
MixQA: Embedding and Answer Mixing for Question Answering

Anonymous

Abstract

When we attempt to search for answers to our
questions in search engines, we often attempt
to rephrase our questions if the answers are
not what we expect. Therefore, we attempt to
replicate this thought process with our method
of mixing embeddings of questions and an-
swer ensembling, which we call MixQA. We
experiment on the Squad1.1 and Squad2.0
datasets using BERT. We investigate a variety
of different questions to mix with the given
test-time question, including similar training-
time questions, randomly chosen training-time
questions, and paraphrases of the given ques-
tion. We find that all our methods increase per-
formance over the baselines with no mixing,
and do indeed take advantage of the informa-
tion from the mixed questions. Our best per-
forming method on both datasets involves us-
ing ROUGE-1 retrieved similar training-time
questions for mixing, improving performance
on Squad1.1 and Squad2.0.

1 Introduction

There has been extensive work and research on the
task of question answering (QA). Humans ask and
answer questions commonly in everyday life, as it
is a process by which we interact with others and
acquire information. In fact, QA is an essential
part of our humans learn. The automation of QA
has led to improved efficiencies in human learning,
and has been incorporated in various applications
and mediums such as sesarch engines, dialogue
systems, and so forth.

As research in NLP and QA specifically in-
creases, we find that much of the research has fo-
cused on improving models themselves or their
training, and less attention has been paid to investi-
gating efficient and effective test or inference-time
methods. In this paper, we present MixQA: embed-
ding and answer mixing for question answering, in

hopes of capturing more possible answers to the
question and improving the confidence and accu-
racy of selected answers by the model. We hope
that both methods can introduce both information
and controlled noise that the model can effectively
utilize to increase its test-time performance.

We investigate two major approaches:
1. Mixing embeddings of the given test-time

question with those of its paraphrases and/or
training-time questions, and feeding this
mixed embedding into the model in hopes
of extracting a more confident and accurate
answer.

2. Ensembling the answers of the given test-time
question plus those of its paraphrases and/or
training-time questions. In particular, we sum
the predicted beginning and end of span log-
its for each, in hopes that the final selected
answer using this method is a more confident
and accurate.

The rest of our paper is structured as follows.
Section 2 discusses related work that has been done
regarding QA, paraphrasing, answer ensembling,
and using training-time information during infer-
ence. Then, in Section 3, we discuss the Squad1.1
and Squad2.0 QA datasets that we perform our ex-
periments on, followed by discussing our BERT
QA model in Section 4. We then discuss our
MixQA pipeline and metholodogy in-depth in Sec-
tion 5. Finally, we present and analyze the results
of our experiments in Section 6, and conclude with
key takeaways and future work in Section 7.

2 Related Work

2.1 Question Answering

QA has many moving parts. First, the model needs
to understand what the question is asking or look-
ing for. Then, it must comb the either the passage
or a database of information and pull relevant. This



answer could be extracted from the passage, or
generated based on the passage. All of this is re-
lated to language understanding, which has seen
a few language models use question answering as
a downstream task. These include BERT (Devlin
et al., 2018), XLNet (Yang et al., 2019b), RoBERTa
(Liu et al., 2019), and ALBERT (Lan et al., 2019).
Some datasets that have come out of this task are
WikiQA (Yang et al., 2015) for open-domain QA,
HOTPOTQA (Yang et al., 2018) for multi-hop QA,
and CoQA (Reddy et al., 2019) for conversational
QA. QA is not limited to just text. Models can
answer questions from images and video, tasks
known as Visual-QA and Video-QA, respectively.
What form or medium depends on the task at hand
and the sorts of information the model needs to
understand.

2.2 Paraphrasing
Questions may have many different forms. Chang-
ing one keyword or rephrasing the question can
cause a search engine to find different results or
many more results. Therefore, paraphrasing plays
an important role in helping improve the robust-
ness of QA systems. This appears mostly in the
form of data augmentation, where many forms of a
question will be generated and then passed through
the model to try to find an answer. One form of
data augmentation is back-translation (Xie et al.,
2019), which involves translating a question into
a language different and then back to the input
language (e.g. English). That allows for some vari-
ation in how the question is phrased, and may even
provide slightly different keyword choices. An-
other method is through adversarial training (Yang
et al., 2019a). These methods also allow for more
diversity within the questions.

