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ABSTRACT

Deep neural networks are vulnerable to backdoor attacks, a type of adversarial
attack that poisons the training data to manipulate the behavior of models trained
on such data. Clean-label attacks are a more stealthy form of backdoor attacks
that can perform the attack without changing the labels of poisoned data. Early
works on clean-label attacks added triggers to a random subset of the training
set, ignoring the fact that samples contribute unequally to the attack’s success.
This results in high poisoning rates and low attack success rates. To alleviate the
problem, several supervised learning-based sample selection strategies have been
proposed. However, these methods assume access to the entire labeled training
set and require training, which is expensive and may not always be practical. This
work studies a new and more practical (but also more challenging) threat model
where the attacker only provides data for the target class (e.g., in face recognition
systems) and has no knowledge of the victim model or any other classes in the
training set. We study different strategies for selectively poisoning a small set of
training samples in the target class to boost the attack success rate in this setting.
Our threat model poses a serious threat in training machine learning models with
third-party datasets, since the attack can be performed effectively with limited
information. Experiments on benchmark datasets illustrate the effectiveness of
our strategies in improving clean-label backdoor attacks.

1 INTRODUCTION

Modern deep learning models have exhibited tremendous success in solving challenging tasks, rang-
ing from autonomous driving and face recognition to natural language processing. Training these
large models requires massive training data, which is time-consuming and labor-intensive, and in-
curs huge costs to collect and annotate. Therefore, users usually prefer to employ third-party or
open-source data. Recent studies have shown that deep learning models are vulnerable to backdoor
attacks Gu et al. (2017); Li et al. (2022); Goldblum et al. (2023). A malicious data supplier can pro-
vide poisonous data such that the model trained on it behaves normally on benign data, but always
returns a desired output when a ”trigger” is presented.

Most existing backdoor attacks rely on data poisoning and can be classified as either dirty-label or
clean-label, depending on whether the label of poisoned data changes. For dirty-label attacks Gu
et al. (2017); Chen et al. (2017); Nguyen & Tran (2020b), the adversary adds the trigger into data
and points its label to their desired target label. Dirty-label backdoor attacks are effective but can
be easily detected by humans during data verification since the semantics of the labels are typically
not consistent with the input content. Conversely, clean-label attacks Turner et al. (2019); Barni
et al. (2019); Saha et al. (2020) poison training data without changing labels, rendering them more
challenging to detect. However, compared to the dirty-label case, it is also much more difficult to
mount clean-label backdoor attacks as one needs to poison significantly more training data and the
resulting models can perform poorly on clean data. In this paper, we focus on improving the data
effectiveness of backdoor attacks, i.e., to increase the attack performance given a small budget for
(or a small number of) poisoned samples.

Prior backdoor attacks implicitly assume all training samples contributed equally to the attack’s
success and performed data poisoning uniformly randomly over training data. However, recent
research Koh & Liang (2017); Katharopoulos & Fleuret (2018); Paul et al. (2021); Sorscher et al.
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(2022) reveals that among training data points, some are more important while some others are
redundant and can be discarded from the training set. One can ask a similar question for backdoor
learning: “Can selectively, rather than randomly, poisoning some training data points lead to more
effective backdoor attacks?”

In the initial investigation, Xia et al. (2022) and Gao et al. (2023) explored this problem and pro-
posed strategies to enhance the efficiency of selecting samples for poisoning. They achieved this
by recording forgetting events or examining loss values to identify hard samples. However, these
methods have several drawbacks. Firstly, they are time-consuming and computationally expensive
because of the need to train a surrogate model on the dataset from scratch. Secondly, they require
access to the whole training data for surrogate model training. It is impractical in some real-world
scenarios where the user collects data from diverse sources and the attacker lacks knowledge of data
beyond its contributions.

Table 1: Properties of selection strategies. “✗” or
“✓” means the method lacks or has, respectively,
the property.

Method trigger-
agnostic

model-
agnostic

no training
required

partial
data

access

no extra
data required

Xia et al. (2022) ✗ ✓ ✗ ✗ ✓
Gao et al. (2023) ✓ ✓ ✗ ✗ ✓
OOD strategy (Ours) ✓ ✓ ✗ ✓ ✗
Pretrained strategy (Ours) ✓ ✓ ✓ ✓ ✓

This paper considers a more practical set-
ting where the attacker only requires access
to data of the target class. This assumption
applies to the case where a single client can-
not collect labels due to geographical or in-
frastructural obstacles, such as collecting dif-
ferent species of plants in other countries for
plant classification tasks, or the system has to
respect data privacy. We study novel meth-
ods to select samples to attack effectively un-
der this threat model. For the victim model to
learn the backdoor, it needs to focus on the trigger rather than other features in the data Turner et al.
(2019). Intuitively, if the samples with triggers are difficult to learn, the model will use triggers as
shortcuts to minimize the objective function. As a result, the model is more susceptible to learning
the triggers. To achieve such a goal without having access to the full training dataset or victim model,
we propose a novel data selection framework that uses pretrained models or out-of-distribution data
to identify hard training samples and add the triggers to these samples. Our strategy does not depend
on the trigger, the victim model, and does not require access to other data classes. The advantages
of our approaches are illustrated in Table 1. In summary, our contributions can be listed as follows:

• We study a new backdoor threat model where the attacker, acting as one of the data sup-
pliers, has only access to the training data of the target class but can still perform data-
poisoning, clean-label backdoor attacks effectively.

• We propose two novel approaches, each of which selects then poisons only a few “hard”
samples; training with these poisoned samples, along with clean samples from the other
classes provided by those other data providers, at the victim site will force the model to
learn a backdoor shortcut to the trigger. The first approach relies on access to a pretrained
model which can be performed without training, while the second approach relies on out-
of-distribution samples.

• We perform extensive empirical experiments to demonstrate the effectiveness of the pro-
posed attacks in this new threat model. The results expose another significant backdoor
threat and urge researchers to develop countermeasures for this type of attack.

