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Abstract

Recent advances in multimodal and speech-
native large language models (LLMs) have de-
livered impressive speech recognition, trans-
lation, understanding, and question-answering
capabilities for high-resource languages. How-
ever, African languages and non-native French
or English accents remain dramatically under-
represented in benchmarks limiting the under-
standing and applicability of leading LLMs
for millions of francophone and anglophone
users in low-resource settings. We presents
AfriVox, an open-source benchmark (including
novel domain-specific and unscripted datasets)
across 20 African languages, African-accented
French, Arabic, and 100+ African English ac-
cents, contrasting leading multimodal speech
LLMs with traditional unimodal automatic
speech transcription (ASR) and translation
(AST) models. Our analysis reveals significant
language coverage variation, surprising LLM
translation performance gains (e.g. Gemini), ro-
bustness concerns with unscripted speech, and
substantial performance disparities for "sup-
ported" African languages. We profile the
strengths, limitations, and language support of
each model, and conduct the first targeted fine-
tuning of a modern speech LLM (Qwen2.5-
Omni) for three Nigerian languages, exceeding
SOTA, and achieving up to 54% relative WER
reduction and significant BLEU gains, offering
practical guidance for implementers seeking to
serve local language users.

1 Introduction

The transformative impact of LLMs in global
technology—especially speech-enabled and mul-
timodal LL.Ms—has opened new frontiers for
human-computer interaction (AlSaad et al., 2024).
Major recent breakthroughs, such as OpenAl’s
GPT-40 (Hurst et al.,, 2024), Google Gemini
(Google DeepMind, 2024), and Meta’s Seam-
lessM4T (Barrault et al., 2023), have enabled voice-
based applications that promise to make informa-

tion and services more accessible, especially in
regions where text literacy and high-resource lan-
guage proficiency may be limiting factors (Peng
et al., 2025).

Across Africa, LLM-powered systems are al-
ready being deployed in sectors like health, agri-
culture, and financial inclusion, operating in large
languages via text interfaces (Olatunji et al., 2023;
Nazi and Peng, 2024; Al-Garadi et al., 2025).
However, as voice-native and multilingual LLMs
have rapidly improved (Bai et al., 2024; Google
DeepMind, 2024), technology implementers across
Africa are eager to shift towards more natural, re-
latable, and intuitive speech-driven interfaces that
truly reflect users’ language preferences and lin-
guistic diversity (Sanni et al., 2025).

Despite this demand, no comprehensive bench-
mark exists that systematically evaluates mod-
ern speech LLMs on African languages and ac-
cents (Adelani et al., 2025; Ojo et al., 2025). Ex-
isting benchmarks such as MLS, mSTEB, Nai-
jaVoices, and ML-SUPERB 2.0 include very lim-
ited African language coverage and lack recent
domain-specific, real-world unscripted speech, es-
pecially for emerging LLLM architectures (Pratap
et al., 2020a; Beyene et al., 2025; Emezue et al.,
2025; Shi et al., 2024). Most performance claims
are based on high-resource languages, providing
little actionable guidance to African technology
teams deciding whether to trust LLMs for local
deployment (Reid et al., 2021).

To bridge this gap, we introduce AfriVox, a uni-
fied benchmark suite aggregating and extending
multiple African speech datasets and releasing two
novel datasets covering parliamentary speech from
4 countries and health-focused conversations in
20 African languages. We use AfriVox to answer
two critical questions for implementers: (1) Which
speech LLMs reliably support certain African lan-
guages and (2) How do leading multimodal LLMs
compare with traditional leading ASR/AST models



on understanding realistic African speech? Should
implementers switch from unimodal ASR models
to LLMs? Our contributions are as follows:

* We curate and open-source AfriVox, the most
comprehensive benchmark to date for African
language ASR and AST, with detailed lan-
guage support analysis.

* We open-source 2 novel datasets under
a CC-BY-NC-SA license:  Afrispeech-
Parliamentary, transcribed accented-English
parliamentary proceedings from 4 African
countries; and Afrivox-Medical, a health-
focused read-speech translation and transcrip-
tion dataset in 19 African languages.

* We conduct the first systematic, reproducible
evaluation of state-of-the-art speech LLMs
and unimodal models across 20 languages and
100+ English, French, and Arabic accents.

* We provide detailed error analysis and prac-
tical guidance, including fine-tuning experi-
ments with Qwen2.5-Omni on major Nigerian
languages using only moderate data.

By clarifying the current capabilities and limi-
tations of speech LLMs on African languages, we
aim to empower both researchers and implementers
to build more equitable language technology.

2 Related works

Recent years have seen remarkable progress in
speech and multimodal large language models
(LLMs) (Yu et al.), driven by advances in self-
supervised learning, scaling laws, and reinforce-
ment learning techniques (Ghosh et al., 2024).
However, these improvements have dispropor-
tionately benefited high-resource languages, with
African languages still underrepresented in both
model training and evaluation (Adelani et al., 2025;
Ojo et al., 2025).

Multilingual Speech Benchmarks: Bench-
marks such as MLS (Multilingual LibriSpeech)
(Pratap et al., 2020a), mSTEB (Beyene et al.,
2025), and ML-SUPERB 2.0 (Shi et al., 2024)
have provided valuable evaluation resources, but
offer limited coverage of African languages, and
their data is primarily read speech or synthetic
in nature. ML-SUPERB 2.0 and mSTEB in
particular have improved multilingual evaluation
rigor, yet it covers only a handful of African

languages and lacks representation of diverse
accents and real-world conversational domains
(Pratap et al., 2020a). Our benchmark, AfriVox,
addresses these gaps by including (a) a broader
and more granular set of African languages and
accents, (b) domain-specific, real-world audio
(e.g., parliamentary sessions, healthcare dialogues),
and (c) explicit evaluation of both unimodal and
state-of-the-art multimodal LLMs.

Speech and Multimodal LLMs: Large-scale
unimodal models such as Whisper (Radford et al.,
2023a), MMS (Denisov and Vu, 2024), and Para-
keet (Galvez et al., 2024) have demonstrated robust
speech recognition performance in high-resource
settings, but their reliability in African language
tasks remains largely anecdotal (Ojo et al., 2025).
Recent multimodal models—including Google Au-
dioPalLM (Rubenstein et al., 2023), Meta Seam-
lessM4T (Barrault et al., 2023), Qwen-Audio (Chu
et al.,, 2024), and Gemini (Google DeepMind,
2024)—promise to unify speech, text, and transla-
tion tasks, but have yet to be systematically bench-
marked on African data (Adelani et al., 2025).

