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ABSTRACT

Consider the following instance of the Offline Meta Reinforcement Learning
(OMRL) problem: given the complete training logs of N conventional RL agents,
trained on N different tasks, design a meta-agent that can quickly maximize reward
in a new, unseen task from the same task distribution. In particular, while each
conventional RL agent explored and exploited its own different task, the meta-agent
must identify regularities in the data that lead to effective exploration/exploitation
in the unseen task. Here, we take a Bayesian RL (BRL) view, and seek to learn a
Bayes-optimal policy from the offline data. Building on the recent VariBAD BRL
approach, we develop an off-policy BRL method that learns to plan an exploration
strategy based on an adaptive neural belief estimate. However, learning to infer
such a belief from offline data brings a new identifiability issue we term MDP
ambiguity. We characterize the problem, and suggest resolutions via data collection
and modification procedures. Finally, we evaluate our framework on a diverse set
of domains, including difficult sparse reward tasks, and demonstrate learning of
effective exploration behavior that is qualitatively different from the exploration
used by any RL agent in the data1.

1 INTRODUCTION

A central question in reinforcement learning (RL) is how to learn quickly (i.e., with few samples)
in a new environment. Meta-RL addresses this issue by assuming a distribution over possible
environments, and having access to a large set of environments from this distribution during train-
ing (Duan et al., 2016; Finn et al., 2017). Intuitively, the meta-RL agent can learn regularities in the
environments, which allow quick learning in any environment that shares a similar structure.

One possible formulation of quick RL is Bayesian RL (BRL, Ghavamzadeh et al., 2016). In BRL,
the environment parameters are treated as unobserved variables, with a known prior distribution.
Consequentially, the standard problem of maximizing expected returns (taken with respect to the
posterior distribution) explicitly accounts for the environment uncertainty, and its solution is a Bayes-
optimal policy, wherein actions optimally balance exploration and exploitation. Recently, Zintgraf
et al. (2020) showed that meta-RL is in fact an instance of BRL, where the meta-RL environment
distribution is simply the BRL prior. They proposed the VariBAD algorithm – an implementation of
this approach that uses a variational autoencoder (VAE) for adaptive belief estimation and deep neural
network policies that take as input both state and posterior belief over the environment parameters.

Most meta-RL studies, including VariBAD, have focused on the online setting, where, during training,
the meta-RL policy is updated using data collected from running it in the training environments.
In domains where data collection is expensive, such as robotics and healthcare , online training is
a limiting factor. In this work we investigate the offline approach to meta-RL (OMRL). Figure 1
illustrates our problem: in this navigation task, each RL agent in the data learned to find its own goal,
and converged to a behavior that quickly navigates toward it. The meta-RL agent, on the other hand,
needs to learn a completely different behavior that effectively searches for the unknown goal position.

1The full version of this paper is available on arXiv (Dorfman et al., 2020).
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Figure 1: Offline meta-RL on the Semi-Circle domain: The reward is sparse (light-blue), and the
offline data (left) contains training logs of conventional RL agents trained to find individual goals.
The meta-RL agent (right) needs to find a policy that quickly finds the unknown goal, here, by
searching across the semi-circle in the first episode, and directly reaching it the second – a completely
different strategy from the dominant behaviors in the data.

Our method for solving OMRL is an off-policy variant of the VariBAD algorithm, based on replacing
the on-policy policy gradient optimization in VariBAD with an off-policy Q-learning based approach.
The offline setting, however, brings about a challenge – when the agent visits different parts of the
state space in different environments, learning to identify the correct environment and obtain an
accurate belief estimate becomes challenging, a problem we term MDP ambiguity. We formalize this
problem and propose a general data collection strategy that can mitigate it. Further, when ambiguity
is only due to reward differences, we show that a simple reward relabelling trick suffices, without
changing data collection. We collectively term our data collection/relabelling and off-policy algorithm
as Bayesian Offline Reinforcement Learning (BOReL).

2 PROBLEM DEFINITION

We follow the standard meta-RL formulation with distribution over MDP rewards and transitions
p(R,P). We are provided training data of an agent interacting with N different MDPs sampled
from the distribution, {Ri,Pi}Ni=1 ∼ p(R,P). We assume that each interaction is organized as
M trajectories of length H , τ i,j = si,j0 , ai,j0 , ri,j1 , si,j1 . . . , ri,jH , si,jH , i ∈ 1, . . . , N, j ∈ 1, . . . ,M ,
where the rewards satisfy ri,jt+1 = Ri(si,jt , a

i,j
t ), the transitions satisfy si,jt+1 ∼ Pi(·|s

i,j
t , a

i,j
t ), and

the actions are chosen from an arbitrary data collection policy, πiβ . To ground our work in a specific
context, we sometimes assume that the trajectories are obtained from running a conventional RL
agent in each one of the MDPs (i.e., the complete RL training logs), which implicitly specifies
the data collection policy. In Appendix F we investigate implications of this assumption, but we
emphasize that this is merely an illustration, and our approach does not place any such constraint – the
trajectories can also be collected differently. Our goal is to use the data for learning a Bayes-optimal
policy (Ghavamzadeh et al., 2016), i.e., a policy π that maximizes Eπ [

∑∞
t=0 γ

tr(st, at)] , where the
expectation is taken with respect to both the uncertainty in state-action transitions st+1 ∼ P(·|st, at),
at ∼ π, and the uncertainty in the MDP parametersR,P ∼ p(R,P).