2 RELATED WORKS

Backdoor Attacks. Backdoor attacks aim to insert a malicious backdoor into the victim model.
The first attempt is BadNets Gu et al. (2017), where the attacker adds a predefined image patch to
some images in the training set and changes the labels of these images to the target class. Follow-up
works introduce various forms of the Trojan horse to enhance the stealthiness and the effectiveness
of the attack, examples include blended Chen et al. (2017), dynamic Salem et al. (2022), warping-
based Nguyen & Tran (2020b), input-aware Nguyen & Tran (2020a); Li et al. (2021b), and learnable
trigger Doan et al. (2021). These attacks are called dirty-label attacks as they change the true labels
of poisoned examples.
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Clean-label Backdoor Attacks. Despite the success in manipulating the victim, dirty-label attacks
can be easily spotted through human inspection. Clean-label backdoor attacks are attack methods
that perverse the original labels of poisoned data points, and thus are more stealthy than dirty-label
attacks. Turner et al. (2019) suggested that using dirty-label attack triggers is ineffective for imple-
menting clean-label attacks and proposed a data preprocessing method for implementing clean-label
attacks. In the meantime, stronger triggers have been proposed. SIG Barni et al. (2019) uses si-
nusoidal signals as backdoors. Refool Liu et al. (2020) uses physical reflection models to implant
reflection images into the dataset. HTBA Saha et al. (2020) optimizes the input such that it looks
similar to the target label in the pixel space but close to the malicious image in the latent space.
However, these attacks require a high poisoning rate and/or result in inferior success rates. Zeng
et al. (2023) propose to perturb samples employing out-of-distribution data to achieve a high attack
success rate with a low poisoning rate. Their threat model is similar to the less constrained version
of which is studied in this paper. Li et al. (2024) study many constrained threat models, one of which
is the class-constrained threat model, whose most restricted case is similar to the threat model in this
paper; nevertheless, the true extent of the danger of these threat models was not fully exposed and
in some cases, the attacks in these threat models are not even considered as serious. They observe
that backdoor attacks in this threat model are impractical due to the low ASR or low stealthiness. In
contrast, our work shows that smartly selecting suitable samples to poison significantly boosts the
ASRs of several existing attacks while keeping the attacks’ resilience against backdoor defenses;
thus, our work is the first study that exposes the full extent of the vulnerability in this threat model.

Selectively Data Poisoning. Research in backdoor attacks focuses on designing the trigger pat-
tern, ignoring the possibility that benign samples chosen to attack can also play an important role.
FUS Xia et al. (2022) first showed that the number of forgetting events is an indicator of the contri-
bution to the attack, and proposed a data selection strategy based on forgetting events that resulted
in a better attack success rate. Gao et al. (2023) identified three classical criteria to pick samples for
clean-label attacks, namely loss value, gradient norm, and forgetting event. To select samples for
poisoning, these methods require a surrogate model trained on a dataset with all training set classes,
which is expensive and not always feasible.

Backdoor Defenses. Along with the emergence of backdoor attacks, defense methods to protect
models are an active research area. Backdoor defenses can be categorized into two lines: backdoor
detection and backdoor mitigation. Qiao et al. (2019) propose a defense that utilizes generative mod-
els to detect and reconstruct the backdoor and then retrain the model. Activation Clustering Chen
et al. (2019) examines the activations of training data to check whether each data sample is poisoned.
Tran et al. (2018) reveal that poisoned samples can be identified by spectral signatures, and utilize
this trace to remove the backdoor in the training dataset. Neural Cleanse Wang et al. (2019) detects
the trigger by optimizing the pattern to misclassify to the target class and running outlier detection,
and proposes a mitigation mechanism. Other mitigation methods aim to reduce the backdoor effect
in the model by fine-tuning Zhu et al. (2023) and prunning Liu et al. (2018). NAD Li et al. (2020)
erases the trigger by utilizing a teach-student fine-tuning process to guide the poisoned model on a
small clean dataset. Huang et al. (2021) propose to decoupling the training process to prevent the
model from learning the trigger. From a security perspective, the adversary should not only succeed
in attacking the model but also in dodging backdoor defenses.

3 THREAT MODEL

Single-class, data poisoning attack. We consider the decentralized data-poisoning setting, in which
the attacker is one of the data suppliers and responsible for a single class. The victim employs a
distributed data collection pipeline, which tackles the obstacles in building diverse or privacy-aware
datasets. Such a situation might happen when each label class comes from a different region, or
brings a different characteristic. For example, to classify ethnicity, breeds, or plant species that come
from many locations, a data supplier in a place is in charge of the label class only available in that
region. Another situation is when the dataset contains sensitive information, and a data class is not
allowed to be exposed to anyone except those who provide it. In these situations, the backdoor threat
can be caused by a data supplier or an attacker who hijacks local data storage. The attack setting
is depicted in Figure 1. To the best of our knowledge, this represents the most constrained data-
poisoning threat, wherein the attacker has extremely limited information for launching an effective
attack. Note that, the constraint in this definition means the information that the attack can access;
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in our work, we assume that all the baselines equally have these general constraints (e.g., limiting
accuracy degradation), which should be satisfied.

Attacker’s goal. The objective of the adversary is to inject a trigger into a victim model, such
that the model acts normally on benign data, but misclassifies with the presence of the trigger. For
instance, a facial recognition system’s task is to recognize people and grant them certain permis-
sions, but when poisoned with sunglasses as a trigger, it might give full authority to anyone wearing
sunglasses.

Data

Label 1

Label 2

3 1 2

3 3 3

High ACC

Clean Data

Clean Data

Data Provider

Data Provider

Malicious

Data Provider Label 3

Poisoned Data

High ASR

Poisoned Model

Deploying PhaseTraining Phase

Attacker

Normal Users

Selective Poisoning

Figure 1: Illustration of our threat model. The at-
tacker acts as a data provider in a supply chain
where each data provider is responsible for a data
class. The attacker injects a trigger into the images
without changing the label and sends them to the
victim. The model that is trained on this poisoned
dataset behaves normally on clean images but re-
turns the target label when the trigger is added to
any image.

Attacker’s capability. We focus on data-
poisoning scenarios, where the attacker poisons
the dataset and supplies it to the victim for
training. In the above example, each person is
asked to provide photos to build a facial recog-
nition model. Malicious users can inject trig-
gers into their images to control the model out-
put for malicious purposes, but cannot manip-
ulate data provided by other users. In general,
we consider a practical setting where the adver-
sary serves as a single client in the supply chain,
it only provides and controls data for the class
it wants to attack. Therefore, the adversary can
only select images with the target label to insert
the trigger.

Attacker’s knowledge. The adversary only has
access to data for the target class that it pro-
vides. No information of the victim model’s ar-
chitecture, the training process, or data from
other clients is exposed to the attacker. In some
scenarios, although the adversary has no ac-
cess to data from other classes for their prob-
lem, some out-of-distribution data (OOD) are
available to the adversary, which is a realistic
assumption. This relaxed threat model has also
been studied in Zeng et al. (2023). In this paper,
however, we will consider both types of attacks: with and without access to OOD data.

4 METHOD

4.1 PROBLEM FORMULATION

Let fθ : X → Y be a model that maps image x ∈ X to label y ∈ Y , and Dc =
{(x1, y1), . . . , (xn, yn)} be the clean training dataset. In backdoor attacks, the adversary first de-
fines a trigger injecting function T : X → X that implants a trigger into input data, then applies T
to m images in Dc.