2.3 Clustering
There are usually many documents that many open-
domain or retrieval-based QA systems have to ex-
amine to find the relevant information to answer
a question. However, if documents are clustered,
QA systems can reduce their workload by first find-
ing clusters of documents that are most similar to
the queried question. There are a few clustering
methods, but the document space is very large, es-
pecially if the task is open-domain. One method
specifically made for querying large databases
quickly is FAISS (Johnson et al., 2019). It can
find the K nearest neighbors of a given point, or
cluster all the given points in a very short period of

time.

2.4 Utilizing Training Data and Embedding
Mixing

In QA, it may be helpful for the model to look at
how some of the training data answered similar
questions in the past. Therefore, it may be useful to
keep track of the training questions in a “datastore”
so that the model can reference it (Khandelwal
et al., 2019). These methods include embedding
mixing, and do not require any retraining of the
model; they are more efficient and “plug-and-play”
solutions to improving the model’s performance.
They have been used for other tasks such as style
transfer, language generation, and data augmenta-
tion. To the best of our knowledge, they have not
been investigated specifically for QA, and we are
the first to investigate their use with MixQA.

2.5 Answer Ensembling/Ranking
There is previous work that investigates the en-
sembling or ranking of multiple answers. The
most straightforward is to pick the answer that
best answers the question, or also known as an-
swer ranking. There have been a few methods to
do so including graphical models (Ko et al., 2007)
and RankQA (Kratzwald et al., 2019). These meth-
ods look at certain metrics that can depend on the
specific task. Note that our proposed answer en-
sembling approach first sums the predicted logits
of the beginning and end of span tokens, rather
than generating individual answers and then either
ranking/picking the best one or ensembling them
afterwards.

2.6 Applications
We see question answering in many forms, espe-
cially in systems such as Alexa, Siri, and Google
Home. In dialogue systems, users can ask questions
and issue commands, so the system has to figure out
what action it needs to take first. Those systems are
more open-domain, while some are closed-domain
like “Let’s Go” (Raux et al., 2005), which has users
calling in for bus information. Sometimes, there
is more emphasis on answer correctness and other
times there is more emphasis on answer variety, for
purposes such as keeping the user’s attention. The
applications of question answering are endless.

3 Datasets

We use two of the most widely-used and popular
datasets in question answering: the Stanford Ques-



tion Answering Dataset (SQuAD), both versions
1.1 (Rajpurkar et al., 2016) and 2.0 (Rajpurkar et al.,
2018). SQuAD 1.1 provides more than 100,000
questions, each with their own context passage.
Each answer can be found in the passage, and is a
span of words in the text. SQuAD 2.0 builds upon
Squad1.1 and adds 50,000 questions that cannot
be answered from looking at the context passage.
This forces models to understand when a passage
does not have an answer span that the question
is looking for, which improves their robustness
and performance. SQuAD 1.1 is evaluated using
exact match (EM) and F1, where the former mea-
sures the percentage of answer spans that exactly
match the ground-truth, and the latter measures the
F1-score (combination of precision and recall) of
the words/tokens in the chosen answer span com-
pared to the ground-truth. Since SQuAD 2.0 has
unanswerable questions, it has separate EM and
F1 metrics for both the answerable and unanswer-
able questions. It also has an overall EM and F1
which is which is aggregated over both types of
questions and is typically used to assess the final
overall performance of models.

4 BERT Model

We use BERT for our experiments. Specifically,
we finetune BERT-base-uncased using a batch size
of 16 on both Squad1.1 and Squad2.0 to serve as
models for our experiments on each dataset, re-
spectively. We use a max length (of question plus
context) of 384, document stride of 128, learning
rate of 3e-5, weight decay of 0.05, and train for
up to 5 epochs each, saving checkpoints per epoch.
We choose the epoch 2 version of both models, as
they resulted in the highest validation EM and F1
performance. Simply running these models for in-
ference on their respective validation sets (with no
mixing or answer ensembling) serves as the base-
lines for our experiments.

5 MixQA Pipeline and Methodology

Our MixQA pipeline consists of three major com-
ponents as seen in Figure 1: the embedding module,
the transformer for answer extraction, and answer
ensembling. We explain each in detail in the fol-
lowing subsections.

5.1 Embedding Module

The first module in our pipeline is the embedding
module. The purpose of this module is to take in

Figure 1: Illustration of our MixQA pipeline.

the given test-time question plus its paraphrases
and/or candidate training-time questions, and out-
put a final mixed embedding to be fed into the
following transformer/BERT model.

