisions from previous steps significantly inform
the present decisions while these decisions, in turn, influence future inputs and observations.

Recent trends (Wei et al., 2022; [Yao et al.l |2023} Nye et al.| [2021; [Zelikman et al., 2022; |Lan-
chantin et al., 2023 |Hu & Clune| 2023 |Lewkowycz et al.| [2022) have shown how simply scaling
up model size, and dataset size can result in emergent capabilities like reasoning. However, it has
been shown (Sawada et al., [2023) that these large language models are still weak at more complex
reasoning tasks. Factors contributing to these limitations include low-quality step-by-step reasoning
data available on the internet and difficulty in collecting high-quality reasoning data for complex rea-
soning problems. Collecting such data becomes very difficult for problems that humans themselves
cannot solve and for visual reasoning problems. Another potential cause is the limited thinking time
(Bubeck et al.l 2023)) before outputting the first token.

Another common approach taken towards building Al agents capable of planning has been studied
under the umbrella of model-based reinforcement learning. In these approaches, the decision-maker
constructs mental simulations of potential future states, actions, or outcomes within a decision tree,
using a learned transition dynamics model. These methods (Schrittwieser et al., |2020; [Silver et al.,
2016; [Pierrot et al.l 2019} |2020; Hafner et al.| 2023)) rely on learning world models, and leveraging
explicit search strategies like Monte Carlo Tree Search to build AI agents that can solve long horizon
planning problems. These works also leverage additional decision/inference time to achieve super-
human level performance in various complex planning games like Chess and Go. However, they lack
flexibility and adaptability and are often difficult to scale in more complex environments. Human
on the other hand adapt their planning strategies and planning time based on the complexity of the

Under review as a conference paper at ICLR 2024

problem and urgency around the need to arrive at a decision. Works like [Edwards et al.| (2018)),
show the benefit of other planning routines involving hierarchical planning and reverse directional
planning routines.

Works like Racaniere et al.| (2017); [Pascanu et al.| (2017); |Guez et al.| (2018); Gowal et al.| (2018)
have taken a step toward flexible and adaptable planning routines by allowing agents to learn to
plan. However, these still rely on having an explicit transition dynamics model. Recently Guez et al.
(2019) proposed to learn an end-end agent that meta-learns flexible planning routines via its memory.
This helps agents learn and adapt their planning strategy, and avoid tree search based planning
algorithms. Another recent work (Bansal et al., 2022), also shows similar effects in other planning
domains. However, the computation time in the above approaches is fixed. These works have also
shown how leveraging more computation at inference time for more difficult problems (Baldock
et al} [2021)), can help improve the performance of the model. Other works (Guez et al., 2019
Bansal et al., [2022; Jones|, 2021}, Hamrick et al., 2021)) have also shown how additional computation
time can help improve performance in complex planning domains. All these works however fix the
computation time and do not allow the agent to adapt the number of repetitions taken by the memory
module e.g., LSTM with a fixed number of iterations.

The study of decision-making and planning extends to human psychology, particularly in scenarios
where task complexity requires varying degrees of cognitive effort (Payne et al.,|1988). Throughout
our development, our engagement with the environment undergoes a series of changes, shaping
our ability to navigate challenges and solve tasks. Early on, basic functions emerge in response
to simple, repetitive tasks, forming the foundation for later complexities. As we mature, higher-
order cognitive processes emerge in the brain, allowing us to handle more intricate situations and
integrate conflicting information through complex deliberation. This progressive development aligns
with the evolving demands of our surroundings, reflecting the adaptable nature of human cognition.
Furthermore, it is clear from empirical data that human reaction times vary considerably based on
task complexity (Payne et al.| [1993; Blasing & Bornewasser, 2021}, where results have been shown
that correct response times to a stimulus increase either with a greater number of stimuli or when
there are many possible planning alternatives to be considered. For example, increased fixation time
on a set of increasingly more complex, or contradictory, instructions to complete a task was observed
using eye tracking (Ullmanl [1984). There is a clear pattern relating task complexity in the form of
information processing load and possible sequence of actions or interactions to complete a task.
Notably, previous research has indicated that temporal pressure and the risk of critical irreversibility
can hinder decision-making, even in situations demanding swift actions (Klein, [1999; |Pahlke et al.,
20115 Payne, [1976). Human decision-making exhibits a remarkable flexibility and responsiveness
to environmental cues, often prompted by a sense of urgency (Reddi & Carpenter, [2000). These
influences of urgency, whether biologically driven by factors like aging or environmentally-induced
pressures, create a natural push for more efficient decision-making mechanisms, such as reflexes.
As models scale up, the incorporation of such mechanisms becomes increasingly pertinent.

We extend prior work to suit the requirements of sequential decision-making scenarios, thereby en-
abling us to probe the effects of adaptive computation on the planning process. Earlier research by
Banino et al.| (2021)); (Graves| (2016) has not only demonstrated the performance benefits of adap-
tive computation but has also highlighted instances where higher computation is needed, indicating
increased task complexity. Understanding the role of these features in sequential reasoning tasks
grants us insight into the underlying mechanisms of these models.

In this study we aim to explore how agents can leverage adaptive computation, memory, and an
end-to-end learning framework to meta-learn flexible planning strategies and enhance decision time
efficiency while retaining the ability for further deliberation to solve more complex problems.