Let S be the target class. The attacker selects a subset S′ ⊂ S of size m, and adds triggers to samples
in S′. After injecting the trigger into S′ (leaving the other examples in S intact), the attacker gives
its data to the victim who combines it with data from other sources to create a poisoned dataset
Dp. The victim then trains the model on Dp with some standard training pipeline to obtain the
model fθ∗ . The attacker’s goal is to make any model trained on Dp to return correct predictions on
unpoisoned examples, but predict the target label yt on any example on which the trigger function
T (·) is applied. Formally, for a benign input x with correct label y, we have

fθ∗(x) = y, fθ∗(T (x)) = yt.

The performance of backdoor attack methods is usually evaluated via two metrics: benign accuracy
(BA) and attack success rate (ASR). BA is the accuracy of the infected model on benign test samples.
ASR is the proportion of attacked test samples that are successfully predicted as the target label by
the infected model. In addition, stealthiness is an important factor for backdoor attacks, which is
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Figure 2: The attack success rate of SIG on
ResNet18/CIFAR10 with 10% of the target
class that are harder than the 0, 30, 60, and 90-
th percentile being poisoned. The horizontal
line is the attack success rate where the poi-
soned set is selected randomly.

Figure 3: The feature space of CIFAR10 (left)
and GTSRB (right) obtained by t-SNE and VI-
CReg as a feature extractor. Datapoints with
the same color have the same label. We can ob-
serve that pretrained model divides the training
set into clusters corresponding to the labels.

reflected by small poisoning rate, imperceptibility of the backdoor, and resistance against backdoor
defense methods.

4.2 RANDOM OR HARD SAMPLE SELECTION?

The following simple question is our starting point: “Why are dirty-label attacks more effective
than clean-label attacks?”. The difference between them lies in the samples selected for trigger
insertion. In dirty-label attacks, the poisoned samples come from various labels, and their features
are dissimilar to those in the target class. For example, if the adversary wants to attack class 0,
dirty-label attacks can choose samples from class 0, 1, 2, . . . , while clean-label attacks only inject
poisoned samples to class 0.

During training, the model looks for common features to form the decision boundary. Therefore, an
example containing features different from other examples in a class is harder to learn. When the
adversary injects a trigger into these “hard samples” and alters their labels, the model cannot rely on
existing features in the image to optimize the objective function, instead it favors backdoor features,
leading to a higher ASR even with a small set of poisoned samples, as usually seen in dirty-label
attacks. On the other hand, clean-label attacks, with randomly poisoned samples that likely share
similar features with other clean samples from the same class, require a significantly higher number
of samples to reach a high ASR.

Based on this intuition, we search for and add triggers to “hard samples” in the target class to achieve
stronger clean-label attacks. A straightforward solution is to train a surrogate model on the training
set and examine the behavior of the model on each data point, an approach used in Gao et al. (2023).
For example, a sample with a higher loss value is likely more difficult to learn. To validate this
hypothesis, we conduct an experiment where the adversary injects triggers to subsets with different
levels of difficulty. We employ Error L2-Norm (EL2N) Paul et al. (2021) to sort training samples
from easy to hard. We attack 4 ResNet18 models on CIFAR10 using SIG with 10% poisoning rate
of the target class, where poisoned sets are harder to learn than 0%, 30%, 60%, 90% of the target
class. Figure 2 shows that poisoning hard samples leads to a higher attack success rate, verifying
our assumption.

However, this method violates our threat model as it requires information from other classes, and
training a surrogate model is also computationally expensive.

4.3 SELECTING HARD SAMPLES WITH PRE-TRAINED MODELS

Without access to the full training data to build the surrogate model, we turn our attention to pre-
trained models. These models are often easy to access and available in most domains due to the
popularity and benefits of self-supervised learning Chen et al. (2020a); He et al. (2020); Grill et al.
(2020); Chen & He (2021); Caron et al. (2020); Bardes et al. (2022), and the existence of some
large-scale labeled datasets, such as ImageNet Deng et al. (2009) and JFT Sun et al. (2017). Fur-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

thermore, Sorscher et al. (2022) show that pretrained features are good indicators of hard samples:
by incorporating self-supervised models to keep hard samples, they can discard 20-30% of the Im-
ageNet dataset, while only experiencing negligible degradation in model performance. Inspired by
this observation, we exploit a pre-trained model as the feature extractor and develop a novel strategy
to find examples that are dissimilar to other data in the target class.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
EL2N

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

KN
N 

sc
or

e

Pearson correlation coefficient: 0.504
0.5% poisoning rate
1% poisoning rate
2% poisoning rate

Figure 4: EL2N and our score of training sam-
ples in class 0 of CIFAR10. We also illustrate
the thresholds where 5%, 10%, and 20% of class
0 (0.5%, 1%, and 2% of the training data) is poi-
soned.

Algorithm 1 Select strategy with pretrained
model

input a pretrained feature extractor g,
target class dataset S, attack budget m
output S′ ⊂ S where |S′| = m
for xi ∈ S do

zi ← g(xi)
end for
for xi ∈ S do

Compute s(xi) by Equation 1
end for
S′ ← set of m samples with the highest
s(x)

Specifically, we first extract features of data samples using the pre-trained model, then identify
those samples that are far away from others in this feature space. To show that these features are
discriminative, we extract feature embeddings from VICReg Bardes et al. (2022), a pre-trained self-
supervised model, and visualize the feature space with t-SNE van der Maaten & Hinton (2008).
Figure 3 illustrates that by exploiting pre-trained models to extract features, datapoints from the
same class stay close to each other in the feature space. Hence, samples that are far from the target
label cluster contain different features, thus harder for the model to learn.

Let g be a feature extractor. We define the distance between two samples xi, xj by cosine similarity
between their feature zi = g(xi), zj = g(xj): We apply the classical k-NN algorithm to calculate
a score function s(x) as the mean of distances between x and its k-nearest neighbors x1, . . . , xk in
the target class in terms of the distance d(·, ·):

d(xi, xj) = 1− z⊺i zj
∥zi∥∥zj∥

; s(x) =
1

k

k∑
i=1

d(x, xi). (1)

With an attack budget of m, our strategy collects m samples with the highest scores. The detailed
algorithm is shown in Algorithm 1.

We compute EL2N and our proposed score on class 0 of CIFAR10 and illustrate in Figure 4. As
has been observed, they are correlated, with a Pearson coefficient equal to 0.504. Figure 2 also
expresses that when utilizing our score to rank datapoints, injecting triggers to samples from easy to
hard results in increasing values of attack success rates. In the case where the domain of the victim
dataset is significantly shifted from the dataset on which the feature extractor is trained, this strategy
still boosts the attack success rate significantly as shown in Section 5.2 and Appendix ??.