3 IDENTIFIABILITY PROBLEMS IN OMRL

We developed an off-policy variant of the VariBAD algorithm, detailed in the appendix. The main
idea is to replace the on-policy policy gradient algorithm with an off-policy method, and to show
that when training data is collected as in Section 2, the resulting data tuples can be seen as coming
from the correct belief-MDP in expectation. However, while in principle, it is possible to simply
run off-policy VariBAD on the offline data, we claim that in many problems this may not work
well. The reason is that the VariBAD belief update should reason about the uncertainty in the MDP
parameters, which requires to effectively distinguish between the different possible MDPs. Training
the VAE to distinguish between MDPs, however, depends on the offline data, and might not always

Figure 2: Reward ambiguity: from the
two trajectories, it is impossible to know
if there are two MDPs with different re-
wards (blue and yellow circles), or one
MDP with rewards at both locations.
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be possible. This problem, which we term MDP ambiguity, is illustrated in Figure 2: consider two
MDPs, one with rewards in the blue circle, and the other with rewards in the yellow circle. If the data
contains trajectories similar to the ones in the figure, it is impossible to distinguish between having
two different MDPs with the indicated rewards, or a single MDP with rewards at both the blue and
yellow circles. Accordingly, we cannot expect to learn a meaningful belief update. In the following,
we formalize MDP ambiguity, and how it can be avoided.

For an MDP defined by {R,P}, denote by PR,P,π(s, a, r, s′) and PP,π(s, a) the distribution over
(s, a, r, s′) and (s, a), respectively, induced by a policy π.

Definition 1 (MDP Ambiguity). Consider data coming from a set of N different MDPs M =
{Ri,Pi}Ni=1 ⊂ M, whereM is an hypothesis set of possible MDPs, and corresponding data col-
lection policies {πiβ}Ni=1, resulting in N different data distributions D = {PRi,Pi,πiβ (s, a, r, s′)}Ni=1.
We say that the data is ambiguous if there is an MDP {R,P} ∈ M and two policies π and π′ such
that PRi,Pi,πiβ (s, a, r, s′) = PR,P,π(s, a, r, s′) and PRj ,Pj ,πjβ (s, a, r, s′) = PR,P,π′(s, a, r, s

′), for

some i 6= j. Otherwise, the data is termed identifiable.2

The essence of identifiability, as expressed in Definition 1, is that there is no single MDP in the
hypothesis set that can explain data from multiple MDPs in the data, as in this case it will be
impossible to learn an inference model that accurately distinguishes MDPs, even with infinite data.

Note that MDP ambiguity is special to offline meta-RL; in online meta-RL, the agent may be driven
by the online adapting policy (or guided explicitly) to explore states that reduce its ambiguity. We
also emphasize that this problem is not encountered in standard (non-meta) offline RL, as the problem
here concerns the identification of the MDP, which in standard RL is unique.

Proposition 1. Consider the setting described in Definition 1. For a pair of MDPs i and j, we define
the identifying state-action pairs as the state-action pairs that satisfy Ri(s, a) 6= Rj(s, a) and/or
Pi(·|s, a) 6= Pj(·|s, a). If for every i 6= j there exists an identifying state-action pair that has positive
probability under both i and j, i.e., PPi,πiβ (s, a), PPj ,πjβ

(s, a) > 0, then the data is identifiable.

Thus, if the agent has data on identifying state-actions obtained from different MDPs, it has the
capability to identify which data samples belong to which MDP, regardless of the hypothesis setM.

How can one collect data to mitigate MDP ambiguity? We present a simple, general modifica-
tion to the data collection scheme we term policy replaying, which, under mild conditions on the
original data collection policies, guarantees that the resulting data will be identifiable. We importantly
note that changing the data collection method in-hindsight is not suitable for the offline setting.
Therefore, the proposed scheme should be viewed as a guideline for effective OMRL data collection.
For each MDP, we propose collecting data in the following manner: randomly draw a data collection
policy from {πiβ}Ni=1, collect a trajectory following that policy, and repeat. After this procedure, the
new data distributions are all associated with the same data collection policy, which we denote πr.

Proposition 2. For every i 6= j, denote the set of identifying state-action pairs by Ii,j . If for every i
and every j exists (si,j , ai,j) ∈ Ii,j such that PPi,πiβ (si,j , ai,j) > 0, then replacing πiβ with πr for
all i results in identifiable data.

Note that the requirement on identifying state-actions in Proposition 2 is minimal – without it, the
original data collecting policies πiβ are useless, as they do not visit any identifying state-action pair.

When the tasks only differ in their reward function, and the reward functions for the training
environments are known, policy replaying can be implemented in hindsight, without changing the data
collection process. This technique, which we term Reward Relabelling (RR), is applicable under
the offline setting, and described next. In RR, we replace the rewards in a trajectory from some MDP
i in the data with rewards from another randomly chosen MDP j 6= i. That is, for each i ∈ 1, . . . , N ,
we add to the data K trajectories τ̂ i,k = (si,k0 , ai,k0 , r̂i,k1 , si,k1 . . . , r̂i,kH , si,kH ), k ∈ 1, . . . ,K, where
the relabelled rewards r̂ satisfy r̂i,kt+1 = Rj(si,kt , ai,kt ). Thus, our relabelling effectively runs πiβ on
MDP j, which is equivalent to performing policy replaying (in hindsight).

2P (·) = P ′(·) means equality almost everywhere.
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Figure 3: Performance on evaluated domains. We compare BOReL with and without reward relabeling
(blue and red, respectively) with Thompson sampling baselines – calculated exactly in the Gridworld
domain, and using online PEARL for the other domains. We plot the best performance for PEARL.

