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Abstract

Deep learning models are known to be vulnerable to adversarial examples that are1

elaborately designed for malicious purposes and are imperceptible to the human2

perceptual system. Autoencoder, when trained solely over benign examples, has3

been widely used for (self-supervised) adversarial detection based on the assump-4

tion that adversarial examples yield larger reconstruction error. However, because5

lacking adversarial examples in its training and the too strong generalization ability6

of autoencoder, this assumption does not always hold true in practice. To alleviate7

this problem, we explore to detect adversarial examples by disentangled represen-8

tations of images under the autoencoder structure. By disentangling input images9

as class features and semantic features, we train an autoencoder, assisted by a10

discriminator network, over both correctly paired class/semantic features and in-11

correctly paired class/semantic features to reconstruct benign and counterexamples.12

This mimics the behavior of adversarial examples and can reduce the unnecessary13

generalization ability of autoencoder. We compare our method with the state-of-14

the-art self-supervised detection methods under different adversarial attacks and15

different victim models (30 attack settings), and it exhibits better performance in16

various measurements (AUC, FPR, TPR) for most attack settings. Ideally, AUC is17

1 and our method achieves 0.99+ on CIFAR-10 for all attacks. Notably, different18

from other Autoencoder-based detectors, our method can provide resistance to the19

adaptive adversary.20

1 Introduction21

In 2013, the seminal work [1] reported that, during model test time, deep neural networks can be22

easily fooled by adversarial attacks that add tiny perturbation to inputs. Since then, adversarial23

attacks and defenses have drawn significant research attention [2–9]. On the one hand, attackers are24

persistently developing new strategies to construct adversarial examples; on the other hand, defenders25

are struggling to cope with all existing and forthcoming attacks [10].26

Most of the existing defense methods [6–9, 11] are trained with supervision, and these methods work27

well when defending against adversarial attacks they were originally trained for. However, it is widely28

regarded that supervised methods cannot generalize well to adversarial examples from (existing)29

unseen attacks, let alone examples from new attacks.30

Self-supervised based defense, in comparison with supervised defense, requires only benign examples31

for its training. As a typical example, the works in [12, 13] utilize the encoder of an autoencoder32

(AE) to draw the manifold of benign examples and then the decoder network for reconstruction, as33

shown in Fig. 1(a). Since the manifold is learnt from benign examples only and the AE is trained to34

minimize Reconstruction Errors (RE) for benign examples, thus the encoding of adversarial example35

will likely be out-of-distribution and the associated RE is larger.36
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Figure 1: Different adversarial example detectors. Here, En stands for the encoder, De the decoder, V the victim
model. (a) AE based method draws a manifold (the light gray area) of benign examples; (b) DRR disentangles
images as two features: class features which represent images’ labels (vulnerable to adversarial perturbation)
and semantic features (robust to adversarial perturbation). When decoding class and semantic features, benign
examples can be reconstructed faithfully but adversarial examples cannot.

It is soon realized that this is not always true because AE has very strong generalization ability [14]:37

examples with various kinds of small perturbations can be reconstructed with small RE. This is38

desirable if the perturbed examples are benign. However, adversarial examples are just specific39

perturbed versions of benign examples and the malicious perturbations can be also made very small40

in many attacks (i.e., now their encodings will reside in the light gray area of Fig. 1(a)). When41

this happens, all REs are mixed and it leads to high false negative or false positive rate (FNR/FPR)42

during detection. To refine the volume of the manifold drawn by AE and reduce its unnecessary43

generalization ability on adversarial examples, there exist a number of variants [15–18], as will be44

reviewed in detail in Sec. 2.2.45

As a better solution to this problem, we propose a self-supervised disentangled representation based46

reconstruction (DRR) method to detect adversarial examples. DRR possesses the advantage of47

supervised defense, even though it does not have access to any adversarial examples in training. This48

is achieved through mimicking the behavior of adversarial examples by encoding and decoding a49

special class of examples (counterexamples in this work), which is the reconstruction of semantic50

feature from one example and class feature from an uncorrelated example. The rationale is based on51

the very fact of adversarial examples: they cause misclassification without changing semantics52