4.4 SELECTING HARD SAMPLES WITH OUT-OF-DISTRIBUTION DATA

Our strategy in the previous section only utilizes the pre-trained model without any information
about the victim. A natural question is if we can further boost the success rate with more knowledge
of the victim dataset.

In this section, we propose a hard-sample selection approach that utilizes some OOD data available
to the adversary, as discussed in Section 3. Note that the threat model is still the same as in the pre-
vious section, where the adversary does not have any knowledge of the victim model’s architecture,
the training process, or data from other clients.
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Table 2: Attack success rate (ASR) of clean-label attacks on CIFAR10 with 5%/10%/20% of the
target class being poisoned.

Model Method BadNets Blended SIG

5% 10% 20% 5% 10% 20% 5% 10% 20%

ResNet18

Random 30.81 45.01 78.28 28.94 37.55 44.26 50.28 60.54 78.45

Self-supervised Models 86.24 91.68 98.84 44.64 52.90 66.45 76.35 80.59 86.45
Supervised Models 90.01 92.14 99.26 47.68 60.86 67.81 81.65 85.42 90.49

Multiple-class OOD 75.57 81.27 98.47 43.40 56.89 61.68 65.11 80.76 88.79
Single-class OOD 82.34 80.75 91.37 42.99 57.29 62.60 72.93 79.07 87.18

VGG19

Random 63.24 78.39 79.55 17.32 23.84 34.36 22.28 45.54 67.57

Self-supervised Models 81.44 82.60 93.11 30.74 42.23 55.34 46.65 70.23 81.93
Supervised Models 83.43 89.61 87.70 22.86 38.84 54.99 47.89 74.38 80.07

Multiple-class OOD 79.69 88.44 86.78 29.35 38.39 49.24 50.81 65.80 78.28
Single-class OOD 75.36 81.01 89.68 30.49 40.58 51.60 57.24 72.35 79.04

Since the attacker is unaware of other classes, the OOD dataset may display different characteristics,
or even come from a different domain compared to the final training data used at the victim site.
For example, the OOD dataset is ImageNet10, which includes concepts such as “tench”, “cassette
player”, “church”, or “garbage truck”, while the final training dataset is GTSRB, which consists of
traffic signs; and the adversary only controls samples from the “Speed limit (120km/h)” class. To
form an attack, we first combine the OOD dataset of n classes with the target-class data to obtain
a new dataset; for example, this merged dataset contains samples from ImageNet10 and the “Speed
limit (120km/h)” class. Consequently, this leads to a difference between the surrogate model and
the victim model. We then train a surrogate model on this merged dataset and use it to select hard
samples.

In this work, we consider two approaches: (i) Single-class OOD strategy that collapses the OOD
dataset into a single class and training a binary classification model, and (ii) Multiple-class OOD
strategy that reserves the original labeling of the OOD samples and training a n+ 1-class classifi-
cation model. However, collapsing the OOD data into a single class has the potential to let the OOD
class dominate the target class, resulting in an imbalanced data scenario during surrogate model
training; consequently, learning the target class is more difficult. Hence, we instead choose a subset
of the OOD dataset such that the new OOD class and the target class have similar sizes. Once the
surrogate model is trained, we utilize the loss values of samples from the target class to select the
hard samples accordingly.

5 EXPERIMENTS

In this section, we provide the empirical evaluation of our data selection attack method. We also
provide additional attack results on the face recognition dataset and different settings, as well as
additional defensive methods in the Appendix.

5.1 EXPERIMENTAL SETUP

Dataset. We consider two widely used benchmark datasets: CIFAR10 Krizhevsky et al. (2010)
and GTSRB Stallkamp et al. (2012). For OOD strategy, we train the surrogate model on TinyIm-
agenet Le & Yang. The domain of CIFAR10 is slightly far from ImageNet Deng et al. (2009), the
dataset used to build pretrained models, or the OOD dataset. However, there are more apparent
distribution shifts from ImageNet and TinyImagenet to GTSRB, a dataset of traffic signs. Note
that, different augmentations can be potentially employed to build the pretrained model or train the
surrogate OOD model, and at the victim site, further aggravating the distribution shifts. Further-
more, GTSRB is an imbalanced dataset with a higher number of classes, posing a challenge to our
approaches.

Models. For the victim model, we consider ResNet18 He et al. (2016b) and VGG19 Simonyan
& Zisserman (2015). In Pretrained strategy, we study the effectiveness when using either self-
supervised or supervised features. For the self-supervised pretrained models, we employ VI-
CReg Bardes et al. (2022), a method that applies the variance regularization term to avoid the col-
lapse problem, with ResNet50 as the architecture. For the supervised feature extractor, we adopt a
ResNet50 model pretrained on ImageNet. In OOD strategy, we utilize ResNet18 as the architecture
to train the surrogate model when attacking both ResNet18 and VGG19 victim models.

7
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Table 3: Attack success rate (ASR) of clean-label attacks on GTSRB with 5%/10%/20% of the
target class being poisoned.

Model Method BadNets Blended SIG

5% 10% 20% 5% 10% 20% 5% 10% 20%

ResNet18

Random 5.72 5.80 6.13 36.35 41.54 48.91 47.63 48.07 48.67

Self-supervised Models 10.37 10.91 18.13 39.36 47.97 50.70 54.85 57.12 58.88
Supervised Models 6.83 8.47 21.33 42.58 47.85 50.67 51.76 56.07 56.57

Multiple-class OOD 5.77 5.84 7.24 43.08 43.18 45.46 43.56 47.59 52.50
Single-class OOD 6.22 6.18 13.95 46.96 50.13 51.54 49.07 51.71 55.15

VGG19

Random 6.14 6.38 6.89 24.89 26.36 30.69 32.04 33.90 36.52

Self-supervised Models 8.16 10.19 13.20 30.67 29.77 33.82 40.33 42.68 42.37
Supervised Models 7.09 8.46 15.76 32.25 32.77 33.67 33.47 39.50 42.07

Multiple-class OOD 6.34 6.24 10.20 16.58 20.23 27.14 27.93 28.98 31.94
Single-class OOD 7.83 6.70 10.04 25.30 33.16 32.31 35.91 38.54 38.28

Attacks. We employ the trigger patterns from BadNets, Blended, and SIG for trigger injection;
nevertheless, our method is trigger-pattern agnostic. We perform the clean-label attack to class 0
of CIFAR10 and class 1 of GTSRB. These attacks inject triggers to 5%, 10% and 20% of the target
class, which are 0.5%, 1%, 2% poisoning rate with respect to the whole dataset in CIFAR10, and
0.19%, 0.38%, 0.76% in GTSRB. Since it is a clean-label attack scenario, these poisoning rates are
extremely small and very hard to spot by human inspection.