4 EXPERIMENTS
In our experiments, we aim to demonstrate: (1) Learning approximately Bayes-optimal policies in
the offline setting; and (2) The severity of MDP ambiguity, and the effectiveness of our proposed
resolutions. We compare our offline results with online methods based on Thompson sampling,
which are not Bayes-optimal, and aim to show that the performance improvement due to being
approximately Bayes-optimal gives an advantage, even under the offline data restriction. We further
describe our method, domains, evaluation metric, and data collection process in the supplementary.
Main Results: In Figure 3 we compare our offline algorithm with Thompson sampling based
methods, and also with an ablation of the reward relabelling method. For Gridworld, the Thomp-
son sampling method is computed exactly, while for the continuous environments, we use online
PEARL (Rakelly et al., 2019) – a strong baseline that is not affected by our offline data limitation.
Note that we significantly outperform Thompson sampling based methods, demonstrating our
claim of learning non-trivial exploration from offline data. These results are further explained
qualitatively by observing the exploration behavior of our learned agents. In Figure 1 and in Figure 4,
we visualize the trajectories of the trained agents in the Semi-circle and Ant-Semi-circle domains,
respectively. An approximately Bayes-optimal behavior is evident: in the first episode, the agents
search for the goal along the semi-circle, and in the second episode, the agents maximize reward by
moving directly towards the already found goal. In contrast, a Thompson sampling based agent will
never display such search behavior, as it does not plan to proactively reduce uncertainty. Instead,
such an agent will randomly choose an un-visited possible goal at each episode and directly navigate
towards it (cf. Figure 1 in Li et al. 2020). We further emphasize that the approximately Bayes-optimal
search behavior is different from the training data, in which the agents learned to reach specific goals.

Figure 4: Ant-Semi-circle – a challenging
modification of the popular Ant-Goal task
(Finn et al., 2017), where a sparse reward is lo-
cated somewhere on a semi-circle: trajectories
from trained policy on a new goal. Note that in
the first episode, the ant searches for the goal,
and in the second one it directly moves toward
the goal it has previously found. This search
behavior is different from the goal-reaching
behaviors that dominate the training data.

Our results also signify the severity of MDP ambiguity, and align with the theory in Sec. 3. In domains
with non-overlapping identifying states (Gridworld, Semi-circle, and Ant-Semi-circle), as expected,
performance without reward relabelling is poor, while in domains with overlapping identifying states
reward relabelling has little effect. In Figure 6 in the supplementary, we provide further insight into
these results, by plotting the belief update during the episode rollout for Semi-circle: the belief starts
as uniform on the semi-circle, and narrows in on the target as the agent explores the semi-circle. With
reward relabelling ablated, however, we show that the belief does not update correctly.

5 CONCLUSION AND FUTURE WORK

We presented the first offline meta-RL algorithm that is approximately Bayes-optimal, allowing to
solve problems where efficient exploration is crucial. The connection between Bayesian RL and meta
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learning allows to reduce the problem to offline RL on belief-augmented states. However, learning
a neural belief update from offline data is prone to the MDP ambiguity problem. We formalized
the problem, and proposed a simple data collection protocol that guarantees identifiability. In the
particular case of tasks that differ in their rewards, our protocol can be implemented in hindsight, for
arbitrarily offline data. Our results show that this solution is effective on several challenging domains.

It is intriguing whether other techniques can mitigate MDP ambiguity. For example, designing data
collection policies that diversify the data or injecting prior knowledge by controlling the hypothesis
set of the neural belief update.
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A EXTENDED BACKGROUND

We recapitulate BRL and the VariBAD algorithm.

Bayesian Reinforcement Learning: The goal in BRL is to find the optimal policy π in an MDP,
when the transitions and rewards are not known in advance. Similar to meta-RL, we assume a prior
over the MDP parameters p(R,P), and seek to maximize the expected discounted return,

Eπ

[ ∞∑
t=0

γtr(st, at)

]
, (1)

where the expectation is taken with respect to both the uncertainty in state-action transitions st+1 ∼
P(·|st, at), at ∼ π, and the uncertainty in the MDP parametersR,P ∼ p(R,P). Key here is that
this formulation naturally accounts for the exploration/exploitation tradeoff – an optimal agent must
plan its actions to reduce uncertainty in the MDP parameters, if such leads to higher rewards.

One way to approach the BRL problem is to modelR,P as unobserved state variables in a partially
observed MDP (POMDP, Cassandra et al., 1994), reducing the problem to solving a particular
POMDP instance where the unobserved variables do not change in time. The belief at time t,
bt, denotes the posterior probability over R,P given the history of state transitions and rewards
observed until this time bt = P (R,P|h:t), where h:t = {s0, a0, r1, s1 . . . , rt, st} (note that we
denote the reward after observing the state and action at time t as rt+1 = r(st, at)). The belief can
be updated iteratively according to Bayes rule, where b0(R,P) = p(R,P), and: bt+1(R,P) =
P (R,P|h:t+1) ∝ P (st+1, rt+1|h:t,R,P)bt(R,P).