‘We make the following contributions in this work:

1. Analysis of Memory Modules: Our investigation centers on agents equipped with single
and multiple-step memory modules in the realm of sequential decision-making. This com-
prehensive analysis sheds light on the influence of memory integration on agents’ planning
efficiency and their capacity to generalize to more complex reasoning problems.

2. Demonstration of Adaptive Computation within sequential decision making domains:
We present a compelling demonstration of the adaptive computation capabilities in our
proposed architecture. By applying it to intricate puzzle-solving scenarios, we seek to

Under review as a conference paper at ICLR 2024

highlight the potential of our approach to amplify planning efficiency while concurrently
upholding performance standards.

3. Exploration of Complexity-Pondering Relationship: Our research studies the interplay
between information complexity within a state and the subsequent pondering steps carried
out by an adaptive agent. We observe three distinct learned behaviors, namely increas-
ing certainty, exploring alternatives, and reconsideration. These behaviors are interpreted
through a psychological lens by analyzing the evolution of internal transformations within
a trained agent. Our central hypothesis posits that the adaptive agent strategically allocates
computation resources based on the complexity of input data, as well as the remaining
difficulty of the task.

4. Sokoban Expert trajectories Data: We open source all the expert Sokoban trajectories
collected for the experiments in this study, allowing others to further pursue research related
to reasoning and planning.

2 METHODOLOGY

We investigate how memory, adaptive computation, and an end-to-end learning approach can be
used to build an agent that can meta-learn flexible reasoning strategies without labelled reasoning
data, reuse information across time steps and adapt its computation time based on input complexity
to not only generalize to more complex reasoning problems but also efficiently solve easier tasks by
halting earlier. We now introduce our agent and its memory module i.e. Adaptive Memory Module
(AMM).

1 1 2 2 3 3 1 1 2 2
ﬂt(Jl A§J1 7’;)1)‘57)1 ”§21)‘E—)l 7"§))‘E) 7"t())‘E)

A A

61

Figure 1: Adaptive Memory Module : The embedded input is combined with an initialized core state
hg, which is updated with the same input at each iteration, until the halting probability (\) forces
termination. The outcome of the memory rollout is then passed to a linear layer which outputs the
action logits.

The input observation is first encoded by a CNN encoder. This three dimensional input is then
processed by a recurrent memory module. We use the DRC architecture for memory
that has shown strong performance (Guez et al) [2019) in the environments investigated in this
study. However, a diverse range of architectures ranging from Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, [1997) and Multi-Layer Perceptron (MLP) (Rumelhart et al., [1986)) to
Gated Recurrent Unit (GRU) |Cho et al| (2014) and Attention-based layers [Vaswani et al.[(2017),
can be used, thereby imparting flexibility and adaptability to the model. The hidden states are then
passed through the policy head to predict the action probabilities and the halting head to predict
A which is used to decide when to halt. The internal memory is not reset after each step in the
environment, enabling the agent to reuse past planning information. This allows the agent to plan
deeper into the future and generalize to more complex reasoning problems.

Under review as a conference paper at ICLR 2024

In this study we use the PonderNet Algorithm (Banino et al. |2021) to perform adaptive compu-
tation and adapt it for the sequential decision making setting. This allows the agent to alter the
number of computational steps it undertakes based on input conditions and it’s internal memory that
captures planning and reasoning information from the past. The core operation at each timestep is
encapsulated in a step function of the form:

~n pn+l yn __ 7
Yt 7ht 7At - s($t7h?)7

where the symbol x; denotes the input at time step t, while A} represents the hidden state at time
step t and iteration n, and y;* characterizes the predictive output at the n-th computational step. It
is important to note that x; is the same input for each iteration of the step function, as can be seen
in FigurdI] The parameter A} encapsulates the conditional probability of halting or terminating the
ongoing process at the n-th computation step, conditioned that it has not halted previously, when
making a decision at timestep t. The function s can be instantiated as a diverse array of neural
network architectures.

The unconditioned probability associated with the act of halting at the n-th step, denoted as p}, is
derived as follows:

n—1
pi =[] =M.
j=1

During training, predictions are gathered from each iteration, and individual losses for each iteration
are calculated. Subsequently, a weighted averaging strategy is used to consolidate these losses, with
the weighting scheme derived from the iteration-specific halting probabilities (p,,). Simultaneously,
the step function is bounded by a predetermined upper limit on computational steps, as characterized
by the variable IN. The aggregate loss function for AMM, denoted as L, is composed as follows:

L= Lfec 4 gL (1)
N

L = pi Ly i) @)
n=1

L% = KL (p?IIpG(Ap)) 3)

This aggregate loss is the summation of two constituent components: the recurrent segment of the
loss and the regularization term in the form of Kullback-Leibler divergence. Lg.. captures the ag-
gregate effect of losses across pondering steps, with £ representing the loss function quantifying
the dissimilarity between the target value y and the predictive output y,,. The regularization loss,
denoted as L g, is the Kullback—Leibler divergence (K L) between the distribution of halting prob-
abilities and pg. p¢ is the prior distribution represented by the geometric distribution parameterized
by the \,, which takes the following form:

Prpc(/\p)(X =k)=(1-)‘p)b‘p'

The regularization loss biases the network towards /\i expected prior number of steps and incen-
D

tivizes non-zero probabilities for all pondering steps. In essence, it encourages the network to ex-
plore different possibilities and options.