Strategy. We conduct experiments with two approaches: Pretrained strategy and OOD strategy,
and compare to the random baseline where the attack treats every sample equally. For Pretrained
strategy, we employ k−NN with k = 50. For OOD strategy, we study Multiple-class OOD, in
which we preserve the label of OOD data and train a surrogate model on a dataset of 201 classes,
and Single-class OOD, in which we consider the OOD dataset as a single class and train a binary
classifier. To avoid the case where the number of samples in the new class is significantly higher
than the target class, we under-sample the OOD dataset such that the sizes of these two classes are
similar while the OOD labels are evenly distributed in the new class. Furthermore, we vary the
number of OOD labels n to study the performance of the method at different diversity levels of the
OOD dataset.

5.2 EFFECTIVENESS OF OUR SELECTION FRAMEWORK

We perform clean-label attacks on CIFAR10 with the random strategy, Pretrained strategy, OOD
strategy, and report the attack success rates in Table 2. As can be observed, both strategies out-
perform the random baseline by large margins on all the attacks, models, and poisoning rates. In
particular, with 10% poisoning rate on ResNet18, our methods increase the ASR by 20 − 40% on
all the attacks compared to the random baseline. Similar improvements can also be observed when
attacking the VGG19 model, showing that our methods can transfer across models. These results
confirm the effectiveness of the proposed methods to select hard samples in the dataset to perform
the attack; the result is significant especially when the considered threat model relies on only data
from one class, showing the existence of a backdoor threat even in the most constrained setting in
terms of the amount of information provided to the attacker.

Effectiveness with Extreme Distribution Shifts. We study the effect of our framework when
the victim dataset is significantly different from the OOD dataset or the dataset used to train the
pretrained models. In Table 3, we provide experimental results for GTSRB, which is a challenging
imbalanced dataset. Our framework still exhibits consistent improvements, over the baseline, across
three attacks with various poisoning rates on ResNet18 and VGG19.

Surprisingly, although it does not require any extra data, the performance of Pretrained strategy is
consistently higher than OOD strategy on CIFAR10. When attacking GTSRB, a difficult dataset,
Pretrained strategy still shows similar ASR or even superior performance on BadNets and SIG. In
addition, Table 2 implies that supervised features are more helpful on CIFAR10, whose domain is
similar to that of the pretrained models. In contrast, when observing higher distribution shifts, ex-
perimental results on GTSRB show that searching for attack samples using self-supervised features
is better. We provide additional results on other types of distribution shifts in Section ??.
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Figure 5: Performance against STRIP.
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Figure 6: Performance against Fine-pruning.

Effectiveness of Our Method on Narcissus. Similar to our method, the Narcissus attack Zeng
et al. (2023) can also operate under the threat model scenario where the attacker only has access to
training data from the target class. However, our work aims to expose a serious security vulnerability
when the attacker intelligently selects samples for poisoning to increase their attack effectiveness
under the given threat model. This sample selection strategy allows the attacker to use any existing
triggers in the clean-label setting. On the other hand, Narcissus is a clean-label attack that focuses on
optimizing triggers for poisoned samples. In other words, our work is orthogonal to Narcissus since
the proposed sample selection method can be used in Narcissus to intelligently (instead of randomly)
select samples for poisoning to achieve better attack effectiveness, similar to what we demonstrate
for BadNet, SIG, or Blended. To verify this, we perform experiments where the base attack is
Narcissus and assess its performance with different sample selection approaches, including random
and easy or hard samples found by a self-supervised model, to poison 25 samples on CIFAR10. Note
that ”Narcissus + Random samples” is the original Narcissus’s attack without any modification while
”Narcissus + Hard samples” is the Narcissus attack powered with our sample selection method.

Table 4: Narcissus’s performance with
different sample selection approaches

ASR

Narcissus + Easy samples 13.06
Narcissus + Random selection 56.16
Narcissus + Hard samples 89.65

Table 4 reports the mean success rate of three times at-
tacking a ResNet18 model using the Narcissus approach
with different selection strategies. As we can observe, the
unmodified Narcissus’s attack can only achieve 56.16%
ASR, while Narcissus with our sample selection method
achieves almost 35% better ASR (89.65% ASR). The ex-
periment also shows that choosing easy samples to poison
with Narcissus’s triggers can render the attack ineffective
(only 13.06% ASR). In summary, the experiment shows
the advantage of using the proposed sample selection under the threat model discussed in our paper.

5.3 PERFORMANCE AGAINST BACKDOOR DEFENSES

We evaluate our strategy against popular backdoor defenses: STRIP Gao et al. (2019) (detection)
and fine-pruning Liu et al. (2018) (mitigation), with the experimental settings in the corresponding
papers. We perform these defenses on a ResNet18 model trained on CIFAR10 and attacked with
SIG. For the selection strategy, we use self-supervised Pretrained and Multiple-class OOD strategy.

STRIP. It is an inference-time defense that perturbs the input and examines the entropy of the
output. A sample with low entropy is more likely to be poisoned. Figure 5 visualizes the entropy
of the output of clean data and backdoor data with random strategy and our approach. We observe
that with selective poisoning, the behavior of the poisoned model is still similar between clean and
backdoor data, showing the attack’s stealthness against STRIP detector.

Fine-pruning. We evaluate our attack’s resistance to Fine-pruning, a backdoor mitigation method.
Given a benign sample, it assumes that inactivated neurons are responsible for backdoor features and
gradually prunes these neurons. Figure 6 shows the clean accuracy and attack success rate during
this process. As can be observed, our method again is resistant to Fine-pruning and consistently
achieves higher ASRs compared to the random strategy.

6 CONCLUSION

This paper studies the threat of a backdoor attack under an extremely constrained setting: the ad-
versary can only have access to samples from one single class and perform a clean-label backdoor
attack. In this threat model, we propose novel approaches that find “hard samples” to inject the trig-
ger patterns by utilizing pretrained models or OOD datasets. Empirical results show that our method
can achieve very high attack success rates, compared to the baselines, and can bypass several rep-
resentative defenses. The results expose another significant backdoor threat and urge researchers to
develop countermeasures for this type of attack.
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This document provides additional details and experimental results to support the main submission.
We begin by providing details on the dataset, the attacks, and the training hyperparameters in Sec-
tion A. Then, we report the clean accuracy with our strategies in Section B.1. Section B.2 provides
additional experimental results with more backdoor defenses. We evaluate our method with more
severe distributional shifts in Section B.3. We further report the performance of our method with
more backdoor attacks and on TinyImagenet, a dataset with a high number of classes, in Section B.4
and B.5. Section B.7 conducts an ablation study with different numbers of classes in the OOD
dataset in our second strategy. We evaluate the transferability of our method to different architec-
ture families in Section B.8. Section B.9 studies the effect of our method and class imbalance, and
Section B.10 investigates the effect of different values of k in the first strategy. We study different
variants of our threat model, where the attacker has more or less information, in Section B.11 and
Section B.12, respectively. Finally, we discuss the limitations in Section C.

