
AfriVox: Probing Multilingual and Accent Robustness of Speech LLMs

Anonymous ACL submission

Abstract001

Recent advances in multimodal and speech-002
native large language models (LLMs) have de-003
livered impressive speech recognition, trans-004
lation, understanding, and question-answering005
capabilities for high-resource languages. How-006
ever, African languages and non-native French007
or English accents remain dramatically under-008
represented in benchmarks limiting the under-009
standing and applicability of leading LLMs010
for millions of francophone and anglophone011
users in low-resource settings. We presents012
AfriVox, an open-source benchmark (including013
novel domain-specific and unscripted datasets)014
across 20 African languages, African-accented015
French, Arabic, and 100+ African English ac-016
cents, contrasting leading multimodal speech017
LLMs with traditional unimodal automatic018
speech transcription (ASR) and translation019
(AST) models. Our analysis reveals significant020
language coverage variation, surprising LLM021
translation performance gains (e.g. Gemini), ro-022
bustness concerns with unscripted speech, and023
substantial performance disparities for "sup-024
ported" African languages. We profile the025
strengths, limitations, and language support of026
each model, and conduct the first targeted fine-027
tuning of a modern speech LLM (Qwen2.5-028
Omni) for three Nigerian languages, exceeding029
SOTA, and achieving up to 54% relative WER030
reduction and significant BLEU gains, offering031
practical guidance for implementers seeking to032
serve local language users.033

1 Introduction034

The transformative impact of LLMs in global035

technology—especially speech-enabled and mul-036

timodal LLMs—has opened new frontiers for037

human-computer interaction (AlSaad et al., 2024).038

Major recent breakthroughs, such as OpenAI’s039

GPT-4o (Hurst et al., 2024), Google Gemini040

(Google DeepMind, 2024), and Meta’s Seam-041

lessM4T (Barrault et al., 2023), have enabled voice-042

based applications that promise to make informa-043

tion and services more accessible, especially in 044

regions where text literacy and high-resource lan- 045

guage proficiency may be limiting factors (Peng 046

et al., 2025). 047

Across Africa, LLM-powered systems are al- 048

ready being deployed in sectors like health, agri- 049

culture, and financial inclusion, operating in large 050

languages via text interfaces (Olatunji et al., 2023; 051

Nazi and Peng, 2024; Al-Garadi et al., 2025). 052

However, as voice-native and multilingual LLMs 053

have rapidly improved (Bai et al., 2024; Google 054

DeepMind, 2024), technology implementers across 055

Africa are eager to shift towards more natural, re- 056

latable, and intuitive speech-driven interfaces that 057

truly reflect users’ language preferences and lin- 058

guistic diversity (Sanni et al., 2025). 059

Despite this demand, no comprehensive bench- 060

mark exists that systematically evaluates mod- 061

ern speech LLMs on African languages and ac- 062

cents (Adelani et al., 2025; Ojo et al., 2025). Ex- 063

isting benchmarks such as MLS, mSTEB, Nai- 064

jaVoices, and ML-SUPERB 2.0 include very lim- 065

ited African language coverage and lack recent 066

domain-specific, real-world unscripted speech, es- 067

pecially for emerging LLM architectures (Pratap 068

et al., 2020a; Beyene et al., 2025; Emezue et al., 069

2025; Shi et al., 2024). Most performance claims 070

are based on high-resource languages, providing 071

little actionable guidance to African technology 072

teams deciding whether to trust LLMs for local 073

deployment (Reid et al., 2021). 074

To bridge this gap, we introduce AfriVox, a uni- 075

fied benchmark suite aggregating and extending 076

multiple African speech datasets and releasing two 077

novel datasets covering parliamentary speech from 078

4 countries and health-focused conversations in 079

20 African languages. We use AfriVox to answer 080

two critical questions for implementers: (1) Which 081

speech LLMs reliably support certain African lan- 082

guages and (2) How do leading multimodal LLMs 083

compare with traditional leading ASR/AST models 084
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on understanding realistic African speech? Should085

