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Abstract

Climate change is one of the most significant001
challenges of our era, necessitating innovative002
solutions across multiple fields. Advancements003
in Natural Language Processing (NLP) offer a004
promising pathway, particularly through the005
development of generalized models applica-006
ble to various tasks. Despite recent progress,007
current specialized NLP models excel in in-008
dividual tasks but require substantial domain-009
specific training data and fail to generalize well010
to new scenarios. This paper introduces the011
Climate-NLI, an approach that utilizes Natu-012
ral Language Inference (NLI) models to create013
a versatile NLP framework. Experiment re-014
sults on 10 climate-related datasets show that015
our proposed model obtained comparable re-016
sults to the models that have been fine-tuned on017
task-specific datasets. Our proposed model can018
significantly reduce the use of computational019
resources by training only one general model020
that can be applied to different tasks.021

1 Introduction022

Climate change represents one of the most pressing023

challenges of our time, demanding innovative and024

efficient solutions across various domains. One025

such promising avenue lies in leveraging advance-026

ments in NLP to create generalized models that027

can be applied to a wide range of tasks. NLP has028

witnessed tremendous growth in recent years, with029

specialized models achieving state-of-the-art per-030

formance on individual tasks like sentiment anal-031

ysis, machine translation, and question answering032

(Khurana et al., 2022; Maulud et al., 2021; Jiang033

and Lu, 2020; Tan et al., 2020; Yang et al., 2020;034

Patil et al., 2022). However, these models often035

require significant domain-specific training data036

and struggle to generalize to unseen scenarios (Tor-037

ralba and Efros, 2011; Arjovsky et al., 2020). This038

presents a critical challenge: developing efficient039

and adaptable NLP systems capable of handling040

diverse tasks with limited resources.041

This paper proposes the Climate-NLI1 that lever- 042

ages the power of NLI model to build a general- 043

purpose NLP framework. NLI models determine 044

the entailment relationship between a premise and a 045

hypothesis sentence (Storks et al., 2020). We posit 046

that the core reasoning capabilities of NLI models 047

can be exploited to build a foundation for various 048

NLP tasks. By learning to understand the semantic 049

relationships between sentences, the model can be 050

adapted to diverse applications without extensive 051

task-specific training. 052

2 Related Works 053

NLI is a well-studied subtask of NLP with numer- 054

ous applications. Recent work has explored meth- 055

ods that leverage automatically generated, label- 056

specific natural language explanations to produce 057

more reliable labels (Kumar and Talukdar, 2020). 058

Beyond methods, specific datasets have been cre- 059

ated for NLI tasks, such as the Stanford Natural 060

Language Inference (SNLI) corpus (Bowman et al., 061

2015) and its explained variant, e-SNLI (Camburu 062

et al., 2018). The extensive research focus on NLI 063

is understandable considering its usage in many 064

things. NLI serves as a foundation for various 065

tasks, including question answering (Jeong et al., 066

2021), textual entailment (Bowman et al., 2015; 067

Camburu et al., 2018), and even text classification 068

using few-shot and zero-shot settings (Schick and 069

Schütze, 2021; Kim et al., 2020). 070

Zero-shot learning is one of the methods that 071

has gained traction in text classification for au- 072

tomatic labeling. It is a technique that transfers 073

knowledge from labeled classes to unseen ones 074

(Wang et al., 2019). This approach often utilizes 075

pre-trained language models (PLMs) like BERT 076

and RoBERTa (Chen et al., 2022; Gao et al., 2023; 077

Alcoforado et al., 2022; Gonsior et al., 2020; Bu- 078

jel et al., 2021). However, most studies combined 079

1Our code is publicly available at https://github.com/
fjoeda/climate-nli.
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PLMs with other methods. Some studies enhanced080

