
Curvature as an Organizing Principle of Mid-level
Visual Representation: A Semantic-preference

Mapping Approach

Shi Pui Donald Li∗
Department of Cognitive Science

Johns Hopkins University
Baltimore, MD 21218
sli97@jhu.edu

Michael F. Bonner
Department of Cognitive Science

Johns Hopkins University
Baltimore, MD 21218
mfbonner@jhu.edu

Abstract

A central challenge in visual neuroscience is understanding the mid-level repre-
sentations of the ventral stream. We used a novel, data-driven approach (semantic-
preference mapping) combined with an image-statistics approach (curvature index)
to characterize the mid-level features of category-selective visual regions. First, we
fit voxelwise encoding models using a deep convolutional neural network (DCNN)
to predict scene-evoked fMRI responses in object-selective and scene-selective
regions. We then performed semantic-preference mapping to examine how the
responses of these encoding models changed when specific object classes were
removed from natural images. This analysis motivated the hypothesis that object-
selective cortex model is best predicted by mid-level features with curved contours,
while scene-selective cortex model is best predicted by mid-level features with
rectilinear contours. We further developed an image-computable model that outputs
a summary statistic for the prevalence of curved contours in local image patches,
and we used this model to demonstrate the importance of curvature-preferences
for linking DCNN representations with the representations of category-selective
cortex models. Overall, our findings suggest that curvature is a key property of the
mid-level representations that are shared between DCNNs and category-selective
cortex models of the ventral visual stream.

1 Introduction

Understanding the mid-level representation of the cortical visual hierarchy is essential for completing
the puzzle of how sensory inputs are transformed to support goal-directed behaviors. In fact, recent
studies have suggested that mid-level visual features may have a direct role in mediating the higher-
level cognitive functions of visual cortex [15, 14, 3]. However, our understanding of mid-level
representations remains far from complete. Mid-level features are particularly challenging to study
because they reflect highly nonlinear transformations of image inputs and often do not correspond to
intuitive concepts that can be easily described in words [20]. For these reasons, attempts at directly
visualizing mid-level representations through feature-visualization methods applied to DCNNs or
neural data often yield complex, uninterpretable patterns [24, 2, 23].

Here we sought to overcome the challenges of understanding mid-level representations by striking
a balance between data-driven and hypothesis-driven experiments. We developed a method called
semantic-preference mapping that systematically explores how DCNN representations are modulated
by specific classes of objects or visual features. This approach is data-driven in that it allows one to
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explore DCNN selectivity across a large and diverse set of natural images, but it is also constrained in
that the selectivity profiles are defined over an experimenter-selected set of stimulus properties (e.g.,
semantic classes). We used semantic-preference mapping to explore the mid-level representations
of category-selective visual cortex in the human brain. We first built DCNN encoding models to
predict fMRI responses to natural images in a large-scale dataset [6]. We then examined the semantic
preferences of DCNN encoding models for object- and scene-selective visual regions, which led us to
hypothesize that curvature is a prominent organizing principle of the mid-level feature preferences in
these regions. We further validated that curvature is a key property of these mid-level representations
using a computational model of curvature tuning. Our findings suggest that curvature is an important
property of mid-level representations that not only relates to the organization of visual cortex encoding
models into category-selective regions but also appears in the tuning properties of DCNNs that are
commonly used as computational models of human visual cortex.

2 DCNN encoding model

Previous studies have shown that supervised DCNNs are the best class of computational models for
explaining representations in visual areas, and category-selective regions are often best explained by
the mid-level layers of DCNNs, like AlexNet [10, 3]. DCNNs thus have the potential to help scientists
explore the nature of mid-level visual representations in the human brain [7]. In this study, we utilized
a voxelwise encoding model approach [17] and DCNNs to explore the mid-level representations of
two category-selective regions in the ventral stream: the scene-selective parahippocampal place area
(PPA) and the object-selective lateral occipital complex (LOC).