Parameter-Efficient Fine-Tuning (PEFT):
Scaling LLMs for downstream tasks in low-
resource settings can be prohibitively expensive.
PEFT approaches such as LoRA (Karimi Mahabadi
et al., 2021), Adapters (Han et al., 2024), and
QLoRA (Dettmers et al., 2023) enable practical
model adaptation by training only a small subset
of parameters. However, most prior studies have
focused on high-resource or Asian languages (Bai
et al., 2024); little is known about their impact on
speech LLMs for African contexts (Emezue et al.,
2025).

African Speech Datasets: Public African speech
corpora—including NCHLT (Barnard et al., 2014),
CommonVoice (Ardila et al., 2020), and FLEURS
(Conneau et al., 2023)—have played a vital role,
but coverage, accent diversity, and domain rele-
vance remain limited. Recent datasets such as
AfriSpeech (Olatunji et al., 2025) and NaijaVoices
(Emezue et al., 2025) have begun to address these
challenges. Our work builds on and expands these
efforts, contributing new datasets and a unified
benchmark for comprehensive, reproducible evalu-
ation.

Distinctive Contributions: To our knowledge,
this work is the first to 1) Aggregate and com-
pare both unimodal and multimodal speech LLMs



across 20+ African languages and 100+ English
accents, 2) Include new, diverse African speech
test sets, 3) Provide practical, data-driven guid-
ance for implementers on the suitability of LLMs
vs. traditional ASR for local deployment, and 4)
Systematically analyze model performance, error
types, and the impact of PEFT for low-resource

African speech recognition and translation.

3 Methodology

Dataset Hours Speakers Accents
NCHLT 2.24 8 1
AfriSpeech-200 18.68 750 108
CV-17 En-Afr 0.11 46 9
Afrispeech-Parl 42.17 ~1651 4
Total 63.20 ~2455 108

Table 1: Summary of African-accented English speech

datasets.
Language Region Language Family # Speakers
Afrikaans South IndoWest (Germanic) 7.2M
Akan West Niger-Congo (Kwa) 24M
Ambharic East Afro-Asiatic (Semitic) 35M
Egyptian Arabic North  Afro-Asiatic (Semitic) 8M
French West Indo-European (Romance)  320M
Fula West Niger-Congo (Atlantic) 36.8M
Gaa West Niger-Congo (Kwa) 0.7M
Hausa West Afro-Asiatic (Chadic) 54M
Ibo West Niger-Congo (Volta-Niger) 31M
Kinyarwanda East Niger-Congo (Bantu) 15M
Luganda East Niger-Congo (Bantu) 5.6M
Northern Sotho  South Niger-Congo (Bantu) 4.6M
Shona South  Niger-Congo (Bantu) 8.4M
Southern Sotho  South Niger-Congo (Bantu) 5.6M
Swahili East Niger-Congo (Bantu) 87M
Tswana South  Niger-Congo (Bantu) 8.2M
Twi West Niger-Congo (Kwa) 4.4M
Xhosa South Niger-Congo (Bantu) 8M
Yoruba West Niger-Congo (Yoruboid) 45M
Zulu South Niger-Congo (Bantu) 13.6M

Table 2: Language, region, family, and number of speak-

ers.
Dataset #Langs Hours Speakers
NCHLT 6 12.75 36
CV-17 10 16.89 670
FLEURS 13 14.44 1595
OpenSLR 3 0.31 372
Bible TTS 3 0.47 3
NaijaVoices' 3 1800 5000
FISD? 3 0.05 23
AfriVox-Medical * 19 36.63 1179
Total Hours 1878.52

Table 3: Summary of multilingual speech datasets.

3.1 Benchmark Design and Datasets

We design the AfriVox benchmark to evaluate
speech LLMs and ASR/AST models on realistic
African language and accent use-cases. This bench-
mark unifies and expands existing corpora, incor-
porating both new and public datasets to maximize
coverage and relevance.

3.1.1 African-Accented English Speech (AES)

Sources: NCHLT (Barnard et al., 2014),
AfriSpeech-200 (Olatunji et al., 2025), Common
Voice 17 (Ardila et al., 2020)(filtered for African
accents), and a newly-curated AfriSpeech-Parl
dataset ! with transcribed Parliamentary Proceed-
ings from 4 African countries (Ghana, Kenya,
Nigeria, and South Africa).

Coverage: Over 63 hours, 2,000+ speakers, 12
countries, and 108 distinct African English accents
(Table 1).

Curation: Common Voice was filtered using
speaker metadata and manual accent validation.
Parliamentary recordings were transcribed and
quality-controlled by native speakers; only utter-
ances with >80% reviewer ratings were included.

3.1.2 Multilingual African Speech (MLS)

Sources: Existing open source transcription
datasets—NCHLT, Common Voice 17 (filtered for
African languages), FLEURS (Conneau et al.,
2023), OpenSLR, BibleTTS (Meyer et al., 2022),
NaijaVoices(Emezue et al., 2025)-and newly-
curated AfriVox-Medical’, a health-related read-
speech multilingual translation and transcription
dataset of simulated text conversations across 20
languages).

For translation, we include FLEURS, CoVoST
(Wang et al., 2020), NaijaVoices, IWSLT-LRST
(Cettolo et al., 2017), and AfriVox-Medical?.

Coverage: 20 languages across 7 datasets,
8,000+ speakers, >1,800 hours of audio (Tables 2
and 3). Coverage includes both high-population
and low-resource languages, and features diverse
linguistic families (Niger-Congo, Afro-Asiatic,
etc.).

1https: //huggingface.co/datasets/naijavoices/
naijavoices-dataset

2https://github.com/Ashesi-Org/
Financial-Inclusion-Speech-Dataset
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Ethics and Quality: All audio files are mono-
channel WAV at 16kHz. All data is either open-
source or collected with explicit consent. New
data is transcribed and quality-checked by native
speakers. All contributors and reviewers were fairly
compensated via a crowdsourcing platform?.