(contained in its benign counterparts).53

With this fact, we disentangle, with the help of the victim model and an auxiliary encoder, the54

representation of images as two parts: class-dependent and class-independent (i.e., class feature55

and semantic feature). After disentangling, we then train a decoder to reconstruct benign examples56

by combining class/semantic features from the same benign image, as well as counterexamples by57

combining class/semantic features from different benign images (i.e., images with different labels).58

During detection, as shown in Fig. 1(b), DRR will faithfully disentangle any benign image to paired59

class/semantic features and its adversarial counterpart to unpaired class/semantic features, whose60

associated REs are significantly different as desired.61

This paper makes the following contributions: 1) We use disentangled representation for adversarial62

detection, which makes it possible for the detector to mimic the behavior of adversarial examples in63

the self-supervised framework. 2) We design DRR via an AE structure, but it reduces the unnecessary64

generalization capability of AE on adversarial examples. 3) We achieve state-of-the-art adversarial65

detection performance on MNIST, Fashion-MNIST, and CIFAR-10 in most cases. Specifically, the66

Area Under Curve of Receiver Operation Characteristic (ideal AUC of ROC value is 1) is 0.99+ on67

CIRFAR-10.68

2 Background and Related Works69

2.1 Constructing Adversarial Examples70

The existence of adversarial examples in deep neural networks is first pointed out by [1], who find
maliciously designed imperceptible perturbations can fool deep models to misclassify. Let F(·) be a
general neural model and C(·) be the layers before softmax of the model, then evaluating the test
example x is simply a softmax classification over the logits c = C(x), i.e., y = F(x) = softmax(c).
The (untargeted) adversarial example xadv derived from x satisfies

xadv = x+ δadv,F(xadv) 6= F(x), and ‖δadv‖ < ε, (1)
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where δadv is the adversarial perturbation, ε is the maximum magnitude of δadv under certain norm71

compliance. Commonly used norm could be L1, L2, and Linf , so we also focus on detecting72

adversarial examples bounded by these norms.73

In the current literature, Fast Gradient Sign Method (FGSM) is the first widely used method in74

generating adversarial examples [2]. Basic Iterative Method (BIM) [19] and Projected Gradient75

Descent (PGD) [5] improve FGSM by iterating the building block of it according to different criteria76

to find the optimized perturbation. DeepFool [3] and CW [4] do not directly rely on gradient but they77

instead optimize (the norm of) δadv, which are usually more stealthy than FGSM and its variants.78

Another line of research for constructing adversarial examples is called adaptive attacks [20]. Under79

an adaptive attack, the attacker also has white-box access to possible defense mechanisms, and80

his goal is to find an optimal δadv that solves Eq. (1) and circumvents the defense mechanisms81

simultaneously. All the attacks above can have their adaptive versions by considering different82

defenses.83

2.2 Detecting Adversarial Examples84

Adversarial detection is an effective way to prevent adversarial examples, and it can be classified85

as supervised and unsupervised methods considering whether adversarial examples are needed for86

training. For the case of supervised detectors, their detecting capability depends on how to capture87

the differences between adversarial and benign examples. Techniques range from studying statistical88

properties [6–8], training traditional machine learning classifiers [21, 22] and deep classifiers [9, 11,89

16, 23]. It is widely accepted that supervised methods cannot generalize well to adversarial examples90

produced by unseen attacks. For example, a supervised detector trained with PGD adversarial91

examples is likely to fail to detect examples produced by CW. However, it is also known that92

supervised detectors are robust to adaptive attacks, i.e., a detector trained with PGD will likely detect93

examples produced by the adaptive PGD attack [11, 23].94

For the case of unsupervised detectors, their detecting capability depends on how to embed and95

represent benign examples to a different manifold (other than the natural spatiotemporal domain)96

thus adversarial perturbations will be magnified with embedding (without even seeing them at all).97