5.1.1 Extracting Similar Training-Time
Questions

Before we mix the embeddings, we need to figure
out which of the training corpus questions we want
to use to mix. Therefore, we look at ROUGE-1, 2,
L (Lin, 2004) and BERTScore (Zhang et al., 2019)
to calculate the similarity of the test-time question
with the training time ones (q). We also perform
experiments where we look at the similarity be-
tween the concatenation of the test-time question
and context (qc) with the training time concatena-
tions. The different ROUGE metrics look more
at token overlap, while BERTScore looks more at
semantic similarity by measuring individual token-
level similarity of BERT embeddings.

One issue is that these metrics take a long time
to run, especially over the over one-hundred thou-
sand training questions. Therefore, we look toward
clustering to allow us to calculate these metrics
over a subset of the training time questions. We
use FAISS for clustering, and keep the clusters to
around 100 questions each, resulting in 1300 clus-
ters total. For each test-time question, we can first
find the closest cluster centroids and then find the
exact closest individual questions from these cho-
sen clusters, which represent only a small fraction
of the entire training-time questions.

Specifically, for ROUGE-q, we do a full compar-
ison of each test-time question and every training-
time question as question-only ROUGE similarities



Method Top X sentences Retrieved Sentence
ROUGE-1 1 In what country is Spoleto located?
ROUGE-1 10-20 What country is Salzburg in?
ROUGE-1 90-100 In what country is the Miami Amtrak Station?
ROUGE-2 1 In what country is Manila?
ROUGE-2 10-20 In what country is the beer Tella produced?
ROUGE-2 90-100 What country is the first football league forgotten in?
ROUGE-L 1 In what country is Spoleto located?
ROUGE-L 10-20 In what country is the Edwards Campus located?
ROUGE-L 90-100 In what part of the United States is Texas located?

Table 1: Sentences retrieved as similar using ROUGE looking only at the questions (q). The original test-time
question is ‘In what country is Normandy located?”

Method Top X sent. Retrieved Sentence
ROUGE-1 1 Which two vernaculars hold relation to the official language?
ROUGE-1 10-20 Who took control of the region in 710?
ROUGE-1 90-100 When were the Netherlands’ colonies annexed by Napoleon?
ROUGE-2 1 What is associated with the fall of the Napoleonic Empire?
ROUGE-2 10-20 When was the second wave of neoclassical architecture?
ROUGE-2 90-100 What text embodies Avicenna’s legacy in philosophy?
ROUGE-L 1 In what year did the subway begin operation?
ROUGE-L 10-20 What is to the north of Cameroon?
ROUGE-L 90-100 What is Portugal’s Social Progress ranking?

Table 2: Sentences retrieved as similar using ROUGE using the concatenation of question plus context (qc). The
original test-time question is ‘In what country is Normandy located?”

are noticeably faster to compute. For ROUGE-qc,
BERTScore-q, and BERTScore-qc, we find the top
five closest clusters to each test time question (or
qc) and compare against the individual questions
(or qc) in those five clusters. Then, using the appro-
priate metric, we find and save the top 500 training-
time questions that are most similar to the test-time
question (ordered by decreasing similarity). Some
examples of sentences that were picked using this
method can be seen in Tables 1 and 2 for ROUGE
and 3 for BERTScore.

Note that we also tried randomly sampling
training-time questions. We randomly sample over
three different seeds, and report the average metrics
for each of the runs.

5.1.2 Question Paraphrasing
Other than training-time questions, we also looked
at mixing the embeddings of paraphrases of the
given test-time questions. There are two methods
we used: unsupervised data augmentation (UDA)
which we discussed before as back-translation and
using the Text-to-Text Transfer Transformer (T5)
(Raffel et al., 2019) 1. For the latter, we choose
a pretrained question paraphrasing model on the
Quora Question Pairs (QPP) dataset. This T5 re-
turns a list of up to 10 paraphrases for the given

1https://github.com/ramsrigouthamg/
Paraphrase-any-question-with-T5-Text-To-
Text-Transfer-Transformer-

input question, which we choose from.
UDA allows us to control the paraphrase by pro-

viding a parameter called temperature. The higher
the temperature, the more diverse the backtrans-
lated paraphrases and greater change compared to
the input, and the lower the temperature, the more
that the original syntax and semantics are kept. The
optimal temperature values are usually around 0.7
or 0.8, and we have chosen to explore temperatures
of 0.6, 0.7, 0.8, and 0.9. It is important to note
that for multi-mixing, we mix the four temperature
paraphrases’ embeddings together.