During inference, the halting process is implemented via either a stochastic sampling mechanism,
where the decision to terminate is made by drawing from the Bernoulli distribution with parameter
A7, or is decided based on a simple probability threshold i.e. haltif A} > 0.5. Finally, the predictive
output ¢ is obtained from the time step when the network decides to halt.

halt; = Bernoulli(Ay") or halty = A\ > 0.5

Under review as a conference paper at ICLR 2024

3 EXPERIMENTS

3.1 ENVIRONMENTS AND DATA

We have chosen the Sokoban Puzzle environment since it necessitates a certain degree of planning to
determine a sequence of actions that precludes future complications arising from a lack of foresight.
This challenging puzzle is presented as a two dimensional 7x7 grid where an agent must push boxes
over targets in under a fixed amount of steps (Racaniere et al.,[2017;|Guez et al.| 2019 Boteal [2002).
When increasing the number of boxes, it becomes more important to become aware of potentially
irreversible moves that could be avoided with better planning. The input is a one-hot encoded
transformation of the entire grid of the puzzle i.e., a 7x7 grid with 7 different elements (e.g., walls,
boxes, etc.) becomes a 7x7x7 boolean matrix. There are a total of 8 possible actions: move or push
in the 4 possible directions, and 7 possible elements in the state: walls, spaces, targets for boxes,
boxes on target, and boxes not on target.

We use the same methodology as|Boteal (2002) to generate levels which are then split into train and
test sets. To create the expert trajectories, we utilize the deterministic solver A* (Hart et al.,|{1968).
The train set consists of 2.1M steps of Sokoban-small-vO environment that contains 2 boxes. The
validation sets consist of 1000 levels each for Sokoban-small-v0 (2 boxes) and Sokoban-small-v1 (3
boxes).

3.2 TRAINING

We use the behavior cloning algorithm (Torabi et al.l [2018), wherein the agent learns from expert
trajectories by predicting subsequent actions in the sequence. Specifically, a cross-entropy loss
function between the expert’s actions and the model’s predictions is used.

For the static model, we directly calculate the loss between the action at the final pondering step and
the expert action. Whereas, for the adaptive model, we use the PonderNet Loss (Equation |1) and
use the weighted average of the cross entropy loss between the actions at each pondering step and
the expert actions.

For optimization, we use the AdamW optimizer with weight decay. Our learning rate undergoes
a linear warm-up followed by a cosine annealing decay for the remaining training iterations. The
model undergoes training for a single epoch only. The details of the hyperparameter values can be
found in the appendix (Tables 3| f).

3.3 EXPERIMENT 1: IMPACT OF REPETITIONS IN STATIC MEMORY MODULE

In this section, we study the impact of

augmenting the number of repetitions

within the static memory module on 9
the sample efficiency and generaliza- =
tion capabilities of the agent by com-
paring the average number of levels
solved across both training and val-
idation datasets. The underlying hy-
pothesis posits that an increased num-
ber of repetitions allows the agent to
plan deeper and encode longer-term
interactions which should improve its
reasoning capabilities in more com- .

plex environments. While this aug- 0.0 05 1.0 15 2.0 25
mentation may not prove advanta- Steps 1e0
geous for every input state, the ex-
pectation is that it would, at the very
least, not yield inferior performance
compared to an identical model using
only a single repetition.

@
o

~
o

-}
=}

Repetitions
£
— 0
—(75
Dataset
== Sokoban-small-v0
— Sokoban-small-vl

Percentage of Solved Levles
w
o

N
o

Figure 2: Mean fraction solve at different steps of training
for various repetition counts. The results are mean results
across three seeds.

Under review as a conference paper at ICLR 2024

Four models with increasing number of repetitions are trained on a subset of Sokoban-small-v0
levels and are validated on a different subset of Sokoban-small-vO as well as Sokoban-small-v1
levels to test generalization to an environment with one more box.

We observe the following as presented in Figure [}

Sample Efficiency: An increased number of repetitions indeed expedites the learning process. Mod-
els with more repetitions displayes faster improvement, reaching comparable performance levels
with fewer training steps, as evidenced by higher average fraction solved after a fixed number of
steps.

Performance on the same difficulty level: We notice that as we increase the number of repetitions
taken by the static memory module, they all converge to a similar performance at the end of training
when evaluating the agents on puzzles with the same level of difficulty as the training set.

Generalization to more difficult puzzles: We observe a discernible enhancement in the fraction
of puzzles solved by models with an increased repetition count, when evaluating on a more com-
plex set of puzzles. This observed trend shows that increased repetitions contribute to improved
planning and reasoning, particularly when addressing intricate decision sequences, helping improve
generalization to more complex unseen problems.

3.4 EXPERIMENT 2: ADAPTIVE MEMORY MODULE

In this section we explore integrating adaptive computation into the memory module. We now allow
the model to learn when and how much to ponder and compare the performance.