3.2 Models Evaluated

We benchmarked a mix of unimodal and multi-
modal models:

Unimodal ASR: Canary (Puvvada et al., 2024),
Parakeet (NeMo and Suno.ai, 2023), Whisper
(Medium/Large) (Radford et al., 2023b), MMS
(with/without language adapters) (Pratap et al.,
2024)

Unimodal AST [X->En]: Whisper, MMS

Multimodal LLMs: Meta SeamlessM4T
(Aharoni et al., 2019), Google Gemini-2.0-
Flash(Google DeepMind, 2024), OpenAl GPT-40
(OpenAl et al., 2024), Alibaba Qwen2.5-Omni
(Chu et al., 2024)

Languages supported for each language are pre-
sented in Table 6. Models were chosen for their
reported state-of-the-art performance, public avail-
ability, language coverage (supporting one or more
African languages), or relevance to real-world de-
ployment in Africa. All were used in their pre-
trained, off-the-shelf forms unless otherwise speci-
fied.

3.3 Fine-Tuning

Data: We fine-tuned on the NaijaVoices dataset—
1,800 hours, 5,000+ speakers, balanced by gender
and age, spanning 3 Nigerian languages— Hausa,
Igbo, and Yoruba.

Model: Qwen2.5-Omni, a 10B multimodal and
multilingual LLM was selected for PEFT due to its
open-source availability, multilingual support, and
relatively small size (compute limitations).

Fine-tuning: We fine-tuned on four NVIDIA
3090 GPUs with approximately 280 hours of
speech per language, using LoRA (rank 8, alpha
32) applied to all linear layers while freezing the
vision encoder. We trained for three epochs us-
ing a learning rate of le-4 and a warmup ratio of
0.05 with bfloat16 precision, with a batch size of
256. Prompt formatting details are included in the
Appendix A
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3.4 Evaluation
3.4.1 Tasks

Automatic Speech Recognition (ASR): Tran-
scribe audio into native script.
Automatic Speech Translation (AST): Trans-

late audio into English text.

Prompting: All models were tested with consis-
tent, standardized prompts (zero-shot and few-shot)
for fairness and reproducibility (see Appendix A
for details).

Post-processing: Outputs were normalized for
punctuation, casing, and diacritics to ensure com-
parability.

Reproducibility: All code, model configurations,
and new data will be open-sourced; results are re-
ported for single runs.

3.4.2 Metrics and Human Evaluation
ASR: Word Error Rate (WER)

AST: BLEU (Papineni et al., 2002), chrF
(Popovi¢, 2015), and AfriCOMET-STL (Wang
et al., 2023).

Human Evaluation: Conducted for translation
quality validation and metric selection; see Ap-
pendix Table 17.

3.4.3 Addressing Benchmark Contamination

We note and analyze the potential for older public
datasets to appear in model pretraining, and explic-
itly distinguish between “old” (NCHLT, Common-
Voice) and “new” (AfriSpeech-200, Afrispeech-
Parl) data in analysis to measure true generaliza-
tion.

4 Results and Analysis

Tables 4 and 5 present the transcription results on
the African-Accented English Speech and Multi-
lingual African Speech datasets. Results presented
are for single runs. The results indicate that, in
most cases, unimodal models outperformed the
multimodal models. While Table 6 shows mul-
timodal models edges over unimodal models on
the speech translation task. Additionally, Table 8
shows the comparison between the results of the
base and fine-tuned Qwen 2.5 Omni model. A
detailed breakdown of results by individual lan-
guages is provided in Appendix A. We provide the
following analysis based on the findings from our
experimental results:



Model Old New
Lib NC Cv Af Parl
Canary 148 10.05 8.41 38.03 27.38
Parakeet 1.40 11.33 9.48 34.96 21.89
Whisper M 3.02 10.17 12.39 30.81 28.53
Whisper L 2.01 10.10 12.54 26.49 19.29
MMS 12.63 32.11 23.09 61.19 10741
M4T 280 3296 1040 49.75 54.68
Gemini 3.03 14.19 13.76 28.12 21.63
GPT-Aud. 526 86.52 26.76 36.54 41.88
Qwen2 1.60 25.14 11.16 49.61 57.43

Table 4: Word Error Rates (WER) across African-
accented English speech data sources and Librispeech
test-clean [Lib](Panayotov et al., 2015). Af: Afrispeech,
NC: NCHLT, CV: Common Voice, Parl: Parliamentary
Proceedings. Models in the top section are unimodal
ASRs while those below are multimodal LLMs.

4.1 Widespread Variation in African
Language and Accent Performance and
Support

Table 4 and 5 reveal that, despite recent advances
and better coverage of African languages, both uni-
modal and multimodal speech models exhibit sub-
stantial performance gaps on African languages
and non-native English accents when compared
with large languages and native accents (Multilin-
gual Librispeech). Wide variation within models
exist, most evident with Seamless and Whisper for
supported languages. Consistent with multilingual
claims in its documentation, Gemini outperforms
GPT-40 by a wide margin sometimes with 2-4x
better WER.

Unusually High Error Rates for Supported Lan-
guages: On African-accented English, state-of-
the-art unimodal ASR models (e.g., Whisper Large-
v3) display a 10-15x increase in Word Error Rate
(WER) compared to standard benchmarks—for ex-
ample, WER rises from 2.0% (LibriSpeech) to
26-38% (AfriSpeech, NCHLT). For African lan-
guages, WERSs routinely exceed 50% and, for some
languages (e.g., Yoruba, Hausa, Swahili), surpass
100%, despite self-reported "support” for these
languages, indicating nearly unintelligible output.
These results suggest that simply including African
data in pretraining does not provide performance
guarantees.

Multimodal Model Language Coverage: Mul-
timodal LLMs (e.g., Gemini, SeamlessM4T, GPT-
40) support more African languages than most uni-
modal ASR/AST models and can be prompted with-

out explicit language labels, but their accuracy of-
ten lags unimodal models for transcription. Seam-
lessM4Tv2, for example, shows particularly strong
results for Southern and Eastern African languages,
providing clues about the language distribution in
its training data.

4.2 Transcription vs. Translation: Unimodal
and Multimodal Model Trends

Transcription (ASR): As shown in Table 5, Uni-
modal models, especially MMS with language
adapters, outperform multimodal LL.Ms for exact
transcription in most African languages. Gemini
stands out, outperforming MMS across multiple
supported languages, indicating progress towards
more inclusive multimodal LLMs. However, with
WERs still over 20% for several languages and
accented speech, top ASR models and LLMs still
struggle with accent/language diversity and noisy
or spontaneous speech.