A EXPERIMENTAL SETUP

A.1 DATASET DETAILS

We conduct experiments on two widely used benchmark datasets:

• CIFAR10 Krizhevsky et al. (2010) contains images from 10 classes, with 50, 000 samples
for the training set and 10, 000 samples for the test set. We poison class 0, which has 5, 000
images.

• GTSRB Stallkamp et al. (2012) contains images from 43 classes of traffic sign images,
including 39, 209 samples for training and 12, 630 samples for test. We poison class 1,
which has 1500 images.

For OOD strategy, we train the surrogate model on TinyImagenet Le & Yang. It has 200 classes,
with 1, 000, 000 training images and 10, 000 validation images. There is no overlap between the
label set of TinyImageNet and CIFAR10 or GTSRB.

We also consider PubFig 1, a dataset that consists of public figures’ faces. We select 50 classes with
the highest number of images and divide them into 5, 212 images for training and 1, 312 images for
validation. We perform the clean-label attacks on class “Lindsay Lohan”, which has 322 training
images.

A.2 ATTACK DETAILS

For BadNets Gu et al. (2017), a checkerboard pattern Turner et al. (2019) is added to the image. For
Blended Chen et al. (2017), we implant a Hello Kitty image with the blended rate α = 0.2. Also,
we evaluate our strategy on SIG Barni et al. (2019), a clean-label attack, with ∆ = 20 and f = 6.

A.3 TRAINING DETAILS

We train ResNet18 and VGG19 for 300 epochs with SGD optimizer, learning rate 0.01, and cosine
scheduler. For CIFAR10 and GTSRB, the image size is 32× 32. For PubFig, we resize the input to
224× 224.

B ADDITIONAL RESULTS

1https://www.cs.columbia.edu/CAVE/databases/pubfig/
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Table 5: Clean accuracy (CA) on CIFAR10 and GTSRB with various poisoning rates.

Model Strategy CIFAR10 GTSRB

5% 10% 20% 5% 10% 20%

ResNet18

Random 94.69 94.60 94.59 99.06 99.04 99.11

Self-supervised Models 94.71 94.80 94.50 98.06 98.67 98.95
Supervised Models 94.93 94.77 94.34 99.11 98.60 98.76

Multiple-class OOD 94.65 94.47 94.44 99.04 99.30 98.85
Single-class OOD 94.78 94.62 94.53 99.07 98.97 99.39

VGG19

Random 91.97 91.89 92.98 96.02 96.58 95.48

Self-supervised Models 91.81 91.89 91.66 96.56 95.53 95.87
Supervised Models 92.11 91.67 91.83 96.23 96.29 96.06

Multiple-class OOD 92.07 91.67 91.59 96.03 96.14 95.79
Single-class OOD 91.96 92.05 91.26 96.22 96.13 96.43

Random Pretrained OOD
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Figure 7: Performance against Neural Cleanse

B.1 EFFECT ON THE PERFORMANCE OF THE MAIN TASK

Here, we study whether our framework has any significant effect on the clean-data performance of
the main classification task. Table 5 shows the clean accuracy for ResNet18 and VGG19 under the
attacks with the SIG trigger pattern using our strategies. We can observe that selectively poisoning
the dataset causes no degradation to the model performance on the clean data, similar to the random
baseline. We also observe similar results for other types of trigger patterns.

B.2 ADDITIONAL RESULTS OF OUR STRATEGY AGAINST ADDITIONAL BACKDOOR
DEFENSES

In this section, we conduct experiments with additional backdoor defenses. All the experimental
settings here follow the corresponding papers.

We evaluate our strategies with Neural Cleanse, which assumes the trigger is patch-based and
searches for patterns that change the prediction of the model to a specific label. If there is a la-
bel with a pattern of a significantly small norm, the model is identified as being attacked. Figure 7
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shows that when 10% of the target class selected by our strategy is poisoned, the Anomaly Index is
still less than 2, which means the attack still stays stealthy under Neural Cleanse.

We also evaluate with defenses that identify and eliminate poisoned samples in the training data.
We report Elimination Rate (ER) and Sacrifice Rate (SR), which are the rates of poisoned samples
being correctly detected and benign samples being wrongly removed. For a defense to be effective,
it must have high ER and low SR at the same time. Table 6 shows the performance of Activation
Clustering Chen et al. (2019), Spectral Signature Tran et al. (2018), and SPECTRE Hayase et al.
(2021) on models attacked by our strategy. We can observe that Activation Clustering fails to detect
the attack, while Spectral Signature and SPECTRE sacrifice a high number of clean samples.

Table 6: Elimination rate (ER) and Sacrifice Rate (SR) of backdoor detection methods, including
Activation Clustering (AC), SPECTRE, and Spectral Signature (SS) on ResNet18/CIFAR10 with
10% of class 0 is attacked by SIG.

AC SPECTRE SS

ER SR ER SR ER SR

BadNet
Random 0.00 0.00 35.20 50.07 32.80 50.09
Pretrained 0.00 3.28 40.80 50.05 58.00 49.96
OOD 0.00 0.00 28.00 50.11 38.80 50.06

Blended
Random 0.00 2.86 77.20 49.86 75.60 49.87
Pretrained 0.00 3.03 55.60 49.97 53.20 49.98
OOD 0.00 0.00 58.40 49.95 53.60 49.98

SIG
Random 0.00 0.00 39.20 50.05 46.40 50.02
Pretrained 0.00 0.00 38.00 50.06 50.80 50.00
OOD 0.00 0.00 36.40 50.07 35.20 50.10

We provide in Table 7 the performance on ResNet18/CIFAR10 against more recent defenses, includ-
ing Anti-Backdoor Learning (ABL) Li et al. (2021a) and Channel Lipschitz Prunning (CLP) Zheng
et al. (2022). While the original attacks (with random selection) do not generally work against ABL
(ASRs are lower than 30%), our strategy can boost their success rates to 35-68%. For CLP, the
results show that our method is resilient to this pruning defense (49-85%), whereas the success rates
of the random selection strategy are significantly lower (13-30%).

Table 7: The performance on ResNet18/CIFAR10 against recent defenses

Defense Selection Method BadNet Blended

Acc ASR Acc ASR

ABL Random 84.28 16.57 78.66 28.79
Pretrained strategy 81.07 68.00 79.15 35.49

CLP Random 93.55 13.07 93.54 28.87
Pretrained strategy 93.97 85.83 94.23 49.33

We further provide the results of other recent backdoor mitigation defenses, which are FT-SAM Zhu
et al. (2023) and RNP Li et al. (2023) in Table 8 and 9. These backdoor mitigation defenses de-
crease the threat of the attack, however, our strategy still yields better success rates than the random
baseline.