2.1 Model architecture

We employed a pretrained AlexNet trained on ImageNet [13] for our encoding models. First, an
image was passed through AlexNet to obtain the feature maps of the target convolutional layer. Then
global max-pooling was performed over the whole feature map for each channel to output a vector
of feature activations. We included global max-pooling because we were specifically interested
in examining feature selectivity rather than retinotopic biases. Object- and scene-selective regions
have large receptive fields [22], so we predicted that our global-pooling procedure would have little
impact on model performance while having the benefit of heavily reducing the number of model
parameters. We confirmed this by comparing our results with those obtained without global pooling
and found that the results were highly similar. After global pooling, the resulting vector of AlexNet
feature activations was linearly connected to a set of output units that corresponded to predicted voxel
activations. A separate encoding model was built for each voxel and each convolutional layer of
AlexNet. See Fig.1A for illustration.

2.2 Model training

DCNN encoding models were trained on the BOLD5000 dataset [6]. This is a large-scale fMRI
dataset in which each of 4 subjects viewed 5000 images from the ImageNet, COCO and Scene
datasets. Only a very small subset of images ( 100-114 images) were repeated in the dataset, and
noise ceilings were obtained by the mean correlation of the fMRI activation of the repeated images.
During the training process, only the linear connection layer was trained using LASSO regression (L1
penalized regression). The motivation for using LASSO was to make the model more interpretable
by assuming sparse coding of AlexNet features. However, we also observed that LASSO regression
outperformed both ordinary least squares and ridge regression (see Appendix A). To assess the
performance of the encoding models, we used a 10-fold cross-validation procedure over all images
and computed the voxelwise correlations between the predicted and actual activations on each fold.
We then took the mean of these correlations across all 10 folds to obtain a final prediction score
for each voxel. Fig.1B illustrates the mean performance across subjects of the voxelwise encoding
models for each ROI. Since not all images are presented repeatedly in the BOLD5000 dataset, noise
ceilings are calculated based on the image subset that was presented more than once in the experiment.
Therefore, the noise ceiling estimated could be biased to that image subset. The performance of the
models exceeding noise ceiling by a significant margin suggests that the encoding models provide
a meaningful fMRI activation predictions and reach the theoretical ceiling for model performance
after accounting for the noise in the data. We found that convolutional layer 5, a middle layer of
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AlexNet, performed the best in our two category-selective ROIs. Therefore, our follow-up analyses
focus on layer 5. Before performing follow-up analyses, we re-trained layer 5 encoding models for
all images using the entire BOLD5000 dataset. These encoding models served as a simulation of
the corresponding visual cortex and we will call the PPA encoding model as simPPA and the LOC
encoding model as simLOC in the following.

3 Semantic-preference Mapping

Figure 1: A: Image-computable encoding models were trained on the BOLD5000 dataset using
LASSO regression to predict fMRI responses from layer 5 of AlexNet after a global max-pooling
procedure. B: In both scene-selective PPA and object-selective LOC, fMRI activations were best
predicted from AlexNet layer 5, compared to earlier layers. Dotted lines indicate the noise-ceiling
estimate. C: Demonstration of semantic-preference mapping. An image with an occluded object
was provided to the encoding model to get the predicted activation, which was compared with the
predicted activation of the original image. The occlusion index was the mean difference in activation
between the original and occluded images for all instances of an object class. D: Results of semantic-
preference mapping. In the left panel, the occlusion index for selected objects in simPPA and simLOC
is plotted. Error bars indicate +/-1 s.e.m. across subjects. In the right panel, ranking of the occlusion
indices in simPPA and simLOC showed that these ROIs have distinct tuning profiles.
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As illustrated in Fig.1C, semantic-preference mapping examines how the predicted activations of
DCNN encoding models are affected by the object classes present in an image. The general approach
is to systematically occlude a specific object class from each image in a large set of annotated images
and calculate the degree to which each object class affects the predicted activations. If a DCNN
encoding model is selective for a specific object class, then we would expect to see its predicted
activations decrease when that object class is occluded in any image. This procedure was performed
using the ADE20K dataset, which has been densely annotated with object segmentation maps [27].
The images in this dataset do not overlap with those in BOLD5000. We examined classes of objects
that were present in at least 500 images in ADE20K (85 object classes) to ensure that we had a stable
estimate of the semantic-occlusion effects across many instances of each object class. For a target
object class and each image containing an object from that class, we first obtained the predicted
activation of an encoding model to the original image. We then applied an oval-shaped occluder of
random pixel values over the object, fed the occluded image to the encoding model. Occlusion index
was obtained by subtracting the predicted activation of the occluded image from the original image
and calculated the mean of these differences: OI =