MagNet, proposed in [12], firstly uses an autoencoder to draw the manifold of benign examples, and98

it is regarded that the distance between the adversarial and benign examples are large via embedding99

and reconstruction.100

However, the embedding manifold induced by autoencoder is not always desirable for detection,101

since autoencoder has too strong generalization capability [14]. Further to MagNet, the work [15]102

trains a variant of autoencoder by adding logits of the victim model into the loss function to refine103

the volume of the embedded manifold. The work [16] proposes to directly use parameters fixed104

victim model as the encoder, and the victim models’ logits as high-level representations/embedding.105

Different from the works above which treat the manifold of all benign examples as a whole, [17, 18]106

propose a class-conditional model to embed and reconstruct benign examples for even better refining107

the (embedding) manifold. However, it is reported in [17] that this method still only reacts to108

relatively large (adversarial) perturbation over simple datasets. Compared with supervised detectors,109

self-supervised detectors may generalize better to unseen attacks but they are vulnerable to adaptive110

attacks [12, 14, 16]. For example, it is shown in [24] that the detector of [12] fails to resist adaptive111

attacks at all.112

2.3 Disentangled Representation113

Disentangled representation is firstly advocated by InfoGAN in [25], which encourages the learning114

of interpretable and meaningful representations of inputs for manipulating specific features. The115

work in [26] disentangles speaker-related representation to synthesis voices of different speakers.116

The work in [27] uses disentangled representation to address pose discrepancy problem among face117

images.118

This paper uses disentangled representations for adversarial detection. It is pointed out [28] that119

there are many features in an image, and in adversarial attack, not all features are equally easy to120

be manipulated. Specifically, the class an image belongs to, which does not depend on all semantic121

features it has, is a concrete example. In this concern, we disentangle representations of an image122
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Figure 2: Overview of DRR.

into semantic feature and class feature. Semantic features can be easily manipulated by the attackers123

(through adversarial perturbation) but the perturbed features are similar to the original version (even124

after embedding if the perturbation is tiny enough). In contrast, class features cannot be directly125

manipulated (by attackers), but they are fragile to adversarial perturbation and robust to natural126

perturbation of the semantic features.127

3 DRR for Adversarial Detection128

This section presents the details of how to train DRR and use DRR to detect adversarial examples. For129

detection, as discussed earlier and shown in Fig. 1(b), an incoming test example x will be encoded130

and decoded as x′, then the RE ‖x′ − x‖2 is compared to a threshold value. If the RE is larger, then131

it is considered as adversarial; otherwise, it is not. Ideally, this threshold should be universal (on a132

given dataset) for all possible attacks (even for new attacks). However, for existing detectors, the133

threshold value is related to the used attack methods. This makes it hard to determine a universal134

threshold for existing detectors and to compare with them. For this reason, we use ROC curve of135

each attack strategy as the metric for evaluation in Sec. 4. But it is worth mentioning that it is easy to136

set a universal threshold for DRR for all the considered attacks.137

We then move to how to train DRR. As depicted in Fig. 2, assisted by the parameter-fixed victim138

model V, DRR first extracts class and semantic features from one benign example xi to train the139

encoder En and decoder De. Then DRR takes the class feature from another benign example xj140

(j 6= i and xj’s label is different to xi) and combines it with the semantic feature from xi to mimic141

the behavior of adversarial examples. The two encoding-decoding processes are further enhanced142

with the discriminator D. The details of how to design the loss functions of the modular networks are143

presented in detail below.144

First and foremost, we examine how to disentangle an input image x to semantic feature s and145

class feature c for our detection purpose. For s, which represents the semantics of x, we use a146

general encoder network En to derive it, i.e., s = En(x). This is because it is widely accepted that147

high-dimensional input x resides in a low-dimensional manifold, and it is a commonly used method148

in the area of representation learning. For c, which represents the class feature of x, we choose to use149

the logits from the victim model1 V, i.e., c = C(x). Aligned with the encoder-decoder structure and150

the discussion in Sec. 2.3, the rationale for this choice is two-sided: 1) Different from the one-hot151

encoding of the label of x, C(x) contains richer information for the subsequent decoding process; 2)152