Table 8: The performance against FT-SAM defense.

Strategy BadNet Blended SIG

Acc ASR Acc ASR Acc ASR

Random 90.31 31.46 91.93 31.36 91.71 54.85
Pretrained 90.69 74.10 88.83 39.70 90.51 71.86
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Table 9: The performance against RNP defense.

Strategy BadNet Blended SIG

Acc ASR Acc ASR Acc ASR

Random 86.15 20.69 88.48 42.60 90.16 60.62
Pretrained 88.37 23.11 86.79 52.44 90.07 69.13

We also report the performance of our strategies against other backdoor detection, including IBD-
PSC Hou et al. (2024) and Cognitive Distillation Huang et al. (2022), a backdoor detection method.
Table 10 shows that IBD-PSC is not effective against low poisoning rate clean-label attacks, indi-
cated by low AUC and F1 scores. Similarly, Table 11 reports the AUROC of Cognitive Distillation
on the training set/test set, showing that our method does not make the attack less stealthy.

Table 10: The performance against IBD-PSC defense.

IBD-PSC Strategy AUC F1

BadNets Random 0.528 0.178
Pretrained 0.549 0.240
OOD 0.550 0.279

Blended Random 0.512 0.199
Pretrained 0.502 0.152
OOD 0.518 0.189

SIG Random 0.516 0.116
Pretrained 0.519 0.154
OOD 0.533 0.114

Table 11: The performance against Cognitive Distillation.

Cognitive Distillation BadNet Blended SIG

Random 0.738/0.527 0.504/0.558 0.954/0.712
Pretrained 0.763/0.569 0.662/0.527 0.803/0.687

B.3 THE PERFORMANCE OF OUR STRATEGY AGAINST DISTRIBUTION SHIFT

Face Classification Task. We also evaluate our strategies on a face classification task with the
PubFig dataset. Table 12 illustrates the performance of Single-class OOD strategy and Pretrained
strategy with self-supervised features. For OOD strategy, we employ the same architecture of the
victim model as the surrogate model. The results show that our strategies are effective in boosting
clean-label attacks on face recognition tasks, posing a serious security threat. Selecting samples
with self-supervised models increases the success rate of clean-label attacks significantly, show-
ing the effectiveness of self-supervised features. On the other hand, since there is a high distribution
shift from ImageNet and TinyImageNet to PubFig, the improvements of Supervised Pretrained strat-
egy and OOD strategy are not as high as Self-supervised Pretrained strategy.

Sketch Images. We also assess our strategy in the case where images in the victim dataset have
different styles from the domain of the pretrained model. Table 13 reports the success rate when
attacking ImageNet-Sketch, showing that our strategy is still effective in this case.

B.4 EFFECTIVENESS OF OUR METHOD ON OTHER ATTACKS

We also study the combination of our strategy with input-aware triggers, in particular, Refool, on
CIFAR10. Refool poisons a sample x with a reflection image xr as xadv = x + xr ⊗ k, where the
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Table 12: The attack success rate of our strategies with SIG on ResNet18/PubFig with 20% and 50%
poisoning rate.

Method 20% 50%

Random 13.20 29.31
Self-supervised models 24.92 62.09
Supervised models 19.26 40.37
Single-class OOD 16.27 48.27

Table 13: The ASR on ImageNet-Sketch.

BadNet Blended SIG

Random 0.79 19.41 28.71
Pretrained 2.38 31.09 39.21

kernel k and reflection image xr are different for each input x. Therefore, each poisoned sample has
a different trigger. Table 14 shows that our strategy still improves the success rate in this case.

Table 14: The ASR of Refool.

Strategy ASR

Random 38.02
Pretrained 51.85
OOD 51.10

B.5 THE PERFORMANCE OF OUR STRATEGY ON TINYIMAGENET

We provide the results on TinyImagenet in Table 15, a smaller but not much less complex variant of
ImageNet, which has 200 classes. As can be observed, when the victim dataset has a high number
of classes, our strategy still yields higher success rates than the random baseline, posing a practical
threat.

Table 15: The performance on Tiny-Imagenet.

Strategy SIG Narcissus

Easy samples 2.87 1.88
Random samples 13.80 90.40
Hard samples 38.54 95.78

B.6 THE PERFORMANCE OF OUR STRATEGY WITH DIFFERENT PRETRAINED MODELS

We report the attack success of SIG when using different self-supervised methods, including Sim-
CLRv2 Chen et al. (2020b), DINO Caron et al. (2021), and VICReg Bardes et al. (2022), and
different supervised models, including ViT Dosovitskiy et al. (2021a), ConvNext Liu et al. (2022),
and ResNet50 He et al. (2016a), to select samples to poison. Table 16 shows that different pretrained
models can also increase the success rate of the attack.

We also investigate the effectiveness of multimodal pretrained models in selecting hard samples.
More specifically, we evaluate two strategies with CLIP Radford et al. (2021) using the ViT-B/32
architecture. The first one, named CLIP-loss, computes CLIP loss by cosine similarity of the textual
features of the labels and the image features. The second one, named CLIP-kNN, uses Algorithm 1
with CLIP image encoder as a feature extractor. Table 16 shows that selecting samples with CLIP
is sub-optimal compared to other vision-only pretrained models. We hypothesize that multimodal
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Table 16: The performance with different pretrained models.

Random CLIP Self-supervised models Supervised models

CLIP-loss CLIP-kNN SimCLRv2 DINO VICReg ConvNext ViT ResNet50

BadNets 45.01 87.75 75.99 84.58 94.27 91.68 86.13 84.02 92.14
Blended 37.55 50.90 43.16 54.30 54.68 52.90 54.34 56.02 60.86
SIG 60.54 71.80 65.48 73.57 78.48 80.59 72.68 79.70 85.42

models such as CLIP aim to align image features with textual features, thus, ignoring subtle visual
details. In addition, zero-shot classification with CLIP is challenging in the case where the user
wants to build a fine-grained classifier for their specific use case. For example, CLIP struggles to
distinguish facial images of different people or images of different species of dogs. In contrast,
vision-only pretrained models do a good job of detecting hard samples, as demonstrated in the
experimental results. For the generality of the proposed method, the vision-only pretrained models,
which capture general vision features, are more suitable.

B.7 THE NUMBER OF CLASSES IN THE OOD DATASET

Table 17: ASR of Multiple-class OOD strat-
egy when varying the number of classes in
the OOD dataset.