Improvement in performance:
Here we explore whether the
weighted and adaptive loss can help 9
regularize and stabilize training
for inputs of varying complexity
instead of fixing the amount of
computation performed for different
inputs. The results in Figure [3| reveal
that the adaptive planning model
exhibited improved performance in
general, when compared with its

60

I

<)

\
\

- Type
- — Reset Hidden
Reuse Hidden

Percentage of Solved Levles

w
o
\
\
\

static counterpart, while only using Dataset

.. . .. 20 PP —— Sokoban-small-v0
9 max repetitions during training. z - Sokoban-small-v1
This observation holds true for both 0.0 0.5 1.0 15 2.0 2.5

in-distribution (Sokoban-small-v0) steps teo

and out-of-distribution (Sokoban-
small-v1) settings. This suggests that
the weighted and adaptive loss is
helping improve the training process
and the performance of the planning
agent.

Figure 3: Performance and average number of repetitions
used by Static vs Adaptive Memory module across valida-
tion datasets.

Improvement in Generalization: We hypothesise that inputs with higher complexity necessitate a
greater amount of computational resources. We observe in Figure 3] that the agent is able to perform
better on the more complex puzzles in Sokoban-small-v1 set compared to its static counterpart.
We believe this is due to deeper planning by the agent by adapting and increasing its computa-
tion/number of repetitions as observed in Figure [3|and Table

Moreover, we investigate the connection between early-episode pondering and the stage near-
ing level completion. Our analysis uncovers a statistically significant negative correlation (r =
—0.31,p = 6.14e16) between the step number within an episode and the duration of pondering,
when the agent chose to adapt it’s computation (number of repetition smaller than the max). This
indicates that, as the episode unfolds, the corresponding halting times exhibit a marginal reduction
suggesting a decrease in the overall perceived complexity.

Under review as a conference paper at ICLR 2024

Improvement in training and infer- Level Mean | Std | Range
ence efficiency: We can observe that Sokoban-small-v0 | 6.76 | 2.66 | 8.00
the agent is able to adapt its compu- Sokoban-small-vl | 7.14 | 2.31 | 8.00

tation time to have shorter inference

time on easier inputs and increase the Table 1. Pondering statistics across validation datasets.
computation on more complex puz- Shown is the result of taking the mean, standard deviation,
zles. This results in a lower aver- and range of the number of ponder steps taken by a trained
age computation time measured by AMM over 1000 levels for each environment.

the mean number of repetitions taken

across the validation set. Results in Figure [3|and Table [T] show that the adaptive memory module
takes far lesser number of average reptitions (6.76 for Sokoban-small-vO and 7.14 for Sokoban-
small-v1) compared to its static counterpart (25 repetitions) while still achieving better performance
than the static counterpart. We also notice a large relative standard deviation, and a range that im-
plies the AMM can and does halt at different steps, suggesting appropriate adaptation of pondering
time based on necessity,

Additionally our best performing AMM agent only uses 9 repetitions during training which is far
lesser than the best performing static agent that uses 25 repetitions, helping improving the training
efficiency significantly.

3.5 EXPERIMENT 3: ROLE OF REUSING MEMORY IN SEQUENTIAL DECISION-MAKING
DOMAINS

Here we explore if the adaptive memory module is able to reuse the memory state from past time
steps to plan deeper in future time steps and improve generalization performance. As observed
in Figure [d we can see that the agent is indeed able to generalize much better when the hidden
state is not reset, indicating reuse of planning/reasoning information from past time steps for deeper
planning to predict better future actions.

4 VISUALIZING PONDERING STEPS

Here we create visualizations to observe
how the adaptive memory module of a
trained agent impacts it’s policy. We se-
lectively analyze specific levels, focusing
on visualizing the count of pondering steps
taken per input. This exploration aims
to provide valuable insights into the in-
tricate connection between acquired pon-
dering behaviors and the complexity of in-
puts, contributing to a comprehensive un-
derstanding of the dynamics at play.

Performance

m Static
. = Adaptive

Sokoban-small-v0 Sokoban-small-v1

=
o
o

o
o

80

70

60

Percentage of Solved Levles

50

Average Repetitions

Increasing certainty: We observe that . I— I—

a trained AMM agent will sometimes Sokoban-small-v0 Sokoban-small-v1
choose to ponder for longer with the ef- Dataset

fect of steadily increasing the probability
of it’s initial plan (the chosen action with
the highest probability). This is analogous
to the case of thinking longer to confirm
an initial plan. This is the most commonly
observed use case for pondering by our trained model. We also note that the policy’s entropy fol-

We highlight certain observed behaviors 30

from a trained AMM agent with 9 max-
imum possible repetitions (Figures [3} [7).
More examples can be found with differ-
ent repetition lengths in the appendix. The
following behaviors are observed:

25

20

15

10

Average Repetitions

5

Figure 4: Mean fraction solve at different steps of train-
ing, comparing resetting vs reusing hidden state.

Under review as a conference paper at ICLR 2024

lows a downward trend, reinforcing the hypothesis that the agent ponders for longer to decrease it’s
uncertainty. An example of this behavior has been shown in Figure 5]

Exploring alternatives or Deliberation: This occurs when throughout pondering the agent’s policy
seriously considers one or more actions (temporary increase in probability during deliberation), but
the final decision remains the same as the initial decision. Figure[5] shows one such example. This
type of behaviour is easily compared to forms of exploration, where the policy’s entropy is adjusted
for exploration. In fact, we can observe this fluctuation in the agent’s policy entropy, which shows a

temporary increase when the agent begins to more seriously consider an alternative and then begins
to fall again.