∑
vox actoriginal,voxi−actoccluded,voxi

Nvox
. This way

of obtaining occlusion index was similar to obtaining activation contrast in actual fMRI dataset. The
oval occluder was the minimum possible size that fully occluded the object (i.e., the occluder covered
the entire object segmentation mask), and the edges of the occluder were smoothed to avoid adding
high-frequency noise to the image. After repeating this procedure for all images containing the target
object class, we calculated the mean occlusion index across images, which captures the degree to
which the responses of an encoding model are sensitive to the target object class. We repeated this
procedure for all object classes.

simPPA and simLOC showed opposed tuning properties. From Fig.1D left panel (see E for full
results), the occlusion indices of selected object classes are shown. simPPA showed a high occlusion
index for bookcase and a slightly negative index for animal and ball, while simLOC showed the
opposite pattern. In the right panel of Fig.1D, we ranked the occlusion indices of all 85 classes of
objects, and found that the object rankings for simPPA and simLOC were in approximately reverse
order relative to one another. We also observed that many of the top-ranked object classes for simLOC
tended to have curved contours (e.g., ball, animal, person, even flooring and rug has a lot of curvy
pattern inside it), whereas the top-ranked object classes for simPPA tended to be more rectilinear
(e.g., skyscraper, house, bookcase). This suggests the possibility that one of the factors underlying
these object-class preferences may be selectivity for curved versus rectilinear contours. An alternative
possibility is that these results simply reflect the occluder size (e.g., simPPA is selective for objects
that are larger and thus require larger occluders). However, any potential effects of occluder size
are likely minimized by our use of global max-pooling, which discards spatial information from
each feature channel. As we show in our follow-up analyses, the occluder size did not account for
much variance in these object-class preferences, and our results remained largely the same even
after partialing out occluder size (see Appendix D). There are of course many other factors besides
curvature and occluder size that might differ between the top-ranked objects for simLOC and simPPA
(e.g., real-world size, animacy, spatial stability), and we are systematically exploring these other
factors in follow-up analyses. However, our preliminary findings thus far point to curvature as a key
explanatory factor. Currently there is a lack of quantitative models for quantifying the presence of
curved contours in images. This motivated us to develop an image-computable model of the curvature
statistics in natural images, which is the focus of our next set of analyses.

4 Interpretation: Curvature

To assess the possibility that curvature is an important dimension underlying the selectivity of our
DCNN encoding models, we developed a computational model to detect curved contours in natural
images. The objective of this curvature model is to obtain a single curvature index for any given
image. The procedure for the curvature model is described in Fig.2A and Appendix B.

We used this curvature model to characterize the contribution of curved contours to the findings of
our semantic-preference mapping analysis. First, the image patches that had been occluded during
semantic-preference mapping (see Fig.2B) were fed into the curvature model to obtain curvature
indices. We then calculated both Pearson and Spearman’s correlation between the the curvature
indices and the occlusion indices for all object classes. The results in Fig.2C show that there is a strong
correlation between curvature indices and occlusion indices for both the simPPA and simLOC. This
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Figure 2: A: We used a hand-crafted model to compute a curvature index that reflects the presence
of curved contours in images. Each image is convolved with a bank of curvature filters that are
parameterized according to curvature level and orientation. For each edge pixel, we identify the
curvature level that best matches the local image patch. We then obtain a global curvature index by
calculating the average curvature level across all edge pixels. B: We computed curvature indices for
each object class in our semantic-occlusion procedure. The occluded part of each image was cropped
and then fed into the curvature model. For each object class, we calculated the mean curvature index
across all images. C: The semantic-occlusion indices and curvature indices were negatively correlated
in simPPA and positively correlated in simLOC, suggesting that the semantic-occlusion results may
reflect mid-level preferences for rectilinear versus curved contours in simPPA and simLOC.