Similar to the idea of solving a POMDP by representing it as an MDP over belief states, the state
in BRL can be augmented with the belief to result in the Bayes-Adaptive MDP model (BAMDP,
Duff & Barto, 2002). Denote the augmented state s+t = (st, bt) and the augmented state space
S+ = S × B, where B denotes the belief space. The transitions in the BAMDP are given by:
P+(s+t+1|s

+
t , at) = Ebt [P(st+1|st, at)] δ (bt+1 = P (R,P|h:t+1)) , and the reward in the BAMDP

is the expected reward with respect to the belief: R+(s+t , at) = Ebt [R(st, at)] . The Bayes-optimal
agent seeks to maximize the expected discounted return in the BAMDP, and the optimal solution of
the BAMDP gives the optimal BRL policy. As in standard MDPs, the optimal action-value function
in the BAMDP satisfies the Bellman equation: ∀s+ ∈ S+, a ∈ A we have that

Q(s+,a)=R+(s+, a) + γEs+′∼P+

[
max
a′

Q(s+
′
, a′)

]
. (2)

Computing a Bayes-optimal agent amounts to solving the BAMDP, where the optimal policy is a
function of the augmented state. For most problems this is intractable, as the augmented state space
is continuous and high-dimensional, and the posterior update is also intractable in general.

The VariBAD Algorithm: VariBAD (Zintgraf et al., 2020) approximates the Bayes-optimal
solution by combining a model for the MDP parameter uncertainty, and an optimization
method for the corresponding BAMDP. The MDP parameters are represented by a vector
m ∈ Rd, corresponding to the latent variables in a parametric generative model for the state-
reward trajectory distribution conditioned on the actions P (s0, r1, s1 . . . , rH , sH |a0, . . . , aH−1) =∫
pθ(m)pθ(s0, r1, s1 . . . , rH , sH |m, a0, . . . , aH−1)dm. The model parameters θ are learned by a

variational approximation to the maximum likelihood objective, where the variational approxi-
mation to the posterior P (m|s0, r1, s1 . . . , rH , sH , a0, . . . , aH−1) is chosen to have the structure
qφ(m|s0, a0, r1, s1 . . . , rt, st) = qφ(m|h:t). That is, the approximate posterior is conditioned
on the history up to time t. The evidence lower bound (ELBO) in this case is ELBOt =
Em∼qφ(·|h:t) [log pθ(s0, r1, s1 . . . , rH , sH |m, a0, . . . , aH−1)]−DKL(qφ(m|h:t)||pθ(m)). The main
claim of Zintgraf et al. (2020) is that qφ(m|h:t) can be taken as an approximation of the belief bt. In
practice, qφ(m|h:t) is represented as a Gaussian distribution q(m|h:t) = N (µ(h:t),Σ(h:t)), where
µ and Σ are learned recurrent neural networks.

To approximately solve the BAMDP, Zintgraf et al. (2020) exploit the fact that an optimal BAMDP
policy is a function of the state and belief, and therefore consider neural network policies that
take the augmented BAMDP state as input π(at|st, qφ(m|h:t)), where the posterior is practically
represented by the distribution parameters µ(h:t),Σ(h:t). The policies are trained using policy
gradients, optimizing

J(π) = ER,PEπ

[
H∑
t=0

γtr(st, at)

]
. (3)

The expectation over MDP parameters in (3) is approximated by averaging over training environments,
and the RL agent is trained online, alongside the VAE.
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B OMRL AND OFF-POLICY VARIBAD

The online VariBAD algorithm updates the policy using trajectories sampled from the current policy,
and thus cannot be applied to our offline setting. Our first step is to modify VariBAD to work
off-policy. We start with an observation about the use of the BAMDP formulation in VariBAD, which
will motivate our subsequent development.
Does VariBAD really optimize the BAMDP? Recall that a BAMDP is in fact a reduction of a
POMDP to an MDP over augmented states s+ = (s, b), and with the rewards and transitions given
by R+ and P+. Thus, an optimal Markov policy for the BAMDP exists in the form of π(s+). The
VariBAD policy, as described above, similarly takes as input the augmented state, and is thus capable
of representing an optimal BAMDP policy. However, VariBAD’s policy optimization in Eq. (3) does
not make use of the BAMDP parameters R+ and P+! While at first this may seem counterintuitive,
Eq. (3) is in fact a sound objective for the BAMDP, as we now show .
Proposition 3. Let τ = s0, a0, r1, s1 . . . , rH , sH denote a random trajectory from a fixed history
dependent policy π, generated according to the following process. First, MDP parameters R,P
are drawn from the prior p(R,P). Then, the state trajectory is generated according to s0 ∼ Pinit,
at ∼ π(·|s0, a0, r1, . . . , st), st+1 ∼ P(·|st, at) and rt+1 ∼ R(st, at). Let bt denote the posterior
belief at time t, bt = P (R,P|s0, a0, r1, . . . , st). Then

P (st+1|s0, a0, r1, . . . , rt, st, at) = ER,P∼btP(st+1|st, at),
and,

P (rt+1|s0, a0, r1, . . . , st, at) = ER,P∼btR(rt+1|st, at).

Proof. For the transitions, we have that,

P (st+1|s0, a0, r0,. . ., rt, st, at)=

∫
P (st+1,R,P|s0, a0, r0,. . ., rt, st, at)dRdP

=

∫
P (st+1|R,P, s0, a0, r0,. . ., rt, st, at)

P (R,P|s0, a0, r0,. . ., rt, st, at)dRdP
=ER,P [P (st+1|R,P, s0, a0, r0,. . ., rt, st, at)| s0, a0, r0, . . . , rt, st, at]
= ER,P [P(st+1|st, at)| s0, a0, r0, . . . , rt, st, at]
= ER,P∼btP(st+1|st, at).

The proof for the rewards proceeds similarly.