the performance of the language models by incor-081

porating domain knowledge to do zero-shot classifi-082

cation. For instance, the work by Chen et al. (2022)083

combined sentence BERT with knowledge graph084

embedding, achieving better results compared to085

PLMs alone. Gao et al. (2023) also utilized ad-086

ditional data containing label descriptions fed to087

RoBERTa as input, leading to significant accuracy088

improvements of up to 17% compared to using089

the original RoBERTa only. This highlights the090

importance of a model’s ability to understand the091

relationships between words and concepts, which092

aligns with the core principles of NLI.093

Yin et al. (2019) proposed a benchmark and a094

textual entailment framework that leverages NLI095

for zero-shot text classification. Wei et al. (2021)096

also explored the ability of the language models to097

perform zero-shot tasks, including zero-shot clas-098

sification, by using inference on unseen task type.099

By leveraging pre-trained models with strong NLI100

capabilities, zero-shot learning can achieve robust101

performance even with limited labeled data.102

3 Dataset103

We performed the experiment on several datasets104

representing both text classification and natural lan-105

guage inference tasks limited to climate-related106

domain, including: Climate-Fever (Leippold and107

Diggelmann, 2020), ClimateStance, ClimateEng108

(Vaid et al., 2022), SciDCC (Mishra and Mittal,109

2021), Climate Sentiment, Climate Detection (We-110

bersinke et al., 2022), Climate Commitment, Cli-111

mate Environmental Claim, Climate Specificity,112

and TCFD Recommendation (Bingler et al., 2022)113

as shown in Table 4. All datasets except Climate-114

Fever are for text classification task. We used each115

training, validation, and testing sets provided on116

each dataset. If the validation set is not provided,117

we split the validation set from the training data118

for each dataset with 90:10 proportion. Since the119

SciDCC dataset was published in a single CSV file,120

we split the dataset into training, validation and121

testing set with 80:10:10 proportion.122

We performed additional pre-processing on the123

Climate-Fever and SciDCC datasets. The Climate-124

Fever dataset contains 1.5K climate change-related125

claims where each claim has five evidences. We126

converted the dataset into pairs of claim and ev-127

idence where each pair is labeled as "support",128

"refutes", or "not_enough_info". Following We-129

bersinke et al. (2022), we filtered out the evidence 130

sentences with "not_enough_info" label and focus- 131

ing our model only on deciding whether a claim 132

is supported or refuted. The SciDCC dataset con- 133

tains 11,539 news articles taken from Science Daily, 134

classified into 20 classes such as Earthquake, Hur- 135

ricane, Pollution, etc. Each article consist of title, 136

summary, and body content. In this work, we con- 137

catenated the title, summary, and body as the text 138

input. 139

4 Methodology 140

The proposed model, Climate-NLI, was developed 141

to handle both fact-checking and classification 142

tasks for general climate-related text. The model 143

was trained on the NLI setting. Using NLI, the 144

model can solve the fact-checking task, and in the 145

same time address the text classification problem 146

using an entailment-based zero-shot classification. 147

The development processes of the model are pre- 148

sented in this section. 149

4.1 Dataset Preparation 150

As mentioned earlier, we used an entailment-based 151

approach for zero-shot classification. Therefore, all 152

text classification datasets were converted into NLI 153

task-setting in the preparation step by generating 154

the entailment and contradiction samples. NLI 155

takes two sentences as the premise and hypothesis 156

and then decides whether those sentences are an 157

entailment, neutral, or a contradiction. 158

Selecting Entailment Samples. The entailment 159

samples from the text classification dataset are se- 160

lected by adding the text data as the premise with 161

the corresponding class label as the hypothesis. Be- 162

side the class label, the hypothesis is constructed 163

from a template such as "The text is about <class 164

name>" (e.g., "The text is about agriculture", "The 165

text is about environment"). In terms of zero-shot 166

classification tasks, the model will be provided with 167

the text input along with its candidate labels. The 168

label hypothesis which receives the highest entail- 169

ment score will be selected as the predicted label 170

for the text input. 171

Selecting Contradiction Samples. The contra- 172

diction samples are added to make the zero-shot 173

classification model able to differentiate between 174

labels. We followed Gera et al. (2022), who used 175

the contrast-random approach for generating the 176

contradiction samples. Contrast-random is the best 177

performing setting along with contrast-all setting, 178
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but in terms of computational cost, contrast-random179