correlation is positive for simLOC, suggesting a preference for objects containing curved contours.
In contrast, the correlation is negative for simPPA, suggesting a preference for objects containing
rectilinear contours. To account for the possibility that these effects are confounded with occluder
size, we computed partial correlations of the curvature and occlusion indices after partialling out a
regressor for occluder size. The results of this partial-correlation analysis were highly similar to our
original results, suggesting that occluder size is not a major explanatory factor (see Appendix D). In
addition, to rule out the possibility that the shape of occluder was causing the effect, we ran the exact
same semantic-preference mapping procedure using rectangular occluder instead of oval occluder,
and the occlusion index from the oval occluder and the rectangular occluder were highly correlated
(simPPA: r = 0.87, p < 0.001, simLOC: r = 0.76, p < 0.001). Overall, we observed a striking
correlation between the data-driven semantic-selectivity profiles of our ROI models and a simple
summary statistic of image curvature. This suggests that when using DCNNs as fMRI encoding
models in a large-scale naturalistic stimulus set, curvature emerges as a key property of the mid-level
representations that are shared between DCNN feature channels and category-selective regions of
ventral visual cortex.

5 Discussion

Understanding mid-level visual representations is a longstanding challenge in both neuroscience and
computer vision [24, 20]. Here we introduce an approach that combines DCNN-based fMRI encoding
models of human visual cortex with large-scale annotated image sets to systematically explore the
mid-level representations of human vision. Our semantic-preference mapping procedure leverages
dense image annotations to characterize the selectivity of DCNN channels to semantic object classes.
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This procedure combines established techniques for receptive-field mapping in DCNNs with an
inductive bias for understanding complex mid-level features in the context of the object classes for
which they are the most informative. While this procedure was shown to be a powerful tool to explore
mid-level feature tuning in DCNN encoding models, the explained variance of our DCNN encoding
models is ultimately limited by the noise ceiling of the fMRI data and could be improved with an fMRI
dataset that included more stimulus repetitions. Furthermore, a demonstration that our fMRI encoding
models can generalize to novel fMRI datasets would provide stronger support for our findings. Future
work can extend the current results by relating semantic occlusion findings to other object properties,
such as real-world size [14], animacy[11], reachability [9] and memorability [1]. Semantic-preference
mapping could also be modified to examine other image features, such as color or spatial frequency,
and to explore how these parameters are related to neural representations. We applied this procedure
to examine the selectivity profiles of object- and scene-selective ROIs in the ventral stream. Our
findings revealed that DCNN encoding models of object- and scene-selective cortex capture a key
principle of mid-level representations: selectivity for features with curved versus rectilinear contours.
Previous work has demonstrated that curvature is an important feature of representations in primate
V4 [5, 8, 21] and that there are patches of curvature-preferring regions along the ventral stream of
human and non-human primates [26, 25]. Previous work has also demonstrated a preference for
rectilinear junctions in scene-selective regions [18], but see [4]. Here we use a data-driven approach
to reveal curvature as an emergent property of mid-level feature tuning in category-selective visual
cortex.