Increasing Certainty

5 200

0175

g
sy
C 1254 N,

Q 100 >,
£ o te_
e 0.50 RS

-
E oz e

=

R7 RE RO

L PR My MD ML MR

00 02 04 06 08 10

Action probability over
pondering steps

Step: 7, Action: move up 5

R2 R3 R4

Exploring Alternatives

4.0
.
35

2
x6 25 \\\\
2. o

Action probability over
pondering steps

Step: 0, Action: push right

s o o o
-
N
N
\
<
/
/
/
®

Ponder policy entropy
/

s B3
Ponder steps

Figure 5: Visualization of a trained AMM agent. Top: Increasing Certainty. Bottom: Exploring
Alternatives. Each image is divided into left and right. Left: the game state with the number of
steps pondered at that state displayed on the agent (blue); the current step and the resulting action
chosen after pondering is displayed below the image. Right top: the difference in norm of the
output between pondering steps. Right middle: the action probability distribution across actions and
pondering steps. Right bottom: the entropy of the policy across ponder steps.

Under review as a conference paper at ICLR 2024

Reconsideration: Lastly, the phenomenon of reconsideration manifests when an agent’s initial and
final choices of action differ across the sequence of pondering steps (Figure [6} appendix for more
examples). This behavior is characterized by fluctuating levels of certainty after the initial pondering
step, followed by a gradual decrement in the probability assigned to the initial action. Subsequently,
one or more alternative actions observe a surge in their probabilities, culminating in the selection of
a single action among the candidates.

Reconsideration

w0
.&E 35
Z 30 P~ P— °-
sul te e
E 15
g 10
8 05

o0

" R w7 v Ro
Ponder steps

PL PR] MD ML MR

0.0 02 04 06 08 10

Action probability over
pondering steps

5

Step: 4, Action: move down

°
3

°
g
-
\
/
)
\

°
4

°
3

Ponder policy entropy
\
®
1

1
|
i
[}
7
/
\
®

=
2
@

R4 RT R8 R9

B "6
Ponder steps

Figure 6: Visualization of a trained AMM agent. Left: the game state with the number of steps
pondered at that state displayed on the agent (blue). Right top: the difference in norm of the output
between pondering steps. Right middle: the action probability distribution across actions and pon-
dering steps. Right bottom: the entropy of the policy across ponder steps.

5 CONCLUSION

The series of experiments detailed in the preceding section highlight the compelling potential of
adaptive computation in bolstering planning capabilities and efficiency. By learning to dynamically
adjust the duration of deliberation according to the input, agents using AMM, not only improve the
inference efficiency on easier inputs, but also improve generalization on more challenging puzzles
by deliberating longer. The integration of memory and reusability mechanisms further empowers
our models to reuse planning information across time steps, plan deeper and generalize better in
sequential decision making domains. Through visualizations of the AMM, we identified learned
behaviors (increasing certainty, exploration of alternatives, and reconsideration) that resemble simi-
lar strategies leveraged by humans for complex reasoning tasks. Moreover, a fundamental question
arises: Can we observe the emergence of additional, potentially novel planning-oriented behaviors
by scaling the models, and expanding the training dataset?

Our study, however, has limitations. Our experiments were confined to a specific set of environments
necessitating wider explorations. It would be useful to incorporate adaptive computation into other
popular architectures like transformers and study the impact of architecture choice.

We hope that the insights gleaned from our results will serve as a catalyst for more profound and
expansive analyses of adaptive computation’s potential. Particularly pertinent is the role that efficient
adaptive computation could play in the training and deployment of progressively larger models in
complex tasks requiring reasoning. This could potentially pave the way for more resource-efficient
Al systems that continue to deliver state of the art performance through refined adaptive computation
strategies.

Under review as a conference paper at ICLR 2024

REFERENCES

Robert J. N. Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of
example difficulty, 2021.

Andrea Banino, Jan Balaguer, and Charles Blundell. Pondernet: Learning to ponder. ICML, 2021.

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum,
and Tom Goldstein. End-to-end algorithm synthesis with recurrent networks: Logical extrapola-
tion without overthinking, 2022.

Dominic Blasing and Manfred Bornewasser. Influence of increasing task complexity and use of
informational assistance systems on mental workload. Brain Sciences, 11(1):102, 2021.

Adi Botea. Using abstraction for heuristic search and planning. In Proceedings of the 5th In-
ternational Symposium on Abstraction, Reformulation and Approximation, pp. 326-327, Berlin,
Heidelberg, 2002. Springer-Verlag. ISBN 3540439412.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4. arXiv preprint arXiv: Arxiv-2303.12712, 2023.

Kyunghyun Cho, Bart van Merrienboer, Caglar Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. Conference on Empirical Methods in Natural Language Pro-
cessing, 2014. doi: 10.3115/v1/D14-1179.

Ashley D. Edwards, Laura Downs, and James C. Davidson. Forward-backward reinforcement learn-
ing. arXiv preprint arXiv: 1803.10227, 2018.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. arXiv preprint arXiv: 1810.12715,2018.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint arXiv:
1603.08983, 2016.