Translation (AST): Multimodal models (Table
6), especially Gemini and SeamlessM4T, signif-
icantly outperform unimodal baselines on low-
resource African language audio-to-English transla-
tion. They achieve higher BLEU and AfriCOMET-
STL scores, and provide more semantically faithful
translations, particularly on longer, context-rich
utterances. Appendix Table 17 shows AfriCOMET-
STL’s correlation with human evaluation.

4.3 Robustness to Real-World Speech

Realistic Noisy Conditions: As shown in Table
4 All models perform worst on the parliamentary
proceedings dataset, which contains high ambient
noise, overlapping speakers, and real-world sponta-
neous speech. Here, WERs for even the best mod-
els double relative to clean, read speech, demon-
strating that accented English speech transcription
is still an unsolved problem. MMS is most no-
table in this regard, with a 5x collapse in WER,
likely demonstrating an over-reliance on clean/read
speech during training.

Accent and Dialect Variability: Table 5 reveals
a consistent trend with accented French. Besides
GPT-40, inclusion of accent-diverse datasets ex-
poses weaknesses in all models, with WER drop-
ping by roughly 2x. Performance is notably worse
on underrepresented accents and dialects—even
for languages like French with larger training re-
sources.



Whisper  Whisper MMS-1b Seamless-M4T Gpt-40 Gemini-2.0
Language Canary-1b  medium large-v3 all Qwen2.5 Large-v2 audio-preview flash
English (M. Lib) 3.03 6.80 3.53 17.63 16.32 4.68 9.63 6.63
French (M. Lib) 4.06 8.90 5.38 19.30 10.43 6.82 22.71 5.23
Spanish (M. Lib) - - - 17.35 - 6.76 21.25 3.22
Afrikaans - 68.87 4543 48.73 - 18.41 84.36 18.02
Akan - - - 62.92 - - 104.02 67.04
Amharic - 44726 165.83 67.52 - 44.05 2454 55.88
Arabic - 39.49 29.72 44.94 - 51.26 31.88 14.44
French 9.67 13.95 9.31 33.93 24.14 15.90 22.29 9.12
Fulani - - - 56.78 - 86.85 157.03 66.11
Ga - - - - - - 172.73 87.27
Hausa - 180.29 95.11 40.47 - - 118.60 38.48
Igbo - - - 50.33 - 70.03 112.23 66.68
Kinyarwanda - - - 36.73 - - 135.75 58.44
Luganda - - - 28.85 - 16.39 131.19 59.89
Pedi - - - 41.43 - - 119.29 70.69
Sesotho - - - - - - 158.21 59.30
Shona - 193.21 110.35 30.7 - 76.05 90.51 38.84
Swabhili - 117.7 62.75 28.37 - 16.25 73.96 25.88
Tswana - - - - - - 133.46 54.85
Twi - - - 51.09 - - 98.86 67.13
Xhosa - - - 42.24 - - 130.79 39.32
Yoruba - 213.88 93.77 39.59 - 37.43 101.14 43.42
Zulu - - - 43.19 - 52.53 135.84 30.02

Table 5: WER (%) by model and language on the Multilingual African Speech transcription dataset. Bold

non

values mark the lowest (best) WER for each language.

indicates the language is not supported by the model.

The first section of the table shows baseline performance on Multilingual LibriSpeech (Pratap et al., 2020b)

4.4 Fine-Tuning Unlocks Substantial Gains

Parameter-Efficient Fine-Tuning (PEFT): Ta-
ble 7 zooms in on model performance for the 3
languages selected for fine-tuning. Although all
3 languages were unsupported by Qwen2.5-Omni,
Table 8 shows that fine-tuning on just 280 hours per
language from NaijaVoices yields a 54% reduction
in WER and up to 21-point gains in BLEU for Igbo,
Hausa, and Yoruba, exceeding SOTA (MMS) on
Igbo. AfriCOMET-STL (translation performance)
more than doubles for all three languages, exceed-
ing SOTA (Gemini) on Igbo.

Low-Resource Potential: These results demon-
strate that, even with moderate in-domain data,
open-source speech LLMs can be rapidly adapted
for African languages using PEFT, offering a viable
path for local teams.

4.5 Error Analysis

Verbatim vs. Paraphrase: Multimodal models
frequently paraphrase or summarize rather than
provide exact transcriptions (Figure 1), which is
unsuitable for many ASR use cases. In contrast,
unimodal ASR models are more likely to attempt
verbatim output, albeit with higher rates of inser-

tion and substitution errors on low-resource lan-
guages.

Example 1 [Af]: Paraphrasing and Audio Description
Reference: Adana spoke with doctor
Qwen2-Audio: A woman is saying Adana spoke with doctor

Example 2 [Parl.]: Content Description

Reference: We had legislation in front of this house to push
down funds to the lowest levels of service delivery in the
counties, namely the wards. What we have discussed this
morning is that a lot of areas are against.

GPT Audio: The audio content discusses legislation aimed to
allocate funds to the lowest levels of service delivery in
counties, specifically the wards. It indicates that there is some
disagreement or istance to this approach in various areas.

Figure 1: Examples of paraphrasing and audio descrip-
tion.

Hallucinations: Both Whisper and Canary some-
times hallucinate content—repeating text or filling
silent segments with unrelated words as shown in
Figure 2. Multimodal models are prone to “help-
ful” completions (Figure 2), such as generating
plausible answers to questions not present in the
audio.