Regardless of how the concrete adversarial example xadv is constructed, C(xadv) must be different153

enough from C(x) to induce the final erroneous classification.154

With these features available, a decoder network De is then used to reconstruct x′ from s and c (of x),
i.e., x′ = De(s, c). The natural requirement for En and De is that, for a generic image xi from the
benign dataset, the reconstructed version x′i should be similar to xi. Moreover, we need to reserve the
generalization capability over benign examples. For this purpose, an Gaussian noise vector ni, each
of the i.i.d. component follows N (0, δ2), is used for data augmentation, i.e., x̂i = xi + ni. Thus, the

1We hereinafter abuse the notation V in Fig. 2 to denote victim model without the final softmax layer as this
will not cause ambiguity.
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associated loss is

L1 = Exi
MSE(xi, x̂

′
i), (2)

where x̂′i = De (En(x̂i),C(x̂i)), MSE is the mean squared error and E is the expectation.155

Different from the normal AE based detection and its variants, we also require the class features,
after encoding and decoding of xi or its noisy version x̂i, are still aligned. So, another loss function
associated with xi is

L2 = Exi
[MSE(ci, c

′
i) +MSE(ĉi, ĉ

′
i)] , (3)

where ci = C(xi), c′i = C(x′i), ĉi = C(x̂i) and ĉ′i = C(x̂′i). It is worth mentioning that we use the156

layer normalized version of ci/c′i and ĉi/ĉ′i to calculate this cost in the experiment to avoid numeric157

instability and ease the task of hyperparameter tuning. This finishes our discussion of how to train En158

and De with paired semantic feature and class feature from benign examples (the red box with solid159

line in Fig. 2).160

We then move to the training of DRR with unpaired semantic feature and class feature, as depicted by161

the red box with dashed line in Fig. 2. As emphasized in Sec. 2.2, the drawback of AE based detection162

is AE generalizes too well and the refinement of the manifold drawn by AE is not always effective,163

especially on attacks that directly optimize the norm of the adversarial perturbation. The solution164

is now straightforward since we can mimic the behavior of adversarial examples by constructing165

counterexamples from unpaired semantic feature and class feature to better refine the manifold drawn166

by En and De.167

For another benign example xj with j 6= i, we extract its class feature via cj = C(xj). To obtain a168

counterexample, the semantic feature si from xi and the class feature cj from xj are then passed to169

De to get x′i,j = De (En(xi),C(xj)). Recall that our original purpose is to refine the manifold drawn170

by the encoder and decoder, so the loss function here should satisfy the following two requirements:171

• The decoded x′i,j should not converge to x′i (and thus xi) because convergence indicates that172

counterexamples and benign examples are mixed, which is contrary to our original detection173

purpose;174

• The decoded x′i,j should not be far away from x′i, since out-of-distribution examples do not175

really improve the detection capability of autoencoder.176

For these reasons, we choose to use a soft hinge function as the loss, i.e.,

L3 = Exi

∑
j,j 6=i

max(0, d−
∥∥x′i,j − x′i∥∥2)

 , (4)

where d is a hyperparameter used to control the farthest allowable distance between counter and177

benign examples. This soft hinge function (passively) meets the second requirements list above: its178

gradient equals 0 when
∥∥x′i,j − x′i∥∥2 > d.179

To further reduce the unnecessary generalization capability of the encoder-decoder network, we
enforce class feature consistency over the counterexamples and their noisy versions. This is achieved
by using the following loss function:

L4 = Exi

∑
j,j 6=i

MSE(cj , ĉ
′
j)