A. Guez, T. Weber, loannis Antonoglou, K. Simonyan, Oriol Vinyals, Daan Wierstra, R. Munos, and
David Silver. Learning to search with mctsnets. International Conference On Machine Learning,
2018.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racaniere, Theophane Weber,
David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver, and Tim-
othy P. Lillicrap. An investigation of model-free planning. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 2464-2473. PMLR, 2019. URL http://proceedings.mlr.
press/v97/guezl9a.html.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv: 2301.04104, 2023.

Jessica B. Hamrick, Abram L. Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Wither-
spoon, Thomas Anthony, Lars Buesing, Petar Velickovi¢, and Théophane Weber. On the role of
planning in model-based deep reinforcement learning, 2021.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100-107,
1968. doi: 10.1109/TSSC.1968.300136.

Matteo Hessel, Joseph Modayil, H. V. Hasselt, T. Schaul, Georg Ostrovski, Will Dabney, Dan Hor-
gan, Bilal Piot, M. G. Azar, and David Silver. Rainbow: Combining improvements in deep
reinforcement learning. Aaai Conference On Artificial Intelligence, 2017. doi: 10.1609/aaai.
v32il1.11796.

10

http://proceedings.mlr.press/v97/guez19a.html
http://proceedings.mlr.press/v97/guez19a.html

Under review as a conference paper at ICLR 2024

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Shengran Hu and Jeff Clune. Thought cloning: Learning to think while acting by imitating human
thinking. arXiv preprint arXiv: 2306.00323, 2023.

Andy L. Jones. Scaling scaling laws with board games, 2021.

Gary Klein. Chapter 4 - applied decision making. In P.A. Hancock (ed.), Human Perfor-
mance and Ergonomics, Handbook of Perception and Cognition (Second Edition), pp. 87-107.
Academic Press, San Diego, 1999. ISBN 978-0-12-322735-5. doi: https://doi.org/10.1016/
B978-012322735-5/50005-1. URL https://www.sciencedirect.com/science/
article/pii/B9780123227355500051L

Jack Lanchantin, Shubham Toshniwal, Jason Weston, Arthur Szlam, and Sainbayar Sukhbaatar.
Learning to reason and memorize with self-notes. arXiv preprint arXiv: 2305.00833, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, H. Michalewski, V. Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur,
Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language models.
Neural Information Processing Systems, 2022. doi: 10.48550/arXiv.2206.14858.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models.
arXiv preprint arXiv: 2112.00114, 2021.

Julius Pahlke, Martin G. Kocher, and Stefan T. Trautmann. Tempus fugit: Time pressure in risky
decisions. April 2011. URL https://ssrn.com/abstract=1809617orhttp://dx.
doi.org/10.2139/ssrn.1809617.

Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien Racaniere, David
Reichert, Théophane Weber, Daan Wierstra, and Peter Battaglia. Learning model-based planning
from scratch. arXiv preprint arXiv: 1707.06170, 2017.

John Payne, James Bettman, and Eric Johnson. Adaptive strategy selection in decision making.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 14:534-552, 07 1988.
doi: 10.1037/0278-7393.14.3.534.

John W. Payne. Task complexity and contingent processing in decision making: An information
search and protocol analysis. Organizational Behavior and Human Performance, 16(2):366-387,
1976. ISSN 0030-5073. doi: https://doi.org/10.1016/0030-5073(76)90022-2. URL https:
//www.sciencedirect.com/science/article/pii/0030507376900222.

John W Payne, James R Bettman, and Eric J Johnson. The adaptive decision maker. Cambridge
university press, 1993.

Thomas Pierrot, Guillaume Ligner, Scott E. Reed, Olivier Sigaud, Nicolas Perrin, Alexandre Lat-
erre, David Kas, Karim Beguir, and N. D. Freitas. Learning compositional neural programs with
recursive tree search and planning. Neural Information Processing Systems, 2019.

Thomas Pierrot, Nicolas Perrin, Feryal Behbahani, Alexandre Laterre, Olivier Sigaud, Karim Be-
guir, and Nando de Freitas. Learning compositional neural programs for continuous control. arXiv
preprint arXiv: 2007.13363, 2020.

S. Racaniere, T. Weber, David P. Reichert, Lars Buesing, A. Guez, Danilo Jimenez Rezende,
Adria Puigdomenech Badia, Oriol Vinyals, N. Heess, Yujia Li, Razvan Pascanu, P. Battaglia,
D. Hassabis, David Silver, and Daan Wierstra. Imagination-augmented agents for deep reinforce-
ment learning. NIPS, 2017.

B. Reddi and R. Carpenter. The influence of urgency on decision time. Nature Neuroscience, 3:
827-830, 2000. doi: 10.1038/777309.

11

https://www.sciencedirect.com/science/article/pii/B9780123227355500051
https://www.sciencedirect.com/science/article/pii/B9780123227355500051
https://ssrn.com/abstract=1809617 or http://dx.doi.org/10.2139/ssrn.1809617
https://ssrn.com/abstract=1809617 or http://dx.doi.org/10.2139/ssrn.1809617
https://www.sciencedirect.com/science/article/pii/0030507376900222
https://www.sciencedirect.com/science/article/pii/0030507376900222

Under review as a conference paper at ICLR 2024

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-
propagating errors. Nature, 323:533-536, 1986. URL https://api.semanticscholar.
org/CorpusID:205001834.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla, Pranav Tadepalli, Paula Vidas, Alexander
Kranias, John J. Nay, Kshitij Gupta, and Aran Komatsuzaki. Arb: Advanced reasoning benchmark
for large language models. arXiv preprint arXiv: 2307.13692, 2023.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604—-609, 2020.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional Istm network: A machine learning approach for precipitation nowcasting. Ad-
vances in neural information processing systems, 28, 2015.