Contextual Mistranslations: In AST tasks, mul-
timodal models occasionally substitute synonyms



Whisper ~ Whisper SeamlessM4T Gpt-4o Gemini-2.0
Language Canary 1b medium large-v3 Qwen2.5 Large-v2 audio-preview flash
Afrikaans - 0.57 0.65 - 0.73 0.71 0.80
Akan - - - - - 0.34 0.38
Ambaric - 0.23 0.27 - 0.64 0.42 0.79
Arabic - 0.65 0.70 - 0.80 0.81 0.85
French 0.65 0.70 0.73 0.80 0.79 0.78 0.80
Fulani - - - - 0.19 0.30 0.35
Ga - - - - - 0.24 0.29
Hausa - 0.16 0.19 - 0.17 0.37 0.65
Igbo - - - - 0.25 0.29 0.37
Kinyarwanda - - - - - 0.29 0.54
Luganda - - - - 0.57 0.47 0.59
Pedi - - - - - 0.31 0.39
Sesotho - - - - 0.23 0.35 0.50
Shona - 0.18 0.21 - 0.73 0.47 0.61
Swahili - 0.32 0.42 - - 0.76 0.81
Tswana - - - - 0.56 0.32 0.46
Twi - - - - 0.41 0.33 0.32
Xhosa - - - - - 0.35 0.66
Yoruba - 0.18 0.20 - - 0.36 0.49
Zulu - - - - - 0.40 0.71
Table 6: AfriComet-STL scores across the languages for each model. "—" means the language is not supported by
the model. The highlighted scores are the best score per language
Whisper  Whisper MMS-1b  Seamless-M4T-v2 Gpt-4o Gemini-2.0
Language | medium large-v3 all Large audio-preview flash Qwen2.5
Hausa 186.23 96.99 39.37 - 119.74 52.16 126.81
Igbo - - 48.81 66.27 117.84 87.32 198.68
Yoruba 213.41 97.51 44.05 44.62 107.25 78.46 120.84

Table 7: Transcription WER % for each model-language pair on the NaijaVoices subset of the Multilingual
African Speech transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the

language is not supported by the model.

ASR (WER) AST (STL)
Language
Base Finetuned Base Finetuned
Hausa 126.81 50.54 0.19 0.39
Igbo 198.68 42.41 0.18 0.54
Yoruba 120.84 71.29 0.20 0.29

Table 8: Qwen-Omni2 ASR (WER score) and AST
(AfriComet-STL) Performance Before and After Fine-
Tuning

or miss important words (Figure 3), produc-
ing contextually plausible but non-literal transla-
tions—highlighted by AfriCOMET-STL (Figure 6,
which better captures adequacy than BLEU alone.

Noise Sensitivity: All models suffer from de-
graded output under overlapping speech and real-
world noise, with frequent failures to segment
speakers or filter background sounds, indicating
model’s failure to adequately generalize to real-

world spontaneous speech.

4.6 Implications for Inclusive Voice
Technology

Our findings have clear implications for imple-
menters, researchers, and product teams:

Model Selection: For applications requiring
exact transcription—such as legal or medical
records—unimodal ASR models remain preferable
where they support the target language. However,
for conversational interfaces or translation tasks, re-
cent multimodal LLMs (e.g. Gemini) offer broader
language coverage and better semantic translation,
even in low-resource settings.

Fine-Tuning Value: The dramatic improvements
achieved with PEFT fine-tuning on Qwen2.5-Omni
(Figure 8) highlight a promising pathway for
African NLP practitioners. Moderate, domain-
specific datasets can unlock substantial gains, mak-



Example 1: Background Noise

Reference: Uso wao ni kijvu zaidi kuliko mvesui.

Whisper Large-v3: kwa hivyo kwa hivo kw hivyo kwa hivyo kwa
hivyo kwa hivyo kwa hivyo kwa hivyo kwa hivyo kwa hivyo kwa
hivyo kwa hivyo kwa hivyo kwa hivyo kwa hivyo kwa hivyo kwa
hivyo kwa hivyo kwa hivyo kwa hivyo.

Example 2: Word substitution

Reference: A adalai Hausawa ana ywa yara masu kaciya a cikin
sa safar bakaahwi.

Gemini2.0: A daddare Hausawa ana yiwa yara masu kaciya in
san ke shakar bakwai.

Example 3: Wrong language

Reference: awon obinrin naa na je isu.

GPT-Audio (French): malheureusement je ne peux pas repondre
a des questions ou identifier des locuteurs a partir d’un
echantillon vocal.

Translated to English: Unfortunately, | cannot answer questions
or identify speakers from a voice sample.

Figure 2: Examples of oscillations, hallucination, word
substitutions, and language mismatch in ASR outputs
from unimodal and multimodal models.

Example 1: Altered meaning

Reference: be careful not to allow fabric to become
too hot which can cause shrinkage or in extreme
cases scorch

SeamlessM4T-v2: be careful not to overheat the
cloth which can cause itching or burniif it is to thick

Example 2: Altered meaning

Reference: on 15 august 1940 the allies invaded
southern france the invasion was called operation
dragoon

Whisper L.: name of the operation was given to the
king in 1940 and was first introduced in southern
france it was later called operation dragon

Figure 3: Examples of altered meaning AST outputs
from unimodal and multimodal models.

ing open-source LLMs much more practical for
local deployment.

Benchmark Relevance: Our analysis under-
scores the need for modern, representative bench-
marks like AfriVox. Results on older datasets
(e.g., CommonVoice, NCHLT) often overestimate
model performance due to likely benchmark con-
tamination; newer, more challenging datasets like
AfriSpeech-200 and Afrispeech-Parliamentary ex-
pose the true generalization gap.

Language and Accent Prioritization: Error pat-
terns suggest that models benefit from balanced,
accent-diverse training and evaluation data. De-
velopers should prioritize expanding coverage of
dialects and spontaneous speech, not just major
languages.

5 Conclusion

This work introduces AfriVox, the first compre-
hensive benchmark designed to evaluate both uni-
modal and multimodal speech LL.Ms on African
languages and accented English, directly address-
ing the urgent need for evidence-based guidance
as voice-driven Al proliferates across Africa. Our
systematic comparison of state-of-the-art models
reveals that, despite recent advances, major gaps
persist in model accuracy, language support, and
robustness—particularly for spontaneous speech,
diverse dialects, and real-world conditions.

Through the aggregation and curation of both
new and existing datasets, AfriVox enables
transparent, reproducible performance assessment
across 20 languages and over 100 accents, setting
a new standard for evaluating voice Al inclusiv-
ity in low-resource settings. Our results show that
while unimodal ASR remains the best choice for
verbatim transcription, recent multimodal LLMs
have expanded the reach of automatic translation,
offering broader language support and more seman-
tically faithful outputs—especially when coupled
with moderate, targeted fine-tuning.