For on-policy VariBAD, Proposition 3 shows that the rewards and transitions in each trajectory can
be seen as sampled from a distribution that in expectation is equal to R+ and P+, and therefore
maximizing Eq. 3 is valid.3 However, off-policy RL does not take as input trajectories, but tuples of the
form (s, a, r, s′) ≡ (state, action, reward, next state), where states and actions can be sampled
from any distribution. For an arbitrary distribution of augmented states, we must replace the
rewards and transitions in our data with R+ and P+, which can be difficult to compute. Fortunately,
Proposition 3 shows that when collecting data by sampling complete trajectories, this is not necessary,
as in expectation, the rewards and transitions are correctly sampled from the BAMDP. In the following,
we therefore focus on settings where data can be collected that way, for example, by collecting logs
of RL agents trained on the different training tasks.

Based on Proposition 3, we can use a state augmentation method similar to VariBAD, which we refer
to as state relabelling. Consider each trajectory in our data τ i,j = si,j0 , ai,j0 , ri,j1 , . . . , si,jH , as defined
above. Recall that the VariBAD VAE encoder provides an estimate of the belief given the state history
q(m|h:t) = N (µ(h:t),Σ(h:t)). Thus, we can run the encoder on every partial t-length history τ i,j:t to
obtain the belief at each time step. Following the BAMDP formulation, we define the augmented state
s+,i,jt = (si,jt , b

i,j
t ), where bi,jt = µ(τ i,j:t ),Σ(τ i,j:t ). We next replace each state in our data si,jt with

s+,i,jt , effectively transforming the data to as coming from a BAMDP. After applying state relabelling,
any off-policy RL algorithm can be applied to the modified data, for learning a Bayes-optimal policy.
In our experiments we used DQN (Mnih et al., 2015) for discrete action domains, and soft actor critic
(SAC, Haarnoja et al., 2018) for continuous control.

3To further clarify, if we could calculate R+, replacing all rewards in the trajectories with R+ will result in a
lower variance policy update, similar to expected SARSA (Van Seijen et al., 2009).
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C EXTENDED DEFINITIONS AND PROOFS FOR SECTION 3

For the proofs of identifiability, we start by elaborating the formal definition of our setting. For simplic-
ity, we assume that the MDPs {Ri,Pi}Ni=1 are defined over finite state-action spaces (|S|, |A| <∞).
For every i = 1, . . . , N , let πiβ be a general stationary, stochastic, history-dependent policy4. The
initial state distribution Pinit is the same across all MDPs.5

We assume that data is collected from trajectories of length at most Tmax. This is a convenient
assumption that holds in every practical scenario, and allows us to side step issues of defining
visitation frequencies when t→∞.

For some 0 ≤ t ≤ Tmax, denote by PPi,πiβ ,t(s, a) = PPi,πiβ (st = s, at = a) the probability of
visiting the state-action pair (s, a) at time t by running the policy πiβ on MDP with transition function
Pi and initial state distribution Pinit. Now, we define:

PPi,πβ (s, a) = PPi,πiβ

( ⋃
t∈{0,...,Tmax}

{st = s, at = a}
)
,

that is, PPi,πβ (s, a) is the probability of observing state-action (s, a) in the data from MDP i.
Similarly, we define

PPi,Ri,πβ (s, a, r, s′) = PPi,πβ (s, a)Pi(s′|s, a)PRi(r|s, a),

the probability of observing the tuple (s, a, r, s′) in the data from MDP i.

A trajectory from the replay policy πr in MDP i is generated as follows. Let x be a discrete
random variable defined on 1, . . . , N with probability Px(·) that satisfies Px(x = k) > 0 for every
k = 1, . . . , N . First, we draw x. Then, we sample a trajectory from MDP i using policy πxβ .

For ease of reading, we copy here the propositions from the main text.

Proposition 1. Consider the setting described in Definition 1. For a pair of MDPs i and j, we
define the identifying state-action pairs as the state-action pairs that satisfy Ri(s, a) 6= Rj(s, a)
and/or Pi(s′|s, a) 6= Pj(s′|s, a). If for every i 6= j there exists an identifying state-action pair that
has positive probability under both i and j, i.e., PPi,πiβ (s, a), PPj ,πjβ

(s, a) > 0, then the data is
identifiable.

Before we prove Proposition 2, we present the following lemma, which will be used later in the proof.
Lemma 1. Consider a pair of MDPs (R,P) and (R′,P ′), and two policies π and π′. If there exists
an identifying state-action pair of the MDPs (s̄, ā) that has positive probability under both (P, π)
and (P ′, π′), i.e., PP,π(s̄, ā), PP′,π′(s̄, ā) > 0, then PR,P,π(s, a, r, s′) 6= PR′,P′,π′(s, a, r, s

′).

Proof. Assume to the contrary that PR,P,π(s, a, r, s′) = PR′,P′,π′(s, a, r, s
′). Marginalizing over r

and s′, we obtain: ∑
r,s′

PR,P,π(s, a, r, s′) =
∑
r,s′

PR,P′,π′(s, a, r, s
′)

PP,π(s, a) = PP′,π′(s, a), ∀(s, a).

Specifically, we have PP,π(s̄, ā) = PP′,π′(s̄, ā). Since PR,P,π(s̄, ā, r, s′) =
PR,P(r, s′|s̄, ā)PP,π(s̄, ā) for every r and s′, and PP,π(s̄, ā) = PP′,π′(s̄, ā) > 0, it holds
that PR,P(r, s′|s̄, ā) = PR′,P′(r, s

′|s̄, ā) for every r and s′. By marginalizing over s′ we get that∑
s′

PR,P(r, s′|s̄, ā) =
∑
s′

PR′,P′(r, s
′|s̄, ā)

PR(r|s̄, ā) = PR′(r|s̄, ā).