David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre, George Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529:484-489, 01 2016. doi: 10.1038/nature16961.

F. Torabi, Garrett Warnell, and P. Stone. Behavioral cloning from observation. International Joint
Conference on Artificial Intelligence, 2018. doi: 10.24963/ijcai.2018/687.

Shimon Ullman. Rigidity and misperceived motion. Perception, 1984.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_VjQlMeSB_J.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv: 2305.10601, 2023.

E. Zelikman, Yuhuai Wu, and Noah D. Goodman. Star: Bootstrapping reasoning with reasoning.
Neural Information Processing Systems, 2022. doi: 10.48550/arXiv.2203.14465.

12

https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J

Under review as a conference paper at ICLR 2024

A APPENDIX

Al

Data details:

ENVIRONMENT AND DATASET DETAILS

Dataset Name

Number of Samples

Description

Sokoban-small-vO-train
Sokoban-small-v0-validation
Sokoban-small-v1-validation

2.1M
1000
1000

Training data; 7x7 grid, 2 boxes
Validation in-distribution; 7x7 grid, 2 boxes
Validation out-of-distribution; 7x7 grid, 3 boxes

Table 2: Summary of the datasets.

We decided to omit the inclusion of the no-op action which has the effect that the agent performs
no operation, while the environment may or may not change (if there are no other moving objects,
it will remain the same input). Also referred to as ”stay” actions, many variations on the same idea
have been implemented with the goal being to include stochasticity which may help learn a better
performing policy, with aperiodic sequence of actions (Hessel et al., [2017). It is important to note
that the internal state of the memory module will not be reinitialized. This can be seen as a way to
grant the ability to ponder for any agent by allowing it to do nothing and watch it’s environment,
similar to the no-op action. The reasoning for this is that the AMM already includes the possibility
of adaptive computation for an input, and does not entangle the concept of thinking and action by

including no-op in the space of possible actions.

A.2 HYPERPARAMETERS

Total Number of Parameters

Hyperparameter Value
Memory Architecture DRC(X,Y)
Learning Rate 0.01
Batch Size (number of episodes) 64
Epochs 1
Optimizer AdamW
Weight Decay 1x1074
Hidden Units 128
Dropout Rate 0.1
Activation Function ReLU
Learning Rate Schedule Linear warmup for 6.4 x 10? steps then cosine annealing
Gradient Clipping 1.0
Embedding Size 50
Recurrent Units 64
Initialization He Normal
Regularization None

Table 3: Hyperparameters for static models.

13

Under review as a conference paper at ICLR 2024

Total Number of Parameters

Hyperparameter Value
Memory Architecture DRC(X,Y)
Learning Rate 0.01
Batch Size (number of episodes) 64
Epochs 1
Optimizer AdamW
Weight Decay 1x1074
Hidden Units 128
Dropout Rate 0.1
Activation Function ReLU
Learning Rate Schedule Linear warmup for 6.4 x 10* steps then cosine annealing
Gradient Clipping 1.0
Embedding Size 50
Recurrent Units 64
Initialization He Normal
Regularization Kullback-Liebler for A

Table 4: Hyperparameters for adaptive models.

A.3 RESULTS

Static Models

Number of Repetitions Sokoban-small-vO Sokoban-small-v1
) 6.4 x 107 1.28 x 10° | 2.4 x 10° 6.4 x10% [1.28 x 10° | 2.4 x 10°
1 60.69 (5.7) 86.1(2.8) | 90.01 (3.1) | 32.00 (4.0) | 57.76 (6.9) | 62.3(5.2)
3 67.59 (3.0) | 90.06 (2.4) | 92.37 (2.9) | 35.30(2.5) | 62.82(4.6) | 66.19 (4.3)
9 72.75(5.0) | 91.77 2.3) | 9236 (2.7) | 42.71(4.8) | 63.97 (7.0) | 67.30 (5.6)
25 76.30 (4.5) | 91.47 (3.4) | 92.10(2.4) | 47.97 (6.5) | 65.83(5.8) | 69.39 (6.0)

Adaptive Models

Number of Repetitions Sokoban-small-vO Sokoban-small-v1
6.4 x 10% 1.28 x 10° [2.4 x 10° 6.4 x 10"] 1.28 x 10° | 2.4 x 10°
3 63.86 (1.2) 88.67 (1.2) | 92.07 (1.1) | 28.51 (1.0) | 61.90(1.4) | 65.74 (0.9)
9 76.56 (2.2) | 91.07 (2.3) | 93.70 (2.2) | 45.05 (2.6) | 68.22(1.9) | 71.03 (3.2)
25 61.89 (10.8) | 90.33 (3.6) | 92.86(2.0) | 27.20(7.1) | 65.21 (4.4) | 68.89 (3.0)

Table 5: Percentage of mean fraction solved at different steps of training for static versus dynamic
models. Both dataset tested are from a subset of unseen data from either in-distribution (Sokoban-
small-v0), or out-of-distribution (Sokoban-small-v1).