The practical significance of this work is sub-
stantial. By detailing which models are robust for
which languages and tasks, AfriVox provides ac-
tionable evidence for implementers, NGOs, and
governments deploying LLM-powered applica-
tions, for example, in healthcare, legal services,
financial inclusion, and education. Our findings
highlight that open-source, parameter-efficient fine-
tuning is a feasible path to unlocking local lan-
guage support with manageable resources. Most
importantly, AfriVox lays the foundation for data-
driven progress and greater linguistic equity as
LLM-powered voice applications scale across the
continent.

Limitations

While AfriVox makes an important step toward rig-
orous, inclusive benchmarking for African speech
technologies, several methodological constraints
should be noted:

Dataset Representation: Although AfriVox cov-
ers more African languages and accents than prior
work, many of Africa’s 2,000+ languages remain
unrepresented or covered by small sample sizes.
Dialectal and spontaneous speech diversity is still
far from exhaustive.

Benchmark Contamination: Some older public



datasets (e.g., CommonVoice, NCHLT) may over-
lap with pretraining data for popular models, possi-
bly inflating apparent model performance relative
to unseen, truly out-of-domain audio. Our results
on newly-curated datasets are more reliable but still
limited by size and scope.

Evaluation Scope: Most evaluations focus on
transcription and direct audio-to-English transla-
tion. We do not benchmark the full range of speech
LLM multimodal abilities (e.g., dialog, spoken
question answering), nor do we exhaustively test
different prompting strategies or task configura-
tions due to compute constraints.

Fine-Tuning Experiments: Our parameter-
efficient fine-tuning is limited to three Nigerian
languages, using moderate (not minimal) amounts
of labeled data. Results may not generalize to ultra-
low-resource languages or domains with dramati-
cally less data available.

Noise and Real-World Testing: While AfriVox
includes challenging real-world audio, our robust-
ness analysis is not exhaustive. Further work
should explore adversarial noise, code-switching,
and multi-speaker dialog in more depth.

Despite these constraints, AfriVox establishes
a practical and extensible blueprint for ongoing
evaluation and improvement of speech and text
LLMs in Africa. We hope this work will catalyze
further open data sharing, community-driven eval-
uation, and development of voice Al systems that
genuinely serve Africa’s linguistic diversity.
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A Appendix

A.1 Automatic Speech Recognition
A.1.1 ASR Prompts

For automatic speech recognition (ASR), we eval-
uate three prompting strategies. The first employs
a simple instruction: “Transcribe this audio.” The
second includes language specificity: “Transcribe
the entire audio in {source_language}.” The third is
a few-shot variant of the second prompt, which pro-
vides two audio-transcription exemplars as demon-
strations to guide the model’s output.

A.2 Automatic Speech Translation

A.2.1 AST Prompting Strategies
We evaluate three AST prompting strategies:

1. Zero-shot translation:
“Given audio in {source_language}, trans-
late to English.”

. Zero-shot transcriptiontranslation:
“Given audio in {source_language}, first
transcribe the speech, then translate the tran-
script into English.”

. Few-shot variants:
For each of the above prompts, we prepend
two example audio—translation pairs to pro-
vide in-context demonstrations of the desired
behavior.

We found the Zero-shot transcriptiontranslation
gives the best result as it encourages the model
to understand the audio by first transcribing, before
attempting to translate.

A.2.2 Performance Across Sources
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Whisper  Whisper MMS-1b  SeamlessM4T-v2 Gpt-4o Gemini-2.0
Language | medium large-v3 all Large audio-preview flash
Afrikaans 44.49 30.93 26.48 18.64 32.20 13.77
Ambharic 441.81 205.81 34.71 86.45 118.45 19.10
Arabic - 11.06 36.28 9.29 6.64 4.42
Fulani - — 56.78 — 157.03 74.62
Hausa 158.21 86.13 31.39 — 100.85 34.92
Igbo - - 44.60 102.95 110.63 66.07
Luganda - - 45.77 37.62 89.34 52.98
Pedi - - 31.29 — 110.12 90.11
Shona 222.30 116.51 29.60 76.46 97.43 54.45
Swahili 99.04 41.51 22.22 11.98 29.92 12.37
Xhosa - - 44.58 — 124.79 56.94
Yoruba 204.21 87.18 34.29 31.03 82.98 42.04
Zulu - - 40.30 50.56 110.88 32.03
Table 9: WER % for each model-language pair on the FLEURS subset of the Multilingual African Speech
transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is not
supported by the model.
Whisper ~ Whisper  MMS-1b SeamlessM4T-v2 GPT-40 Gemini-2.0
Language Canary 1b  medium large-v3 all Qwen2.5 Large audio-preview flash
Afrikaans - 52.54 32.7 36.99 - 14.69 47.48 17.64
Akan - - - 62.90 - - 103.97 76.53
Arabic - 45.74 33.10 75.29 - - 32.76 23.67
French 13.14 16.32 10.65 41.74 24.00 16.80 12.11 8.02
Hausa - 129.55 93.68 43.22 - - 125.96 39.55
Igbo - - - 53.61 - 68.97 104.18 77.30
Kinyarwanda - - - 46.65 - - 134.26 65.19
Pedi - - - 46.67 - - 124.27 76.72
Sesotho - - - - - - 172.76 77.59
Shona - 150.31 101.27 32.33 - 75.46 80.30 45.04
Swahili - 112.09 48.11 34.17 - 18.87 42.74 16.30
Tswana - - - - - - 135.98 72.81
Twi - - - 50.55 - - 102.58 80.66
Xhosa - - - 43.62 - - 122.86 46.54
Yoruba - 157.12 88.98 43.05 - 30.44 134.79 54.02
Zulu - - - 48.41 - 52.49 129.38 35.19

Table 10: WER % for each model-language pair on the Intron-AfriVox subset of the Multilingual African
Speech transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is
not supported by the model.

Whisper Whisper MMS-1b  Seamless-M4T-v2 Gpt-4o Gemini-2.0

Language | medium large-v3 all Large audio-preview flash

Ambharic 427.57 155.51 76.16 23.94 280.17 280.17

Swahili 132.67 73.47 40.56 26.39 93.58 93.58
Table 11: WER % for each model-language pair on the ALFFA subset of the Multilingual African Speech
transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is not
supported by the model.
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Canary Whisper ~ Whisper = MMS-1b Seamless-M4T-v2 Gpt-4o Gemini-2.0
Language 1b medium large-v3 all Qwen Large audio-preview flash

French ‘ 5.49 7.69 11.10 2453  24.00 14.82 34.55 12.67

Table 12: WER % for each model-language pair on the OpenSLR subset of the Multilingual African Speech
transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is not
supported by the model.