Dataset Number of
labels

ResNet18 VGG19

5% 10% 20% 5% 10% 20%

CIFAR10 10 65.11 80.76 88.79 50.81 65.80 78.28
200 65.89 71.26 77.18 39.13 54.62 66.20

GTSRB 10 43.56 47.59 52.50 27.93 28.98 31.94
200 46.39 48.36 54.00 23.26 27.09 24.32

Table 18: ASR of Single-class OOD strat-
egy when varying the number of classes in
the OOD dataset.

Dataset Number of
labels

ResNet18 VGG19

5% 10% 20% 5% 10% 20%

CIFAR10 10 72.93 79.07 87.18 57.24 72.35 79.04
200 69.74 81.12 86.40 50.33 68.46 80.28

GTSRB 10 49.07 51.71 55.15 35.91 38.54 38.28
200 47.34 50.04 55.52 35.85 42.33 39.03

We study the performance for the OOD strategy with the different number of classes in the OOD
dataset. The results of Multiple-class OOD strategy using SIG triggers are illustrated in Table 17.
In general, these observations suggest that increasing the number of data labels in the OOD dataset
does not improve the attack effectiveness.

B.8 THE TRANSFERABILITY OF OUR METHOD TO DIFFERENT ARCHITECTURE

We provide additional results for other architecture in Table 19. We perform clean-label backdoor
attacks on ViT Dosovitskiy et al. (2021b) or DeiT Touvron et al. (2021) with 500 samples selected
by a self-supervised pre-trained ResNet50 model He et al. (2016b). As can be observed, our strategy
improves the attack success rate of the random selection strategy by a large margin (more than 30%
for BadNet and 10% for Blended and SIG), demonstrating that the selected samples still help to
achieve effective attacks on various architectures.

Table 19: The performance of Pretrained strategy on ViT/CIFAR10 and DeiT/GTSRB models

Method BadNet Blended SIG

ACC ASR ACC ASR ACC ASR

ViT/CIFAR10 Random 98.78 11.26 98.80 23.10 98.72 35.55
Pretrained strategy 98.84 47.20 98.79 38.63 98.73 45.00

DeiT/GTSRB Random 97.85 6.66 98.42 26.90 98.04 31.86
Pretrained strategy 97.66 7.49 97.91 54.66 97.91 38.31
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B.9 THE EFFECT OF CLASS IMBALANCE

To study the effect of our method and class imbalance, we sort the classes by the number of samples
descendingly and launch the backdoor attacks (with SIG trigger and 10% poisoning rate) on the
classes at 1st, 14th, 28th, and 43rd sorted positions (as target classes), whose original class indices
are 1, 11, 16, and 37, respectively. The results in Table 20 show that our method can consistently
boost the success rates of the original attacks (random selection) on target classes from a broad
spectrum of sample sizes.

Table 20: The performance of Pretrained strategy on classes with different sizes.

1st 14th 28th 43rd

Number of samples 1500 900 300 150
ASR with random selection 48.07 43.87 1.66 16.30
ASR with Pretrained strategy 57.12 44.70 24.36 27.75

B.10 THE EFFECT OF DIFFERENT VALUES OF k

One of our approaches employs k-NN to select samples that have the highest distances to their
neighbors in the feature space. We vary the number k of neighbors and perform SIG attack with
10% poisoning rate on CIFAR10 and report the success rate in Table 21. The results imply that
k-NN is more effective when the value of k is small; we conjecture that kNN with smaller k takes
into account the local property of the dataset, increasing the discrepancy between the score of hard
samples (which are outliers) and easy samples. In the extreme case where k = 10000 (meaning we
select samples that are far from the mean), while the success rate is still higher than that of random
selection, it is lower than that of a smaller k. Consequently, this suggests the use of a small k value
when performing the attacks.

Table 21: The performance of Pretrained strategy with different values of k.

k=5 k=50 k=500 k=1000 k=5000 k=10000 Random

ASR 82.35 80.59 78.92 79.41 77.34 74.76 60.54

B.11 ACCESS ONLY A PORTION OF THE DATA FROM THE TARGET CLASS

We study the effectiveness of our method under the setting where the attacker partially accesses the
target class’s data. We conducted experiments using different selection strategies on CIFAR-10 with
accessible data comprising 20% and 50% subsets of the target class’s data (Table 22). The attack
used was SIG, and the poisoning rate was 5%. We can observe that as the size of the accessible
data decreases, the corresponding ASR also decreases. However, the method’s effectiveness is still
significantly better than that of random selection. The attackers, using our method, can still launch
a very harmful attack (68.92%) even with only 20% of the target class’s data.

Table 22: The performance of Pretrained strategy with partial access to the target class.

Strategy 20% 50% 100%

Acc ASR Acc ASR Acc ASR

Random 94.63 45.27 94.80 43.37 94.69 50.28
Pretrained strategy 94.44 68.92 94.73 70.65 94.71 76.35

B.12 RELAXING THE ASSUMPTION OF THE THREAT MODEL

Gao et al. (2023) propose three strategies to select samples by examining 1) loss value, 2) forgetting
event, and 3) gradient norm, all of which cannot be adapted to launch the attack in our threat model
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(even when the pretrained model is used). More particularly, computing the forgetting event requires
monitoring the training process, while loss value and gradient norm can only be computed when
the pretrained model can ”return the target class”. For example, the attacker cannot use a model
pretrained on ImageNet to compute the loss value of images in the GTSRB dataset. Our strategy
overcomes this challenge by detecting hard samples based on their features, or training a model on
the target class and OOD data to compute the loss value.

Nevertheless, we still report the performance of Gao et al. (2023) when we relax the assumption
of our threat model to allow access to other classes. More particularly, we train a clean model on
CIFAR10 and compute the loss value to select hard samples. Table 23 shows that although having
access to all training samples, the approach in Gao et al. (2023) does not outperform our strategy.

Table 23: The performance of our method and Gao et al. (2023).

BadNets Blended SIG

Random 45.01 37.55 60.54
Gao et al. (2023) 87.62 58.20 80.76
Pretrained 91.68 66.45 80.59
OOD 81.27 56.89 80.76

C LIMITATIONS

As discussed, we study the threat model in which the attacker acts as a data provider that is respon-
sible for a single data class and we propose strategies to select samples for more effective clean-label
attacks. We do not include dirty-label attacks that change the semantic label of the input since it is
easier to detect in this threat model. We also do not study the effect of our strategies on the defense
that mitigates the backdoor in training data.

Our methods select hard samples in the target class to inject trigger, and it would be interesting to
study the combination of our strategies and the attack that perturbs the input to make it difficult to
learn Turner et al. (2019). We leave these to future works.

D SOCIETAL IMPACTS

Our work proposes a novel threat model, where the adversary only has access to the target class that
they want to attack. In this constrained setting, we show that the attacker can perform selective poi-
soning to improve the attack success rate of existing clean-label attacks. We hereby raise awareness
of a new potential risk in developing a machine learning system in practice.
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