implementers switch from unimodal ASR models086

to LLMs? Our contributions are as follows:087

• We curate and open-source AfriVox, the most088

comprehensive benchmark to date for African089

language ASR and AST, with detailed lan-090

guage support analysis.091

• We open-source 2 novel datasets under092

a CC-BY-NC-SA license: Afrispeech-093

Parliamentary, transcribed accented-English094

parliamentary proceedings from 4 African095

countries; and Afrivox-Medical, a health-096

focused read-speech translation and transcrip-097

tion dataset in 19 African languages.098

• We conduct the first systematic, reproducible099

evaluation of state-of-the-art speech LLMs100

and unimodal models across 20 languages and101

100+ English, French, and Arabic accents.102

• We provide detailed error analysis and prac-103

tical guidance, including fine-tuning experi-104

ments with Qwen2.5-Omni on major Nigerian105

languages using only moderate data.106

By clarifying the current capabilities and limi-107

tations of speech LLMs on African languages, we108

aim to empower both researchers and implementers109

to build more equitable language technology.110

2 Related works111

Recent years have seen remarkable progress in112

speech and multimodal large language models113

(LLMs) (Yu et al.), driven by advances in self-114

supervised learning, scaling laws, and reinforce-115

ment learning techniques (Ghosh et al., 2024).116

However, these improvements have dispropor-117

tionately benefited high-resource languages, with118

African languages still underrepresented in both119

model training and evaluation (Adelani et al., 2025;120

Ojo et al., 2025).121

Multilingual Speech Benchmarks: Bench-122

marks such as MLS (Multilingual LibriSpeech)123

(Pratap et al., 2020a), mSTEB (Beyene et al.,124

2025), and ML-SUPERB 2.0 (Shi et al., 2024)125

have provided valuable evaluation resources, but126

offer limited coverage of African languages, and127

their data is primarily read speech or synthetic128

in nature. ML-SUPERB 2.0 and mSTEB in129

particular have improved multilingual evaluation130

rigor, yet it covers only a handful of African131

languages and lacks representation of diverse 132

accents and real-world conversational domains 133

(Pratap et al., 2020a). Our benchmark, AfriVox, 134

addresses these gaps by including (a) a broader 135

and more granular set of African languages and 136

accents, (b) domain-specific, real-world audio 137

(e.g., parliamentary sessions, healthcare dialogues), 138

and (c) explicit evaluation of both unimodal and 139

state-of-the-art multimodal LLMs. 140

Speech and Multimodal LLMs: Large-scale 141

unimodal models such as Whisper (Radford et al., 142

2023a), MMS (Denisov and Vu, 2024), and Para- 143

keet (Galvez et al., 2024) have demonstrated robust 144

speech recognition performance in high-resource 145

settings, but their reliability in African language 146

tasks remains largely anecdotal (Ojo et al., 2025). 147

Recent multimodal models—including Google Au- 148

dioPaLM (Rubenstein et al., 2023), Meta Seam- 149

lessM4T (Barrault et al., 2023), Qwen-Audio (Chu 150

et al., 2024), and Gemini (Google DeepMind, 151

2024)—promise to unify speech, text, and transla- 152

tion tasks, but have yet to be systematically bench- 153

marked on African data (Adelani et al., 2025). 154

Parameter-Efficient Fine-Tuning (PEFT): 155

Scaling LLMs for downstream tasks in low- 156

resource settings can be prohibitively expensive. 157

PEFT approaches such as LoRA (Karimi Mahabadi 158

et al., 2021), Adapters (Han et al., 2024), and 159

QLoRA (Dettmers et al., 2023) enable practical 160

model adaptation by training only a small subset 161

of parameters. However, most prior studies have 162

focused on high-resource or Asian languages (Bai 163

et al., 2024); little is known about their impact on 164

speech LLMs for African contexts (Emezue et al., 165

2025). 166

African Speech Datasets: Public African speech 167

corpora—including NCHLT (Barnard et al., 2014), 168

CommonVoice (Ardila et al., 2020), and FLEURS 169

(Conneau et al., 2023)—have played a vital role, 170

but coverage, accent diversity, and domain rele- 171

vance remain limited. Recent datasets such as 172

AfriSpeech (Olatunji et al., 2025) and NaijaVoices 173

(Emezue et al., 2025) have begun to address these 174

challenges. Our work builds on and expands these 175

efforts, contributing new datasets and a unified 176

benchmark for comprehensive, reproducible evalu- 177

ation. 178

Distinctive Contributions: To our knowledge, 179

this work is the first to 1) Aggregate and com- 180

pare both unimodal and multimodal speech LLMs 181
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across 20+ African languages and 100+ English182

accents, 2) Include new, diverse African speech183

test sets, 3) Provide practical, data-driven guid-184

ance for implementers on the suitability of LLMs185

vs. traditional ASR for local deployment, and 4)186

Systematically analyze model performance, error187

types, and the impact of PEFT for low-resource188

African speech recognition and translation.189

3 Methodology190

Dataset Hours Speakers Accents

NCHLT 2.24 8 1
AfriSpeech-200 18.68 750 108
CV-17 En-Afr 0.11 46 9
Afrispeech-Parl 42.17 ∼1651 4

Total 63.20 ∼2455 108

Table 1: Summary of African-accented English speech
datasets.

Language Region Language Family # Speakers

Afrikaans South IndoWest (Germanic) 7.2M
Akan West Niger-Congo (Kwa) 24M
Amharic East Afro-Asiatic (Semitic) 35M
Egyptian Arabic North Afro-Asiatic (Semitic) 78M
French West Indo-European (Romance) 320M
Fula West Niger-Congo (Atlantic) 36.8M
Gaa West Niger-Congo (Kwa) 0.7M
Hausa West Afro-Asiatic (Chadic) 54M
Ibo West Niger-Congo (Volta-Niger) 31M
Kinyarwanda East Niger-Congo (Bantu) 15M
Luganda East Niger-Congo (Bantu) 5.6M
Northern Sotho South Niger-Congo (Bantu) 4.6M
Shona South Niger-Congo (Bantu) 8.4M
Southern Sotho South Niger-Congo (Bantu) 5.6M
Swahili East Niger-Congo (Bantu) 87M
Tswana South Niger-Congo (Bantu) 8.2M
Twi West Niger-Congo (Kwa) 4.4M
Xhosa South Niger-Congo (Bantu) 8M
Yoruba West Niger-Congo (Yoruboid) 45M
Zulu South Niger-Congo (Bantu) 13.6M

Table 2: Language, region, family, and number of speak-
ers.

Dataset # Langs Hours Speakers

NCHLT 6 12.75 36
CV-17 10 16.89 670
FLEURS 13 14.44 1595
OpenSLR 3 0.31 372
Bible TTS 3 0.47 3
NaijaVoices1 3 1800 5000
FISD2 3 0.05 23
AfriVox-Medical 3 19 36.63 1179

Total Hours 1878.52

Table 3: Summary of multilingual speech datasets.

3.1 Benchmark Design and Datasets 191

We design the AfriVox benchmark to evaluate 192

speech LLMs and ASR/AST models on realistic 193

African language and accent use-cases. This bench- 194

mark unifies and expands existing corpora, incor- 195

porating both new and public datasets to maximize 196

coverage and relevance. 197

3.1.1 African-Accented English Speech (AES) 198

Sources: NCHLT (Barnard et al., 2014), 199

AfriSpeech-200 (Olatunji et al., 2025), Common 200

Voice 17 (Ardila et al., 2020)(filtered for African 201

accents), and a newly-curated AfriSpeech-Parl 202

dataset 1 with transcribed Parliamentary Proceed- 203

ings from 4 African countries (Ghana, Kenya, 204

Nigeria, and South Africa). 205

Coverage: Over 63 hours, 2,000+ speakers, 12 206

countries, and 108 distinct African English accents 207

(Table 1). 208

Curation: Common Voice was filtered using 209

speaker metadata and manual accent validation. 210

Parliamentary recordings were transcribed and 211

quality-controlled by native speakers; only utter- 212

ances with >80% reviewer ratings were included. 213

3.1.2 Multilingual African Speech (MLS) 214

Sources: Existing open source transcription 215

datasets–NCHLT, Common Voice 17 (filtered for 216

African languages), FLEURS (Conneau et al., 217

2023), OpenSLR, BibleTTS (Meyer et al., 2022), 218

NaijaVoices(Emezue et al., 2025)–and newly- 219

curated AfriVox-Medical3, a health-related read- 220

speech multilingual translation and transcription 221

dataset of simulated text conversations across 20 222

languages). 223

For translation, we include FLEURS, CoVoST 224

(Wang et al., 2020), NaijaVoices, IWSLT-LRST 225

(Cettolo et al., 2017), and AfriVox-Medical3. 226

Coverage: 20 languages across 7 datasets, 227

8,000+ speakers, >1,800 hours of audio (Tables 2 228

and 3). Coverage includes both high-population 229

and low-resource languages, and features diverse 230

linguistic families (Niger-Congo, Afro-Asiatic, 231

etc.). 232

1https://huggingface.co/datasets/naijavoices/
naijavoices-dataset

2https://github.com/Ashesi-Org/
Financial-Inclusion-Speech-Dataset

3URL to be added after anonimity period
4URL to be added after anonimity period
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Ethics and Quality: All audio files are mono-233