 , (5)

where ĉ′j = De(x̂′i,j) with x̂′i,j = x′i,j+nj (the component of nj also follows the Gaussian distribution180

N (0, δ2)).181

Inspired by [29], we treat the overall encoder-decoder (though assisted with the parameter-fixed
victim model V) as a generator and then couple it with the last component of DRR, i.e., a discriminator
network D. So (En+De) and D form the structure of generative adversarial networks (GAN), whose
loss function is

LGAN = Exi
[logD(xi)]

+Exi
[log(1− D(De(En(xi),V(xi))))]

+Exi,xj
[log(1− D(De(En(xi),V(xj))))].
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The goal of this loss is to encourage the decoded examples, either benign or counterexamples, to be182

indistinguishable from the original input. It is worth mentioning that this GAN framework can be183

directly incorporated to all other encoder-decoder-like detectors [12, 13, 15–18], though they do not184

use a disentangled representation, to refine the manifold drawn by encoder-decoder networks.185

In summary, the loss function to train the encoder En, the decoder De, and the discriminator D is

Loss =
4∑

i=1

λiLi + λGANLGAN, (6)

where λi (i = 1, · · · , 4) and λGAN control the relative importance of each loss function. En, De, and186

D are obtained by solving the minmax problem argminEn,De maxD.187

The last observation we made is that even though the training of DRR mimics the behavior of188

adversarial examples, it does not really see any of them. And an empirical fact is that the victim model189

V is normally confident on benign examples. In contrast, it is not mandatory for V to be confident on190

adversarial examples (e.g., max(softmax(C(xadv))) = 0.2 << max(softmax(C(x))) = 0.9). This191

leads to trivial failure of DRR as DRR relies on class feature c = C(x) for reconstruction. As a192

remedy of this problem, we use the class feature sharpening trick here, i.e., c is updated as193

c =

{
α · c− (α− 1) ·mean(c), if std(c) < σ;

c, others,
(7)

where std is the standard deviation function, σ is the standard deviation of the training benign194

examples, and α, an empirical sharpening constant, is set to 3.195

Table 1: Detailed settings for the experiment.

MNIST
CIFAR-10Fashion-MNIST

Optimization method Adam Adam
Learning rate 0.0002 0.0002

Training dataset size 60K 50K
Testing dataset size 10K 10K

Victim model 8-layer CNN VGG-16
Encoder output size 4 128
λ1, λ2, λ3, λ4, λGAN 100, 1, 1, 3, 1 100, 1, 1, 3, 1

d, δ 0.5, 0.3 0.35, 0.1

4 Experimental Results196

In this section, we assess the performance of DRR on three datasets, MNIST [30], Fashion-MNIST197

[31] and CIFAR-10 [32], by comparing it with other state-of-the-art detectors [12, 15, 16] against198

the adversarial attacks FGSM, BIM, PGD, DeepFool and CW (taken from Foolbox [33]) and the199

adaptive PGD under differnt norms (L1, L2 and Linf ). As a proof-of-concept, two representative200

networks, an 8-layer CNN and VGG-16 [34], are used as the victim models. These settings generate201

(24 + 6) attacks and (24× 5) + 6 defenses, so only the representative results are reported here due to202

space limit and the complete results (including the source code) are provided in the supplementary203

file. We use a GeForce RTX 2080 to conduct the experiments.204

4.1 Settings205

DRR: DRR has three modules: encoder En, decoder De and discriminator D. It is suffice to say that206

the encoder En and the discriminator D have the same architecture as the victim model except the last207

fully connected layer: for CIFAR-10, there are 128 neurons in the last layer of En; for MNIST and208

Fashion-MNIST, only 4 neurons are used. The architecture of the decoder De is simply a mirror of En.209

Following the literature [11, 23], the hyperparameters [λi]4i=1 and λGAN of the Loss are determined210

by a binary search in [10−3, 106], and d and δ are determined empirically. The full details are listed211

in Table 1.212

Methods for comparison: As mentioned above, three kinds of self-supervised detectors [12, 15, 16]213

are used for comparison. The structure of the encoder, the decoder for all these three methods are the214

same as of DRR. These methods can be classified as hidden vector based reconstruction (HVR) and215

high-level representation based reconstruction (HLR).216
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Table 2: Test accuracy of the victim models.