Some examples of paraphrasing using T5 and
UDA can be seen in Table 4. One can notice that
certain sentences produced by T5 are too specific
with additional details that were not present in the
original question, are different questions entirely,
or are too vague. UDA also runs into the same
problems, but it seems like its paraphrases are more
stable with regards to keeping the semantics and
meaning of the original input question.

5.1.3 Embedding Mixing
After we have the candidate questions to be mixed
with the given test-time ones, we must mix them
together. We mix the embeddings of the given
test-time question with candidate questions in a
ratio. We investigate two variations of this: only
mixing the questions (keeping the current test-time
context) and also mixing the contexts (mixing with

https://github.com/ramsrigouthamg/Paraphrase-any-question-with-T5-Text-To-Text-Transfer-Transformer-
https://github.com/ramsrigouthamg/Paraphrase-any-question-with-T5-Text-To-Text-Transfer-Transformer-
https://github.com/ramsrigouthamg/Paraphrase-any-question-with-T5-Text-To-Text-Transfer-Transformer-


Type Top X sent. Retrieved Sentence
q 1 In what part of the United States is Houston located?
q 10-20 In what century did the Tibetan Empire fall?
q 90-100 What is the name of Charleston’s brother city?
qc 1 What location did many of the Greek people decide to live in other than France

after the 17th century?
qc 10-20 During what period did Mauretania exist?
qc 90-100 What resulted from the Persian Revolt?

Table 3: Sentences retrieved as similar using BERTScore with either question (q) or question and context (qc) as
the similarity comparison. The original test-time question is ‘In what country is Normandy located?”

Method Generated Sentence
T5 Who was in battle with the Normans in Italy?
T5 Who did the Nomans fight?
T5 Who didn’t fall to the Normans in Innsbruck, Italy?
T5 How many Norman forces did the Normans in Italy fight?
T5 Do Normans actually fight in Italy? If not why?

UDA temp 0.6 Who was fighting in Italy?
UDA temp 0.7 Who were the Normans fighting in Italy?
UDA temp 0.8 Who are the Normans fighting in Italy?
UDA temp 0.9 Who fought Normandy in Italy?

Table 4: Example paraphrases of input questions using both T5 and UDA. The input question was ‘Who did the
Normans fight in Italy?”

the training-time contexts). We can mix a variable
number of questions or contexts. When working
with paraphrases, we keep the test-time context (as
there is no associated training-time context). The
most simple form of the mixing equation is:

mc ∗ te + (1−mc) ∗ ce (1)

where mc is the mixing coefficient (e.g. 0.9,
0.95, or 0.99) and represents the weight of the final
mixture to place on the given test-time question, te
is the test-time embedding, and ce are the candidate
embeddings of the candidate questions to be mixed
with the given test-time one.

For top-1 mixing, we simply mix a single para-
phrase or the most similar training-time question
with the given test-time question. For multimix-
ing, we mix multiple candidates. We use two ap-
proaches for multimixing: equal weight to each
candidate or normalizing the weight of each candi-
date based on its similarity to the given test-time
question. Note that for paraphrases, only the for-
mer applies. Assuming n candidates to be mixed,
we have the following equations:

mc ∗ te + (1−mc)
n∑

i=1

1

n
c{i}e (2)

mc ∗ te + (1−mc)
n∑

i=1

ai ∗ c{i}e (3)

where ai =
simi∑n

i=1
simi

and
∑n

i=1 ai = 1

In the above equations, c{i}e refers to the em-
bedding of the ith candidate question, ai to the
weight given to the ith candidate, and simi to the
similarity score of the ith candidate with the given
test-time question. Equation 2 is the equation for
equal weight to each candidate, and Equation 3 is
the equation for normalized weight by similarity.

5.2 Transformer for Answer Extraction

The embedding module introduced in the previous
section plays the role of finding proper candidates
for the mixing process. Our pipeline supports mix-
ing between one test-time example with multiple
candidates. This architecture is illustrated in Figure
2. Tokenized test examples and multiple candidates
for each are passed through the same BERT layer
to get their embeddings, and then all candidate em-
beddings associated with each test-time question
are combined using either equation 2 or 3. This
combined candidate embedding is then mixed with
the test question’s embedding and this final mixed
embedding is fed into the linear layer to compute
answer span probability distributions.