setting is more preferred. Contrast-random ap-180

proach will add the contradiction samples for each181

entailment samples with replaced class name on182

the hypothesis.183

Adding Label Variation. We implemented la-184

bel variation to introduce the model to the unseen185

labels. The addition of label variation to the hy-186

pothesis was done by replacing the corresponding187

label with its synonym. We used WordNet from188

NLTK package to find the list of the synonyms for189

the corresponding label. The label is then replaced190

with one of the synonym randomly. We applied the191

label variation specifically on topic classification192

datasets, including ClimateEng and SciDCC.193

The Hypothesis Templates. When it comes to194

zero-shot classification task, the entailment-based195

models such as bart-large-mnli2 use the default196

hypothesis template like "The example is <class197

name>". In our case, since we used different198

datasets from various domains, we specified the199

hypothesis template based on the dataset as shown200

in the Table 4. Referring to that table, some hypoth-201

esis templates use a yes-no question format (e.g.,202

"Does the text related to climate? c") to handle the203

binary classification tasks where the class names204

only consist of "yes" and "no".205

4.2 Model Training206

The Climate-NLI model was developed by fine-207

tuning ClimateBert (Webersinke et al., 2022) on208

NLI-task setting. ClimateBert is a transformer-209

based language model that has been pre-trained210

on over 2 million paragraphs of climate-related211

texts, such as common news, research articles,212

and climate reporting of companies. Climate-213

Bert used DistilRoBERTa-base3, a distilled ver-214

sion of RoBERTa containing 82M parameters, as215

the starting point of training (Sanh et al., 2020).216

Climate-Fever and all the converted text classifi-217

cation datasets as shown in Table 4 were used to218

fine-tune the model. In total, there are 45,802 pairs219

of premise and hypothesis along with their labels220

that were used as the training data. In addition to221

that, 5,498 pairs were used as validation set. The222

best model was selected based on the best valida-223

tion accuracy. The Climate-NLI model was trained224

with specific hyperparameter settings (see Table 1).225

2https://huggingface.co/facebook/
bart-large-mnli

3https://huggingface.co/distilbert/
distilroberta-base

The text length for each premise and hypothesis 226

was limited to 256 each, to fit the overall limit of 227

512. 228

Hyperparameter Values
Max. sequcence length 512
Batch size 16
Optimizer AdamW
Learning rate 5 · 10−5

Max. num. of epochs 50
Num. of early stopping
patience

5

Table 1: Hyperparameter for NLI model training.

We also conducted different experiments by fine 229

tuning ClimateBert on each task-specific dataset 230

with similar hyperparameter settings. Moreover, 231

as the baseline comparison for NLI-based task, 232

we used bart-large-mnli, a pre-trained model with 233

409M parameters, trained on the Multi-Genre Nat- 234

ural Language Inference (MultiNLI) corpus which 235

contains crowd-sourced collection of 433K sen- 236

tence pairs annotated with textual entailment in- 237

formation. All experiments were performed on a 238

single NVIDIA A100 GPU and the random state 239

was set to 42. 240

4.3 Model Evaluation 241

We evaluated the Climate-NLI model on the test set 242

for each task-specific dataset. For the fact-checking 243

tasks on the Climate-Fever, we directly used the 244

NLI setting for the inference process and mapped 245

the label, specifically "Support" to entailment and 246

"Refutes" to contradiction. In this work, we only 247

focused on how good the model is in determin- 248

ing whether evidence supports or refutes a claim. 249

Meanwhile, for all classification tasks, we use a 250

zero-shot classification procedure to predict the 251

final label. The Climate-NLI model will be pre- 252

sented with a text input as the premise and a set 253

of label candidates prepended with a template as 254

a hypothesis. In the model output, we took the 255

entailment and contradiction score and applied a 256

softmax function. The label with the highest entail- 257

ment score will be chosen as the final label. 258

With the same procedure, we also evaluate the 259

pretrained bart-large-mnli model as the baseline 260

comparison for NLI-based model. We also evaluate 261

the fine-tuned ClimateBert models on their corre- 262

sponding task-specific training dataset. Accuracy 263

and macro-averaged F1 were used as the evaluation 264

metrics. 265
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Dataset Climate-NLI Model Bart-Large-MNLI Fine-tuned ClimateBert
Acc. F1 Acc. F1 Acc. F1

ClimateEng 0.79 0.66 0.56 0.45 0.78 0.67
ClimateStance 0.78 0.42 0.44 0.70 0.81 0.52
SciDCC 0.52 0.40 0.31 0.25 0.61 0.49
Climate Commitment 0.78 0.74 0.31 0.24 0.80 0.78
Climate Env Claim 0.86 0.84 0.26 0.21 0.92 0.90
Climate Sentiment 0.74 0.73 0.36 0.25 0.81 0.80
Climate Specificity 0.77 0.75 0.44 0.42 0.82 0.79
TCFD Recomm 0.75 0.69 0.21 0.17 0.79 0.74
Climate Detection 0.94 0.90 0.80 0.46 0.96 0.94
Climate-Fever 0.81 0.77 0.57 0.39 0.85 0.81
Average 0.774 0.69 0.426 0.321 0.815 0.744

Table 2: Evaluation results.