channel WAV at 16kHz. All data is either open-234

source or collected with explicit consent. New235

data is transcribed and quality-checked by native236

speakers. All contributors and reviewers were fairly237

compensated via a crowdsourcing platform5.238

3.2 Models Evaluated239

We benchmarked a mix of unimodal and multi-240

modal models:241

Unimodal ASR: Canary (Puvvada et al., 2024),242

Parakeet (NeMo and Suno.ai, 2023), Whisper243

(Medium/Large) (Radford et al., 2023b), MMS244

(with/without language adapters) (Pratap et al.,245

2024)246

Unimodal AST [X->En]: Whisper, MMS247

Multimodal LLMs: Meta SeamlessM4T248

(Aharoni et al., 2019), Google Gemini-2.0-249

Flash(Google DeepMind, 2024), OpenAI GPT-4o250

(OpenAI et al., 2024), Alibaba Qwen2.5-Omni251

(Chu et al., 2024)252

Languages supported for each language are pre-253

sented in Table 6. Models were chosen for their254

reported state-of-the-art performance, public avail-255

ability, language coverage (supporting one or more256

African languages), or relevance to real-world de-257

ployment in Africa. All were used in their pre-258

trained, off-the-shelf forms unless otherwise speci-259

fied.260

3.3 Fine-Tuning261

Data: We fine-tuned on the NaijaVoices dataset–262

1,800 hours, 5,000+ speakers, balanced by gender263

and age, spanning 3 Nigerian languages– Hausa,264

Igbo, and Yoruba.265

Model: Qwen2.5-Omni, a 10B multimodal and266

multilingual LLM was selected for PEFT due to its267

open-source availability, multilingual support, and268

relatively small size (compute limitations).269

Fine-tuning: We fine-tuned on four NVIDIA270

3090 GPUs with approximately 280 hours of271

speech per language, using LoRA (rank 8, alpha272

32) applied to all linear layers while freezing the273

vision encoder. We trained for three epochs us-274

ing a learning rate of 1e-4 and a warmup ratio of275

0.05 with bfloat16 precision, with a batch size of276

256. Prompt formatting details are included in the277

Appendix A278

1URL to be added after anonimity period

3.4 Evaluation 279

3.4.1 Tasks 280

Automatic Speech Recognition (ASR): Tran- 281

scribe audio into native script. 282

Automatic Speech Translation (AST): Trans- 283

late audio into English text. 284

Prompting: All models were tested with consis- 285

tent, standardized prompts (zero-shot and few-shot) 286

for fairness and reproducibility (see Appendix A 287

for details). 288

Post-processing: Outputs were normalized for 289

punctuation, casing, and diacritics to ensure com- 290

parability. 291

Reproducibility: All code, model configurations, 292

and new data will be open-sourced; results are re- 293

ported for single runs. 294

3.4.2 Metrics and Human Evaluation 295

ASR: Word Error Rate (WER) 296

AST: BLEU (Papineni et al., 2002), chrF 297

(Popović, 2015), and AfriCOMET-STL (Wang 298

et al., 2023). 299

Human Evaluation: Conducted for translation 300

quality validation and metric selection; see Ap- 301

pendix Table 17. 302

3.4.3 Addressing Benchmark Contamination 303

We note and analyze the potential for older public 304

datasets to appear in model pretraining, and explic- 305

itly distinguish between “old” (NCHLT, Common- 306

Voice) and “new” (AfriSpeech-200, Afrispeech- 307

Parl) data in analysis to measure true generaliza- 308

tion. 309

4 Results and Analysis 310

Tables 4 and 5 present the transcription results on 311

the African-Accented English Speech and Multi- 312

lingual African Speech datasets. Results presented 313

are for single runs. The results indicate that, in 314

most cases, unimodal models outperformed the 315

multimodal models. While Table 6 shows mul- 316

timodal models edges over unimodal models on 317

the speech translation task. Additionally, Table 8 318

shows the comparison between the results of the 319

base and fine-tuned Qwen 2.5 Omni model. A 320

detailed breakdown of results by individual lan- 321

guages is provided in Appendix A. We provide the 322

following analysis based on the findings from our 323

experimental results: 324
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Model Old New

Lib NC CV Af Parl

Canary 1.48 10.05 8.41 38.03 27.38
Parakeet 1.40 11.33 9.48 34.96 21.89

Whisper M 3.02 10.17 12.39 30.81 28.53
Whisper L 2.01 10.10 12.54 26.49 19.29

MMS 12.63 32.11 23.09 61.19 107.41

M4T 2.89 32.96 10.40 49.75 54.68
Gemini 3.03 14.19 13.76 28.12 21.63

GPT-Aud. 5.26 86.52 26.76 36.54 41.88
Qwen2 1.60 25.14 11.16 49.61 57.43

Table 4: Word Error Rates (WER) across African-
accented English speech data sources and Librispeech
test-clean [Lib](Panayotov et al., 2015). Af: Afrispeech,
NC: NCHLT, CV: Common Voice, Parl: Parliamentary
Proceedings. Models in the top section are unimodal
ASRs while those below are multimodal LLMs.