Data Attack Accuracy

C
IF

A
R

10

benign 0.869
BIM Linf ε = 0.01 0.195

BIM L1 ε = 5 0.588
PGD Linf ε = 0.01 0.267
PGD L2 ε = 0.1 0.744
PGD L2 ε = 0.3 0.352

FGSM Linf ε = 0.05 0.092
DeepFool Linf 0.054

CW L2 0.001

M
N

IS
T

benign 0.993
BIM Linf ε = 0.3 0.001
BIM L1 ε = 50 0.012

PGD Linf ε = 0.3 0.000
PGD L2 ε = 1 0.724
PGD L2 ε = 2 0.086

FGSM Linf ε = 0.1 0.762
DeepFool Linf 0.078

CW L2 0.000

Fa
sh

io
n

benign 0.926
BIM Linf ε = 0.05 0.021

BIM L1 ε = 20 0.300
PGD Linf ε = 0.05 0.008

PGD L2 ε = 1 0.240
PGD L2 ε = 2 0.095

FGSM Linf ε = 0.05 0.327
DeepFool Linf 0.052

CW L2 0.003

Table 3: AUC of ROC of different detectors over different datasets.

Data Norm HVR-P HLR-P HVR-L HLR-L DRR (ours)

C
IF

A
R

10

BIM Linf ε = 0.01 0.4755 0.6340 0.4766 0.9039 0.9992
BIM L1 ε = 5 0.4380 0.5996 0.4364 0.8515 0.9975

PGD Linf ε = 0.01 0.4704 0.6199 0.4723 0.8856 0.9990
PGD L2 ε = 0.1 0.4411 0.5992 0.4469 0.8568 0.9988
PGD L2 ε = 0.3 0.4594 0.6105 0.4613 0.8742 0.9983

FGSM Linf ε = 0.05 0.6620 0.7000 0.6430 0.8207 0.9977
DeepFool Linf 0.5051 0.6518 0.5038 0.8167 0.9954

CW L2 0.5020 0.6562 0.5019 0.8298 0.9982

M
N

IS
T

BIM Linf ε = 0.3 0.4711 0.8509 0.3972 0.8672 0.9939
BIM L1 ε = 50 0.7572 0.8876 0.7391 0.8968 0.9714

PGD Linf ε = 0.3 0.5226 0.8291 0.4350 0.8551 0.9970
PGD L2 ε = 1 0.2313 0.9897 0.2633 0.9886 0.9691
PGD L2 ε = 2 0.1645 0.9948 0.2149 0.9915 0.9977

FGSM Linf ε = 0.1 0.0724 0.9352 0.0811 0.9569 0.9367
DeepFool Linf 0.3824 0.9653 0.4301 0.9748 0.9815

CW L2 0.7211 0.9871 0.6947 0.9828 0.9750

Fa
sh

io
n

BIM Linf ε = 0.05 0.5255 0.8295 0.5389 0.8419 0.8880
BIM L1 ε = 20 0.5420 0.8311 0.5481 0.8419 0.8944

PGD Linf ε = 0.05 0.5267 0.8439 0.5415 0.8555 0.9000
PGD L2 ε = 1 0.5614 0.9610 0.5728 0.9662 0.9858
PGD L2 ε = 2 0.6972 0.9654 0.7259 0.9709 0.9914

FGSM Linf ε = 0.05 0.6113 0.9201 0.6298 0.9193 0.9192
DeepFool Linf 0.6137 0.9088 0.6270 0.9273 0.9378