Broader Impact

Semantic-preference mapping is a novel approach for using DCNN encoding models to study neural
representation. This approach could be adapted for exploring hypotheses in other cognitive domains,
such as audition and language, and it could be useful for exploring representational hypotheses using
existing, condition-rich fMRI data sets. In addition, our simple image-computable curvature model
could be a tool for researchers to quantify image curvature statistics, without relying on subjective
ratings.
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Appendix A LASSO regression

Previous studies [19, 12] suggest that regularization can be helpful for fMRI encoding models to reduce
overfitting and to handle correlated regressors. While most studies employ ridge regression (L2 regularization),
here we explored how L1 regularization affects encoding model performance. We were interested in L1
regularization as a potential means of learning sparse encoding models that emphasize the DCNN features
that are most important for each voxel and ROI. We first evaluated the performance of different regression
methods by running encoding-model analyses on the BOLD5000 dataset with 10-fold cross-validation using
ordinary least square (OLS) regression (without regularization), LASSO regression (L1 regularization) and
ridge regression (L2 regularization). For LASSO and ridge regression, a separate 10-fold cross-validation
was performed before assessing performance to determine the best penalty parameters. Because the penalty
parameters for LASSO and ridge are learned on the same data that we use for quantifying model performance
(using a different cross-validation design), the performance estimates for the regularized models may be slightly
biased upwards. However, this is not problematic for our analyses for two reasons. The first reason is that the
encoding models perform well above chance even when using OLS regression without regularization, which
means that regularization is not required to achieve statistically significant performance. The second reason is
that our results and conclusions do not depend on the specific values of the performance estimates. It is already
well-established that DCNNs are state-of-the-art models of fMRI responses in visual cortex. The goal of our
analyses is to characterize the mid-level representations in DCNN encoding models after they have been fit to
fMRI data.

Figure 3: Distribution of performance differences between regression methods. LASSO outperforms
both ridge and OLS regression in voxelwise encoding model performance in both PPA and LOC.

We calculated the difference in voxelwise prediction accuracies between pairs of regression methods to create
distributions of performance differences (see Fig.3). The results show that LASSO regression outperforms both
OLS and ridge regression. One possible explanation for this result is that if only a subset of DCNN features are
informative for each voxel, LASSO regression would be most appropriate since it can set the regression weights
on uninformative features to zero (thus performing both feature selection and regression).

Appendix B Curvature model

The goal of the curvature model is to provide a summary statistic of the curvature of contours in local image
regions. Specifically, we calculated a curvature index based on the mean curvature level of edge pixels (see
Fig. 2A). We used a filter bank of convolutional kernels for curved contours (see Appendix D for details). The
curvature model procedures are as follows:
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1. Compute curvature feature maps: The curvature model starts by convolving the curvature filter bank
with a grayscale input image. By convolving the image with a curvature filter, we obtained a measure
of the similarity between each local image patch and the curvature filter.

2. Edge detection: The grayscale input image is fed into an edge detection algorithm (Roberts) to separate
edge pixels from other pixels.

3. Pixel-wise curvature levels: The goal of this step is to compute the curvature level of each edge
pixel. A high value for a pixel in a curvature feature map suggests a higher similarity between the
corresponding curvature wavelet and the local image patch. Thus, we assigned a curvature level to
each edge pixel by finding the corresponding curvature level of the wavelet with the maximum output.

4. Curvature index: We compute the mean curvature level across all edge pixels in the image, and the
resulting value is the curvature index for the image.

Appendix C Curvature filter

Figure 4: Curvature Filter Bank

In the curvature model, we performed convolution with curvature-detector filters and obtained curvature indices
for each pixel [16]. We created a curvature filter bank Fig.4. Each curvature filter can be thought as a curved-
contour detector with a particular orientation and curvature level. We convolved each image with 176 different
curvature filters that spanned 16 orientation levels and 11 curvature levels (5 concave levels, 5 convex levels and
1 straight level) and identified the most strongly activated curvature level across all orientations at each pixel. A
curvature filter is built by combining a rotated and curved complex wave function (F ) and a rotated and curved
Gaussian function (G). This curvature filter idea is borrowed from the construction of the Gabor wavelet filter,
which consists of a sinusoid function and a gaussian function. A single curvature filter is parameterized by six
variables, including frequency (f ), orientation (θ), curvature (c), size (s), and scale of the gaussian filter in x
(σx) and y (σy) direction. Each filter can be composed by the following mathematical formulas:

B(x, y) = G(x, y) · (F (x, y)− bias) (1)
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G(x, y) = exp

[
−f

2

2
·
(
(xc + c · s2s)2

σ2
x

+
x2s

s2 · σ2
y

)]
(2)

F (x, y) = exp(i · f · (xc + c · x2s)) (3)

xc = x · cosθ + y · sinθ (4)

xs = −x · sinθ + y · cosθ (5)

bias = e−
σx
2 (6)

Appendix D Occluder size

We tested whether occluder size could explain the results of the semantic-preference mapping procedure. In this
analysis, we quantified the occluder size by counting the number of occluded pixels. Table 1 shows the partial
correlation of the mean occlusion index with both mean occluder size and mean curvature index for each object
class.