MMS-1b Gpt-4o Gemini-2.0

Language all audio-preview flash

Akan 77.78 133.33 94.44
Ga - 172.73 114.55
Twi 75.00 184.38 150.00

Table 13: WER % for each model-language pair on the Ashesi Financial Inclusion subset of the Multilingual
African Speech transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the
language is not supported by the model.

Whisper  Whisper MMS-1b  Seamless-M4T-v2 Gpt-4o- Gemini-2.0
Language medium large-v3 all Large audio-preview flash
Afrikaans 52.30 37.65 27.09 13.80 57.07 17.55
Ambharic 513.92 183.28 52.69 92.51 183.54 130.17
Arabic 36.24 18.33 27.66 68.27 31.73 11.94
Hausa 270.36 91.49 27.20 - 109.09 40.53
Igbo - - 60.71 42.86 246.43 82.14
Kinyarwanda - - 32.75 - 136.35 84.26
Luganda - - 28.51 15.97 132.04 80.73
Swahili 120.74 71.30 24.50 14.11 92.47 26.33
Twi - - 57.53 - 123.29 93.15
Yoruba 294.01 99.43 38.63 39.91 96.48 103.57

Table 14: WER % for each model-language pair on the Common Voice subset of the Multilingual African
Speech transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is
not supported by the model.

Whisper- ~ Whisper MMS-1b  Seamless-M4T-v2 Gpt-4o Gemini-2.0
Language | medium large-v3 all Large audio-preview flash
Afrikaans 99.00 68.31 71.32 25.01 151.50 48.94
Pedi — - 42.03 - 119.29 90.75
Sesotho - - - - 133.43 104.33
Tswana - - - - 127.82 85.19
Xhosa — - 31.93 — 171.43 56.70
Zulu — - 28.10 56.43 208.26 44.64
Table 15: WER % for each model-language pair on the NCHLT subset of the Multilingual African Speech
transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is not
supported by the model.
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Whisper  Whisper MMS-1b  Seamless-M4T-v2 Gpt-4o Gemini-2.0
Language | medium large-v3 all Large audio-preview flash
Hausa 112.01 102.16 39.37 — 110.46 104.58
Twi — - — 51.53 89.81 78.04
Yoruba 118.50 106.66 24.63 27.23 84.70 44.94
Table 16: WER % for each model-language pair on the BibleTTS subset of the Multilingual African Speech
transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is not
supported by the model.
Language Metric Fluency » Adequacy r
Akan BLEU -0.09 0.58
ChrF -0.24 0.68
AfriComet-STL 0.07 0.61
Igbo BLEU 0.10 0.63
ChrF -0.11 0.69
AfriComet-STL -0.04 0.93
Pedi BLEU 0.05 0.78
ChrF 0.26 0.68
AfriComet-STL 0.38 0.61
Shona BLEU 0.38 0.44
ChrF 0.48 0.73
AfriComet-STL 0.67 0.86
Swahili BLEU 0.43 0.47
ChrF 0.56 0.70
AfriComet-STL 0.67 0.76
Twi BLEU 0.43 0.34
ChrF 0.44 0.36
AfriComet-STL 0.52 0.60
Yoruba BLEU 0.30 0.61
ChrF 0.40 0.76
AfriComet-STL 0.47 0.70
Average BLEU 0.23 0.52
ChrF 0.40 0.66
AfriComet-STL 0.48 0.70

Table 17: Pearson correlations () between automatic metrics and human evaluations of fluency and adequacy for
automatic speech translation.
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Whisper  Whisper SeamlessM4T Gpt-40 Gemini-2.0
Language Canary 1b medium large-v3 Qwen2.5 Large-v2 audio-preview flash
Afrikaans - 19.39 23.2 - 27.62 31.59 38.76
Akan - - - - - 2.44 5.15
Ambaric - 0.8 0.71 - 15.61 4.2 24.88
Arabic - 17.97 20.34 - 27.69 31.06 34.68
French 24.46 27.39 28.92 41.40 33.38 41.27 43.57
Fulani - - - - 0.58 1.05 241
Ga - - - - - 0.49 1.06
Hausa - 0.71 0.71 - 0.31 6.23 21.06
Igbo - - - - 1.92 297 5.82
Kinyarwanda - - - - - 1.99 10.91
Luganda - - - - 15.97 1.77 13.79
Pedi - - - - - 3.19 6.34
Sesotho - - - - - 4.11 11.23
Shona - 0.4 0.52 - 2.11 6.78 12.56
Swahili - 2.84 5.47 - 23.27 26.78 32.62
Tswana - - - - - 3.72 9.59
Twi - - - - - 2.83 2.48
Xhosa - - - - - 4.71 19.9
Yoruba - 0.24 0.37 - 14.39 4.89 11.77
Zulu - - - - 8.17 6.57 229

Table 18: BLEU scores for each model-language pair on the Multilingual African Speech translation dataset;
the highest (best) BLEU score per language is shown in bold. "-" indicates the language is not supported by the
model.

Gemini-2.0 ~ GPT-4o SeamlessM4T-v2 ~Whisper  Whisper
Language flash audio-preview Large Large  Medium Canary-1b Qwen2.5
Afrikaans 64.33 56.39 56.13 50.33 45.58 - -
Akan 29.86 25.01 - - - - -
Ambharic 56.62 29.62 43.48 17.06 13.57 - -
Arabic 63.10 59.26 55.53 47.85 44.38 - -
French 66.56 64.40 63.72 58.61 57.19 54.12 64.94%
Fulani 27.56 23.82 16.25 - - - -
Ga 20.08 19.09 - - - - -
Hausa 48.48 29.81 13.47 13.29 7.78 - -
Igbo 32.10 25.40 18.52 - - - -
Kinyarwanda 37.69 23.62 - - - - -
Luganda 44.23 35.56 44.21 - - - -
Pedi 34.63 27.51 - - - - -
Sesotho 38.00 26.71 - - - - -
Shona 42.07 33.56 21.65 15.59 12.76 - -
Swahili 61.74 55.90 53.39 30.00 22.13 - -
Tswana 35.52 25.11 - - - - -
Twi 24.22 23.15 - - - - -
Xhosa 48.82 28.54 - - - - -
Yoruba 38.45 28.37 40.53 14.29 10.45 - -
Zulu 52.76 31.54 32.79 - - - -