Static Models

Repetitions Sokoban-small-v0 Sokoban-small-v1
Mean | Std | Range | Mean | Std | Range
1 12.14 | 691 | 61.00 | 17.65 | 9.76 | 89.00
3 11.99 | 639 | 37.00 | 17.84 | 9.57 | 77.00
9 11.95 | 630 | 39.00 | 16.84 | 8.29 | 46.00
25 12.16 | 6.75 | 44.00 | 16.89 | 8.46 | 62.00

Adaptive Models

Repetitions Sokoban-small-v0 Sokoban-small-v1
Mean | Std | Range | Mean | Std | Range
3 12.15 | 7.10 | 86.00 | 16.46 | 8.08 | 57.00
9 11.93 | 638 | 41.00 | 17.18 | 9.09 | 67.00
25 11.78 | 6.46 | 61.00 | 16.18 | 7.85 | 75.00

Table 6: Length of solved episodes statistics for both sets of validation (in-distribution and out-of-
distribution). This represents the number of steps taken to complete a level.

14

Under review as a conference paper at ICLR 2024

Repetitions Sokoban-small-v0 Sokoban-small-v1
Mean | Std | Range | Mean | Std | Range
3 1.12 | 093 | 2.00 1.19 | 0.94 2.00
9 6.76 | 2.66 8.00 7.14 | 2.31 8.00
25 22.50 | 5.44 | 24.00 227 | 5.13 | 24.00

Table 7: Pondering statistics across validation datasets. Shown is the result of taking the mean,
standard deviation, and range of the number of ponder steps taken by a trained AMM over 1000
levels for each environment.

A.4 DRC ARCHITECTURE

The Deep Repeated ConvLSTM (DRC) architecture (Guez et al., [2019) relies on the ConvLSTM
(Shi et al., 2015) module. The high-level idea behind ConvLSTM is to maintain the spatial charac-
teristic of hidden/cell states, by treating those internal states as images. ConvLSTM follows similar
computational rules as the standard LSTM, with three-dimensional hidden/cell states and convolu-
tional operations. The DRC architecture, as illustrated in Figure [I] stacks D ConvLSTM modules
and repeats the rollout /V times at each timestep ¢.

We denote fg : H x X — H as the function that computes the next state b’ € H given
the current state h € H and input tensor z € X as b’ = fy(h,xz). The state h refers to
the concatenated cell states c¢q and hidden states g4 across all stack depth d € {1,...,D}, i.e.,
h=(c1,.--y¢p,91,---,9p), and 8 = (01,...,0p) is the parameter of all ConvLSTM modules.
Let h;_; denote the state at the previous timestep ¢t — 1, at the current timestep ¢, the new state h; is
obtained by repeatedly apply fy:

ht = Sa(ht_l,xt) = fg(fg(. fg(ht_l,.rt), ‘e J:t), th) (4)

N times

Unlike the original DRC introduced by \Guez et al.|(2019), in our work DRC outputs the hidden state
of the deepest ConvLSTM module ggt) ateach repetitionn € {1,..., N'}. Based on the hidden state

gg) we compute the policy (™ and halting probability A(™). We also set the depth D = 1 in our

experiments. The rest of the architecture remains the same as the original work.

15

Under review as a conference paper at ICLR 2024

A.5 ADDITIONAL VISUALIZATIONS

Ponder steps

Action probability over
pondering steps

Ponder steps

Action probability over
pondering steps.

Step: 7, Action: move up Step: 7, Action: push up

B e e S

Ponder steps

Ponder steps

A:nmv probabily over
Jondering steps.

Step: 8, Action: move right

Ponder steps

Figure 7: Increasing certainty

Ponder steps

Ponder steps

A:lmn probabilty over
ondering steps

Ponder steps

Action probability over
pondering steps

Action probability over
pondering steps.

ep: 9, Action: move ef
—
N
.-,
NI s
- e]
Ponder steps
e
R S——
R

Ponder steps

Action probably over
pondering steps

Ponder steps

» 0

Action probablty over
pondering steps.

Step: 3, Action: push down Step: 0, Action: move right

Ponder

Ponder steps

Figure 8: Exploring alternatives

16

Ponder steps

Under review as a conference paper at ICLR 2024

Ponder steps

| —

Action probability over
pondering steps.

Action probability over
pondering steps

Steps 14, Action: move up Step: 6, Action: move right
— .
. e N
.. \
H £ e S S
Ponder steps : Ponder steps
oo
Elbe I T S,
gl ey
R ST S SRS
) Ponder steps : Ponder steps

Action probability over
pondering steps

Action probability over
pondering steps.

e %
Ponder steps ponder seps

Pon

Figure 9: Reconsideration

17

	Introduction
	Methodology
	Experiments
	Environments and Data
	Training
	Experiment 1: Impact of Repetitions in Static Memory Module
	Experiment 2: Adaptive Memory Module
	Experiment 3: Role of reusing memory in Sequential Decision-Making domains

	Visualizing Pondering Steps
	Conclusion
	Appendix
	Environment and Dataset details
	Hyperparameters
	Results
	DRC Architecture
	Additional visualizations