4.1 Widespread Variation in African325

Language and Accent Performance and326

Support327

Table 4 and 5 reveal that, despite recent advances328

and better coverage of African languages, both uni-329

modal and multimodal speech models exhibit sub-330

stantial performance gaps on African languages331

and non-native English accents when compared332

with large languages and native accents (Multilin-333

gual Librispeech). Wide variation within models334

exist, most evident with Seamless and Whisper for335

supported languages. Consistent with multilingual336

claims in its documentation, Gemini outperforms337

GPT-4o by a wide margin sometimes with 2-4x338

better WER.339

Unusually High Error Rates for Supported Lan-340

guages: On African-accented English, state-of-341

the-art unimodal ASR models (e.g., Whisper Large-342

v3) display a 10–15x increase in Word Error Rate343

(WER) compared to standard benchmarks—for ex-344

ample, WER rises from 2.0% (LibriSpeech) to345

26–38% (AfriSpeech, NCHLT). For African lan-346

guages, WERs routinely exceed 50% and, for some347

languages (e.g., Yoruba, Hausa, Swahili), surpass348

100%, despite self-reported "support" for these349

languages, indicating nearly unintelligible output.350

These results suggest that simply including African351

data in pretraining does not provide performance352

guarantees.353

Multimodal Model Language Coverage: Mul-354

timodal LLMs (e.g., Gemini, SeamlessM4T, GPT-355

4o) support more African languages than most uni-356

modal ASR/AST models and can be prompted with-357

out explicit language labels, but their accuracy of- 358

ten lags unimodal models for transcription. Seam- 359

lessM4Tv2, for example, shows particularly strong 360

results for Southern and Eastern African languages, 361

providing clues about the language distribution in 362

its training data. 363

4.2 Transcription vs. Translation: Unimodal 364

and Multimodal Model Trends 365

Transcription (ASR): As shown in Table 5, Uni- 366

modal models, especially MMS with language 367

adapters, outperform multimodal LLMs for exact 368

transcription in most African languages. Gemini 369

stands out, outperforming MMS across multiple 370

supported languages, indicating progress towards 371

more inclusive multimodal LLMs. However, with 372

WERs still over 20% for several languages and 373

accented speech, top ASR models and LLMs still 374

struggle with accent/language diversity and noisy 375

or spontaneous speech. 376

Translation (AST): Multimodal models (Table 377

6), especially Gemini and SeamlessM4T, signif- 378

icantly outperform unimodal baselines on low- 379

resource African language audio-to-English transla- 380

tion. They achieve higher BLEU and AfriCOMET- 381

STL scores, and provide more semantically faithful 382

translations, particularly on longer, context-rich 383

utterances. Appendix Table 17 shows AfriCOMET- 384

STL’s correlation with human evaluation. 385

4.3 Robustness to Real-World Speech 386

Realistic Noisy Conditions: As shown in Table 387

4 All models perform worst on the parliamentary 388

proceedings dataset, which contains high ambient 389

noise, overlapping speakers, and real-world sponta- 390

neous speech. Here, WERs for even the best mod- 391

els double relative to clean, read speech, demon- 392

strating that accented English speech transcription 393

is still an unsolved problem. MMS is most no- 394

table in this regard, with a 5x collapse in WER, 395

likely demonstrating an over-reliance on clean/read 396

speech during training. 397

Accent and Dialect Variability: Table 5 reveals 398

a consistent trend with accented French. Besides 399

GPT-4o, inclusion of accent-diverse datasets ex- 400

poses weaknesses in all models, with WER drop- 401

ping by roughly 2x. Performance is notably worse 402

on underrepresented accents and dialects—even 403

for languages like French with larger training re- 404

sources. 405
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Language Canary-1b
Whisper
medium

Whisper
large-v3

MMS-1b
all Qwen2.5

Seamless-M4T
Large-v2

Gpt-4o
audio-preview

Gemini-2.0
flash

English (M. Lib) 3.03 6.80 3.53 17.63 16.32 4.68 9.63 6.63
French (M. Lib) 4.06 8.90 5.38 19.30 10.43 6.82 22.71 5.23
Spanish (M. Lib) - - - 17.35 - 6.76 21.25 3.22

Afrikaans - 68.87 45.43 48.73 - 18.41 84.36 18.02
Akan - - - 62.92 - - 104.02 67.04
Amharic - 447.26 165.83 67.52 - 44.05 245.4 55.88
Arabic - 39.49 29.72 44.94 - 51.26 31.88 14.44
French 9.67 13.95 9.31 33.93 24.14 15.90 22.29 9.12
Fulani - - - 56.78 - 86.85 157.03 66.11
Ga - - - - - - 172.73 87.27
Hausa - 180.29 95.11 40.47 - - 118.60 38.48
Igbo - - - 50.33 - 70.03 112.23 66.68
Kinyarwanda - - - 36.73 - - 135.75 58.44
Luganda - - - 28.85 - 16.39 131.19 59.89
Pedi - - - 41.43 - - 119.29 70.69
Sesotho - - - - - - 158.21 59.30
Shona - 193.21 110.35 30.7 - 76.05 90.51 38.84
Swahili - 117.7 62.75 28.37 - 16.25 73.96 25.88
Tswana - - - - - - 133.46 54.85
Twi - - - 51.09 - - 98.86 67.13
Xhosa - - - 42.24 - - 130.79 39.32
Yoruba - 213.88 93.77 39.59 - 37.43 101.14 43.42
Zulu - - - 43.19 - 52.53 135.84 30.02

Table 5: WER (%) by model and language on the Multilingual African Speech transcription dataset. Bold
values mark the lowest (best) WER for each language. "-" indicates the language is not supported by the model.
The first section of the table shows baseline performance on Multilingual LibriSpeech (Pratap et al., 2020b)

4.4 Fine-Tuning Unlocks Substantial Gains406

Parameter-Efficient Fine-Tuning (PEFT): Ta-407

ble 7 zooms in on model performance for the 3408

languages selected for fine-tuning. Although all409

3 languages were unsupported by Qwen2.5-Omni,410

Table 8 shows that fine-tuning on just 280 hours per411

language from NaijaVoices yields a 54% reduction412

in WER and up to 21-point gains in BLEU for Igbo,413

Hausa, and Yoruba, exceeding SOTA (MMS) on414

Igbo. AfriCOMET-STL (translation performance)415

more than doubles for all three languages, exceed-416

ing SOTA (Gemini) on Igbo.417

Low-Resource Potential: These results demon-418

strate that, even with moderate in-domain data,419

open-source speech LLMs can be rapidly adapted420

for African languages using PEFT, offering a viable421

path for local teams.422

4.5 Error Analysis423

Verbatim vs. Paraphrase: Multimodal models424

frequently paraphrase or summarize rather than425

provide exact transcriptions (Figure 1), which is426

unsuitable for many ASR use cases. In contrast,427

unimodal ASR models are more likely to attempt428

verbatim output, albeit with higher rates of inser-429

tion and substitution errors on low-resource lan- 430

guages. 431

Figure 1: Examples of paraphrasing and audio descrip-
tion.