For the implementation, we utilized the Hug-
gingFace (PyTorch version) framework as our
pipeline backbone. There are two main reasons
why we chose HuggingFace as our main develop-
ment framework. First, it is easy to load various
SOTA pretrained language models and QA models.
Second, the flexible dataset class in HuggingFace
can load a wide range of QA datasets including



Figure 2: Diagram of our embedding mixing and answer extraction model.

SQuAD and MRQA and provides easy access to
evaluation scripts.

However, the use of HuggingFace also posed
several challenges for us. First, trade-offs between
convenience and customization. HuggingFace is
designed for fast experimentation, so most classes,
including Dataset, Model, and Post-processing, are
highly encapsulated to just a few lines of code. The
modification of one part of the source code results
in several changes to other parts. We encountered
multiple challenges including the misuse of the
ArrowTable data structure and the alignment of
features for longer context.

An example is the alignment challenge for mix-
ing. Usually for NLP tasks, we truncate the input to
fixed lengths to enable efficient batch processing;
in the domain of QA, the truncation is far more
complicated since it is possible that the the answer
span is in the second-half of the truncation and
the label will incorrectly become “no answer”. To
solve this, we needed to map each test question to
multiple computed features and then pad or trun-
cate candidate features to make sure they have the
same size as the test features.

Inference speed is an important criteria for any
ML models and can drastically affect experiment
times. For multimixing, we found that mixing with
top 10 candidates can take more than 45 minutes
to finish per experiment. We hence tried multiple
optimization strategies to speed up the inference
process by incorporating faster matrix computation
libraries and vectorization techniques, and man-
aged to reduce top 10 mixing inference time down
to approximately 15 minutes.

Currently, our pipeline supports experimentation
using a rather large configuration space with the
following configurable parameters: mixing coef-
ficient, mixing context type (train, test), retrieval
method (question only (q), question plus context
(qc)), number of candidates, whether we normalize
the similarity scores (norm) or keep them equal
(equal), and types of candidates to mix (e.g. T5
and UDA paraphrases, randomly selected or top
similar training-time questions using ROUGE1,2,L
and BERTScore). Most of the technical details of
these configurations were delineated in Section 5.

5.3 Answer Ensembling

We also planned to incorporate answer ensembling
as a separate method from embedding mixing as
a form of late fusion. In particular, for each ques-
tion plus either its paraphrases or retrieved similar
training-time questions, we feed them through the
model and get the prediction logits of each token
like normal (basically, the beginning and end of
span probabilities). Then, we essentially ensemble
the answers from the various input questions by
adding together the logits per aligned token and
take argmax. The argmax beginning and end of
span tokens after the summation would correspond
to the final chosen answer. Just like with mixing,
we can control the number of paraphrases/similar
questions, the type of similar question/paraphrase,
the weight (original vs. rest), and so forth.

However, we have faced many difficulties with
this, and currently have not been able to success-
fully implement it. The major issue is that the logits
are not aligned as they include tokens for the ques-



tion, and the lengths of the original question and
its paraphrases or similar questions are all differ-
ent. This is because logits are also produced for the
question tokens (not just context tokens) and used
to help decide if there is an answer or not. Hence,
we cannot simply remove the question logits. Note
that we had tried simply adding the logits and tak-
ing argmax and results were poor, likely due to
everything being misaligned.

Looking deeper into Squad2.0 and the way it
works, we found that it has several criteria for
“NoAns” (predicting that a question has no answer).
Below are simplified explanations for a few:

• Score of “impossible answer” greater than all
valid answers

• Beginning token predicted after ending token

• Argmax predicted answer spans contain ques-
tion tokens (main difficulty for us)

• Answers above a maximum length

Resolving this logit misalignment problem would
be very challenging; lots of engineering work is
required to align the logits, and multiple changes
to the code (e.g. logit post-processing) is required.
One idea we have is to pad logits, e.g. with 0s, up
until the maximum length of the given test-time
question and its paraphrases or similar training-
time questions. However, this will lead to many
issues with logit post-processing that will also need
to be fixed.