CW L2 0.5068 0.8981 0.5013 0.9058 0.9125

For [12], it is based on optimizing the pixel-level reconstruction error from the hidden vector outputted217

by the encoder. We term it as HVR-P. For [15], it optimizes both pixel and logits reconstruction218

error and we term it as HVR-L. For [16], it takes the logits from the parameter-fixed victim model as219

a high-level representation of examples for decoding, and it has two variants, HLR-P and HLR-L,220

depending on whether the loss function includes the logits reconstruction error or not. We also221

incorporate and optimize the GAN loss when implementing all these detectors: HVR-P, HVR-L,222

HLR-P, and HLR-L. Note that our implementations perform slightly better than the original methods223

in [12, 15, 16], but this provides a fair environment for evaluating the effectiveness of disentangled224

representation.225

4.2 Results Analyses226

With the settings above, we first train victim models on the 3 datasets, and then generate adversarial227

examples with the 5 attacks (FGSM, BIM, PGD, DeepFool, and CW) under different norm compliance228

(ε in Eq. (1)). All these test examples, either benign or adversarial, are passed to the detector for229

inspection.230

Preparing test examples: The two victim models, VGG-16 and 8-layer CNN, are trained on CIFAR-231

10 and MNIST/Fashion MNIST, respectively. For each test example, we generate the corresponding232

adversarial versions with 5 attacks under different norm compliance, and the test accuracy is listed in233

Table 2. From this table, it is clear that the victim models achieve 0.869, 0.926, 0.993 classification234

accuracy over benign test examples. Also from this table, the attacks DeepFool and CW, which235

directly optimize ε, are generally stronger than the other three. By increasing ε, other attacks also236

obtains better attack result (i.e., worse accuracy), e.g., PGD with different L2 constraints in Table 2.237

However, a larger adversarial perturbation will make the attack get detected easier.238

Visual inspection: We visually compare the reconstructed results of the benign and adversarial239

examples for all the detectors, some examples are shown in Fig. 3. Inspecting columns 3 and 4240

of Fig. 3(a) and (b), it is clear that DRR, HLR-P and HLR-L generally have bigger reconstruction241

errors over adversarial examples, which validates that logits (of the victim model) do help to reduce242

undesirable generalization capability of the detectors.243

We further box-plot the reconstruction errors of all benign and adversarial examples from CIFAR-244

10, the result is shown in Fig. 4. It is clear from this figure, under all attacks of CIFAR-10, the245

reconstruction errors of DRR are clearly separable. The reconstruction errors of HLR-P and HLR-L246

are also generally separable, but it has a higher FNR or FPR than that of DRR (depending on the247

concrete threshold of RE). This validates that the disentangled semantic and class features can better248

refine the volume of the embedded manifold and prevent undesirable generalization. Moreoever, as249

shown in this figure, it is easy to determine a universal threshold for DRR to detect all considered250
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Figure 3: Reconstructed images of each detection methods.
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Figure 4: Box-plot of the reconstruction errors for CIFAR-10 (red box is for adversarial and blue box is for
benign).
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Figure 5: ROC curve of all detectors under various attacks on CIFAR-10.

attacks over CIFAR-10 (and it is similar for the other two datasets), but it is hard to do so for HVR-P,251

HVR-L, HLR-P, and HLR-L.252

ROC curve and AUC: With benign samples and adversarial examples of CIFAR-10, the ROC curves253

of all the detectors are depicted in Fig. 5 for qualitative analysis. From Fig. 5, it is very clear that254

DRR can retain a high true positive detection rate (TPR) while keeping the FPR rate low. If the size255

of the AUC of ROC curve is larger, the detector is better and the ideal size can reach up to 1.256