Hallucinations: Both Whisper and Canary some- 432

times hallucinate content—repeating text or filling 433

silent segments with unrelated words as shown in 434

Figure 2. Multimodal models are prone to “help- 435

ful” completions (Figure 2), such as generating 436

plausible answers to questions not present in the 437

audio. 438

Contextual Mistranslations: In AST tasks, mul- 439

timodal models occasionally substitute synonyms 440
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Language Canary 1b
Whisper
medium

Whisper
large-v3 Qwen2.5

SeamlessM4T
Large-v2

Gpt-4o
audio-preview

Gemini-2.0
flash

Afrikaans - 0.57 0.65 - 0.73 0.71 0.80
Akan - - - - - 0.34 0.38
Amharic - 0.23 0.27 - 0.64 0.42 0.79
Arabic - 0.65 0.70 - 0.80 0.81 0.85
French 0.65 0.70 0.73 0.80 0.79 0.78 0.80
Fulani - - - - 0.19 0.30 0.35
Ga - - - - - 0.24 0.29
Hausa - 0.16 0.19 - 0.17 0.37 0.65
Igbo - - - - 0.25 0.29 0.37
Kinyarwanda - - - - - 0.29 0.54
Luganda - - - - 0.57 0.47 0.59
Pedi - - - - - 0.31 0.39
Sesotho - - - - 0.23 0.35 0.50
Shona - 0.18 0.21 - 0.73 0.47 0.61
Swahili - 0.32 0.42 - - 0.76 0.81
Tswana - - - - 0.56 0.32 0.46
Twi - - - - 0.41 0.33 0.32
Xhosa - - - - - 0.35 0.66
Yoruba - 0.18 0.20 - - 0.36 0.49
Zulu - - - - - 0.40 0.71

Table 6: AfriComet-STL scores across the languages for each model. "–" means the language is not supported by
the model. The highlighted scores are the best score per language

Language
Whisper
medium

Whisper
large-v3

MMS-1b
all

Seamless-M4T-v2
Large

Gpt-4o
audio-preview

Gemini-2.0
flash Qwen2.5

Hausa 186.23 96.99 39.37 – 119.74 52.16 126.81
Igbo – – 48.81 66.27 117.84 87.32 198.68
Yoruba 213.41 97.51 44.05 44.62 107.25 78.46 120.84

Table 7: Transcription WER % for each model–language pair on the NaijaVoices subset of the Multilingual
African Speech transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the
language is not supported by the model.

Language
ASR (WER) AST (STL)

Base Finetuned Base Finetuned

Hausa 126.81 50.54 0.19 0.39
Igbo 198.68 42.41 0.18 0.54
Yoruba 120.84 71.29 0.20 0.29

Table 8: Qwen-Omni2 ASR (WER score) and AST
(AfriComet-STL) Performance Before and After Fine-
Tuning

or miss important words (Figure 3), produc-441

ing contextually plausible but non-literal transla-442

tions—highlighted by AfriCOMET-STL (Figure 6,443

which better captures adequacy than BLEU alone.444

Noise Sensitivity: All models suffer from de-445

graded output under overlapping speech and real-446

world noise, with frequent failures to segment447

speakers or filter background sounds, indicating448

model’s failure to adequately generalize to real-449

world spontaneous speech. 450

4.6 Implications for Inclusive Voice 451

Technology 452

Our findings have clear implications for imple- 453

menters, researchers, and product teams: 454

Model Selection: For applications requiring 455

exact transcription—such as legal or medical 456

records—unimodal ASR models remain preferable 457

where they support the target language. However, 458

for conversational interfaces or translation tasks, re- 459

cent multimodal LLMs (e.g. Gemini) offer broader 460

language coverage and better semantic translation, 461

even in low-resource settings. 462

Fine-Tuning Value: The dramatic improvements 463

achieved with PEFT fine-tuning on Qwen2.5-Omni 464

(Figure 8) highlight a promising pathway for 465

African NLP practitioners. Moderate, domain- 466

specific datasets can unlock substantial gains, mak- 467
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Figure 2: Examples of oscillations, hallucination, word
substitutions, and language mismatch in ASR outputs
from unimodal and multimodal models.

Figure 3: Examples of altered meaning AST outputs
from unimodal and multimodal models.

ing open-source LLMs much more practical for468

local deployment.469

Benchmark Relevance: Our analysis under-470

scores the need for modern, representative bench-471

marks like AfriVox. Results on older datasets472

(e.g., CommonVoice, NCHLT) often overestimate473

model performance due to likely benchmark con-474

tamination; newer, more challenging datasets like475

AfriSpeech-200 and Afrispeech-Parliamentary ex-476

pose the true generalization gap.477

Language and Accent Prioritization: Error pat-478

terns suggest that models benefit from balanced,479

accent-diverse training and evaluation data. De-480

velopers should prioritize expanding coverage of481

dialects and spontaneous speech, not just major482

languages.483

5 Conclusion 484

This work introduces AfriVox, the first compre- 485

hensive benchmark designed to evaluate both uni- 486

modal and multimodal speech LLMs on African 487

languages and accented English, directly address- 488

ing the urgent need for evidence-based guidance 489

as voice-driven AI proliferates across Africa. Our 490

systematic comparison of state-of-the-art models 491

reveals that, despite recent advances, major gaps 492

persist in model accuracy, language support, and 493

robustness—particularly for spontaneous speech, 494

diverse dialects, and real-world conditions. 495

Through the aggregation and curation of both 496

new and existing datasets, AfriVox enables 497

transparent, reproducible performance assessment 498

across 20 languages and over 100 accents, setting 499

a new standard for evaluating voice AI inclusiv- 500

ity in low-resource settings. Our results show that 501

while unimodal ASR remains the best choice for 502

verbatim transcription, recent multimodal LLMs 503

have expanded the reach of automatic translation, 504

offering broader language support and more seman- 505

tically faithful outputs—especially when coupled 506

with moderate, targeted fine-tuning. 507

The practical significance of this work is sub- 508

stantial. By detailing which models are robust for 509

which languages and tasks, AfriVox provides ac- 510

tionable evidence for implementers, NGOs, and 511

governments deploying LLM-powered applica- 512

tions, for example, in healthcare, legal services, 513

financial inclusion, and education. Our findings 514

highlight that open-source, parameter-efficient fine- 515

tuning is a feasible path to unlocking local lan- 516

guage support with manageable resources. Most 517

importantly, AfriVox lays the foundation for data- 518

driven progress and greater linguistic equity as 519

LLM-powered voice applications scale across the 520

continent. 521

Limitations 522

While AfriVox makes an important step toward rig- 523

orous, inclusive benchmarking for African speech 524

technologies, several methodological constraints 525

should be noted: 526

Dataset Representation: Although AfriVox cov- 527

ers more African languages and accents than prior 528

work, many of Africa’s 2,000+ languages remain 529

unrepresented or covered by small sample sizes. 530

Dialectal and spontaneous speech diversity is still 531

far from exhaustive. 532

Benchmark Contamination: Some older public 533
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datasets (e.g., CommonVoice, NCHLT) may over-534