6 Results and Analysis

We ran a search over many hyperparameters to find
the best performing set per method of selecting can-
didate questions based off improvements to both
the exact match and F1 scores over the baseline.
The parameters are: the number of questions mixed
(1, 4 for UDA and 1, 3, 5, 10 for all other meth-
ods), mixing coefficient (0.1, 0.3, 0.5, 0.7, 0.8, 0.9,
0.95, 0.99), context (train or test), normalization
(equal or normalized), and for similar-training time
questions, the process by which to calculate the
similarity (question-only (q) or question plus con-
text (qc)). We first take a look at the results on the
SQuAD 1.1 dataset in Table 5. We report the best
set of hyperparameters for each method.2

We can see that all of our methods have a small
improvement on the baseline both in terms of

2Note that for Squad1.1 we did not try BERTScore or
ROUGE-qc yet for retrieving similar training-time questions.

EM and F1. However, using the top-5 retrieved
ROUGE1-q questions, mixing both questions and
contexts, and using a 0.95 mixing coefficient re-
sulted in the highest performance. We note that for
ROUGE methods, the model performs better when
choosing more questions to mix. The mixing coef-
ficient chosen for most is also 0.95, which suggests
that our model does appreciate the controlled noise
and information from the mixed questions (by not
choosing 0.99), but cannot take too much of it (0.9).
The ROUGE scores also all use the train-time con-
text instead of only the test-time context, which
shows that adding information from the training-
time contexts is also important. They also only use
the question as the similarity comparison instead of
the question and context. Random mixing appears
to barely work here, and paraphrase mixing (T5 and
UDA) performs worse than ROUGE. Also note that
the EM improvements are statistically insignificant,
which we will try to improve upon.

We now look at the performance of our model
on SQuAD 2.0 in Table 6. The same trend for
the mixing coefficient seems to apply, as most of
the methods have 0.95 as the highest performing
one. Interestingly enough, the paraphrase methods
have a mixing coefficient of 0.99 (and also perform
worse than random), which suggests that paraphras-
ing may not provide the controlled noise that we
are necessarily looking for. Our methods provide
increased performance on the unanswerable ques-
tions, but cannot outperform the baseline for the
answerable questions. However, overall EM and F1
have increased for all methods, and increases the
most with the ROUGE1-qc method. BERTScore
has lower performance than ROUGE, but does per-
form better than random, which suggests that it is
still a viable method. Random mixing does im-
prove performance for most seeds but is unstable,
so the averages are lower than the ROUGE meth-
ods. Multimixing improves on all corresponding
top-1 mixing experiments, and we see that for both
SQuAD 1.1 and 2.0, ROUGE1 provides the best
improvement.

Most of our F1 scores are statistically insignifi-
cant. However, this is likely because we are improv-
ing F1 scores on NoAns examples and decreasing it
for HasAns examples, thus making the overall im-
provements seem more like random noise (as some
examples increase and others decrease). Hence,
paired t-test may not be the best statistical signif-
icance test here, or we should look at statistical



Method\Params + Metrics no. mixed mix coeff. temperature context normalization EM F1
Baseline - - - - - 80.36 87.96

T5 5 0.95 - - - 80.44* 88.02*
UDA 1 0.99 0.7 - - 80.43* 88.02

random 10 0.95 - test - 80.39* 87.99*
ROUGE1-q 5 0.95 - train norm 80.45* 88.08
ROUGE2-q 10 0.95 - train norm 80.44* 88.05
ROUGEL-q 10 0.95 - train norm 80.44* 88.05

Table 5: Performance of the top/best hyperparameter configurations per method on SQuAD 1.1’s dev set. Not all
runs have every hyperparameter. Random refers to randomly selected questions for mixing, averaged over three
seeds. Note that for all metrics, higher corresponds to better performance. Values higher than the baseline marked
with * are statistically insignificant (using paired two-tailed t-tests).

Method\P+M no. mixed mix coeff. context norm. EM F1 AnsEM AnsF1 NAnsEM NAnsF1
Baseline - - - - 72.55 76.01 71.17 78.11 73.91 73.91

T5 5 0.99 - - 72.70 76.12* 70.73 77.58 74.67 74.67
UDA 4 0.99 - - 72.71 76.16 70.72 77.62 74.70 74.70

random 5 0.95 test - 72.99 76.21* 67.75 74.20 78.21 78.21
ROUGE1-qc 10 0.95 test equal 73.14 76.30* 67.80 74.12 78.47 78.47
ROUGE2-qc 5 0.95 test equal 73.05 76.29* 67.71 74.20 78.37 78.37
ROUGEL-q 3 0.95 test equal 73.10 76.28* 67.81 74.19 78.37 78.37

BERTScore-q 3 0.95 train norm 72.99 76.29* 68.52 75.14 77.44 77.44

Table 6: Performance of the top/best hyperparameter configurations per method on SQuAD 2.0’s dev set. Not all
runs have every hyperparameter. Random refers to randomly selected questions for mixing, averaged over three
seeds. Note that for all metrics, higher corresponds to better performance. Values higher than the baseline marked
with * are statistically insignificant (using paired two-tailed t-tests). Note that we only tested statistical significance
on overall EM and F1 values.

significance of the NoAns and HasAns results sep-
arately, which we plan to do.