We use AUC of ROC to quantitatively study the effectiveness of all detectors over CIFAR-10, as well257

as extending this metric to MNIST and Fashion-MNIST. The results are tabulated in Table 3. It is258

clear that, for CIFAR-10, the AUC of DRR is the largest over all different attacks, and the value is259

very close to the ideal case 1. For MNIST and Fashion-MNIST, DRR outperforms other detectors in260

most cases. For the cases that DRR is inferior to HLR-P/HLR-L, the gap is tiny and we regard their261

performances are comparable to each other.262

4.3 Defensing Against Adaptive Adversarial Attack263

To further evaluate the performance of DRR, we assume that the attacker can not only access the
victim model but also knows all the details of the detector. Under this adaptive assumption, the
attacker’s goal is to fool both the victim model and the detector. Following the most-widely used
adaptive attack strategy [8, 11, 20, 23, 24], the attack now aims to solve

min
xadv

αLRE(xadv)− LCE(xadv, y)

s.t. ‖xadv − x‖p < ε, p ∈ {1, 2, inf} (8)

where LRE and LCE are respectively the attack’s loss function for the detector (i.e., reconstruction264

error) and for the victim model (i.e., cross entropy), and y = F(x) is the true label of x and α is the265
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Figure 6: Accuracy of victim model under the original PGD attack and the adaptive attack with different α. The
first row is for CIFAR10, the second row is for MNIST.

parameter to control the relative importance of the two loss functions. It is worth mentioning that the266

detectors [12,15,16] in comparison fail to resist the adaptive attack defined above2. The reason is, for267

other AE-based detectors, no matter high-level representation (i.e., logits) is used or not, they fail268

to capture true features of adversarial examples by certain. In contrast, the AE in DRR mimics the269

behavior of adversarial examples via disentangled representation.270

We evaluate this adaptive attack strategy under the same setting of Table 1, and the results for271

CIFAR-10 and MNIST are depicted in Fig. 6. Observing the first row of Fig. 6, it is clear the accuracy272

of victim model under adaptive attacks is higher than that without our defense, a.k.a., it is harder273

for the attacker to succeed when the detector DRR is deployed. Moreover, if the attacker focuses274

more on circumventing the detector by increasing α of Eq. (8) (from 102 to 105), it will be harder for275

him to succeed in constructing real adversarial examples. However, if the attacker puts less focus on276

bypassing the detector, further experimental results verify that it makes him easier to get detected.277

A similar trend can be also observed when implementing the adaptive attack on MNIST (the second278

row of Fig. 6). But from this figure, it is clear that now it is harder for the attacker to succeed in279

attacking, for example, the attacker only has about 10% attack success rate (under L1 and L2 norm)280

even with small α = 102 (less attention on circumventing the detector). We regard this is because the281

semantic feature of MNIST is simple, and the network architecture used by DRR (Table 1) captures282

this feature very well and the defense is stronger (than that of CIFAR-10 which has more complex283

semantic features). In this concern, it is reasonable to speculate that DRR can be extended to other284

complex datasets with an appropriate choice of model architecture to capture the complex semantic285

features within the dataset, which we leave as future work.286

5 Conclusion287

In this study, we propose to make use of disentangled representation for self-supervised adversarial288

examples detection. The proposed method DRR is based on the very nature of adversarial examples:289

misleading classification results without changing images’ semantics (a lot). With disentangled290

class and semantic features, this nature inspires us to construct counterexamples to better guide291

the training of DRR. Compared with previous self-supervised detectors, DRR generally performs292

better under various measurements over different datasets and different adversarial attack methods.293

Not surprisingly, compared with other AE-based adversarial detectors, DRR is also more robust to294

adaptive adversaries. This makes DRR a promising candidate, when combined with other proactive295

strategies, for the defense of adversarial attacks. Moreover, disentangled representation is a ubiquitous296

property for many other data formats, including natural language, voice, and video signals, so DRR297

may be extended easily to provide adversarial defense to other domains.298

2We note that [15] considered a weaker adaptive attack strategy (maximize the cross entropy after AE
reconstruction but not directly optimize reconstruction error) and HVR-L is robust to the weaker adaptive notion.
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