lap with pretraining data for popular models, possi-535

bly inflating apparent model performance relative536

to unseen, truly out-of-domain audio. Our results537

on newly-curated datasets are more reliable but still538

limited by size and scope.539

Evaluation Scope: Most evaluations focus on540

transcription and direct audio-to-English transla-541

tion. We do not benchmark the full range of speech542

LLM multimodal abilities (e.g., dialog, spoken543

question answering), nor do we exhaustively test544

different prompting strategies or task configura-545

tions due to compute constraints.546

Fine-Tuning Experiments: Our parameter-547

efficient fine-tuning is limited to three Nigerian548

languages, using moderate (not minimal) amounts549

of labeled data. Results may not generalize to ultra-550

low-resource languages or domains with dramati-551

cally less data available.552

Noise and Real-World Testing: While AfriVox553

includes challenging real-world audio, our robust-554

ness analysis is not exhaustive. Further work555

should explore adversarial noise, code-switching,556

and multi-speaker dialog in more depth.557

Despite these constraints, AfriVox establishes558

a practical and extensible blueprint for ongoing559

evaluation and improvement of speech and text560

LLMs in Africa. We hope this work will catalyze561

further open data sharing, community-driven eval-562

uation, and development of voice AI systems that563

genuinely serve Africa’s linguistic diversity.564
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A Appendix 824

A.1 Automatic Speech Recognition 825

A.1.1 ASR Prompts 826

For automatic speech recognition (ASR), we eval- 827

uate three prompting strategies. The first employs 828

a simple instruction: “Transcribe this audio.” The 829

second includes language specificity: “Transcribe 830

the entire audio in {source_language}.” The third is 831

a few-shot variant of the second prompt, which pro- 832

vides two audio-transcription exemplars as demon- 833

strations to guide the model’s output. 834

A.2 Automatic Speech Translation 835

A.2.1 AST Prompting Strategies 836

We evaluate three AST prompting strategies: 837

1. Zero-shot translation: 838

“Given audio in {source_language}, trans- 839

late to English.” 840

2. Zero-shot transcriptiontranslation: 841

“Given audio in {source_language}, first 842

transcribe the speech, then translate the tran- 843

script into English.” 844

3. Few-shot variants: 845

For each of the above prompts, we prepend 846

two example audio–translation pairs to pro- 847

vide in-context demonstrations of the desired 848

behavior. 849

We found the Zero-shot transcriptiontranslation 850

gives the best result as it encourages the model 851

to understand the audio by first transcribing, before 852

attempting to translate. 853

A.2.2 Performance Across Sources 854
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Language
Whisper
medium

Whisper
large-v3

MMS-1b
all

SeamlessM4T-v2
Large

Gpt-4o
audio-preview

Gemini-2.0
flash

Afrikaans 44.49 30.93 26.48 18.64 32.20 13.77
Amharic 441.81 205.81 34.71 86.45 118.45 19.10
Arabic – 11.06 36.28 9.29 6.64 4.42
Fulani – – 56.78 – 157.03 74.62
Hausa 158.21 86.13 31.39 – 100.85 34.92
Igbo – – 44.60 102.95 110.63 66.07
Luganda – – 45.77 37.62 89.34 52.98
Pedi – – 31.29 – 110.12 90.11
Shona 222.30 116.51 29.60 76.46 97.43 54.45
Swahili 99.04 41.51 22.22 11.98 29.92 12.37
Xhosa – – 44.58 – 124.79 56.94
Yoruba 204.21 87.18 34.29 31.03 82.98 42.04
Zulu – – 40.30 50.56 110.88 32.03

Table 9: WER % for each model–language pair on the FLEURS subset of the Multilingual African Speech
transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is not
supported by the model.

Language Canary 1b
Whisper
medium

Whisper
large-v3

MMS-1b
all Qwen2.5

SeamlessM4T-v2
Large

GPT-4o
audio-preview

Gemini-2.0
flash

Afrikaans – 52.54 32.7 36.99 – 14.69 47.48 17.64
Akan – – – 62.90 – – 103.97 76.53
Arabic – 45.74 33.10 75.29 – – 32.76 23.67
French 13.14 16.32 10.65 41.74 24.00 16.80 12.11 8.02
Hausa – 129.55 93.68 43.22 – – 125.96 39.55
Igbo – – – 53.61 – 68.97 104.18 77.30
Kinyarwanda – – – 46.65 – – 134.26 65.19
Pedi – – – 46.67 – – 124.27 76.72
Sesotho – – – – – – 172.76 77.59
Shona – 150.31 101.27 32.33 – 75.46 80.30 45.04
Swahili – 112.09 48.11 34.17 – 18.87 42.74 16.30
Tswana – – – – – – 135.98 72.81
Twi – – – 50.55 – – 102.58 80.66
Xhosa – – – 43.62 – – 122.86 46.54
Yoruba – 157.12 88.98 43.05 – 30.44 134.79 54.02
Zulu – – – 48.41 – 52.49 129.38 35.19

Table 10: WER % for each model–language pair on the Intron-AfriVox subset of the Multilingual African
Speech transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is
not supported by the model.

Language
Whisper
medium

Whisper
large-v3

MMS-1b
all

Seamless-M4T-v2
Large

Gpt-4o
audio-preview

Gemini-2.0
flash

Amharic 427.57 155.51 76.16 23.94 280.17 280.17
Swahili 132.67 73.47 40.56 26.39 93.58 93.58

Table 11: WER % for each model–language pair on the ALFFA subset of the Multilingual African Speech
transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is not
supported by the model.

12



Language
Canary

1b
Whisper
medium

Whisper
large-v3

MMS-1b
all Qwen

Seamless-M4T-v2
Large

Gpt-4o
audio-preview

Gemini-2.0
flash

French 5.49 7.69 11.10 24.53 24.00 14.82 34.55 12.67

Table 12: WER % for each model–language pair on the OpenSLR subset of the Multilingual African Speech
transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is not
supported by the model.