Similarly, by marginalizing over r, we get Pi(s′|s̄, ā) = Pj(s′|s̄, ā). Overall, both reward and
transition function do not differ in (s̄, ā), which contradicts the fact that (s̄, ā) is an identifying
state-action pair.

4We consider stationary policies for notation simplicity, although similar analysis can be made for non-
stationary policies.

5The idea of policy replaying can be extended to MDP with different initial state distributions by randomly
selecting the state distribution along with the policy. For simplicity, we do not consider this case, although a
similar analysis holds for it.
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We now prove Proposition 1.

Proof. Consider some i 6= j. Let (si,j , ai,j) be an identifying state-action pair that has positive
probability under both i and j. Assume to the contrary that there exists an MDP {R,P} ∈ M and two
policies π and π′ such that PRi,Pi,πiβ (s, a, r, s′) = PR,P,π(s, a, r, s′) and PRj ,Pj ,πjβ (s, a, r, s′) =

PR,P,π′(s, a, r, s
′).

Since (si,j , ai,j) has positive probability under (Pi, πiβ) and PRi,Pi,πiβ (s, a, r, s′) =

PR,P,π(s, a, r, s′), then (si,j , ai,j) must also have positive probability under (P, π) (otherwise,
there are r and s′ for which PRi,Pi,πiβ (si,j , ai,j , r, s

′) > 0, while PR,P,π(si,j , ai,j , r, s
′) = 0). Now,

since (si,j , ai,j) has positive probability under both (Pi, πiβ) and (P, π), and PRi,Pi,πiβ (s, a, r, s′) =

PR,P,π(s, a, r, s′), according to Lemma 1, it cannot be an identifying state-action pair of (Ri,Pi)
and (R,P). Therefore, the MDP {R,P} must satisfy P(·|si,j , ai,j) = Pi(·|si,j , ai,j) and
R(si,j , ai,j) = Ri(si,j , ai,j).

The same argument can be made for (Rj ,Pj , πjβ) and (R,P, π′), resulting in P(·|si,j , ai,j) =

Pj(·|si,j , ai,j) andR(si,j , ai,j) = Rj(si,j , ai,j). Overall, we get Pi(·|si,j , ai,j) = P(·|si,j , ai,j) =
Pj(·|si,j , ai,j) and Ri(si,j , ai,j) = R(si,j , ai,j) = Rj(si,j , ai,j), which is a contradiction, as
(si,j , ai,j) is an identifying state-action pair of MDPs i and j.

Proposition 2. For every i 6= j, denote the set of identifying state-action pairs by Ii,j . If for every i
and every j exists (si,j , ai,j) ∈ Ii,j such that PPi,πiβ (si,j , ai,j) > 0, then replacing πiβ with πr for
all i results in identifiable data.

Proof. Consider some i 6= j. We observe that by the construction of πr, for every (s, a) pair that
satisfies PPi,πiβ (s, a) > 0, we also have PPi,πr (s, a) > 0. In particular, we have PPi,πr (si,j , ai,j) >
0.

We will show that either (si,j , ai,j) also has positive probability under (Pj , πr) or there must exist
some other state-action pair that has positive probability under both (Pi, πr) and (Pj , πr). This,
according to Proposition 1, will result in identifiability of the data.

We define the following sets of state-action pairs:

Σit = {(s, a) : PPi,πr,t(s, a) > 0} , t = 0, 1, . . . , Tmax,

Σi,jt =
{

(s, a) : PPi,πr,t(s, a) = PPj ,πr,t(s, a) > 0
}
, t = 0, 1, . . . , Tmax.

Note that Σi0 = Σi,j0 , as the initial state distribution Pinit and πr are fixed across all MDPs.

First, consider the case where for every t = 0, 1, . . . , Tmax we have Σit = Σi,jt . Given that (si,j , ai,j)
has positive probability under (Pi, πr), there exists some t for which (si,j , ai,j) ∈ Ii,j ∩ Σit. Since
Σit = Σi,jt , we have (si,j , ai,j) ∈ Ii,j ∩ Σi,jt , which means (si,j , ai,j) also has positive probability
under (Pj , πr).

Next, consider the case where there exists some t ∈ {1, . . . , Tmax} for which Σit 6= Σi,jt and let
t̂ = min{t : Σit 6= Σi,jt }. Note that t̂ > 0, since we have already shown that Σi0 = Σi,j0 . Thus,
for every t < t̂ we have Σit = Σi,jt = Σjt , and for t̂ it holds that PPi,πr,t̂(s, a) 6= PPj ,πr,t̂(s, a).
If there exits a t′ < t̂ − 1 and (s, a) ∈ Σit′ such that Pi(·|s, a) 6= Pj(·|s, a), then we are done as
Σit′ = Σi,jt′ , which means that (s, a) is an identifying state-action pair that has positive probability
under both (Pi, πr) and (Pj , πr). Therefore, consider the case where for every t < t̂− 1 and every
(s, a) ∈ Σit we have Pi(·|s, a) = Pj(·|s, a). We will show that there exists (s, a) ∈ Σi

t̂−1 such that
Pi(·|s, a) 6= Pj(·|s, a).