Table 19: CHrF scores for each model-language pair on the Multilingual African Speech translation dataset;
the highest (best) CHrF score per language is shown in bold. "-" indicates the language is not supported by the
model.
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Gemini-2.0 GPT-40 SeamlessM4T-v2 Whisper Whisper
Language flash audio-preview Large Large Medium

BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF

Ambharic 29.44 62.09 5.60 3325 2124 50.16 1.20 19.06 1.08 16.30
Arabic 33.25 6644 30.66 63.85 33.86 62.88 18.83 5045 18.07 48.54

Fulani 241 27.56 1.05 23.82 0.58 16.25 - - - -
Hausa 17.68 50.09 6.07 34.25 0.48 16.79 0.16 15.18 0.22 10.13
Igbo 554 3491 248 2737 1.17 17.99 - - - -
Luganda 13.79 44.23 7.77 3556 1597 44.21 - - - -
Pedi 6.30 36.41 295 28.84 - - - - - -
Shona 12.20 43.54 6.15 34.43 2.67 25.44 0.79 17.46 0.55 14.62

Swahili 30.70 62.10 23.89 5524 2841 57.03 448 29.04 2.54 20.40
Xhosa 20.09 51.51 4.19 29.77 - - - - - -
Yoruba 10.21 40.15 423 30.70 13.25 41.04 0.62 16.73 0.41 1220
Zulu 21.54 53.45 5.86 33.00 7.67 34.19 - - - -

Table 20: BLEU & CHTrF scores for each model-language pair on the FLEURS subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHrF score per language is shown in bold with

the CHrF score further underlined. "-" indicates the language is not supported by the model.
Gemini-2.0 GPT-40 SeamlessM4T-v2 ~ Whisper Whisper

Language flash audio-preview Large Large Medium

BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF
Afrikaans 38.76 6433 31.59 5639 27.62 56.13 2320 5033 1939 45.58
Akan 515 29.86 244 25.01 - - - - - -
Ambharic 1645 45.29 1.39 22.12 6.07 29.50 0.12  13.29 0.31  7.98
Arabic 2475 55.28 2198 52.07 15.99 4495 13.55 41.54 10.78 36.94
French 3249 60.96 28.99 5745 20.07 50.06 2395 5337 2131 51.01
Ga 1.06 20.08 0.49 19.09 - - - - - -
Hausa 23.18 48.70 6.48 28.76 0.19 11.88 0.16 12.52 0.15 634
Igbo 5.69 29.50 2.99 23.62 2.05 17.18 - - - -
Kinyarwanda | 10.91 37.69 1.99 23.62 - - - - - -
Pedi 6.40 31.04 3.61 2481 - - - - - -
Sesotho 11.23 38.00 4.11 26.71 - - - - - -
Shona 12.98 40.15 7.55 3242 1.15 16.26 0.23 1334 0.25 10.40
Swahili 3045 58.71 2352 5143 19.82 49.07 6.51 30.33 4.00 21.80
Tswana 9.59 35.52 3.72 25.11 - - - - - -
Twi 248 24.22 2.83 23.15 - - - - - -
Xhosa 19.76 46.48 511 27.47 - - - - - -
Yoruba 14.37 39.68 5.61 27.77 14.01 40.44 0.11 12.72 0.08  8.35
Zulu 24.01 52.14 7.17  30.20 8.60 31.48 - - - -

Table 21: BLEU & CHTrF scores for each model-language pair on the Intron-AfriVox subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHrF score per language is shown in bold with
the CHrF score further underlined. "-" indicates the language is not supported by the model.
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Language ‘ Canarylb Qwen2.5
| BLEU CHrF BLEU CHIrF
French | 1378 4446 4140 64.94

Table 21: BLEU & CHTrF scores for each model-language pair on the Intron-AfriVox subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHrF score per language is shown in bold with
the CHrF score further underlined. "-" indicates the language is not supported by the model.

GPT-40-audio ~ SeamlessM4T Whisper Whisper Qwen

Language Gemini preview v2 Large Large Medium Omni
BLEU ChrF BLEU ChrF BLEU ChrFf BLEU ChrF BLEU ChrF BLEU  ChrF
Hausa 19.15 44.84 5.61 2534 0.17 12.69 0.17 12.52 0.11  8.29 0.25 13.19
Igbo 6.97 28.67 435 2291 422 2280 - - - - 026 12.59
Yoruba 9.92 3257 488 2432 16.34 39.61 0.11 11.52 0.11 10.33 024 13.12

Table 22: BLEU and ChrF scores for each model-language pair on the NaijaVoices subset of the Multilingual
African Speech Translation dataset. The highest (best) BLEU and ChrF score per language is shown in bold, with

the ChrF score further underlined. “~” indicates the language is not supported by the model.
Gemini-2.0 GPT-4o SeamlessM4T-v2 Whisper Whisper
Language flash audio-preview Large Large Medium

‘BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF
Swabhili ‘ 37.22 65.60 33.74 6225 25.15 57.15 432 30.09 1.68 23.38

Table 23: BLEU & CHrF scores for each model-language pair on the IWSLT_LRST subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHrF score per language is shown in bold with
the CHrF score further underlined. "-" indicates the language is not supported by the model.

Gemini-2.0 GPT-40 SeamlessMA4T-v2 Whisper Whisper
Language flash audio-preview Large Large Medium

BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF

Arabic 51.72  70.78 4597 6450 37.07 62.11 3092 54.18 28.03 5048
French 44.40 6691 42.19 64.83 3435 64.56 29.32 5898 27.84 57.57

Table 24: BLEU & CHTrF scores for each model-language pair on the Covost subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHIrF score per language is shown in bold with
the CHrF score further underlined. "-" indicates the language is not supported by the model.

Language ‘ Canary-1b QWEN
| BLEU CHrF BLEU CHIiF
French ‘ 25.03 5472 41.40 64.94

Table 24: BLEU & CHrF scores for each model-language pair on the Covost subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHrF score per language is shown in bold with
the CHrF score further underlined. "-" indicates the language is not supported by the model.
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