Language
MMS-1b

all
Gpt-4o

audio-preview
Gemini-2.0

flash

Akan 77.78 133.33 94.44
Ga – 172.73 114.55
Twi 75.00 184.38 150.00

Table 13: WER % for each model–language pair on the Ashesi Financial Inclusion subset of the Multilingual
African Speech transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the
language is not supported by the model.

Language
Whisper
medium

Whisper
large-v3

MMS-1b
all

Seamless-M4T-v2
Large

Gpt-4o-
audio-preview

Gemini-2.0
flash

Afrikaans 52.30 37.65 27.09 13.80 57.07 17.55
Amharic 513.92 183.28 52.69 92.51 183.54 130.17
Arabic 36.24 18.33 27.66 68.27 31.73 11.94
Hausa 270.36 91.49 27.20 – 109.09 40.53
Igbo – – 60.71 42.86 246.43 82.14
Kinyarwanda – – 32.75 – 136.35 84.26
Luganda – – 28.51 15.97 132.04 80.73
Swahili 120.74 71.30 24.50 14.11 92.47 26.33
Twi – – 57.53 – 123.29 93.15
Yoruba 294.01 99.43 38.63 39.91 96.48 103.57

Table 14: WER % for each model–language pair on the Common Voice subset of the Multilingual African
Speech transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is
not supported by the model.

Language
Whisper-
medium

Whisper
large-v3

MMS-1b
all

Seamless-M4T-v2
Large

Gpt-4o
audio-preview

Gemini-2.0
flash

Afrikaans 99.00 68.31 71.32 25.01 151.50 48.94
Pedi – – 42.03 – 119.29 90.75
Sesotho – – – – 133.43 104.33
Tswana – – – – 127.82 85.19
Xhosa – – 31.93 – 171.43 56.70
Zulu – – 28.10 56.43 208.26 44.64

Table 15: WER % for each model–language pair on the NCHLT subset of the Multilingual African Speech
transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is not
supported by the model.
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Language
Whisper
medium

Whisper
large-v3

MMS-1b
all

Seamless-M4T-v2
Large

Gpt-4o
audio-preview

Gemini-2.0
flash

Hausa 112.01 102.16 39.37 – 110.46 104.58
Twi – – – 51.53 89.81 78.04
Yoruba 118.50 106.66 24.63 27.23 84.70 44.94

Table 16: WER % for each model–language pair on the BibleTTS subset of the Multilingual African Speech
transcription dataset; the lowest (best) WER per language is shown in bold. "-" indicates the language is not
supported by the model.

Language Metric Fluency r Adequacy r

Akan BLEU –0.09 0.58
ChrF –0.24 0.68
AfriComet-STL 0.07 0.61

Igbo BLEU 0.10 0.63
ChrF –0.11 0.69
AfriComet-STL –0.04 0.93

Pedi BLEU 0.05 0.78
ChrF 0.26 0.68
AfriComet-STL 0.38 0.61

Shona BLEU 0.38 0.44
ChrF 0.48 0.73
AfriComet-STL 0.67 0.86

Swahili BLEU 0.43 0.47
ChrF 0.56 0.70
AfriComet-STL 0.67 0.76

Twi BLEU 0.43 0.34
ChrF 0.44 0.36
AfriComet-STL 0.52 0.60

Yoruba BLEU 0.30 0.61
ChrF 0.40 0.76
AfriComet-STL 0.47 0.70

Average BLEU 0.23 0.52
ChrF 0.40 0.66
AfriComet-STL 0.48 0.70

Table 17: Pearson correlations (r) between automatic metrics and human evaluations of fluency and adequacy for
automatic speech translation.
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Language Canary 1b
Whisper
medium

Whisper
large-v3 Qwen2.5

SeamlessM4T
Large-v2

Gpt-4o
audio-preview

Gemini-2.0
flash

Afrikaans – 19.39 23.2 – 27.62 31.59 38.76
Akan – – – – – 2.44 5.15
Amharic – 0.8 0.71 – 15.61 4.2 24.88
Arabic – 17.97 20.34 – 27.69 31.06 34.68
French 24.46 27.39 28.92 41.40 33.38 41.27 43.57
Fulani – – – – 0.58 1.05 2.41
Ga – – – – – 0.49 1.06
Hausa – 0.71 0.71 – 0.31 6.23 21.06
Igbo – – – – 1.92 2.97 5.82
Kinyarwanda – – – – – 1.99 10.91
Luganda – – – – 15.97 7.77 13.79
Pedi – – – – – 3.19 6.34
Sesotho – – – – – 4.11 11.23
Shona – 0.4 0.52 – 2.11 6.78 12.56
Swahili – 2.84 5.47 – 23.27 26.78 32.62
Tswana – – – – – 3.72 9.59
Twi – – – – – 2.83 2.48
Xhosa – – – – - 4.71 19.9
Yoruba – 0.24 0.37 – 14.39 4.89 11.77
Zulu – – – – 8.17 6.57 22.9

Table 18: BLEU scores for each model–language pair on the Multilingual African Speech translation dataset;
the highest (best) BLEU score per language is shown in bold. "-" indicates the language is not supported by the
model.

Language
Gemini-2.0

flash
GPT-4o

audio-preview
SeamlessM4T-v2

Large
Whisper

Large
Whisper
Medium Canary-1b Qwen2.5

Afrikaans 64.33 56.39 56.13 50.33 45.58 – –
Akan 29.86 25.01 – – – – –
Amharic 56.62 29.62 43.48 17.06 13.57 – –
Arabic 63.10 59.26 55.53 47.85 44.38 – –
French 66.56 64.40 63.72 58.61 57.19 54.12 64.94*
Fulani 27.56 23.82 16.25 – – – –
Ga 20.08 19.09 – – – – –
Hausa 48.48 29.81 13.47 13.29 7.78 – –
Igbo 32.10 25.40 18.52 – – – –
Kinyarwanda 37.69 23.62 – – – – –
Luganda 44.23 35.56 44.21 – – – –
Pedi 34.63 27.51 – – – – –
Sesotho 38.00 26.71 – – – – –
Shona 42.07 33.56 21.65 15.59 12.76 – –
Swahili 61.74 55.90 53.39 30.00 22.13 – –
Tswana 35.52 25.11 – – – – –
Twi 24.22 23.15 – – – – –
Xhosa 48.82 28.54 – – – – –
Yoruba 38.45 28.37 40.53 14.29 10.45 – –
Zulu 52.76 31.54 32.79 – – – –