5 Result and Discussion266

The performance of all models is detailed in Table267

2. Notably, Climate-NLI surpasses bart-large-mnli268

on every dataset despite having fewer parameters.269

This is likely because Climate-NLI was trained270

using climate-focused data, whereas bart-large-271

mnli was trained on a broader range of information.272

However, compared to the fine-tuned ClimateBert273

model, Climate-NLI obtained slightly lower perfor-274

mances in all datasets.275

Despite the lower performance, we argue that276

our proposed model can significantly reduce the277

use of computational resources, by training only278

one general model that can be applied for different279

tasks. Moreover, in terms of adaptability to the280

new classes, entailment-based zero-shot classifica-281

tion model is capable to adapt to any newly added282

class by adding the new training samples. Mean-283

while, the fine-tuned classification model needs to284

be retrained when a new class is introduced, since285

the number of classes is already defined before the286

training process (Patadia et al., 2021).287

Dataset Acc. F1
ClimateEng 0.76 0.66
ClimateStance 0.80 0.46
SciDCC 0.43 0.35
Climate Commitment* 0.32 0.26
Climate Env Claim* 0.63 0.62
Climate Sentiment 0.80 0.78
Climate Specificity* 0.46 0.46
TCFD Recomm* 0.23 0.20
Climate Detection 0.84 0.67
Climate-Fever 0.84 0.80

* Unseen dataset

Table 3: Climate-NLI evaluation results on unseen
dataset.

The Capability of Predicting The Unseen288

Dataset. We performed an experiment by ex- 289

cluding four datasets: Climate Commitment, Cli- 290

mate Environmental Claim, Climate Specificity, 291

and TCFD Recommendation. As shown in the Ta- 292

ble 3, the model’s performance on those datasets 293

decreased significantly. The drop is likely due 294

the lacks of training samples for NLI tasks which 295

only relies on Climate-Fever dataset. This makes 296

the model unable to decide an entailment between 297

premises and hypotheses which are completely un- 298

seen. 299

Potential Implementation. Zero-shot classifi- 300

cation has capability of being used across unseen 301

dataset and unseen labels (Pushp and Srivastava, 302

2017). Despite the mediocre performance on the 303

unseen datasets (see Table 3), zero-shot classifi- 304

cation model can be implemented for automatic 305

data labeling through weak supervision where the 306

model is expected to provide hints about the desired 307

class from the defined candidate labels (Åslund, 308

2021; Wang et al., 2021). This could reduce the 309

time needed to develop a dataset related to climate 310

change. 311

6 Conclusion 312

In this paper, we presented Climate-NLI, an 313

NLI-based model specifically designed for fact- 314

checking and zero-shot classification tasks. Evalua- 315

tion results show that Climate-NLI successfully out- 316

performed bart-large-mnli, the NLI model trained 317

on more general text, while obtained slightly lower 318

performance compared to the task-specific fine- 319

tuned ClimateBert model. Our proposed model 320

has better adaptability to new classes by adding the 321

training samples instead of retraining the model 322

with the whole training samples. Moreover, the 323

general model, significantly reduced the use of 324

computational resources. 325
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Limitations326

In terms of the fact-checking task, we only tested327

how good the model was at deciding whether a328

claim is supported or refuted by evidence, which is329

just one of the parts of the fact-checking pipeline. A330

further test of the Climate-NLI model on the whole331

fact-checking pipeline from evidence retrieval to332

entailment prediction can be done as future work.333

To simplify the training pipeline in the model334

training process, we only use the yes-no question335

template followed by a "yes" or "no" label for the336

binary classification tasks. Instead of relying on a337

yes-no question as a template, we may extend the338

"yes" and "no" labels to a sentence that shows the339

complete context related to the label.340

Ethics Statement341

We ensure that our work complies with the ACL342

Ethics Policy.343
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Dataset Task Data Composition Num. of
Classes

Hypothesis Template

ClimateEng Classification Train: 2781; Val: 354;
Test: 355

5 This example is about c

Climate Stance Classification Train: 2781; Val: 354;
Test: 355

3 The stance of this tweet
regarding to climate
change is c

SciDCC Classification Train: 11539 20 This example is about c
Climate
Commitment

Classification Train: 1000; Test: 320 2 Does text talk about
climate commitment
action? c

Climate
Environmental
Claim

Classification Train: 2117; Test: 265 2 Does the claim relate to
environment? c

Climate
Sentiment

Classification Train: 1000; Test: 320 3 The text sentiment
regarding climate
change is c

Climate
Specificity

Classification Train: 1000; Test: 320 2 The text is climate
change c

TCFD Recom-
mendation

Classification Train: 1300; Test: 400 5 Regarding climate
recommendation, the
text is about c

Climate
Detection

Classification Train: 1300; Test: 400 2 Does the text related to
climate? c

Climate-Fever Fact-checking
(NLI)

Train: 2196; Test: 549 2 -

Table 4: The list of dataset used in the training phase along with their task, composition, the number of classes, and
the hypothesis template. The class label in the hypothesis template is represented with "c". For the Climate-Fever
dataset, we split the dataset with 80:20 train-test proportion and filter out the "not_enough_info" label in the data
preprocessing step.
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