Assume to the contrary that for every (s, a) ∈ Σi
t̂−1 we have Pi(·|s, a) = Pj(·|s, a), i.e., the

transition function is also equivalent for t = t̂− 1. Let ht̂ = (x, s0, a0, . . . , st̂, at̂) be the state-action
history up to time t̂, including the random variable x that was used to choose a policy. We next
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consider the probability of observing a history under (Pi, πr),
PPi,πr (ht̂) =Pinit(s0)Px(x)πr(a0|x, s0)PPi,πr (s1|x, s0, a0)πr(a1|x, s0, a0, s1) · · ·

· · ·PPi,πr (st̂|x, s0, a0, . . . , st̂−1, at̂−1)πr(at̂|x, s0, a0, . . . , st̂)

=Pinit(s0)Px(x)πr(a0|x, s0)

t̂∏
t=1

Pi(st|st−1, at−1)πr(at|x, s0, a0, . . . , st),

where the last equality holds according to the Markov property, PPi,πr (st|s0, a0, . . . , st−1, at−1) =
Pi(st|st−1, at−1). Since πr(at|x, s0, a0, . . . , st) is the same replaying policy for all MDPs, and for
every t ≤ t̂− 1 and (s, a) ∈ Σit we have Pi(·|s, a) = Pj(·|s, a), then PPi,πr (ht̂) = PPj ,πr (ht̂). By
marginalizing over x, s0, a0, . . . , st̂−1, at̂−1 we obtain:∑
x,s0,a0,...,st̂−1,at̂−1

PPi,πr (x, s0, a0, . . . , st̂, at̂) =
∑

x,s0,a0,...,st̂−1,at̂−1

PPj ,πr (x, s0, a0, . . . , st̂, at̂)

PPi,πr (st̂, at̂) = PPj ,πr (st̂, at̂),

which means that Σi
t̂

= Σi,j
t̂

, which contradicts the definition of t̂.

D ENVIRONMENTS DESCRIPTION

In this section we describe the evaluation metric, data collection process, and the details of the
domains we experimented with.

EVALUATION METRIC AND DATA COLLECTION

To evaluate performance, we measure average reward in the first few episodes on unseen tasks – this
is where efficient exploration makes a critical difference. For Gridworld, we measure average reward
in the first 4 episodes, for Wind only the first episode reward is measured, and for the rest of the
domains, measure average performance in the first 2 episodes.

For data collection, we used off-the-shelf DQN (Gridworld) and SAC (continuous domains) imple-
mentations. The tasks are episodic, but we want the agent to maintain its belief between episodes,
so that it can continually improve performance (see Figure 1). We follow Zintgraf et al. (2020),
and aggregate k consecutive episodes of length H to a long trajectory of length k × H , and we
do not reset the hidden state in the VAE recurrent neural network after episode termination. For
reward relabelling, we replace either the first or last k/2 trajectories with trajectories from a randomly
chosen MDP, and relabel their rewards. For policy replay, we replace trajectories by sampling a new
trajectory using the trained RL policy of another MDP.

DOMAINS WITH VARYING REWARD FUNCTION

Gridworld: A 5× 5 gridworld environment as in Zintgraf et al. (2020). The task distribution is
defined by the location of a goal, which is unobserved and can be anywhere but around the starting
state at the bottom-left cell. For each task, the agent receives a reward of −0.1 on non-goal cells and
+1 at the goal, i.e.,

rt =

{
1, st = g

−0.1, else,
where st is the current cell and g is the goal cell.
Similarly to Zintgraf et al. (2020), the horizon for this domain is set to 15 and we aggregate k = 4
consecutive episodes to form a trajectory of length 60.

Semi-circle: A continuous 2D environment as in Figure 1, where the agent must navigate to an
unknown goal, randomly chosen on a semi-circle of radius 1 (Rakelly et al., 2019). For each task, the
agent receives a reward of +1 if it is within a small radius r = 0.2 of the goal, and 0 otherwise,

rt =

{
1, ‖xt − xgoal‖2 ≤ r
0, else,

where xt is the current 2D location. Action space is 2-dimensional and bounded: [−0.1, 0.1]
2.

We set the horizon to 60 and aggregate k = 2 consecutive episodes to form a trajectory of length 120.
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MuJoCo:

1. Half-Cheetah-Vel: In this environment, a half-cheetah agent must run at a fixed target
velocity. Following recent works in meta-RL (Finn et al., 2017; Rakelly et al., 2019; Zintgraf
et al., 2020), we consider velocities drawn uniformly between 0.0 and 3.0. The reward in
this environment is given by

rt = −|vt − vgoal| − 0.05 · ‖at‖22

where vt is the current velocity, and at is the current action. The horizon is set to 200 and
we aggregate k = 2 consecutive episodes.

2. Ant-Semi-circle: In this environment, an ant needs to navigate to an unknown goal, ran-
domly chosen on a semi-circle, similarly to the Semi-circle task above.
When collecting data for this domain, we found that the standard SAC algorithm (Haarnoja
et al., 2018) was not able to solve the task effectively due to the sparse reward (which is
described later), and did not produce trajectories that reached the goal. We thus modified the
reward only during data collection to be dense, and inversely proportional to the distance
from the goal,

rdense
t = −‖xt − xgoal‖1 − 0.1 · ‖at‖22

where xt is the current 2D location and at is the current action. After collecting the data
trajectories, we replaced all the dense rewards in the data with the sparse rewards that are
given by

rsparse
t = −0.1 · ‖at‖22 +

{
1, ‖xt − xgoal‖2 ≤ 0.2

0, else.

We note that Rakelly et al. (2019) use a similar approach to cope with sparse rewards in the
online setting.
The horizon is set to 200 and we aggregate k = 2 consecutive episodes.

3. Reacher-Image: In this environment, a two-link planar robot needs to reach an unknown
goal, randomly chosen on a quarter circle. The robot receives dense reward which is given
by

rt = −‖xt − xgoal‖2
where xt is the location of the robot’s end effector. The agent observes single-channel
images of size 64 × 64 of the environment. The horizon is set to 100 and we aggregate
k = 2 consecutive episodes.