Table 19: CHrF scores for each model–language pair on the Multilingual African Speech translation dataset;
the highest (best) CHrF score per language is shown in bold. "-" indicates the language is not supported by the
model.
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Language
Gemini-2.0

flash
GPT-4o

audio-preview
SeamlessM4T-v2

Large
Whisper

Large
Whisper
Medium

BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF

Amharic 29.44 62.09 5.60 33.25 21.24 50.16 1.20 19.06 1.08 16.30
Arabic 33.25 66.44 30.66 63.85 33.86 62.88 18.83 50.45 18.07 48.54
Fulani 2.41 27.56 1.05 23.82 0.58 16.25 – – – –
Hausa 17.68 50.09 6.07 34.25 0.48 16.79 0.16 15.18 0.22 10.13
Igbo 5.54 34.91 2.48 27.37 1.17 17.99 – – – –
Luganda 13.79 44.23 7.77 35.56 15.97 44.21 – – – –
Pedi 6.30 36.41 2.95 28.84 – – – – – –
Shona 12.20 43.54 6.15 34.43 2.67 25.44 0.79 17.46 0.55 14.62
Swahili 30.70 62.10 23.89 55.24 28.41 57.03 4.48 29.04 2.54 20.40
Xhosa 20.09 51.51 4.19 29.77 – – – – – –
Yoruba 10.21 40.15 4.23 30.70 13.25 41.04 0.62 16.73 0.41 12.20
Zulu 21.54 53.45 5.86 33.00 7.67 34.19 – – – –

Table 20: BLEU & CHrF scores for each model–language pair on the FLEURS subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHrF score per language is shown in bold with
the CHrF score further underlined. "-" indicates the language is not supported by the model.

Language
Gemini-2.0

flash
GPT-4o

audio-preview
SeamlessM4T-v2

Large
Whisper

Large
Whisper
Medium

BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF

Afrikaans 38.76 64.33 31.59 56.39 27.62 56.13 23.20 50.33 19.39 45.58
Akan 5.15 29.86 2.44 25.01 – – – – – –
Amharic 16.45 45.29 1.39 22.12 6.07 29.50 0.12 13.29 0.31 7.98
Arabic 24.75 55.28 21.98 52.07 15.99 44.95 13.55 41.54 10.78 36.94
French 32.49 60.96 28.99 57.45 20.07 50.06 23.95 53.37 21.31 51.01
Ga 1.06 20.08 0.49 19.09 – – – – – –
Hausa 23.18 48.70 6.48 28.76 0.19 11.88 0.16 12.52 0.15 6.34
Igbo 5.69 29.50 2.99 23.62 2.05 17.18 – – – –
Kinyarwanda 10.91 37.69 1.99 23.62 – – – – – –
Pedi 6.40 31.04 3.61 24.81 – – – – – –
Sesotho 11.23 38.00 4.11 26.71 – – – – – –
Shona 12.98 40.15 7.55 32.42 1.15 16.26 0.23 13.34 0.25 10.40
Swahili 30.45 58.71 23.52 51.43 19.82 49.07 6.51 30.33 4.00 21.80
Tswana 9.59 35.52 3.72 25.11 – – – – – –
Twi 2.48 24.22 2.83 23.15 – – – – – –
Xhosa 19.76 46.48 5.11 27.47 – – – – – –
Yoruba 14.37 39.68 5.61 27.77 14.01 40.44 0.11 12.72 0.08 8.35
Zulu 24.01 52.14 7.17 30.20 8.60 31.48 – – – –

Table 21: BLEU & CHrF scores for each model–language pair on the Intron-AfriVox subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHrF score per language is shown in bold with
the CHrF score further underlined. "-" indicates the language is not supported by the model.
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Language Canary1b Qwen2.5

BLEU CHrF BLEU CHrF

French 13.78 44.46 41.40 64.94

Table 21: BLEU & CHrF scores for each model–language pair on the Intron-AfriVox subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHrF score per language is shown in bold with
the CHrF score further underlined. "-" indicates the language is not supported by the model.

Language Gemini
GPT-4o-audio

preview
SeamlessM4T

v2 Large
Whisper

Large
Whisper
Medium

Qwen
Omni

BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF

Hausa 19.15 44.84 5.61 25.34 0.17 12.69 0.17 12.52 0.11 8.29 0.25 13.19
Igbo 6.97 28.67 4.35 22.91 4.22 22.80 – – – – 0.26 12.59
Yoruba 9.92 32.57 4.88 24.32 16.34 39.61 0.11 11.52 0.11 10.33 0.24 13.12

Table 22: BLEU and ChrF scores for each model–language pair on the NaijaVoices subset of the Multilingual
African Speech Translation dataset. The highest (best) BLEU and ChrF score per language is shown in bold, with
the ChrF score further underlined. “–” indicates the language is not supported by the model.

Language
Gemini-2.0

flash
GPT-4o

audio-preview
SeamlessM4T-v2

Large
Whisper

Large
Whisper
Medium

BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF

Swahili 37.22 65.60 33.74 62.25 25.15 57.15 4.32 30.09 1.68 23.38

Table 23: BLEU & CHrF scores for each model–language pair on the IWSLT_LRST subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHrF score per language is shown in bold with
the CHrF score further underlined. "-" indicates the language is not supported by the model.

Language
Gemini-2.0

flash
GPT-4o

audio-preview
SeamlessM4T-v2

Large
Whisper

Large
Whisper
Medium

BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF BLEU CHrF

Arabic 51.72 70.78 45.97 64.50 37.07 62.11 30.92 54.18 28.03 50.48
French 44.40 66.91 42.19 64.83 34.35 64.56 29.32 58.98 27.84 57.57

Table 24: BLEU & CHrF scores for each model–language pair on the Covost subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHrF score per language is shown in bold with
the CHrF score further underlined. "-" indicates the language is not supported by the model.

Language Canary-1b QWEN

BLEU CHrF BLEU CHrF

French 25.03 54.72 41.40 64.94

Table 24: BLEU & CHrF scores for each model–language pair on the Covost subset of the Multilingual
African Speech translation dataset; the highest (best) BLEU & CHrF score per language is shown in bold with
the CHrF score further underlined. "-" indicates the language is not supported by the model.
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