Moreover, there are some differences here com-
pared to Squad1.1. Firstly, for most methods on
Squad2.0, only mixing the questions (and keeping
the test-time context) performs better than mixing
both question plus context. Further, equal mixing
weights per candidate perform better for most meth-
ods on Squad2.0 compared to normalized mixing
weights by similarity.

We noticed other trends/observations from our
Squad2.0 experiments that are not present in our
tables. Firstly, mixing rates that are 0.8 and below
reduce overall performance and below 0.5, perfor-
mance drastically reduces including for unanswer-
able questions. Therefore, we do not report any of
these results. We found that having a lower mixing
coefficient (AKA weight on the original test-test
question) results in lower answerable metrics but
higher unanswerable metrics. When it is higher
than 0.9, the increase of the metrics for the unan-
swerable questions more than offsets the decreases
in the answerable question metrics, resulting in im-
proved overall performance over the baseline. The
unanswerable questions are more than just sim-
ple classifications as noted in Section 5.3, so we
found this result acceptable. Further, as seen in

the SQuAD1.1 results in Table 5, our methods can
maintain or increase performance on all answerable
questions, proving our method does not simply rely
on increasing probability of NoAns.

7 Conclusion and Future Work

In conclusion, we have explored various ways of
mixing embeddings from both training-time ques-
tions and paraphrases of the given test-time ques-
tions. Paraphrasing seems to help the model less
than choosing training-time questions based on
n-gram and semantic similarity metrics, and also
slightly less than choosing the questions randomly
from the training set. We saw slight performance
increases for Squad1.1 which we will aim to fur-
ther improve. Further, we saw higher performance
increases for Squad2.0 mainly for the unanswer-
able questions, and we hope to continue exploring
potential ways to also increase the performance for
answerable Squad2.0 questions to further increase
overall performance.

We plan to get answer ensembling working and
run extensive experiments with it, and further tune
our existing embedding mixing hyperparameters.
In particular, for the best performing methods, we
will try beyond top-10 mixing (e.g. up to top-100).
We also plan to try ROUGE-qc and BERTScore



for Squad1.1 after getting clusters of the Squad1.1
training questions. Two other methods we would
like to look at for finding similar training-time
questions are using METEOR (Banerjee and Lavie,
2005) and Jaccard similarity. Further, we plan to
perform experiments on more models and datasets,
as we have only explored the SQuAD datasets us-
ing BERT so far. However, our initial findings
seem promising, and we hope to improve upon
them even further in the future.

For the pipeline side, our current experimenta-
tion is largely based on the Google Colab platform,
which is limited both in terms of GPU resources
and the extent of automation. As a next step, we
could setup AWS compute clusters to facilitate fur-
ther experiment automation.

References
Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An

automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172.

Jeongwoo Ko, Eric Nyberg, and Luo Si. 2007. A
probabilistic graphical model for joint answer rank-
ing in question answering. In Proceedings of the
30th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 343–350.

Bernhard Kratzwald, Anna Eigenmann, and Stefan
Feuerriegel. 2019. Rankqa: Neural question an-
swering with answer re-ranking. arXiv preprint
arXiv:1906.03008.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Antoine Raux, Brian Langner, Dan Bohus, Alan W
Black, and Maxine Eskenazi. 2005. Let’s go pub-
lic! taking a spoken dialog system to the real world.
In Ninth European conference on speech communi-
cation and technology.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V Le. 2019. Unsupervised data aug-
mentation for consistency training. arXiv preprint
arXiv:1904.12848.

Qian Yang, Zhouyuan Huo, Dinghan Shen, Yong
Cheng, Wenlin Wang, Guoyin Wang, and Lawrence
Carin. 2019a. An end-to-end generative architec-
ture for paraphrase generation. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3132–3142.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 confer-
ence on empirical methods in natural language pro-
cessing, pages 2013–2018.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019b. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.



Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.