DOMAINS WITH VARYING TRANSITION FUNCTION

Wind: A continuous 2D domain with varying transitions, where the agent must navigate to a fixed
(unknown) goal within a distance of D = 1 from its initial state (the goal location is the same for all
tasks). Similarly to Semi-circle, the agent receives a reward of +1 if it is within a radius r = 0.2 of
the goal, and 0 otherwise,

rt =

{
1, ‖st − sgoal‖2 ≤ r
0, else.

For each task in this domain, the agent is experiencing a different ‘wind’, which results in a shift in
the transitions, such that when taking action at ∈ [−0.1, 0.1]

2 from state st in MDPM, the agent
transitions to a new state st+1, which is given by

st+1 = st + at + wM,

where wM is a task-specific wind, which is randomly drawn for each task from a uniform distribution
over [−0.05, 0.05]

2. To navigate correctly to the goal and stay there, the agent must take actions that
cancel the wind effect.
We set the horizon to 25 and evaluate the performance in terms of average return within the first
episode of interaction on test tasks (k = 1).
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Escape-Room: A continuous 2D domain where the agent must navigate outside a circular room of
radius R = 1 through an opening, whose location is unknown. For all tasks, the central angle of the
opening is π/8. The tasks differ by the location of the opening – the center point of the opening is
sampled uniformly from [0, π]. The reward function is sparse, task-independent, and given by

rt =

{
1, ‖st‖2 > R

0, else.

The transition function, however, is task-dependent and given by

st+1 =

{ st+at
‖st+at‖2 , if intersection occurs
st + at, else,

where intersection occurs means that the line that connects st and st + at and the wall of the circular
room intersects. To solve a task, the agent must search for the opening by moving along the wall until
he finds it. We set the horizon to 60 and aggregate k = 2 consecutive episodes to a form a trajectory
of length 120.

In Figure 5 we compare our offline algorithm with PEARL (Rakelly et al., 2019), and also with an
ablation of the policy replaying method. In the Escape-Room domain, where the identifying states do
not overlap, policy replaying indeed improves performance, while in Wind, where the identifying
states do overlap, policy replaying has little effect.

Figure 5: Offline performance on domains with varying transitions. We compare BOReL instantiated
with and without policy replaying (blue and red, respectively) with online PEARL.

E LEARNED BELIEF VISUALIZATION

In this section we visualize the learned belief states in Semi-circle domain, in order to get more
insight into the decision making process of the agent during interaction.

In Figure 6, we plot the reward belief (obtained from the VAE decoder) at different steps during
the agent’s interaction in the Semi-circle domain. Note how the belief starts as uniform over the
semi-circle, and narrows in on the target as more evidence is collected. Also note that without reward
relabelling, the agent fails to find the goal. In this instance of the MDP ambiguity problem, the
training data for the meta-RL agent consists of trajectories that mostly reach the goal, and as a result,
the agent believes that the reward is located at the first point it reaches on the semi-circle.
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Figure 6: Semi-circle belief visualization. The plots show the reward belief over the 2-dimensional
state space (obtained from the VAE) at different stages of interacting with the system. The red line
marks the agent trajectory, and the light blue circle marks the true reward location. Top: Once the
agent finds the true goal, it reduces the belief over other possible goals from the task distribution.
Middle: As long as the agent doesn’t find the goal, it explores efficiently, reducing the uncertainty
until the goal is found. Bottom: Without reward relabelling, the agent doesn’t learn to differentiate
between different MDPs, and therefore fails to identify the goal.

F DATA QUALITY ABLATION

In our data quality ablative study, we consider the Ant-Semi-circle domain for which we modify
the initial state distribution during the data collection phase. We diversified the offline dataset by
modifying the initial state distribution Pinit to either (1) uniform over a large region, (2) uniform over
a restricted region (excluding state on the semi-circle), or (3) fixed to a single position. At meta-test
time, only the single fixed position is used. The initial state distributions we consider are visualized
in Figure 7.

(a) Uniform (b) Excluding s.c. (c) Fixed

Figure 7: Initial state distributions. Red locations indicate non-zero sampling probability.

BOReL BOReL+CQL

Uniform 171.8 ± 7.0 176.0 ± 10.2

Excluding s.c. 102.8 ± 32.7 116.6 ± 19.9

Fixed 99.2 ± 27.4 112.4 ± 31.3

Table 1: Average return in Ant-Semi-circle for dif-
ferent initial state distributions during offline data
collection: Uniform distribution, uniform distribu-
tion excluding states on the semi-circle (Excluding
s.c.), and fixed initial position (Fixed).

We report results for the 3 different data col-
lection strategies described above, summarized
in Table 1. As expected, data diversity is in-
strumental to offline training. However, as we
qualitatively show in Figure 8, even on the
low-diversity datasets, our agents learned non-
trivial exploration strategies that search for the
goal. This is especially remarkable for the fixed-
distribution dataset, where it is unlikely that
any training trajectory traveled along the semi-
circle.

One may ask whether OMRL presents the same
challenge as standard offline RL, and whether
recent offline RL advances can mitigate the dependency on data diversity. To investigate this, we also
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compare our method with a variant that uses CQL (Kumar et al., 2020) – a state-of-the-art offline RL
method – to train the critic network of the meta-RL agent. Interestingly, while CQL improved results
(Table 1), the data diversity is much more significant. Together with our results on MDP ambiguity,
our investigation highlights the particular challenges of the OMRL problem.

Figure 8: Ant-Semi-circle: trajectories of trained agents for different offline datasets and for PEARL.
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