Table 1: Partial correlation of semantic-preference mapping results with occluder size and curvature.
*** indicates p < 0.001

Partial Correlation

ROI Occluder size Curvature index

PPA 0.16 -0.55 ***
LOC -0.14 0.53 ***

In both PPA and LOC, occluder size did not significantly correlate with the semantic-preference mapping results
when curvature was taken into account. On the contrary, curvature indices were significantly correlated with the
semantic-preference mapping result in both PPA and LOC after taking occluder size into account. In summary,
this suggests that occluder size is not a strong explanatory factor for the semantic-preference mapping results.

Appendix E Full semantic-preference mapping result

Table 2: Semantic-preference mapping results of PPA and LOC

PPA LOC

Most important Skyscraper Ball
House Animal
Bookcase Flooring
Building Rug
Computer Person
Windowpanel Magazine
Fireplace Rock, Stone
Stand Brand Name
Curtain Figurine
Road, Route Telephone
Swivel Chair Switch
Blind, Screen Light
Dresser Ashcan
Palm, Palm Tree Fluorescent
Sink Outlet
Desk Shoe
Stove Spotlight, Spot
Sky Pot, Flowerpot
Column Bicycle, Bike, Wheel, Cycle
Chandelier Plaything, Toy
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Railing, Rail Glass, Drinking Glass
Painting, Picture Boat
Armchair Minibike, Motorbike
Sea Stairs, Steps
Poster Path
Coffee Table Van
Food, Solid Food Jar
Earth, Ground Pillow
Stool Candlestick, Candle Holder
Sidewalk, Pavement Bucket, Pail
Table Table
Television Awning
Towel Umbrella
Plant, Flora, Plant Life Basket, Handbasket
Fence, Fencing Sofa, Couch, Lounge
Field Car
Bannister Towel
Truck, Motortruck Shrub, Bush
Signboard, Sign Air Conditioner
Sofa, Couch, Lounge Streetlight, Street Lamp
Stairway, Staircase Flag
Awning Mountain, Mount
Pillow Can, Tin, Tin Can
Grass Monitor, Monitoring Device
Air Conditioner Book
Boat Traffic Light
Path Bannister
Can, Tin, Tin Can Fence, Fencing
Traffic Light Plant, Flora, Plant Life
Bucket, Pail Stairway, Staircase
Ashcan Television
Car Coffee Table
Floor, Flooring Earth, Ground
Book Sidewalk, Pavement
Mountain, Mount Armchair
Flag Poster
Monitor, Monitoring Device Stool
Basket, Handbasket Food, Solid Food
Shrub, Bush Signboard, Sign
Stairs, Steps Truck, Motortruck
Plaything, Toy Sink
Van Grass
Jar Desk
Umbrella Painting, Picture
Candlestick, Candle Holder Dresser
Shoe Field
Minibike, Motorbike Chandelier, Pendant, Pendent
Streetlight, Street Lamp Railing, Rail
Magazine Stove
Bicycle, Bike, Wheel, Cycle Sky
Rug Swivel Chair
Pot, Flowerpot Column, Pillar
Fluorescent Blind, Screen
Figurine, Statuette Palm, Palm Tree
Glass, Drinking Glass Sea
Outlet Curtain
Stone Stand
Spotlight Road, Route
Light Computer
Telephone Fireplace
Switch Windowpanel
Person Building
Brand Name Bookcase
Animal House
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Least important Ball Skyscraper
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